1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
24 #endif
25 #include <perf/cpumap.h>
26
27 #include "dso.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "util/evsel_fprintf.h"
31 #include "header.h"
32 #include "memswap.h"
33 #include "trace-event.h"
34 #include "session.h"
35 #include "symbol.h"
36 #include "debug.h"
37 #include "cpumap.h"
38 #include "pmu.h"
39 #include "vdso.h"
40 #include "strbuf.h"
41 #include "build-id.h"
42 #include "data.h"
43 #include <api/fs/fs.h>
44 #include "asm/bug.h"
45 #include "tool.h"
46 #include "time-utils.h"
47 #include "units.h"
48 #include "util/util.h" // perf_exe()
49 #include "cputopo.h"
50 #include "bpf-event.h"
51 #include "bpf-utils.h"
52 #include "clockid.h"
53 #include "pmu-hybrid.h"
54
55 #include <linux/ctype.h>
56 #include <internal/lib.h>
57
58 /*
59 * magic2 = "PERFILE2"
60 * must be a numerical value to let the endianness
61 * determine the memory layout. That way we are able
62 * to detect endianness when reading the perf.data file
63 * back.
64 *
65 * we check for legacy (PERFFILE) format.
66 */
67 static const char *__perf_magic1 = "PERFFILE";
68 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
70
71 #define PERF_MAGIC __perf_magic2
72
73 const char perf_version_string[] = PERF_VERSION;
74
75 struct perf_file_attr {
76 struct perf_event_attr attr;
77 struct perf_file_section ids;
78 };
79
perf_header__set_feat(struct perf_header * header,int feat)80 void perf_header__set_feat(struct perf_header *header, int feat)
81 {
82 set_bit(feat, header->adds_features);
83 }
84
perf_header__clear_feat(struct perf_header * header,int feat)85 void perf_header__clear_feat(struct perf_header *header, int feat)
86 {
87 clear_bit(feat, header->adds_features);
88 }
89
perf_header__has_feat(const struct perf_header * header,int feat)90 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 {
92 return test_bit(feat, header->adds_features);
93 }
94
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 {
97 ssize_t ret = writen(ff->fd, buf, size);
98
99 if (ret != (ssize_t)size)
100 return ret < 0 ? (int)ret : -1;
101 return 0;
102 }
103
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)104 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
105 {
106 /* struct perf_event_header::size is u16 */
107 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108 size_t new_size = ff->size;
109 void *addr;
110
111 if (size + ff->offset > max_size)
112 return -E2BIG;
113
114 while (size > (new_size - ff->offset))
115 new_size <<= 1;
116 new_size = min(max_size, new_size);
117
118 if (ff->size < new_size) {
119 addr = realloc(ff->buf, new_size);
120 if (!addr)
121 return -ENOMEM;
122 ff->buf = addr;
123 ff->size = new_size;
124 }
125
126 memcpy(ff->buf + ff->offset, buf, size);
127 ff->offset += size;
128
129 return 0;
130 }
131
132 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 {
135 if (!ff->buf)
136 return __do_write_fd(ff, buf, size);
137 return __do_write_buf(ff, buf, size);
138 }
139
140 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 {
143 u64 *p = (u64 *) set;
144 int i, ret;
145
146 ret = do_write(ff, &size, sizeof(size));
147 if (ret < 0)
148 return ret;
149
150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151 ret = do_write(ff, p + i, sizeof(*p));
152 if (ret < 0)
153 return ret;
154 }
155
156 return 0;
157 }
158
159 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)160 int write_padded(struct feat_fd *ff, const void *bf,
161 size_t count, size_t count_aligned)
162 {
163 static const char zero_buf[NAME_ALIGN];
164 int err = do_write(ff, bf, count);
165
166 if (!err)
167 err = do_write(ff, zero_buf, count_aligned - count);
168
169 return err;
170 }
171
172 #define string_size(str) \
173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174
175 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)176 static int do_write_string(struct feat_fd *ff, const char *str)
177 {
178 u32 len, olen;
179 int ret;
180
181 olen = strlen(str) + 1;
182 len = PERF_ALIGN(olen, NAME_ALIGN);
183
184 /* write len, incl. \0 */
185 ret = do_write(ff, &len, sizeof(len));
186 if (ret < 0)
187 return ret;
188
189 return write_padded(ff, str, olen, len);
190 }
191
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 {
194 ssize_t ret = readn(ff->fd, addr, size);
195
196 if (ret != size)
197 return ret < 0 ? (int)ret : -1;
198 return 0;
199 }
200
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 {
203 if (size > (ssize_t)ff->size - ff->offset)
204 return -1;
205
206 memcpy(addr, ff->buf + ff->offset, size);
207 ff->offset += size;
208
209 return 0;
210
211 }
212
__do_read(struct feat_fd * ff,void * addr,ssize_t size)213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 {
215 if (!ff->buf)
216 return __do_read_fd(ff, addr, size);
217 return __do_read_buf(ff, addr, size);
218 }
219
do_read_u32(struct feat_fd * ff,u32 * addr)220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 {
222 int ret;
223
224 ret = __do_read(ff, addr, sizeof(*addr));
225 if (ret)
226 return ret;
227
228 if (ff->ph->needs_swap)
229 *addr = bswap_32(*addr);
230 return 0;
231 }
232
do_read_u64(struct feat_fd * ff,u64 * addr)233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 {
235 int ret;
236
237 ret = __do_read(ff, addr, sizeof(*addr));
238 if (ret)
239 return ret;
240
241 if (ff->ph->needs_swap)
242 *addr = bswap_64(*addr);
243 return 0;
244 }
245
do_read_string(struct feat_fd * ff)246 static char *do_read_string(struct feat_fd *ff)
247 {
248 u32 len;
249 char *buf;
250
251 if (do_read_u32(ff, &len))
252 return NULL;
253
254 buf = malloc(len);
255 if (!buf)
256 return NULL;
257
258 if (!__do_read(ff, buf, len)) {
259 /*
260 * strings are padded by zeroes
261 * thus the actual strlen of buf
262 * may be less than len
263 */
264 return buf;
265 }
266
267 free(buf);
268 return NULL;
269 }
270
271 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 {
274 unsigned long *set;
275 u64 size, *p;
276 int i, ret;
277
278 ret = do_read_u64(ff, &size);
279 if (ret)
280 return ret;
281
282 set = bitmap_zalloc(size);
283 if (!set)
284 return -ENOMEM;
285
286 p = (u64 *) set;
287
288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289 ret = do_read_u64(ff, p + i);
290 if (ret < 0) {
291 free(set);
292 return ret;
293 }
294 }
295
296 *pset = set;
297 *psize = size;
298 return 0;
299 }
300
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)301 static int write_tracing_data(struct feat_fd *ff,
302 struct evlist *evlist)
303 {
304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305 return -1;
306
307 return read_tracing_data(ff->fd, &evlist->core.entries);
308 }
309
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)310 static int write_build_id(struct feat_fd *ff,
311 struct evlist *evlist __maybe_unused)
312 {
313 struct perf_session *session;
314 int err;
315
316 session = container_of(ff->ph, struct perf_session, header);
317
318 if (!perf_session__read_build_ids(session, true))
319 return -1;
320
321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322 return -1;
323
324 err = perf_session__write_buildid_table(session, ff);
325 if (err < 0) {
326 pr_debug("failed to write buildid table\n");
327 return err;
328 }
329 perf_session__cache_build_ids(session);
330
331 return 0;
332 }
333
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)334 static int write_hostname(struct feat_fd *ff,
335 struct evlist *evlist __maybe_unused)
336 {
337 struct utsname uts;
338 int ret;
339
340 ret = uname(&uts);
341 if (ret < 0)
342 return -1;
343
344 return do_write_string(ff, uts.nodename);
345 }
346
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)347 static int write_osrelease(struct feat_fd *ff,
348 struct evlist *evlist __maybe_unused)
349 {
350 struct utsname uts;
351 int ret;
352
353 ret = uname(&uts);
354 if (ret < 0)
355 return -1;
356
357 return do_write_string(ff, uts.release);
358 }
359
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)360 static int write_arch(struct feat_fd *ff,
361 struct evlist *evlist __maybe_unused)
362 {
363 struct utsname uts;
364 int ret;
365
366 ret = uname(&uts);
367 if (ret < 0)
368 return -1;
369
370 return do_write_string(ff, uts.machine);
371 }
372
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)373 static int write_version(struct feat_fd *ff,
374 struct evlist *evlist __maybe_unused)
375 {
376 return do_write_string(ff, perf_version_string);
377 }
378
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 {
381 FILE *file;
382 char *buf = NULL;
383 char *s, *p;
384 const char *search = cpuinfo_proc;
385 size_t len = 0;
386 int ret = -1;
387
388 if (!search)
389 return -1;
390
391 file = fopen("/proc/cpuinfo", "r");
392 if (!file)
393 return -1;
394
395 while (getline(&buf, &len, file) > 0) {
396 ret = strncmp(buf, search, strlen(search));
397 if (!ret)
398 break;
399 }
400
401 if (ret) {
402 ret = -1;
403 goto done;
404 }
405
406 s = buf;
407
408 p = strchr(buf, ':');
409 if (p && *(p+1) == ' ' && *(p+2))
410 s = p + 2;
411 p = strchr(s, '\n');
412 if (p)
413 *p = '\0';
414
415 /* squash extra space characters (branding string) */
416 p = s;
417 while (*p) {
418 if (isspace(*p)) {
419 char *r = p + 1;
420 char *q = skip_spaces(r);
421 *p = ' ';
422 if (q != (p+1))
423 while ((*r++ = *q++));
424 }
425 p++;
426 }
427 ret = do_write_string(ff, s);
428 done:
429 free(buf);
430 fclose(file);
431 return ret;
432 }
433
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)434 static int write_cpudesc(struct feat_fd *ff,
435 struct evlist *evlist __maybe_unused)
436 {
437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
438 #define CPUINFO_PROC { "cpu", }
439 #elif defined(__s390__)
440 #define CPUINFO_PROC { "vendor_id", }
441 #elif defined(__sh__)
442 #define CPUINFO_PROC { "cpu type", }
443 #elif defined(__alpha__) || defined(__mips__)
444 #define CPUINFO_PROC { "cpu model", }
445 #elif defined(__arm__)
446 #define CPUINFO_PROC { "model name", "Processor", }
447 #elif defined(__arc__)
448 #define CPUINFO_PROC { "Processor", }
449 #elif defined(__xtensa__)
450 #define CPUINFO_PROC { "core ID", }
451 #else
452 #define CPUINFO_PROC { "model name", }
453 #endif
454 const char *cpuinfo_procs[] = CPUINFO_PROC;
455 #undef CPUINFO_PROC
456 unsigned int i;
457
458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
459 int ret;
460 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
461 if (ret >= 0)
462 return ret;
463 }
464 return -1;
465 }
466
467
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)468 static int write_nrcpus(struct feat_fd *ff,
469 struct evlist *evlist __maybe_unused)
470 {
471 long nr;
472 u32 nrc, nra;
473 int ret;
474
475 nrc = cpu__max_present_cpu().cpu;
476
477 nr = sysconf(_SC_NPROCESSORS_ONLN);
478 if (nr < 0)
479 return -1;
480
481 nra = (u32)(nr & UINT_MAX);
482
483 ret = do_write(ff, &nrc, sizeof(nrc));
484 if (ret < 0)
485 return ret;
486
487 return do_write(ff, &nra, sizeof(nra));
488 }
489
write_event_desc(struct feat_fd * ff,struct evlist * evlist)490 static int write_event_desc(struct feat_fd *ff,
491 struct evlist *evlist)
492 {
493 struct evsel *evsel;
494 u32 nre, nri, sz;
495 int ret;
496
497 nre = evlist->core.nr_entries;
498
499 /*
500 * write number of events
501 */
502 ret = do_write(ff, &nre, sizeof(nre));
503 if (ret < 0)
504 return ret;
505
506 /*
507 * size of perf_event_attr struct
508 */
509 sz = (u32)sizeof(evsel->core.attr);
510 ret = do_write(ff, &sz, sizeof(sz));
511 if (ret < 0)
512 return ret;
513
514 evlist__for_each_entry(evlist, evsel) {
515 ret = do_write(ff, &evsel->core.attr, sz);
516 if (ret < 0)
517 return ret;
518 /*
519 * write number of unique id per event
520 * there is one id per instance of an event
521 *
522 * copy into an nri to be independent of the
523 * type of ids,
524 */
525 nri = evsel->core.ids;
526 ret = do_write(ff, &nri, sizeof(nri));
527 if (ret < 0)
528 return ret;
529
530 /*
531 * write event string as passed on cmdline
532 */
533 ret = do_write_string(ff, evsel__name(evsel));
534 if (ret < 0)
535 return ret;
536 /*
537 * write unique ids for this event
538 */
539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
540 if (ret < 0)
541 return ret;
542 }
543 return 0;
544 }
545
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)546 static int write_cmdline(struct feat_fd *ff,
547 struct evlist *evlist __maybe_unused)
548 {
549 char pbuf[MAXPATHLEN], *buf;
550 int i, ret, n;
551
552 /* actual path to perf binary */
553 buf = perf_exe(pbuf, MAXPATHLEN);
554
555 /* account for binary path */
556 n = perf_env.nr_cmdline + 1;
557
558 ret = do_write(ff, &n, sizeof(n));
559 if (ret < 0)
560 return ret;
561
562 ret = do_write_string(ff, buf);
563 if (ret < 0)
564 return ret;
565
566 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
567 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
568 if (ret < 0)
569 return ret;
570 }
571 return 0;
572 }
573
574
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)575 static int write_cpu_topology(struct feat_fd *ff,
576 struct evlist *evlist __maybe_unused)
577 {
578 struct cpu_topology *tp;
579 u32 i;
580 int ret, j;
581
582 tp = cpu_topology__new();
583 if (!tp)
584 return -1;
585
586 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
587 if (ret < 0)
588 goto done;
589
590 for (i = 0; i < tp->package_cpus_lists; i++) {
591 ret = do_write_string(ff, tp->package_cpus_list[i]);
592 if (ret < 0)
593 goto done;
594 }
595 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
596 if (ret < 0)
597 goto done;
598
599 for (i = 0; i < tp->core_cpus_lists; i++) {
600 ret = do_write_string(ff, tp->core_cpus_list[i]);
601 if (ret < 0)
602 break;
603 }
604
605 ret = perf_env__read_cpu_topology_map(&perf_env);
606 if (ret < 0)
607 goto done;
608
609 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
610 ret = do_write(ff, &perf_env.cpu[j].core_id,
611 sizeof(perf_env.cpu[j].core_id));
612 if (ret < 0)
613 return ret;
614 ret = do_write(ff, &perf_env.cpu[j].socket_id,
615 sizeof(perf_env.cpu[j].socket_id));
616 if (ret < 0)
617 return ret;
618 }
619
620 if (!tp->die_cpus_lists)
621 goto done;
622
623 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
624 if (ret < 0)
625 goto done;
626
627 for (i = 0; i < tp->die_cpus_lists; i++) {
628 ret = do_write_string(ff, tp->die_cpus_list[i]);
629 if (ret < 0)
630 goto done;
631 }
632
633 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
634 ret = do_write(ff, &perf_env.cpu[j].die_id,
635 sizeof(perf_env.cpu[j].die_id));
636 if (ret < 0)
637 return ret;
638 }
639
640 done:
641 cpu_topology__delete(tp);
642 return ret;
643 }
644
645
646
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)647 static int write_total_mem(struct feat_fd *ff,
648 struct evlist *evlist __maybe_unused)
649 {
650 char *buf = NULL;
651 FILE *fp;
652 size_t len = 0;
653 int ret = -1, n;
654 uint64_t mem;
655
656 fp = fopen("/proc/meminfo", "r");
657 if (!fp)
658 return -1;
659
660 while (getline(&buf, &len, fp) > 0) {
661 ret = strncmp(buf, "MemTotal:", 9);
662 if (!ret)
663 break;
664 }
665 if (!ret) {
666 n = sscanf(buf, "%*s %"PRIu64, &mem);
667 if (n == 1)
668 ret = do_write(ff, &mem, sizeof(mem));
669 } else
670 ret = -1;
671 free(buf);
672 fclose(fp);
673 return ret;
674 }
675
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)676 static int write_numa_topology(struct feat_fd *ff,
677 struct evlist *evlist __maybe_unused)
678 {
679 struct numa_topology *tp;
680 int ret = -1;
681 u32 i;
682
683 tp = numa_topology__new();
684 if (!tp)
685 return -ENOMEM;
686
687 ret = do_write(ff, &tp->nr, sizeof(u32));
688 if (ret < 0)
689 goto err;
690
691 for (i = 0; i < tp->nr; i++) {
692 struct numa_topology_node *n = &tp->nodes[i];
693
694 ret = do_write(ff, &n->node, sizeof(u32));
695 if (ret < 0)
696 goto err;
697
698 ret = do_write(ff, &n->mem_total, sizeof(u64));
699 if (ret)
700 goto err;
701
702 ret = do_write(ff, &n->mem_free, sizeof(u64));
703 if (ret)
704 goto err;
705
706 ret = do_write_string(ff, n->cpus);
707 if (ret < 0)
708 goto err;
709 }
710
711 ret = 0;
712
713 err:
714 numa_topology__delete(tp);
715 return ret;
716 }
717
718 /*
719 * File format:
720 *
721 * struct pmu_mappings {
722 * u32 pmu_num;
723 * struct pmu_map {
724 * u32 type;
725 * char name[];
726 * }[pmu_num];
727 * };
728 */
729
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)730 static int write_pmu_mappings(struct feat_fd *ff,
731 struct evlist *evlist __maybe_unused)
732 {
733 struct perf_pmu *pmu = NULL;
734 u32 pmu_num = 0;
735 int ret;
736
737 /*
738 * Do a first pass to count number of pmu to avoid lseek so this
739 * works in pipe mode as well.
740 */
741 while ((pmu = perf_pmu__scan(pmu))) {
742 if (!pmu->name)
743 continue;
744 pmu_num++;
745 }
746
747 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
748 if (ret < 0)
749 return ret;
750
751 while ((pmu = perf_pmu__scan(pmu))) {
752 if (!pmu->name)
753 continue;
754
755 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
756 if (ret < 0)
757 return ret;
758
759 ret = do_write_string(ff, pmu->name);
760 if (ret < 0)
761 return ret;
762 }
763
764 return 0;
765 }
766
767 /*
768 * File format:
769 *
770 * struct group_descs {
771 * u32 nr_groups;
772 * struct group_desc {
773 * char name[];
774 * u32 leader_idx;
775 * u32 nr_members;
776 * }[nr_groups];
777 * };
778 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)779 static int write_group_desc(struct feat_fd *ff,
780 struct evlist *evlist)
781 {
782 u32 nr_groups = evlist->core.nr_groups;
783 struct evsel *evsel;
784 int ret;
785
786 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
787 if (ret < 0)
788 return ret;
789
790 evlist__for_each_entry(evlist, evsel) {
791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
792 const char *name = evsel->group_name ?: "{anon_group}";
793 u32 leader_idx = evsel->core.idx;
794 u32 nr_members = evsel->core.nr_members;
795
796 ret = do_write_string(ff, name);
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
801 if (ret < 0)
802 return ret;
803
804 ret = do_write(ff, &nr_members, sizeof(nr_members));
805 if (ret < 0)
806 return ret;
807 }
808 }
809 return 0;
810 }
811
812 /*
813 * Return the CPU id as a raw string.
814 *
815 * Each architecture should provide a more precise id string that
816 * can be use to match the architecture's "mapfile".
817 */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
819 {
820 return NULL;
821 }
822
823 /* Return zero when the cpuid from the mapfile.csv matches the
824 * cpuid string generated on this platform.
825 * Otherwise return non-zero.
826 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
828 {
829 regex_t re;
830 regmatch_t pmatch[1];
831 int match;
832
833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
834 /* Warn unable to generate match particular string. */
835 pr_info("Invalid regular expression %s\n", mapcpuid);
836 return 1;
837 }
838
839 match = !regexec(&re, cpuid, 1, pmatch, 0);
840 regfree(&re);
841 if (match) {
842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
843
844 /* Verify the entire string matched. */
845 if (match_len == strlen(cpuid))
846 return 0;
847 }
848 return 1;
849 }
850
851 /*
852 * default get_cpuid(): nothing gets recorded
853 * actual implementation must be in arch/$(SRCARCH)/util/header.c
854 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
856 {
857 return ENOSYS; /* Not implemented */
858 }
859
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)860 static int write_cpuid(struct feat_fd *ff,
861 struct evlist *evlist __maybe_unused)
862 {
863 char buffer[64];
864 int ret;
865
866 ret = get_cpuid(buffer, sizeof(buffer));
867 if (ret)
868 return -1;
869
870 return do_write_string(ff, buffer);
871 }
872
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)873 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
874 struct evlist *evlist __maybe_unused)
875 {
876 return 0;
877 }
878
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)879 static int write_auxtrace(struct feat_fd *ff,
880 struct evlist *evlist __maybe_unused)
881 {
882 struct perf_session *session;
883 int err;
884
885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
886 return -1;
887
888 session = container_of(ff->ph, struct perf_session, header);
889
890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
891 if (err < 0)
892 pr_err("Failed to write auxtrace index\n");
893 return err;
894 }
895
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)896 static int write_clockid(struct feat_fd *ff,
897 struct evlist *evlist __maybe_unused)
898 {
899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
900 sizeof(ff->ph->env.clock.clockid_res_ns));
901 }
902
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)903 static int write_clock_data(struct feat_fd *ff,
904 struct evlist *evlist __maybe_unused)
905 {
906 u64 *data64;
907 u32 data32;
908 int ret;
909
910 /* version */
911 data32 = 1;
912
913 ret = do_write(ff, &data32, sizeof(data32));
914 if (ret < 0)
915 return ret;
916
917 /* clockid */
918 data32 = ff->ph->env.clock.clockid;
919
920 ret = do_write(ff, &data32, sizeof(data32));
921 if (ret < 0)
922 return ret;
923
924 /* TOD ref time */
925 data64 = &ff->ph->env.clock.tod_ns;
926
927 ret = do_write(ff, data64, sizeof(*data64));
928 if (ret < 0)
929 return ret;
930
931 /* clockid ref time */
932 data64 = &ff->ph->env.clock.clockid_ns;
933
934 return do_write(ff, data64, sizeof(*data64));
935 }
936
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)937 static int write_hybrid_topology(struct feat_fd *ff,
938 struct evlist *evlist __maybe_unused)
939 {
940 struct hybrid_topology *tp;
941 int ret;
942 u32 i;
943
944 tp = hybrid_topology__new();
945 if (!tp)
946 return -ENOENT;
947
948 ret = do_write(ff, &tp->nr, sizeof(u32));
949 if (ret < 0)
950 goto err;
951
952 for (i = 0; i < tp->nr; i++) {
953 struct hybrid_topology_node *n = &tp->nodes[i];
954
955 ret = do_write_string(ff, n->pmu_name);
956 if (ret < 0)
957 goto err;
958
959 ret = do_write_string(ff, n->cpus);
960 if (ret < 0)
961 goto err;
962 }
963
964 ret = 0;
965
966 err:
967 hybrid_topology__delete(tp);
968 return ret;
969 }
970
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)971 static int write_dir_format(struct feat_fd *ff,
972 struct evlist *evlist __maybe_unused)
973 {
974 struct perf_session *session;
975 struct perf_data *data;
976
977 session = container_of(ff->ph, struct perf_session, header);
978 data = session->data;
979
980 if (WARN_ON(!perf_data__is_dir(data)))
981 return -1;
982
983 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
984 }
985
986 /*
987 * Check whether a CPU is online
988 *
989 * Returns:
990 * 1 -> if CPU is online
991 * 0 -> if CPU is offline
992 * -1 -> error case
993 */
is_cpu_online(unsigned int cpu)994 int is_cpu_online(unsigned int cpu)
995 {
996 char *str;
997 size_t strlen;
998 char buf[256];
999 int status = -1;
1000 struct stat statbuf;
1001
1002 snprintf(buf, sizeof(buf),
1003 "/sys/devices/system/cpu/cpu%d", cpu);
1004 if (stat(buf, &statbuf) != 0)
1005 return 0;
1006
1007 /*
1008 * Check if /sys/devices/system/cpu/cpux/online file
1009 * exists. Some cases cpu0 won't have online file since
1010 * it is not expected to be turned off generally.
1011 * In kernels without CONFIG_HOTPLUG_CPU, this
1012 * file won't exist
1013 */
1014 snprintf(buf, sizeof(buf),
1015 "/sys/devices/system/cpu/cpu%d/online", cpu);
1016 if (stat(buf, &statbuf) != 0)
1017 return 1;
1018
1019 /*
1020 * Read online file using sysfs__read_str.
1021 * If read or open fails, return -1.
1022 * If read succeeds, return value from file
1023 * which gets stored in "str"
1024 */
1025 snprintf(buf, sizeof(buf),
1026 "devices/system/cpu/cpu%d/online", cpu);
1027
1028 if (sysfs__read_str(buf, &str, &strlen) < 0)
1029 return status;
1030
1031 status = atoi(str);
1032
1033 free(str);
1034 return status;
1035 }
1036
1037 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1038 static int write_bpf_prog_info(struct feat_fd *ff,
1039 struct evlist *evlist __maybe_unused)
1040 {
1041 struct perf_env *env = &ff->ph->env;
1042 struct rb_root *root;
1043 struct rb_node *next;
1044 int ret;
1045
1046 down_read(&env->bpf_progs.lock);
1047
1048 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1049 sizeof(env->bpf_progs.infos_cnt));
1050 if (ret < 0)
1051 goto out;
1052
1053 root = &env->bpf_progs.infos;
1054 next = rb_first(root);
1055 while (next) {
1056 struct bpf_prog_info_node *node;
1057 size_t len;
1058
1059 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1060 next = rb_next(&node->rb_node);
1061 len = sizeof(struct perf_bpil) +
1062 node->info_linear->data_len;
1063
1064 /* before writing to file, translate address to offset */
1065 bpil_addr_to_offs(node->info_linear);
1066 ret = do_write(ff, node->info_linear, len);
1067 /*
1068 * translate back to address even when do_write() fails,
1069 * so that this function never changes the data.
1070 */
1071 bpil_offs_to_addr(node->info_linear);
1072 if (ret < 0)
1073 goto out;
1074 }
1075 out:
1076 up_read(&env->bpf_progs.lock);
1077 return ret;
1078 }
1079
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1080 static int write_bpf_btf(struct feat_fd *ff,
1081 struct evlist *evlist __maybe_unused)
1082 {
1083 struct perf_env *env = &ff->ph->env;
1084 struct rb_root *root;
1085 struct rb_node *next;
1086 int ret;
1087
1088 down_read(&env->bpf_progs.lock);
1089
1090 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1091 sizeof(env->bpf_progs.btfs_cnt));
1092
1093 if (ret < 0)
1094 goto out;
1095
1096 root = &env->bpf_progs.btfs;
1097 next = rb_first(root);
1098 while (next) {
1099 struct btf_node *node;
1100
1101 node = rb_entry(next, struct btf_node, rb_node);
1102 next = rb_next(&node->rb_node);
1103 ret = do_write(ff, &node->id,
1104 sizeof(u32) * 2 + node->data_size);
1105 if (ret < 0)
1106 goto out;
1107 }
1108 out:
1109 up_read(&env->bpf_progs.lock);
1110 return ret;
1111 }
1112 #endif // HAVE_LIBBPF_SUPPORT
1113
cpu_cache_level__sort(const void * a,const void * b)1114 static int cpu_cache_level__sort(const void *a, const void *b)
1115 {
1116 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1117 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1118
1119 return cache_a->level - cache_b->level;
1120 }
1121
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1122 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1123 {
1124 if (a->level != b->level)
1125 return false;
1126
1127 if (a->line_size != b->line_size)
1128 return false;
1129
1130 if (a->sets != b->sets)
1131 return false;
1132
1133 if (a->ways != b->ways)
1134 return false;
1135
1136 if (strcmp(a->type, b->type))
1137 return false;
1138
1139 if (strcmp(a->size, b->size))
1140 return false;
1141
1142 if (strcmp(a->map, b->map))
1143 return false;
1144
1145 return true;
1146 }
1147
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1148 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1149 {
1150 char path[PATH_MAX], file[PATH_MAX];
1151 struct stat st;
1152 size_t len;
1153
1154 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1155 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1156
1157 if (stat(file, &st))
1158 return 1;
1159
1160 scnprintf(file, PATH_MAX, "%s/level", path);
1161 if (sysfs__read_int(file, (int *) &cache->level))
1162 return -1;
1163
1164 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1165 if (sysfs__read_int(file, (int *) &cache->line_size))
1166 return -1;
1167
1168 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1169 if (sysfs__read_int(file, (int *) &cache->sets))
1170 return -1;
1171
1172 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1173 if (sysfs__read_int(file, (int *) &cache->ways))
1174 return -1;
1175
1176 scnprintf(file, PATH_MAX, "%s/type", path);
1177 if (sysfs__read_str(file, &cache->type, &len))
1178 return -1;
1179
1180 cache->type[len] = 0;
1181 cache->type = strim(cache->type);
1182
1183 scnprintf(file, PATH_MAX, "%s/size", path);
1184 if (sysfs__read_str(file, &cache->size, &len)) {
1185 zfree(&cache->type);
1186 return -1;
1187 }
1188
1189 cache->size[len] = 0;
1190 cache->size = strim(cache->size);
1191
1192 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1193 if (sysfs__read_str(file, &cache->map, &len)) {
1194 zfree(&cache->size);
1195 zfree(&cache->type);
1196 return -1;
1197 }
1198
1199 cache->map[len] = 0;
1200 cache->map = strim(cache->map);
1201 return 0;
1202 }
1203
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1204 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1205 {
1206 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1207 }
1208
1209 #define MAX_CACHE_LVL 4
1210
build_caches(struct cpu_cache_level caches[],u32 * cntp)1211 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1212 {
1213 u32 i, cnt = 0;
1214 u32 nr, cpu;
1215 u16 level;
1216
1217 nr = cpu__max_cpu().cpu;
1218
1219 for (cpu = 0; cpu < nr; cpu++) {
1220 for (level = 0; level < MAX_CACHE_LVL; level++) {
1221 struct cpu_cache_level c;
1222 int err;
1223
1224 err = cpu_cache_level__read(&c, cpu, level);
1225 if (err < 0)
1226 return err;
1227
1228 if (err == 1)
1229 break;
1230
1231 for (i = 0; i < cnt; i++) {
1232 if (cpu_cache_level__cmp(&c, &caches[i]))
1233 break;
1234 }
1235
1236 if (i == cnt)
1237 caches[cnt++] = c;
1238 else
1239 cpu_cache_level__free(&c);
1240 }
1241 }
1242 *cntp = cnt;
1243 return 0;
1244 }
1245
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1246 static int write_cache(struct feat_fd *ff,
1247 struct evlist *evlist __maybe_unused)
1248 {
1249 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1250 struct cpu_cache_level caches[max_caches];
1251 u32 cnt = 0, i, version = 1;
1252 int ret;
1253
1254 ret = build_caches(caches, &cnt);
1255 if (ret)
1256 goto out;
1257
1258 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1259
1260 ret = do_write(ff, &version, sizeof(u32));
1261 if (ret < 0)
1262 goto out;
1263
1264 ret = do_write(ff, &cnt, sizeof(u32));
1265 if (ret < 0)
1266 goto out;
1267
1268 for (i = 0; i < cnt; i++) {
1269 struct cpu_cache_level *c = &caches[i];
1270
1271 #define _W(v) \
1272 ret = do_write(ff, &c->v, sizeof(u32)); \
1273 if (ret < 0) \
1274 goto out;
1275
1276 _W(level)
1277 _W(line_size)
1278 _W(sets)
1279 _W(ways)
1280 #undef _W
1281
1282 #define _W(v) \
1283 ret = do_write_string(ff, (const char *) c->v); \
1284 if (ret < 0) \
1285 goto out;
1286
1287 _W(type)
1288 _W(size)
1289 _W(map)
1290 #undef _W
1291 }
1292
1293 out:
1294 for (i = 0; i < cnt; i++)
1295 cpu_cache_level__free(&caches[i]);
1296 return ret;
1297 }
1298
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1299 static int write_stat(struct feat_fd *ff __maybe_unused,
1300 struct evlist *evlist __maybe_unused)
1301 {
1302 return 0;
1303 }
1304
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1305 static int write_sample_time(struct feat_fd *ff,
1306 struct evlist *evlist)
1307 {
1308 int ret;
1309
1310 ret = do_write(ff, &evlist->first_sample_time,
1311 sizeof(evlist->first_sample_time));
1312 if (ret < 0)
1313 return ret;
1314
1315 return do_write(ff, &evlist->last_sample_time,
1316 sizeof(evlist->last_sample_time));
1317 }
1318
1319
memory_node__read(struct memory_node * n,unsigned long idx)1320 static int memory_node__read(struct memory_node *n, unsigned long idx)
1321 {
1322 unsigned int phys, size = 0;
1323 char path[PATH_MAX];
1324 struct dirent *ent;
1325 DIR *dir;
1326
1327 #define for_each_memory(mem, dir) \
1328 while ((ent = readdir(dir))) \
1329 if (strcmp(ent->d_name, ".") && \
1330 strcmp(ent->d_name, "..") && \
1331 sscanf(ent->d_name, "memory%u", &mem) == 1)
1332
1333 scnprintf(path, PATH_MAX,
1334 "%s/devices/system/node/node%lu",
1335 sysfs__mountpoint(), idx);
1336
1337 dir = opendir(path);
1338 if (!dir) {
1339 pr_warning("failed: can't open memory sysfs data\n");
1340 return -1;
1341 }
1342
1343 for_each_memory(phys, dir) {
1344 size = max(phys, size);
1345 }
1346
1347 size++;
1348
1349 n->set = bitmap_zalloc(size);
1350 if (!n->set) {
1351 closedir(dir);
1352 return -ENOMEM;
1353 }
1354
1355 n->node = idx;
1356 n->size = size;
1357
1358 rewinddir(dir);
1359
1360 for_each_memory(phys, dir) {
1361 set_bit(phys, n->set);
1362 }
1363
1364 closedir(dir);
1365 return 0;
1366 }
1367
memory_node__sort(const void * a,const void * b)1368 static int memory_node__sort(const void *a, const void *b)
1369 {
1370 const struct memory_node *na = a;
1371 const struct memory_node *nb = b;
1372
1373 return na->node - nb->node;
1374 }
1375
build_mem_topology(struct memory_node * nodes,u64 size,u64 * cntp)1376 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1377 {
1378 char path[PATH_MAX];
1379 struct dirent *ent;
1380 DIR *dir;
1381 u64 cnt = 0;
1382 int ret = 0;
1383
1384 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1385 sysfs__mountpoint());
1386
1387 dir = opendir(path);
1388 if (!dir) {
1389 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1390 __func__, path);
1391 return -1;
1392 }
1393
1394 while (!ret && (ent = readdir(dir))) {
1395 unsigned int idx;
1396 int r;
1397
1398 if (!strcmp(ent->d_name, ".") ||
1399 !strcmp(ent->d_name, ".."))
1400 continue;
1401
1402 r = sscanf(ent->d_name, "node%u", &idx);
1403 if (r != 1)
1404 continue;
1405
1406 if (WARN_ONCE(cnt >= size,
1407 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1408 closedir(dir);
1409 return -1;
1410 }
1411
1412 ret = memory_node__read(&nodes[cnt++], idx);
1413 }
1414
1415 *cntp = cnt;
1416 closedir(dir);
1417
1418 if (!ret)
1419 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1420
1421 return ret;
1422 }
1423
1424 #define MAX_MEMORY_NODES 2000
1425
1426 /*
1427 * The MEM_TOPOLOGY holds physical memory map for every
1428 * node in system. The format of data is as follows:
1429 *
1430 * 0 - version | for future changes
1431 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1432 * 16 - count | number of nodes
1433 *
1434 * For each node we store map of physical indexes for
1435 * each node:
1436 *
1437 * 32 - node id | node index
1438 * 40 - size | size of bitmap
1439 * 48 - bitmap | bitmap of memory indexes that belongs to node
1440 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1441 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1442 struct evlist *evlist __maybe_unused)
1443 {
1444 static struct memory_node nodes[MAX_MEMORY_NODES];
1445 u64 bsize, version = 1, i, nr;
1446 int ret;
1447
1448 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1449 (unsigned long long *) &bsize);
1450 if (ret)
1451 return ret;
1452
1453 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1454 if (ret)
1455 return ret;
1456
1457 ret = do_write(ff, &version, sizeof(version));
1458 if (ret < 0)
1459 goto out;
1460
1461 ret = do_write(ff, &bsize, sizeof(bsize));
1462 if (ret < 0)
1463 goto out;
1464
1465 ret = do_write(ff, &nr, sizeof(nr));
1466 if (ret < 0)
1467 goto out;
1468
1469 for (i = 0; i < nr; i++) {
1470 struct memory_node *n = &nodes[i];
1471
1472 #define _W(v) \
1473 ret = do_write(ff, &n->v, sizeof(n->v)); \
1474 if (ret < 0) \
1475 goto out;
1476
1477 _W(node)
1478 _W(size)
1479
1480 #undef _W
1481
1482 ret = do_write_bitmap(ff, n->set, n->size);
1483 if (ret < 0)
1484 goto out;
1485 }
1486
1487 out:
1488 return ret;
1489 }
1490
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1491 static int write_compressed(struct feat_fd *ff __maybe_unused,
1492 struct evlist *evlist __maybe_unused)
1493 {
1494 int ret;
1495
1496 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1497 if (ret)
1498 return ret;
1499
1500 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1501 if (ret)
1502 return ret;
1503
1504 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1505 if (ret)
1506 return ret;
1507
1508 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1509 if (ret)
1510 return ret;
1511
1512 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1513 }
1514
write_per_cpu_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1515 static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1516 bool write_pmu)
1517 {
1518 struct perf_pmu_caps *caps = NULL;
1519 int nr_caps;
1520 int ret;
1521
1522 nr_caps = perf_pmu__caps_parse(pmu);
1523 if (nr_caps < 0)
1524 return nr_caps;
1525
1526 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1527 if (ret < 0)
1528 return ret;
1529
1530 list_for_each_entry(caps, &pmu->caps, list) {
1531 ret = do_write_string(ff, caps->name);
1532 if (ret < 0)
1533 return ret;
1534
1535 ret = do_write_string(ff, caps->value);
1536 if (ret < 0)
1537 return ret;
1538 }
1539
1540 if (write_pmu) {
1541 ret = do_write_string(ff, pmu->name);
1542 if (ret < 0)
1543 return ret;
1544 }
1545
1546 return ret;
1547 }
1548
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1549 static int write_cpu_pmu_caps(struct feat_fd *ff,
1550 struct evlist *evlist __maybe_unused)
1551 {
1552 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1553
1554 if (!cpu_pmu)
1555 return -ENOENT;
1556
1557 return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1558 }
1559
write_hybrid_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1560 static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1561 struct evlist *evlist __maybe_unused)
1562 {
1563 struct perf_pmu *pmu;
1564 u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1565 int ret;
1566
1567 if (nr_pmu == 0)
1568 return -ENOENT;
1569
1570 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1571 if (ret < 0)
1572 return ret;
1573
1574 perf_pmu__for_each_hybrid_pmu(pmu) {
1575 ret = write_per_cpu_pmu_caps(ff, pmu, true);
1576 if (ret < 0)
1577 return ret;
1578 }
1579
1580 return 0;
1581 }
1582
print_hostname(struct feat_fd * ff,FILE * fp)1583 static void print_hostname(struct feat_fd *ff, FILE *fp)
1584 {
1585 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1586 }
1587
print_osrelease(struct feat_fd * ff,FILE * fp)1588 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1589 {
1590 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1591 }
1592
print_arch(struct feat_fd * ff,FILE * fp)1593 static void print_arch(struct feat_fd *ff, FILE *fp)
1594 {
1595 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1596 }
1597
print_cpudesc(struct feat_fd * ff,FILE * fp)1598 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1599 {
1600 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1601 }
1602
print_nrcpus(struct feat_fd * ff,FILE * fp)1603 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1604 {
1605 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1606 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1607 }
1608
print_version(struct feat_fd * ff,FILE * fp)1609 static void print_version(struct feat_fd *ff, FILE *fp)
1610 {
1611 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1612 }
1613
print_cmdline(struct feat_fd * ff,FILE * fp)1614 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1615 {
1616 int nr, i;
1617
1618 nr = ff->ph->env.nr_cmdline;
1619
1620 fprintf(fp, "# cmdline : ");
1621
1622 for (i = 0; i < nr; i++) {
1623 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1624 if (!argv_i) {
1625 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1626 } else {
1627 char *mem = argv_i;
1628 do {
1629 char *quote = strchr(argv_i, '\'');
1630 if (!quote)
1631 break;
1632 *quote++ = '\0';
1633 fprintf(fp, "%s\\\'", argv_i);
1634 argv_i = quote;
1635 } while (1);
1636 fprintf(fp, "%s ", argv_i);
1637 free(mem);
1638 }
1639 }
1640 fputc('\n', fp);
1641 }
1642
print_cpu_topology(struct feat_fd * ff,FILE * fp)1643 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1644 {
1645 struct perf_header *ph = ff->ph;
1646 int cpu_nr = ph->env.nr_cpus_avail;
1647 int nr, i;
1648 char *str;
1649
1650 nr = ph->env.nr_sibling_cores;
1651 str = ph->env.sibling_cores;
1652
1653 for (i = 0; i < nr; i++) {
1654 fprintf(fp, "# sibling sockets : %s\n", str);
1655 str += strlen(str) + 1;
1656 }
1657
1658 if (ph->env.nr_sibling_dies) {
1659 nr = ph->env.nr_sibling_dies;
1660 str = ph->env.sibling_dies;
1661
1662 for (i = 0; i < nr; i++) {
1663 fprintf(fp, "# sibling dies : %s\n", str);
1664 str += strlen(str) + 1;
1665 }
1666 }
1667
1668 nr = ph->env.nr_sibling_threads;
1669 str = ph->env.sibling_threads;
1670
1671 for (i = 0; i < nr; i++) {
1672 fprintf(fp, "# sibling threads : %s\n", str);
1673 str += strlen(str) + 1;
1674 }
1675
1676 if (ph->env.nr_sibling_dies) {
1677 if (ph->env.cpu != NULL) {
1678 for (i = 0; i < cpu_nr; i++)
1679 fprintf(fp, "# CPU %d: Core ID %d, "
1680 "Die ID %d, Socket ID %d\n",
1681 i, ph->env.cpu[i].core_id,
1682 ph->env.cpu[i].die_id,
1683 ph->env.cpu[i].socket_id);
1684 } else
1685 fprintf(fp, "# Core ID, Die ID and Socket ID "
1686 "information is not available\n");
1687 } else {
1688 if (ph->env.cpu != NULL) {
1689 for (i = 0; i < cpu_nr; i++)
1690 fprintf(fp, "# CPU %d: Core ID %d, "
1691 "Socket ID %d\n",
1692 i, ph->env.cpu[i].core_id,
1693 ph->env.cpu[i].socket_id);
1694 } else
1695 fprintf(fp, "# Core ID and Socket ID "
1696 "information is not available\n");
1697 }
1698 }
1699
print_clockid(struct feat_fd * ff,FILE * fp)1700 static void print_clockid(struct feat_fd *ff, FILE *fp)
1701 {
1702 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1703 ff->ph->env.clock.clockid_res_ns * 1000);
1704 }
1705
print_clock_data(struct feat_fd * ff,FILE * fp)1706 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1707 {
1708 struct timespec clockid_ns;
1709 char tstr[64], date[64];
1710 struct timeval tod_ns;
1711 clockid_t clockid;
1712 struct tm ltime;
1713 u64 ref;
1714
1715 if (!ff->ph->env.clock.enabled) {
1716 fprintf(fp, "# reference time disabled\n");
1717 return;
1718 }
1719
1720 /* Compute TOD time. */
1721 ref = ff->ph->env.clock.tod_ns;
1722 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1723 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1724 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1725
1726 /* Compute clockid time. */
1727 ref = ff->ph->env.clock.clockid_ns;
1728 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1729 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1730 clockid_ns.tv_nsec = ref;
1731
1732 clockid = ff->ph->env.clock.clockid;
1733
1734 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1735 snprintf(tstr, sizeof(tstr), "<error>");
1736 else {
1737 strftime(date, sizeof(date), "%F %T", <ime);
1738 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1739 date, (int) tod_ns.tv_usec);
1740 }
1741
1742 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1743 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1744 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1745 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1746 clockid_name(clockid));
1747 }
1748
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1749 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1750 {
1751 int i;
1752 struct hybrid_node *n;
1753
1754 fprintf(fp, "# hybrid cpu system:\n");
1755 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1756 n = &ff->ph->env.hybrid_nodes[i];
1757 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1758 }
1759 }
1760
print_dir_format(struct feat_fd * ff,FILE * fp)1761 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1762 {
1763 struct perf_session *session;
1764 struct perf_data *data;
1765
1766 session = container_of(ff->ph, struct perf_session, header);
1767 data = session->data;
1768
1769 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1770 }
1771
1772 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1773 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1774 {
1775 struct perf_env *env = &ff->ph->env;
1776 struct rb_root *root;
1777 struct rb_node *next;
1778
1779 down_read(&env->bpf_progs.lock);
1780
1781 root = &env->bpf_progs.infos;
1782 next = rb_first(root);
1783
1784 while (next) {
1785 struct bpf_prog_info_node *node;
1786
1787 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1788 next = rb_next(&node->rb_node);
1789
1790 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1791 env, fp);
1792 }
1793
1794 up_read(&env->bpf_progs.lock);
1795 }
1796
print_bpf_btf(struct feat_fd * ff,FILE * fp)1797 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1798 {
1799 struct perf_env *env = &ff->ph->env;
1800 struct rb_root *root;
1801 struct rb_node *next;
1802
1803 down_read(&env->bpf_progs.lock);
1804
1805 root = &env->bpf_progs.btfs;
1806 next = rb_first(root);
1807
1808 while (next) {
1809 struct btf_node *node;
1810
1811 node = rb_entry(next, struct btf_node, rb_node);
1812 next = rb_next(&node->rb_node);
1813 fprintf(fp, "# btf info of id %u\n", node->id);
1814 }
1815
1816 up_read(&env->bpf_progs.lock);
1817 }
1818 #endif // HAVE_LIBBPF_SUPPORT
1819
free_event_desc(struct evsel * events)1820 static void free_event_desc(struct evsel *events)
1821 {
1822 struct evsel *evsel;
1823
1824 if (!events)
1825 return;
1826
1827 for (evsel = events; evsel->core.attr.size; evsel++) {
1828 zfree(&evsel->name);
1829 zfree(&evsel->core.id);
1830 }
1831
1832 free(events);
1833 }
1834
perf_attr_check(struct perf_event_attr * attr)1835 static bool perf_attr_check(struct perf_event_attr *attr)
1836 {
1837 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1838 pr_warning("Reserved bits are set unexpectedly. "
1839 "Please update perf tool.\n");
1840 return false;
1841 }
1842
1843 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1844 pr_warning("Unknown sample type (0x%llx) is detected. "
1845 "Please update perf tool.\n",
1846 attr->sample_type);
1847 return false;
1848 }
1849
1850 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1851 pr_warning("Unknown read format (0x%llx) is detected. "
1852 "Please update perf tool.\n",
1853 attr->read_format);
1854 return false;
1855 }
1856
1857 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1858 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1859 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1860 "Please update perf tool.\n",
1861 attr->branch_sample_type);
1862
1863 return false;
1864 }
1865
1866 return true;
1867 }
1868
read_event_desc(struct feat_fd * ff)1869 static struct evsel *read_event_desc(struct feat_fd *ff)
1870 {
1871 struct evsel *evsel, *events = NULL;
1872 u64 *id;
1873 void *buf = NULL;
1874 u32 nre, sz, nr, i, j;
1875 size_t msz;
1876
1877 /* number of events */
1878 if (do_read_u32(ff, &nre))
1879 goto error;
1880
1881 if (do_read_u32(ff, &sz))
1882 goto error;
1883
1884 /* buffer to hold on file attr struct */
1885 buf = malloc(sz);
1886 if (!buf)
1887 goto error;
1888
1889 /* the last event terminates with evsel->core.attr.size == 0: */
1890 events = calloc(nre + 1, sizeof(*events));
1891 if (!events)
1892 goto error;
1893
1894 msz = sizeof(evsel->core.attr);
1895 if (sz < msz)
1896 msz = sz;
1897
1898 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1899 evsel->core.idx = i;
1900
1901 /*
1902 * must read entire on-file attr struct to
1903 * sync up with layout.
1904 */
1905 if (__do_read(ff, buf, sz))
1906 goto error;
1907
1908 if (ff->ph->needs_swap)
1909 perf_event__attr_swap(buf);
1910
1911 memcpy(&evsel->core.attr, buf, msz);
1912
1913 if (!perf_attr_check(&evsel->core.attr))
1914 goto error;
1915
1916 if (do_read_u32(ff, &nr))
1917 goto error;
1918
1919 if (ff->ph->needs_swap)
1920 evsel->needs_swap = true;
1921
1922 evsel->name = do_read_string(ff);
1923 if (!evsel->name)
1924 goto error;
1925
1926 if (!nr)
1927 continue;
1928
1929 id = calloc(nr, sizeof(*id));
1930 if (!id)
1931 goto error;
1932 evsel->core.ids = nr;
1933 evsel->core.id = id;
1934
1935 for (j = 0 ; j < nr; j++) {
1936 if (do_read_u64(ff, id))
1937 goto error;
1938 id++;
1939 }
1940 }
1941 out:
1942 free(buf);
1943 return events;
1944 error:
1945 free_event_desc(events);
1946 events = NULL;
1947 goto out;
1948 }
1949
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1950 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1951 void *priv __maybe_unused)
1952 {
1953 return fprintf(fp, ", %s = %s", name, val);
1954 }
1955
print_event_desc(struct feat_fd * ff,FILE * fp)1956 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1957 {
1958 struct evsel *evsel, *events;
1959 u32 j;
1960 u64 *id;
1961
1962 if (ff->events)
1963 events = ff->events;
1964 else
1965 events = read_event_desc(ff);
1966
1967 if (!events) {
1968 fprintf(fp, "# event desc: not available or unable to read\n");
1969 return;
1970 }
1971
1972 for (evsel = events; evsel->core.attr.size; evsel++) {
1973 fprintf(fp, "# event : name = %s, ", evsel->name);
1974
1975 if (evsel->core.ids) {
1976 fprintf(fp, ", id = {");
1977 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1978 if (j)
1979 fputc(',', fp);
1980 fprintf(fp, " %"PRIu64, *id);
1981 }
1982 fprintf(fp, " }");
1983 }
1984
1985 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1986
1987 fputc('\n', fp);
1988 }
1989
1990 free_event_desc(events);
1991 ff->events = NULL;
1992 }
1993
print_total_mem(struct feat_fd * ff,FILE * fp)1994 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1995 {
1996 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1997 }
1998
print_numa_topology(struct feat_fd * ff,FILE * fp)1999 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2000 {
2001 int i;
2002 struct numa_node *n;
2003
2004 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2005 n = &ff->ph->env.numa_nodes[i];
2006
2007 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2008 " free = %"PRIu64" kB\n",
2009 n->node, n->mem_total, n->mem_free);
2010
2011 fprintf(fp, "# node%u cpu list : ", n->node);
2012 cpu_map__fprintf(n->map, fp);
2013 }
2014 }
2015
print_cpuid(struct feat_fd * ff,FILE * fp)2016 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2017 {
2018 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2019 }
2020
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2021 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2022 {
2023 fprintf(fp, "# contains samples with branch stack\n");
2024 }
2025
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2026 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2027 {
2028 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2029 }
2030
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2031 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2032 {
2033 fprintf(fp, "# contains stat data\n");
2034 }
2035
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2036 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2037 {
2038 int i;
2039
2040 fprintf(fp, "# CPU cache info:\n");
2041 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2042 fprintf(fp, "# ");
2043 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2044 }
2045 }
2046
print_compressed(struct feat_fd * ff,FILE * fp)2047 static void print_compressed(struct feat_fd *ff, FILE *fp)
2048 {
2049 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2050 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2051 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2052 }
2053
print_per_cpu_pmu_caps(FILE * fp,int nr_caps,char * cpu_pmu_caps,char * pmu_name)2054 static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2055 char *pmu_name)
2056 {
2057 const char *delimiter;
2058 char *str, buf[128];
2059
2060 if (!nr_caps) {
2061 if (!pmu_name)
2062 fprintf(fp, "# cpu pmu capabilities: not available\n");
2063 else
2064 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2065 return;
2066 }
2067
2068 if (!pmu_name)
2069 scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2070 else
2071 scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2072
2073 delimiter = buf;
2074
2075 str = cpu_pmu_caps;
2076 while (nr_caps--) {
2077 fprintf(fp, "%s%s", delimiter, str);
2078 delimiter = ", ";
2079 str += strlen(str) + 1;
2080 }
2081
2082 fprintf(fp, "\n");
2083 }
2084
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2085 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2086 {
2087 print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2088 ff->ph->env.cpu_pmu_caps, NULL);
2089 }
2090
print_hybrid_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2091 static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2092 {
2093 struct hybrid_cpc_node *n;
2094
2095 for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2096 n = &ff->ph->env.hybrid_cpc_nodes[i];
2097 print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2098 n->cpu_pmu_caps,
2099 n->pmu_name);
2100 }
2101 }
2102
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2103 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2104 {
2105 const char *delimiter = "# pmu mappings: ";
2106 char *str, *tmp;
2107 u32 pmu_num;
2108 u32 type;
2109
2110 pmu_num = ff->ph->env.nr_pmu_mappings;
2111 if (!pmu_num) {
2112 fprintf(fp, "# pmu mappings: not available\n");
2113 return;
2114 }
2115
2116 str = ff->ph->env.pmu_mappings;
2117
2118 while (pmu_num) {
2119 type = strtoul(str, &tmp, 0);
2120 if (*tmp != ':')
2121 goto error;
2122
2123 str = tmp + 1;
2124 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2125
2126 delimiter = ", ";
2127 str += strlen(str) + 1;
2128 pmu_num--;
2129 }
2130
2131 fprintf(fp, "\n");
2132
2133 if (!pmu_num)
2134 return;
2135 error:
2136 fprintf(fp, "# pmu mappings: unable to read\n");
2137 }
2138
print_group_desc(struct feat_fd * ff,FILE * fp)2139 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2140 {
2141 struct perf_session *session;
2142 struct evsel *evsel;
2143 u32 nr = 0;
2144
2145 session = container_of(ff->ph, struct perf_session, header);
2146
2147 evlist__for_each_entry(session->evlist, evsel) {
2148 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2149 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2150
2151 nr = evsel->core.nr_members - 1;
2152 } else if (nr) {
2153 fprintf(fp, ",%s", evsel__name(evsel));
2154
2155 if (--nr == 0)
2156 fprintf(fp, "}\n");
2157 }
2158 }
2159 }
2160
print_sample_time(struct feat_fd * ff,FILE * fp)2161 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2162 {
2163 struct perf_session *session;
2164 char time_buf[32];
2165 double d;
2166
2167 session = container_of(ff->ph, struct perf_session, header);
2168
2169 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2170 time_buf, sizeof(time_buf));
2171 fprintf(fp, "# time of first sample : %s\n", time_buf);
2172
2173 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2174 time_buf, sizeof(time_buf));
2175 fprintf(fp, "# time of last sample : %s\n", time_buf);
2176
2177 d = (double)(session->evlist->last_sample_time -
2178 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2179
2180 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2181 }
2182
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2183 static void memory_node__fprintf(struct memory_node *n,
2184 unsigned long long bsize, FILE *fp)
2185 {
2186 char buf_map[100], buf_size[50];
2187 unsigned long long size;
2188
2189 size = bsize * bitmap_weight(n->set, n->size);
2190 unit_number__scnprintf(buf_size, 50, size);
2191
2192 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2193 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2194 }
2195
print_mem_topology(struct feat_fd * ff,FILE * fp)2196 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2197 {
2198 struct memory_node *nodes;
2199 int i, nr;
2200
2201 nodes = ff->ph->env.memory_nodes;
2202 nr = ff->ph->env.nr_memory_nodes;
2203
2204 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2205 nr, ff->ph->env.memory_bsize);
2206
2207 for (i = 0; i < nr; i++) {
2208 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2209 }
2210 }
2211
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2212 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2213 char *filename,
2214 struct perf_session *session)
2215 {
2216 int err = -1;
2217 struct machine *machine;
2218 u16 cpumode;
2219 struct dso *dso;
2220 enum dso_space_type dso_space;
2221
2222 machine = perf_session__findnew_machine(session, bev->pid);
2223 if (!machine)
2224 goto out;
2225
2226 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2227
2228 switch (cpumode) {
2229 case PERF_RECORD_MISC_KERNEL:
2230 dso_space = DSO_SPACE__KERNEL;
2231 break;
2232 case PERF_RECORD_MISC_GUEST_KERNEL:
2233 dso_space = DSO_SPACE__KERNEL_GUEST;
2234 break;
2235 case PERF_RECORD_MISC_USER:
2236 case PERF_RECORD_MISC_GUEST_USER:
2237 dso_space = DSO_SPACE__USER;
2238 break;
2239 default:
2240 goto out;
2241 }
2242
2243 dso = machine__findnew_dso(machine, filename);
2244 if (dso != NULL) {
2245 char sbuild_id[SBUILD_ID_SIZE];
2246 struct build_id bid;
2247 size_t size = BUILD_ID_SIZE;
2248
2249 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2250 size = bev->size;
2251
2252 build_id__init(&bid, bev->data, size);
2253 dso__set_build_id(dso, &bid);
2254 dso->header_build_id = 1;
2255
2256 if (dso_space != DSO_SPACE__USER) {
2257 struct kmod_path m = { .name = NULL, };
2258
2259 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2260 dso__set_module_info(dso, &m, machine);
2261
2262 dso->kernel = dso_space;
2263 free(m.name);
2264 }
2265
2266 build_id__sprintf(&dso->bid, sbuild_id);
2267 pr_debug("build id event received for %s: %s [%zu]\n",
2268 dso->long_name, sbuild_id, size);
2269 dso__put(dso);
2270 }
2271
2272 err = 0;
2273 out:
2274 return err;
2275 }
2276
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2277 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2278 int input, u64 offset, u64 size)
2279 {
2280 struct perf_session *session = container_of(header, struct perf_session, header);
2281 struct {
2282 struct perf_event_header header;
2283 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2284 char filename[0];
2285 } old_bev;
2286 struct perf_record_header_build_id bev;
2287 char filename[PATH_MAX];
2288 u64 limit = offset + size;
2289
2290 while (offset < limit) {
2291 ssize_t len;
2292
2293 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2294 return -1;
2295
2296 if (header->needs_swap)
2297 perf_event_header__bswap(&old_bev.header);
2298
2299 len = old_bev.header.size - sizeof(old_bev);
2300 if (readn(input, filename, len) != len)
2301 return -1;
2302
2303 bev.header = old_bev.header;
2304
2305 /*
2306 * As the pid is the missing value, we need to fill
2307 * it properly. The header.misc value give us nice hint.
2308 */
2309 bev.pid = HOST_KERNEL_ID;
2310 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2311 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2312 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2313
2314 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2315 __event_process_build_id(&bev, filename, session);
2316
2317 offset += bev.header.size;
2318 }
2319
2320 return 0;
2321 }
2322
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2323 static int perf_header__read_build_ids(struct perf_header *header,
2324 int input, u64 offset, u64 size)
2325 {
2326 struct perf_session *session = container_of(header, struct perf_session, header);
2327 struct perf_record_header_build_id bev;
2328 char filename[PATH_MAX];
2329 u64 limit = offset + size, orig_offset = offset;
2330 int err = -1;
2331
2332 while (offset < limit) {
2333 ssize_t len;
2334
2335 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2336 goto out;
2337
2338 if (header->needs_swap)
2339 perf_event_header__bswap(&bev.header);
2340
2341 len = bev.header.size - sizeof(bev);
2342 if (readn(input, filename, len) != len)
2343 goto out;
2344 /*
2345 * The a1645ce1 changeset:
2346 *
2347 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2348 *
2349 * Added a field to struct perf_record_header_build_id that broke the file
2350 * format.
2351 *
2352 * Since the kernel build-id is the first entry, process the
2353 * table using the old format if the well known
2354 * '[kernel.kallsyms]' string for the kernel build-id has the
2355 * first 4 characters chopped off (where the pid_t sits).
2356 */
2357 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2358 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2359 return -1;
2360 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2361 }
2362
2363 __event_process_build_id(&bev, filename, session);
2364
2365 offset += bev.header.size;
2366 }
2367 err = 0;
2368 out:
2369 return err;
2370 }
2371
2372 /* Macro for features that simply need to read and store a string. */
2373 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2374 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2375 {\
2376 free(ff->ph->env.__feat_env); \
2377 ff->ph->env.__feat_env = do_read_string(ff); \
2378 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2379 }
2380
2381 FEAT_PROCESS_STR_FUN(hostname, hostname);
2382 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2383 FEAT_PROCESS_STR_FUN(version, version);
2384 FEAT_PROCESS_STR_FUN(arch, arch);
2385 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2386 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2387
process_tracing_data(struct feat_fd * ff,void * data)2388 static int process_tracing_data(struct feat_fd *ff, void *data)
2389 {
2390 ssize_t ret = trace_report(ff->fd, data, false);
2391
2392 return ret < 0 ? -1 : 0;
2393 }
2394
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2395 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2396 {
2397 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2398 pr_debug("Failed to read buildids, continuing...\n");
2399 return 0;
2400 }
2401
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2402 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2403 {
2404 int ret;
2405 u32 nr_cpus_avail, nr_cpus_online;
2406
2407 ret = do_read_u32(ff, &nr_cpus_avail);
2408 if (ret)
2409 return ret;
2410
2411 ret = do_read_u32(ff, &nr_cpus_online);
2412 if (ret)
2413 return ret;
2414 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2415 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2416 return 0;
2417 }
2418
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2419 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2420 {
2421 u64 total_mem;
2422 int ret;
2423
2424 ret = do_read_u64(ff, &total_mem);
2425 if (ret)
2426 return -1;
2427 ff->ph->env.total_mem = (unsigned long long)total_mem;
2428 return 0;
2429 }
2430
evlist__find_by_index(struct evlist * evlist,int idx)2431 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2432 {
2433 struct evsel *evsel;
2434
2435 evlist__for_each_entry(evlist, evsel) {
2436 if (evsel->core.idx == idx)
2437 return evsel;
2438 }
2439
2440 return NULL;
2441 }
2442
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2443 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2444 {
2445 struct evsel *evsel;
2446
2447 if (!event->name)
2448 return;
2449
2450 evsel = evlist__find_by_index(evlist, event->core.idx);
2451 if (!evsel)
2452 return;
2453
2454 if (evsel->name)
2455 return;
2456
2457 evsel->name = strdup(event->name);
2458 }
2459
2460 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2461 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2462 {
2463 struct perf_session *session;
2464 struct evsel *evsel, *events = read_event_desc(ff);
2465
2466 if (!events)
2467 return 0;
2468
2469 session = container_of(ff->ph, struct perf_session, header);
2470
2471 if (session->data->is_pipe) {
2472 /* Save events for reading later by print_event_desc,
2473 * since they can't be read again in pipe mode. */
2474 ff->events = events;
2475 }
2476
2477 for (evsel = events; evsel->core.attr.size; evsel++)
2478 evlist__set_event_name(session->evlist, evsel);
2479
2480 if (!session->data->is_pipe)
2481 free_event_desc(events);
2482
2483 return 0;
2484 }
2485
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2486 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2487 {
2488 char *str, *cmdline = NULL, **argv = NULL;
2489 u32 nr, i, len = 0;
2490
2491 if (do_read_u32(ff, &nr))
2492 return -1;
2493
2494 ff->ph->env.nr_cmdline = nr;
2495
2496 cmdline = zalloc(ff->size + nr + 1);
2497 if (!cmdline)
2498 return -1;
2499
2500 argv = zalloc(sizeof(char *) * (nr + 1));
2501 if (!argv)
2502 goto error;
2503
2504 for (i = 0; i < nr; i++) {
2505 str = do_read_string(ff);
2506 if (!str)
2507 goto error;
2508
2509 argv[i] = cmdline + len;
2510 memcpy(argv[i], str, strlen(str) + 1);
2511 len += strlen(str) + 1;
2512 free(str);
2513 }
2514 ff->ph->env.cmdline = cmdline;
2515 ff->ph->env.cmdline_argv = (const char **) argv;
2516 return 0;
2517
2518 error:
2519 free(argv);
2520 free(cmdline);
2521 return -1;
2522 }
2523
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2524 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2525 {
2526 u32 nr, i;
2527 char *str;
2528 struct strbuf sb;
2529 int cpu_nr = ff->ph->env.nr_cpus_avail;
2530 u64 size = 0;
2531 struct perf_header *ph = ff->ph;
2532 bool do_core_id_test = true;
2533
2534 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2535 if (!ph->env.cpu)
2536 return -1;
2537
2538 if (do_read_u32(ff, &nr))
2539 goto free_cpu;
2540
2541 ph->env.nr_sibling_cores = nr;
2542 size += sizeof(u32);
2543 if (strbuf_init(&sb, 128) < 0)
2544 goto free_cpu;
2545
2546 for (i = 0; i < nr; i++) {
2547 str = do_read_string(ff);
2548 if (!str)
2549 goto error;
2550
2551 /* include a NULL character at the end */
2552 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2553 goto error;
2554 size += string_size(str);
2555 free(str);
2556 }
2557 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2558
2559 if (do_read_u32(ff, &nr))
2560 return -1;
2561
2562 ph->env.nr_sibling_threads = nr;
2563 size += sizeof(u32);
2564
2565 for (i = 0; i < nr; i++) {
2566 str = do_read_string(ff);
2567 if (!str)
2568 goto error;
2569
2570 /* include a NULL character at the end */
2571 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2572 goto error;
2573 size += string_size(str);
2574 free(str);
2575 }
2576 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2577
2578 /*
2579 * The header may be from old perf,
2580 * which doesn't include core id and socket id information.
2581 */
2582 if (ff->size <= size) {
2583 zfree(&ph->env.cpu);
2584 return 0;
2585 }
2586
2587 /* On s390 the socket_id number is not related to the numbers of cpus.
2588 * The socket_id number might be higher than the numbers of cpus.
2589 * This depends on the configuration.
2590 * AArch64 is the same.
2591 */
2592 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2593 || !strncmp(ph->env.arch, "aarch64", 7)))
2594 do_core_id_test = false;
2595
2596 for (i = 0; i < (u32)cpu_nr; i++) {
2597 if (do_read_u32(ff, &nr))
2598 goto free_cpu;
2599
2600 ph->env.cpu[i].core_id = nr;
2601 size += sizeof(u32);
2602
2603 if (do_read_u32(ff, &nr))
2604 goto free_cpu;
2605
2606 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2607 pr_debug("socket_id number is too big."
2608 "You may need to upgrade the perf tool.\n");
2609 goto free_cpu;
2610 }
2611
2612 ph->env.cpu[i].socket_id = nr;
2613 size += sizeof(u32);
2614 }
2615
2616 /*
2617 * The header may be from old perf,
2618 * which doesn't include die information.
2619 */
2620 if (ff->size <= size)
2621 return 0;
2622
2623 if (do_read_u32(ff, &nr))
2624 return -1;
2625
2626 ph->env.nr_sibling_dies = nr;
2627 size += sizeof(u32);
2628
2629 for (i = 0; i < nr; i++) {
2630 str = do_read_string(ff);
2631 if (!str)
2632 goto error;
2633
2634 /* include a NULL character at the end */
2635 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2636 goto error;
2637 size += string_size(str);
2638 free(str);
2639 }
2640 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2641
2642 for (i = 0; i < (u32)cpu_nr; i++) {
2643 if (do_read_u32(ff, &nr))
2644 goto free_cpu;
2645
2646 ph->env.cpu[i].die_id = nr;
2647 }
2648
2649 return 0;
2650
2651 error:
2652 strbuf_release(&sb);
2653 free_cpu:
2654 zfree(&ph->env.cpu);
2655 return -1;
2656 }
2657
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2658 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2659 {
2660 struct numa_node *nodes, *n;
2661 u32 nr, i;
2662 char *str;
2663
2664 /* nr nodes */
2665 if (do_read_u32(ff, &nr))
2666 return -1;
2667
2668 nodes = zalloc(sizeof(*nodes) * nr);
2669 if (!nodes)
2670 return -ENOMEM;
2671
2672 for (i = 0; i < nr; i++) {
2673 n = &nodes[i];
2674
2675 /* node number */
2676 if (do_read_u32(ff, &n->node))
2677 goto error;
2678
2679 if (do_read_u64(ff, &n->mem_total))
2680 goto error;
2681
2682 if (do_read_u64(ff, &n->mem_free))
2683 goto error;
2684
2685 str = do_read_string(ff);
2686 if (!str)
2687 goto error;
2688
2689 n->map = perf_cpu_map__new(str);
2690 if (!n->map)
2691 goto error;
2692
2693 free(str);
2694 }
2695 ff->ph->env.nr_numa_nodes = nr;
2696 ff->ph->env.numa_nodes = nodes;
2697 return 0;
2698
2699 error:
2700 free(nodes);
2701 return -1;
2702 }
2703
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2704 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2705 {
2706 char *name;
2707 u32 pmu_num;
2708 u32 type;
2709 struct strbuf sb;
2710
2711 if (do_read_u32(ff, &pmu_num))
2712 return -1;
2713
2714 if (!pmu_num) {
2715 pr_debug("pmu mappings not available\n");
2716 return 0;
2717 }
2718
2719 ff->ph->env.nr_pmu_mappings = pmu_num;
2720 if (strbuf_init(&sb, 128) < 0)
2721 return -1;
2722
2723 while (pmu_num) {
2724 if (do_read_u32(ff, &type))
2725 goto error;
2726
2727 name = do_read_string(ff);
2728 if (!name)
2729 goto error;
2730
2731 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2732 goto error;
2733 /* include a NULL character at the end */
2734 if (strbuf_add(&sb, "", 1) < 0)
2735 goto error;
2736
2737 if (!strcmp(name, "msr"))
2738 ff->ph->env.msr_pmu_type = type;
2739
2740 free(name);
2741 pmu_num--;
2742 }
2743 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2744 return 0;
2745
2746 error:
2747 strbuf_release(&sb);
2748 return -1;
2749 }
2750
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2751 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2752 {
2753 size_t ret = -1;
2754 u32 i, nr, nr_groups;
2755 struct perf_session *session;
2756 struct evsel *evsel, *leader = NULL;
2757 struct group_desc {
2758 char *name;
2759 u32 leader_idx;
2760 u32 nr_members;
2761 } *desc;
2762
2763 if (do_read_u32(ff, &nr_groups))
2764 return -1;
2765
2766 ff->ph->env.nr_groups = nr_groups;
2767 if (!nr_groups) {
2768 pr_debug("group desc not available\n");
2769 return 0;
2770 }
2771
2772 desc = calloc(nr_groups, sizeof(*desc));
2773 if (!desc)
2774 return -1;
2775
2776 for (i = 0; i < nr_groups; i++) {
2777 desc[i].name = do_read_string(ff);
2778 if (!desc[i].name)
2779 goto out_free;
2780
2781 if (do_read_u32(ff, &desc[i].leader_idx))
2782 goto out_free;
2783
2784 if (do_read_u32(ff, &desc[i].nr_members))
2785 goto out_free;
2786 }
2787
2788 /*
2789 * Rebuild group relationship based on the group_desc
2790 */
2791 session = container_of(ff->ph, struct perf_session, header);
2792 session->evlist->core.nr_groups = nr_groups;
2793
2794 i = nr = 0;
2795 evlist__for_each_entry(session->evlist, evsel) {
2796 if (evsel->core.idx == (int) desc[i].leader_idx) {
2797 evsel__set_leader(evsel, evsel);
2798 /* {anon_group} is a dummy name */
2799 if (strcmp(desc[i].name, "{anon_group}")) {
2800 evsel->group_name = desc[i].name;
2801 desc[i].name = NULL;
2802 }
2803 evsel->core.nr_members = desc[i].nr_members;
2804
2805 if (i >= nr_groups || nr > 0) {
2806 pr_debug("invalid group desc\n");
2807 goto out_free;
2808 }
2809
2810 leader = evsel;
2811 nr = evsel->core.nr_members - 1;
2812 i++;
2813 } else if (nr) {
2814 /* This is a group member */
2815 evsel__set_leader(evsel, leader);
2816
2817 nr--;
2818 }
2819 }
2820
2821 if (i != nr_groups || nr != 0) {
2822 pr_debug("invalid group desc\n");
2823 goto out_free;
2824 }
2825
2826 ret = 0;
2827 out_free:
2828 for (i = 0; i < nr_groups; i++)
2829 zfree(&desc[i].name);
2830 free(desc);
2831
2832 return ret;
2833 }
2834
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2835 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2836 {
2837 struct perf_session *session;
2838 int err;
2839
2840 session = container_of(ff->ph, struct perf_session, header);
2841
2842 err = auxtrace_index__process(ff->fd, ff->size, session,
2843 ff->ph->needs_swap);
2844 if (err < 0)
2845 pr_err("Failed to process auxtrace index\n");
2846 return err;
2847 }
2848
process_cache(struct feat_fd * ff,void * data __maybe_unused)2849 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2850 {
2851 struct cpu_cache_level *caches;
2852 u32 cnt, i, version;
2853
2854 if (do_read_u32(ff, &version))
2855 return -1;
2856
2857 if (version != 1)
2858 return -1;
2859
2860 if (do_read_u32(ff, &cnt))
2861 return -1;
2862
2863 caches = zalloc(sizeof(*caches) * cnt);
2864 if (!caches)
2865 return -1;
2866
2867 for (i = 0; i < cnt; i++) {
2868 struct cpu_cache_level c;
2869
2870 #define _R(v) \
2871 if (do_read_u32(ff, &c.v))\
2872 goto out_free_caches; \
2873
2874 _R(level)
2875 _R(line_size)
2876 _R(sets)
2877 _R(ways)
2878 #undef _R
2879
2880 #define _R(v) \
2881 c.v = do_read_string(ff); \
2882 if (!c.v) \
2883 goto out_free_caches;
2884
2885 _R(type)
2886 _R(size)
2887 _R(map)
2888 #undef _R
2889
2890 caches[i] = c;
2891 }
2892
2893 ff->ph->env.caches = caches;
2894 ff->ph->env.caches_cnt = cnt;
2895 return 0;
2896 out_free_caches:
2897 free(caches);
2898 return -1;
2899 }
2900
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2901 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2902 {
2903 struct perf_session *session;
2904 u64 first_sample_time, last_sample_time;
2905 int ret;
2906
2907 session = container_of(ff->ph, struct perf_session, header);
2908
2909 ret = do_read_u64(ff, &first_sample_time);
2910 if (ret)
2911 return -1;
2912
2913 ret = do_read_u64(ff, &last_sample_time);
2914 if (ret)
2915 return -1;
2916
2917 session->evlist->first_sample_time = first_sample_time;
2918 session->evlist->last_sample_time = last_sample_time;
2919 return 0;
2920 }
2921
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2922 static int process_mem_topology(struct feat_fd *ff,
2923 void *data __maybe_unused)
2924 {
2925 struct memory_node *nodes;
2926 u64 version, i, nr, bsize;
2927 int ret = -1;
2928
2929 if (do_read_u64(ff, &version))
2930 return -1;
2931
2932 if (version != 1)
2933 return -1;
2934
2935 if (do_read_u64(ff, &bsize))
2936 return -1;
2937
2938 if (do_read_u64(ff, &nr))
2939 return -1;
2940
2941 nodes = zalloc(sizeof(*nodes) * nr);
2942 if (!nodes)
2943 return -1;
2944
2945 for (i = 0; i < nr; i++) {
2946 struct memory_node n;
2947
2948 #define _R(v) \
2949 if (do_read_u64(ff, &n.v)) \
2950 goto out; \
2951
2952 _R(node)
2953 _R(size)
2954
2955 #undef _R
2956
2957 if (do_read_bitmap(ff, &n.set, &n.size))
2958 goto out;
2959
2960 nodes[i] = n;
2961 }
2962
2963 ff->ph->env.memory_bsize = bsize;
2964 ff->ph->env.memory_nodes = nodes;
2965 ff->ph->env.nr_memory_nodes = nr;
2966 ret = 0;
2967
2968 out:
2969 if (ret)
2970 free(nodes);
2971 return ret;
2972 }
2973
process_clockid(struct feat_fd * ff,void * data __maybe_unused)2974 static int process_clockid(struct feat_fd *ff,
2975 void *data __maybe_unused)
2976 {
2977 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2978 return -1;
2979
2980 return 0;
2981 }
2982
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)2983 static int process_clock_data(struct feat_fd *ff,
2984 void *_data __maybe_unused)
2985 {
2986 u32 data32;
2987 u64 data64;
2988
2989 /* version */
2990 if (do_read_u32(ff, &data32))
2991 return -1;
2992
2993 if (data32 != 1)
2994 return -1;
2995
2996 /* clockid */
2997 if (do_read_u32(ff, &data32))
2998 return -1;
2999
3000 ff->ph->env.clock.clockid = data32;
3001
3002 /* TOD ref time */
3003 if (do_read_u64(ff, &data64))
3004 return -1;
3005
3006 ff->ph->env.clock.tod_ns = data64;
3007
3008 /* clockid ref time */
3009 if (do_read_u64(ff, &data64))
3010 return -1;
3011
3012 ff->ph->env.clock.clockid_ns = data64;
3013 ff->ph->env.clock.enabled = true;
3014 return 0;
3015 }
3016
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3017 static int process_hybrid_topology(struct feat_fd *ff,
3018 void *data __maybe_unused)
3019 {
3020 struct hybrid_node *nodes, *n;
3021 u32 nr, i;
3022
3023 /* nr nodes */
3024 if (do_read_u32(ff, &nr))
3025 return -1;
3026
3027 nodes = zalloc(sizeof(*nodes) * nr);
3028 if (!nodes)
3029 return -ENOMEM;
3030
3031 for (i = 0; i < nr; i++) {
3032 n = &nodes[i];
3033
3034 n->pmu_name = do_read_string(ff);
3035 if (!n->pmu_name)
3036 goto error;
3037
3038 n->cpus = do_read_string(ff);
3039 if (!n->cpus)
3040 goto error;
3041 }
3042
3043 ff->ph->env.nr_hybrid_nodes = nr;
3044 ff->ph->env.hybrid_nodes = nodes;
3045 return 0;
3046
3047 error:
3048 for (i = 0; i < nr; i++) {
3049 free(nodes[i].pmu_name);
3050 free(nodes[i].cpus);
3051 }
3052
3053 free(nodes);
3054 return -1;
3055 }
3056
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3057 static int process_dir_format(struct feat_fd *ff,
3058 void *_data __maybe_unused)
3059 {
3060 struct perf_session *session;
3061 struct perf_data *data;
3062
3063 session = container_of(ff->ph, struct perf_session, header);
3064 data = session->data;
3065
3066 if (WARN_ON(!perf_data__is_dir(data)))
3067 return -1;
3068
3069 return do_read_u64(ff, &data->dir.version);
3070 }
3071
3072 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3073 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3074 {
3075 struct bpf_prog_info_node *info_node;
3076 struct perf_env *env = &ff->ph->env;
3077 struct perf_bpil *info_linear;
3078 u32 count, i;
3079 int err = -1;
3080
3081 if (ff->ph->needs_swap) {
3082 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3083 return 0;
3084 }
3085
3086 if (do_read_u32(ff, &count))
3087 return -1;
3088
3089 down_write(&env->bpf_progs.lock);
3090
3091 for (i = 0; i < count; ++i) {
3092 u32 info_len, data_len;
3093
3094 info_linear = NULL;
3095 info_node = NULL;
3096 if (do_read_u32(ff, &info_len))
3097 goto out;
3098 if (do_read_u32(ff, &data_len))
3099 goto out;
3100
3101 if (info_len > sizeof(struct bpf_prog_info)) {
3102 pr_warning("detected invalid bpf_prog_info\n");
3103 goto out;
3104 }
3105
3106 info_linear = malloc(sizeof(struct perf_bpil) +
3107 data_len);
3108 if (!info_linear)
3109 goto out;
3110 info_linear->info_len = sizeof(struct bpf_prog_info);
3111 info_linear->data_len = data_len;
3112 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3113 goto out;
3114 if (__do_read(ff, &info_linear->info, info_len))
3115 goto out;
3116 if (info_len < sizeof(struct bpf_prog_info))
3117 memset(((void *)(&info_linear->info)) + info_len, 0,
3118 sizeof(struct bpf_prog_info) - info_len);
3119
3120 if (__do_read(ff, info_linear->data, data_len))
3121 goto out;
3122
3123 info_node = malloc(sizeof(struct bpf_prog_info_node));
3124 if (!info_node)
3125 goto out;
3126
3127 /* after reading from file, translate offset to address */
3128 bpil_offs_to_addr(info_linear);
3129 info_node->info_linear = info_linear;
3130 perf_env__insert_bpf_prog_info(env, info_node);
3131 }
3132
3133 up_write(&env->bpf_progs.lock);
3134 return 0;
3135 out:
3136 free(info_linear);
3137 free(info_node);
3138 up_write(&env->bpf_progs.lock);
3139 return err;
3140 }
3141
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3142 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3143 {
3144 struct perf_env *env = &ff->ph->env;
3145 struct btf_node *node = NULL;
3146 u32 count, i;
3147 int err = -1;
3148
3149 if (ff->ph->needs_swap) {
3150 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3151 return 0;
3152 }
3153
3154 if (do_read_u32(ff, &count))
3155 return -1;
3156
3157 down_write(&env->bpf_progs.lock);
3158
3159 for (i = 0; i < count; ++i) {
3160 u32 id, data_size;
3161
3162 if (do_read_u32(ff, &id))
3163 goto out;
3164 if (do_read_u32(ff, &data_size))
3165 goto out;
3166
3167 node = malloc(sizeof(struct btf_node) + data_size);
3168 if (!node)
3169 goto out;
3170
3171 node->id = id;
3172 node->data_size = data_size;
3173
3174 if (__do_read(ff, node->data, data_size))
3175 goto out;
3176
3177 perf_env__insert_btf(env, node);
3178 node = NULL;
3179 }
3180
3181 err = 0;
3182 out:
3183 up_write(&env->bpf_progs.lock);
3184 free(node);
3185 return err;
3186 }
3187 #endif // HAVE_LIBBPF_SUPPORT
3188
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3189 static int process_compressed(struct feat_fd *ff,
3190 void *data __maybe_unused)
3191 {
3192 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3193 return -1;
3194
3195 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3196 return -1;
3197
3198 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3199 return -1;
3200
3201 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3202 return -1;
3203
3204 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3205 return -1;
3206
3207 return 0;
3208 }
3209
process_per_cpu_pmu_caps(struct feat_fd * ff,int * nr_cpu_pmu_caps,char ** cpu_pmu_caps,unsigned int * max_branches)3210 static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3211 char **cpu_pmu_caps,
3212 unsigned int *max_branches)
3213 {
3214 char *name, *value;
3215 struct strbuf sb;
3216 u32 nr_caps;
3217
3218 if (do_read_u32(ff, &nr_caps))
3219 return -1;
3220
3221 if (!nr_caps) {
3222 pr_debug("cpu pmu capabilities not available\n");
3223 return 0;
3224 }
3225
3226 *nr_cpu_pmu_caps = nr_caps;
3227
3228 if (strbuf_init(&sb, 128) < 0)
3229 return -1;
3230
3231 while (nr_caps--) {
3232 name = do_read_string(ff);
3233 if (!name)
3234 goto error;
3235
3236 value = do_read_string(ff);
3237 if (!value)
3238 goto free_name;
3239
3240 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3241 goto free_value;
3242
3243 /* include a NULL character at the end */
3244 if (strbuf_add(&sb, "", 1) < 0)
3245 goto free_value;
3246
3247 if (!strcmp(name, "branches"))
3248 *max_branches = atoi(value);
3249
3250 free(value);
3251 free(name);
3252 }
3253 *cpu_pmu_caps = strbuf_detach(&sb, NULL);
3254 return 0;
3255
3256 free_value:
3257 free(value);
3258 free_name:
3259 free(name);
3260 error:
3261 strbuf_release(&sb);
3262 return -1;
3263 }
3264
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3265 static int process_cpu_pmu_caps(struct feat_fd *ff,
3266 void *data __maybe_unused)
3267 {
3268 return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3269 &ff->ph->env.cpu_pmu_caps,
3270 &ff->ph->env.max_branches);
3271 }
3272
process_hybrid_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3273 static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3274 void *data __maybe_unused)
3275 {
3276 struct hybrid_cpc_node *nodes;
3277 u32 nr_pmu, i;
3278 int ret;
3279
3280 if (do_read_u32(ff, &nr_pmu))
3281 return -1;
3282
3283 if (!nr_pmu) {
3284 pr_debug("hybrid cpu pmu capabilities not available\n");
3285 return 0;
3286 }
3287
3288 nodes = zalloc(sizeof(*nodes) * nr_pmu);
3289 if (!nodes)
3290 return -ENOMEM;
3291
3292 for (i = 0; i < nr_pmu; i++) {
3293 struct hybrid_cpc_node *n = &nodes[i];
3294
3295 ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3296 &n->cpu_pmu_caps,
3297 &n->max_branches);
3298 if (ret)
3299 goto err;
3300
3301 n->pmu_name = do_read_string(ff);
3302 if (!n->pmu_name) {
3303 ret = -1;
3304 goto err;
3305 }
3306 }
3307
3308 ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3309 ff->ph->env.hybrid_cpc_nodes = nodes;
3310 return 0;
3311
3312 err:
3313 for (i = 0; i < nr_pmu; i++) {
3314 free(nodes[i].cpu_pmu_caps);
3315 free(nodes[i].pmu_name);
3316 }
3317
3318 free(nodes);
3319 return ret;
3320 }
3321
3322 #define FEAT_OPR(n, func, __full_only) \
3323 [HEADER_##n] = { \
3324 .name = __stringify(n), \
3325 .write = write_##func, \
3326 .print = print_##func, \
3327 .full_only = __full_only, \
3328 .process = process_##func, \
3329 .synthesize = true \
3330 }
3331
3332 #define FEAT_OPN(n, func, __full_only) \
3333 [HEADER_##n] = { \
3334 .name = __stringify(n), \
3335 .write = write_##func, \
3336 .print = print_##func, \
3337 .full_only = __full_only, \
3338 .process = process_##func \
3339 }
3340
3341 /* feature_ops not implemented: */
3342 #define print_tracing_data NULL
3343 #define print_build_id NULL
3344
3345 #define process_branch_stack NULL
3346 #define process_stat NULL
3347
3348 // Only used in util/synthetic-events.c
3349 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3350
3351 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3352 FEAT_OPN(TRACING_DATA, tracing_data, false),
3353 FEAT_OPN(BUILD_ID, build_id, false),
3354 FEAT_OPR(HOSTNAME, hostname, false),
3355 FEAT_OPR(OSRELEASE, osrelease, false),
3356 FEAT_OPR(VERSION, version, false),
3357 FEAT_OPR(ARCH, arch, false),
3358 FEAT_OPR(NRCPUS, nrcpus, false),
3359 FEAT_OPR(CPUDESC, cpudesc, false),
3360 FEAT_OPR(CPUID, cpuid, false),
3361 FEAT_OPR(TOTAL_MEM, total_mem, false),
3362 FEAT_OPR(EVENT_DESC, event_desc, false),
3363 FEAT_OPR(CMDLINE, cmdline, false),
3364 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3365 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3366 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3367 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3368 FEAT_OPR(GROUP_DESC, group_desc, false),
3369 FEAT_OPN(AUXTRACE, auxtrace, false),
3370 FEAT_OPN(STAT, stat, false),
3371 FEAT_OPN(CACHE, cache, true),
3372 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3373 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3374 FEAT_OPR(CLOCKID, clockid, false),
3375 FEAT_OPN(DIR_FORMAT, dir_format, false),
3376 #ifdef HAVE_LIBBPF_SUPPORT
3377 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3378 FEAT_OPR(BPF_BTF, bpf_btf, false),
3379 #endif
3380 FEAT_OPR(COMPRESSED, compressed, false),
3381 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3382 FEAT_OPR(CLOCK_DATA, clock_data, false),
3383 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3384 FEAT_OPR(HYBRID_CPU_PMU_CAPS, hybrid_cpu_pmu_caps, false),
3385 };
3386
3387 struct header_print_data {
3388 FILE *fp;
3389 bool full; /* extended list of headers */
3390 };
3391
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3392 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3393 struct perf_header *ph,
3394 int feat, int fd, void *data)
3395 {
3396 struct header_print_data *hd = data;
3397 struct feat_fd ff;
3398
3399 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3400 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3401 "%d, continuing...\n", section->offset, feat);
3402 return 0;
3403 }
3404 if (feat >= HEADER_LAST_FEATURE) {
3405 pr_warning("unknown feature %d\n", feat);
3406 return 0;
3407 }
3408 if (!feat_ops[feat].print)
3409 return 0;
3410
3411 ff = (struct feat_fd) {
3412 .fd = fd,
3413 .ph = ph,
3414 };
3415
3416 if (!feat_ops[feat].full_only || hd->full)
3417 feat_ops[feat].print(&ff, hd->fp);
3418 else
3419 fprintf(hd->fp, "# %s info available, use -I to display\n",
3420 feat_ops[feat].name);
3421
3422 return 0;
3423 }
3424
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3425 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3426 {
3427 struct header_print_data hd;
3428 struct perf_header *header = &session->header;
3429 int fd = perf_data__fd(session->data);
3430 struct stat st;
3431 time_t stctime;
3432 int ret, bit;
3433
3434 hd.fp = fp;
3435 hd.full = full;
3436
3437 ret = fstat(fd, &st);
3438 if (ret == -1)
3439 return -1;
3440
3441 stctime = st.st_mtime;
3442 fprintf(fp, "# captured on : %s", ctime(&stctime));
3443
3444 fprintf(fp, "# header version : %u\n", header->version);
3445 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3446 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3447 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3448
3449 perf_header__process_sections(header, fd, &hd,
3450 perf_file_section__fprintf_info);
3451
3452 if (session->data->is_pipe)
3453 return 0;
3454
3455 fprintf(fp, "# missing features: ");
3456 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3457 if (bit)
3458 fprintf(fp, "%s ", feat_ops[bit].name);
3459 }
3460
3461 fprintf(fp, "\n");
3462 return 0;
3463 }
3464
3465 struct header_fw {
3466 struct feat_writer fw;
3467 struct feat_fd *ff;
3468 };
3469
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3470 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3471 {
3472 struct header_fw *h = container_of(fw, struct header_fw, fw);
3473
3474 return do_write(h->ff, buf, sz);
3475 }
3476
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3477 static int do_write_feat(struct feat_fd *ff, int type,
3478 struct perf_file_section **p,
3479 struct evlist *evlist,
3480 struct feat_copier *fc)
3481 {
3482 int err;
3483 int ret = 0;
3484
3485 if (perf_header__has_feat(ff->ph, type)) {
3486 if (!feat_ops[type].write)
3487 return -1;
3488
3489 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3490 return -1;
3491
3492 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3493
3494 /*
3495 * Hook to let perf inject copy features sections from the input
3496 * file.
3497 */
3498 if (fc && fc->copy) {
3499 struct header_fw h = {
3500 .fw.write = feat_writer_cb,
3501 .ff = ff,
3502 };
3503
3504 /* ->copy() returns 0 if the feature was not copied */
3505 err = fc->copy(fc, type, &h.fw);
3506 } else {
3507 err = 0;
3508 }
3509 if (!err)
3510 err = feat_ops[type].write(ff, evlist);
3511 if (err < 0) {
3512 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3513
3514 /* undo anything written */
3515 lseek(ff->fd, (*p)->offset, SEEK_SET);
3516
3517 return -1;
3518 }
3519 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3520 (*p)++;
3521 }
3522 return ret;
3523 }
3524
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3525 static int perf_header__adds_write(struct perf_header *header,
3526 struct evlist *evlist, int fd,
3527 struct feat_copier *fc)
3528 {
3529 int nr_sections;
3530 struct feat_fd ff;
3531 struct perf_file_section *feat_sec, *p;
3532 int sec_size;
3533 u64 sec_start;
3534 int feat;
3535 int err;
3536
3537 ff = (struct feat_fd){
3538 .fd = fd,
3539 .ph = header,
3540 };
3541
3542 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3543 if (!nr_sections)
3544 return 0;
3545
3546 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3547 if (feat_sec == NULL)
3548 return -ENOMEM;
3549
3550 sec_size = sizeof(*feat_sec) * nr_sections;
3551
3552 sec_start = header->feat_offset;
3553 lseek(fd, sec_start + sec_size, SEEK_SET);
3554
3555 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3556 if (do_write_feat(&ff, feat, &p, evlist, fc))
3557 perf_header__clear_feat(header, feat);
3558 }
3559
3560 lseek(fd, sec_start, SEEK_SET);
3561 /*
3562 * may write more than needed due to dropped feature, but
3563 * this is okay, reader will skip the missing entries
3564 */
3565 err = do_write(&ff, feat_sec, sec_size);
3566 if (err < 0)
3567 pr_debug("failed to write feature section\n");
3568 free(feat_sec);
3569 return err;
3570 }
3571
perf_header__write_pipe(int fd)3572 int perf_header__write_pipe(int fd)
3573 {
3574 struct perf_pipe_file_header f_header;
3575 struct feat_fd ff;
3576 int err;
3577
3578 ff = (struct feat_fd){ .fd = fd };
3579
3580 f_header = (struct perf_pipe_file_header){
3581 .magic = PERF_MAGIC,
3582 .size = sizeof(f_header),
3583 };
3584
3585 err = do_write(&ff, &f_header, sizeof(f_header));
3586 if (err < 0) {
3587 pr_debug("failed to write perf pipe header\n");
3588 return err;
3589 }
3590
3591 return 0;
3592 }
3593
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3594 static int perf_session__do_write_header(struct perf_session *session,
3595 struct evlist *evlist,
3596 int fd, bool at_exit,
3597 struct feat_copier *fc)
3598 {
3599 struct perf_file_header f_header;
3600 struct perf_file_attr f_attr;
3601 struct perf_header *header = &session->header;
3602 struct evsel *evsel;
3603 struct feat_fd ff;
3604 u64 attr_offset;
3605 int err;
3606
3607 ff = (struct feat_fd){ .fd = fd};
3608 lseek(fd, sizeof(f_header), SEEK_SET);
3609
3610 evlist__for_each_entry(session->evlist, evsel) {
3611 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3612 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3613 if (err < 0) {
3614 pr_debug("failed to write perf header\n");
3615 return err;
3616 }
3617 }
3618
3619 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3620
3621 evlist__for_each_entry(evlist, evsel) {
3622 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3623 /*
3624 * We are likely in "perf inject" and have read
3625 * from an older file. Update attr size so that
3626 * reader gets the right offset to the ids.
3627 */
3628 evsel->core.attr.size = sizeof(evsel->core.attr);
3629 }
3630 f_attr = (struct perf_file_attr){
3631 .attr = evsel->core.attr,
3632 .ids = {
3633 .offset = evsel->id_offset,
3634 .size = evsel->core.ids * sizeof(u64),
3635 }
3636 };
3637 err = do_write(&ff, &f_attr, sizeof(f_attr));
3638 if (err < 0) {
3639 pr_debug("failed to write perf header attribute\n");
3640 return err;
3641 }
3642 }
3643
3644 if (!header->data_offset)
3645 header->data_offset = lseek(fd, 0, SEEK_CUR);
3646 header->feat_offset = header->data_offset + header->data_size;
3647
3648 if (at_exit) {
3649 err = perf_header__adds_write(header, evlist, fd, fc);
3650 if (err < 0)
3651 return err;
3652 }
3653
3654 f_header = (struct perf_file_header){
3655 .magic = PERF_MAGIC,
3656 .size = sizeof(f_header),
3657 .attr_size = sizeof(f_attr),
3658 .attrs = {
3659 .offset = attr_offset,
3660 .size = evlist->core.nr_entries * sizeof(f_attr),
3661 },
3662 .data = {
3663 .offset = header->data_offset,
3664 .size = header->data_size,
3665 },
3666 /* event_types is ignored, store zeros */
3667 };
3668
3669 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3670
3671 lseek(fd, 0, SEEK_SET);
3672 err = do_write(&ff, &f_header, sizeof(f_header));
3673 if (err < 0) {
3674 pr_debug("failed to write perf header\n");
3675 return err;
3676 }
3677 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3678
3679 return 0;
3680 }
3681
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3682 int perf_session__write_header(struct perf_session *session,
3683 struct evlist *evlist,
3684 int fd, bool at_exit)
3685 {
3686 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3687 }
3688
perf_session__data_offset(const struct evlist * evlist)3689 size_t perf_session__data_offset(const struct evlist *evlist)
3690 {
3691 struct evsel *evsel;
3692 size_t data_offset;
3693
3694 data_offset = sizeof(struct perf_file_header);
3695 evlist__for_each_entry(evlist, evsel) {
3696 data_offset += evsel->core.ids * sizeof(u64);
3697 }
3698 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3699
3700 return data_offset;
3701 }
3702
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3703 int perf_session__inject_header(struct perf_session *session,
3704 struct evlist *evlist,
3705 int fd,
3706 struct feat_copier *fc)
3707 {
3708 return perf_session__do_write_header(session, evlist, fd, true, fc);
3709 }
3710
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3711 static int perf_header__getbuffer64(struct perf_header *header,
3712 int fd, void *buf, size_t size)
3713 {
3714 if (readn(fd, buf, size) <= 0)
3715 return -1;
3716
3717 if (header->needs_swap)
3718 mem_bswap_64(buf, size);
3719
3720 return 0;
3721 }
3722
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3723 int perf_header__process_sections(struct perf_header *header, int fd,
3724 void *data,
3725 int (*process)(struct perf_file_section *section,
3726 struct perf_header *ph,
3727 int feat, int fd, void *data))
3728 {
3729 struct perf_file_section *feat_sec, *sec;
3730 int nr_sections;
3731 int sec_size;
3732 int feat;
3733 int err;
3734
3735 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3736 if (!nr_sections)
3737 return 0;
3738
3739 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3740 if (!feat_sec)
3741 return -1;
3742
3743 sec_size = sizeof(*feat_sec) * nr_sections;
3744
3745 lseek(fd, header->feat_offset, SEEK_SET);
3746
3747 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3748 if (err < 0)
3749 goto out_free;
3750
3751 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3752 err = process(sec++, header, feat, fd, data);
3753 if (err < 0)
3754 goto out_free;
3755 }
3756 err = 0;
3757 out_free:
3758 free(feat_sec);
3759 return err;
3760 }
3761
3762 static const int attr_file_abi_sizes[] = {
3763 [0] = PERF_ATTR_SIZE_VER0,
3764 [1] = PERF_ATTR_SIZE_VER1,
3765 [2] = PERF_ATTR_SIZE_VER2,
3766 [3] = PERF_ATTR_SIZE_VER3,
3767 [4] = PERF_ATTR_SIZE_VER4,
3768 0,
3769 };
3770
3771 /*
3772 * In the legacy file format, the magic number is not used to encode endianness.
3773 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3774 * on ABI revisions, we need to try all combinations for all endianness to
3775 * detect the endianness.
3776 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3777 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3778 {
3779 uint64_t ref_size, attr_size;
3780 int i;
3781
3782 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3783 ref_size = attr_file_abi_sizes[i]
3784 + sizeof(struct perf_file_section);
3785 if (hdr_sz != ref_size) {
3786 attr_size = bswap_64(hdr_sz);
3787 if (attr_size != ref_size)
3788 continue;
3789
3790 ph->needs_swap = true;
3791 }
3792 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3793 i,
3794 ph->needs_swap);
3795 return 0;
3796 }
3797 /* could not determine endianness */
3798 return -1;
3799 }
3800
3801 #define PERF_PIPE_HDR_VER0 16
3802
3803 static const size_t attr_pipe_abi_sizes[] = {
3804 [0] = PERF_PIPE_HDR_VER0,
3805 0,
3806 };
3807
3808 /*
3809 * In the legacy pipe format, there is an implicit assumption that endianness
3810 * between host recording the samples, and host parsing the samples is the
3811 * same. This is not always the case given that the pipe output may always be
3812 * redirected into a file and analyzed on a different machine with possibly a
3813 * different endianness and perf_event ABI revisions in the perf tool itself.
3814 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3815 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3816 {
3817 u64 attr_size;
3818 int i;
3819
3820 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3821 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3822 attr_size = bswap_64(hdr_sz);
3823 if (attr_size != hdr_sz)
3824 continue;
3825
3826 ph->needs_swap = true;
3827 }
3828 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3829 return 0;
3830 }
3831 return -1;
3832 }
3833
is_perf_magic(u64 magic)3834 bool is_perf_magic(u64 magic)
3835 {
3836 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3837 || magic == __perf_magic2
3838 || magic == __perf_magic2_sw)
3839 return true;
3840
3841 return false;
3842 }
3843
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3844 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3845 bool is_pipe, struct perf_header *ph)
3846 {
3847 int ret;
3848
3849 /* check for legacy format */
3850 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3851 if (ret == 0) {
3852 ph->version = PERF_HEADER_VERSION_1;
3853 pr_debug("legacy perf.data format\n");
3854 if (is_pipe)
3855 return try_all_pipe_abis(hdr_sz, ph);
3856
3857 return try_all_file_abis(hdr_sz, ph);
3858 }
3859 /*
3860 * the new magic number serves two purposes:
3861 * - unique number to identify actual perf.data files
3862 * - encode endianness of file
3863 */
3864 ph->version = PERF_HEADER_VERSION_2;
3865
3866 /* check magic number with one endianness */
3867 if (magic == __perf_magic2)
3868 return 0;
3869
3870 /* check magic number with opposite endianness */
3871 if (magic != __perf_magic2_sw)
3872 return -1;
3873
3874 ph->needs_swap = true;
3875
3876 return 0;
3877 }
3878
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3879 int perf_file_header__read(struct perf_file_header *header,
3880 struct perf_header *ph, int fd)
3881 {
3882 ssize_t ret;
3883
3884 lseek(fd, 0, SEEK_SET);
3885
3886 ret = readn(fd, header, sizeof(*header));
3887 if (ret <= 0)
3888 return -1;
3889
3890 if (check_magic_endian(header->magic,
3891 header->attr_size, false, ph) < 0) {
3892 pr_debug("magic/endian check failed\n");
3893 return -1;
3894 }
3895
3896 if (ph->needs_swap) {
3897 mem_bswap_64(header, offsetof(struct perf_file_header,
3898 adds_features));
3899 }
3900
3901 if (header->size != sizeof(*header)) {
3902 /* Support the previous format */
3903 if (header->size == offsetof(typeof(*header), adds_features))
3904 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3905 else
3906 return -1;
3907 } else if (ph->needs_swap) {
3908 /*
3909 * feature bitmap is declared as an array of unsigned longs --
3910 * not good since its size can differ between the host that
3911 * generated the data file and the host analyzing the file.
3912 *
3913 * We need to handle endianness, but we don't know the size of
3914 * the unsigned long where the file was generated. Take a best
3915 * guess at determining it: try 64-bit swap first (ie., file
3916 * created on a 64-bit host), and check if the hostname feature
3917 * bit is set (this feature bit is forced on as of fbe96f2).
3918 * If the bit is not, undo the 64-bit swap and try a 32-bit
3919 * swap. If the hostname bit is still not set (e.g., older data
3920 * file), punt and fallback to the original behavior --
3921 * clearing all feature bits and setting buildid.
3922 */
3923 mem_bswap_64(&header->adds_features,
3924 BITS_TO_U64(HEADER_FEAT_BITS));
3925
3926 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3927 /* unswap as u64 */
3928 mem_bswap_64(&header->adds_features,
3929 BITS_TO_U64(HEADER_FEAT_BITS));
3930
3931 /* unswap as u32 */
3932 mem_bswap_32(&header->adds_features,
3933 BITS_TO_U32(HEADER_FEAT_BITS));
3934 }
3935
3936 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3937 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3938 set_bit(HEADER_BUILD_ID, header->adds_features);
3939 }
3940 }
3941
3942 memcpy(&ph->adds_features, &header->adds_features,
3943 sizeof(ph->adds_features));
3944
3945 ph->data_offset = header->data.offset;
3946 ph->data_size = header->data.size;
3947 ph->feat_offset = header->data.offset + header->data.size;
3948 return 0;
3949 }
3950
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3951 static int perf_file_section__process(struct perf_file_section *section,
3952 struct perf_header *ph,
3953 int feat, int fd, void *data)
3954 {
3955 struct feat_fd fdd = {
3956 .fd = fd,
3957 .ph = ph,
3958 .size = section->size,
3959 .offset = section->offset,
3960 };
3961
3962 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3963 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3964 "%d, continuing...\n", section->offset, feat);
3965 return 0;
3966 }
3967
3968 if (feat >= HEADER_LAST_FEATURE) {
3969 pr_debug("unknown feature %d, continuing...\n", feat);
3970 return 0;
3971 }
3972
3973 if (!feat_ops[feat].process)
3974 return 0;
3975
3976 return feat_ops[feat].process(&fdd, data);
3977 }
3978
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)3979 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3980 struct perf_header *ph,
3981 struct perf_data* data,
3982 bool repipe, int repipe_fd)
3983 {
3984 struct feat_fd ff = {
3985 .fd = repipe_fd,
3986 .ph = ph,
3987 };
3988 ssize_t ret;
3989
3990 ret = perf_data__read(data, header, sizeof(*header));
3991 if (ret <= 0)
3992 return -1;
3993
3994 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3995 pr_debug("endian/magic failed\n");
3996 return -1;
3997 }
3998
3999 if (ph->needs_swap)
4000 header->size = bswap_64(header->size);
4001
4002 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4003 return -1;
4004
4005 return 0;
4006 }
4007
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4008 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4009 {
4010 struct perf_header *header = &session->header;
4011 struct perf_pipe_file_header f_header;
4012
4013 if (perf_file_header__read_pipe(&f_header, header, session->data,
4014 session->repipe, repipe_fd) < 0) {
4015 pr_debug("incompatible file format\n");
4016 return -EINVAL;
4017 }
4018
4019 return f_header.size == sizeof(f_header) ? 0 : -1;
4020 }
4021
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4022 static int read_attr(int fd, struct perf_header *ph,
4023 struct perf_file_attr *f_attr)
4024 {
4025 struct perf_event_attr *attr = &f_attr->attr;
4026 size_t sz, left;
4027 size_t our_sz = sizeof(f_attr->attr);
4028 ssize_t ret;
4029
4030 memset(f_attr, 0, sizeof(*f_attr));
4031
4032 /* read minimal guaranteed structure */
4033 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4034 if (ret <= 0) {
4035 pr_debug("cannot read %d bytes of header attr\n",
4036 PERF_ATTR_SIZE_VER0);
4037 return -1;
4038 }
4039
4040 /* on file perf_event_attr size */
4041 sz = attr->size;
4042
4043 if (ph->needs_swap)
4044 sz = bswap_32(sz);
4045
4046 if (sz == 0) {
4047 /* assume ABI0 */
4048 sz = PERF_ATTR_SIZE_VER0;
4049 } else if (sz > our_sz) {
4050 pr_debug("file uses a more recent and unsupported ABI"
4051 " (%zu bytes extra)\n", sz - our_sz);
4052 return -1;
4053 }
4054 /* what we have not yet read and that we know about */
4055 left = sz - PERF_ATTR_SIZE_VER0;
4056 if (left) {
4057 void *ptr = attr;
4058 ptr += PERF_ATTR_SIZE_VER0;
4059
4060 ret = readn(fd, ptr, left);
4061 }
4062 /* read perf_file_section, ids are read in caller */
4063 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4064
4065 return ret <= 0 ? -1 : 0;
4066 }
4067
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4068 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4069 {
4070 struct tep_event *event;
4071 char bf[128];
4072
4073 /* already prepared */
4074 if (evsel->tp_format)
4075 return 0;
4076
4077 if (pevent == NULL) {
4078 pr_debug("broken or missing trace data\n");
4079 return -1;
4080 }
4081
4082 event = tep_find_event(pevent, evsel->core.attr.config);
4083 if (event == NULL) {
4084 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4085 return -1;
4086 }
4087
4088 if (!evsel->name) {
4089 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4090 evsel->name = strdup(bf);
4091 if (evsel->name == NULL)
4092 return -1;
4093 }
4094
4095 evsel->tp_format = event;
4096 return 0;
4097 }
4098
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4099 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4100 {
4101 struct evsel *pos;
4102
4103 evlist__for_each_entry(evlist, pos) {
4104 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4105 evsel__prepare_tracepoint_event(pos, pevent))
4106 return -1;
4107 }
4108
4109 return 0;
4110 }
4111
perf_session__read_header(struct perf_session * session,int repipe_fd)4112 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4113 {
4114 struct perf_data *data = session->data;
4115 struct perf_header *header = &session->header;
4116 struct perf_file_header f_header;
4117 struct perf_file_attr f_attr;
4118 u64 f_id;
4119 int nr_attrs, nr_ids, i, j, err;
4120 int fd = perf_data__fd(data);
4121
4122 session->evlist = evlist__new();
4123 if (session->evlist == NULL)
4124 return -ENOMEM;
4125
4126 session->evlist->env = &header->env;
4127 session->machines.host.env = &header->env;
4128
4129 /*
4130 * We can read 'pipe' data event from regular file,
4131 * check for the pipe header regardless of source.
4132 */
4133 err = perf_header__read_pipe(session, repipe_fd);
4134 if (!err || perf_data__is_pipe(data)) {
4135 data->is_pipe = true;
4136 return err;
4137 }
4138
4139 if (perf_file_header__read(&f_header, header, fd) < 0)
4140 return -EINVAL;
4141
4142 if (header->needs_swap && data->in_place_update) {
4143 pr_err("In-place update not supported when byte-swapping is required\n");
4144 return -EINVAL;
4145 }
4146
4147 /*
4148 * Sanity check that perf.data was written cleanly; data size is
4149 * initialized to 0 and updated only if the on_exit function is run.
4150 * If data size is still 0 then the file contains only partial
4151 * information. Just warn user and process it as much as it can.
4152 */
4153 if (f_header.data.size == 0) {
4154 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4155 "Was the 'perf record' command properly terminated?\n",
4156 data->file.path);
4157 }
4158
4159 if (f_header.attr_size == 0) {
4160 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4161 "Was the 'perf record' command properly terminated?\n",
4162 data->file.path);
4163 return -EINVAL;
4164 }
4165
4166 nr_attrs = f_header.attrs.size / f_header.attr_size;
4167 lseek(fd, f_header.attrs.offset, SEEK_SET);
4168
4169 for (i = 0; i < nr_attrs; i++) {
4170 struct evsel *evsel;
4171 off_t tmp;
4172
4173 if (read_attr(fd, header, &f_attr) < 0)
4174 goto out_errno;
4175
4176 if (header->needs_swap) {
4177 f_attr.ids.size = bswap_64(f_attr.ids.size);
4178 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4179 perf_event__attr_swap(&f_attr.attr);
4180 }
4181
4182 tmp = lseek(fd, 0, SEEK_CUR);
4183 evsel = evsel__new(&f_attr.attr);
4184
4185 if (evsel == NULL)
4186 goto out_delete_evlist;
4187
4188 evsel->needs_swap = header->needs_swap;
4189 /*
4190 * Do it before so that if perf_evsel__alloc_id fails, this
4191 * entry gets purged too at evlist__delete().
4192 */
4193 evlist__add(session->evlist, evsel);
4194
4195 nr_ids = f_attr.ids.size / sizeof(u64);
4196 /*
4197 * We don't have the cpu and thread maps on the header, so
4198 * for allocating the perf_sample_id table we fake 1 cpu and
4199 * hattr->ids threads.
4200 */
4201 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4202 goto out_delete_evlist;
4203
4204 lseek(fd, f_attr.ids.offset, SEEK_SET);
4205
4206 for (j = 0; j < nr_ids; j++) {
4207 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4208 goto out_errno;
4209
4210 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4211 }
4212
4213 lseek(fd, tmp, SEEK_SET);
4214 }
4215
4216 perf_header__process_sections(header, fd, &session->tevent,
4217 perf_file_section__process);
4218
4219 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4220 goto out_delete_evlist;
4221
4222 return 0;
4223 out_errno:
4224 return -errno;
4225
4226 out_delete_evlist:
4227 evlist__delete(session->evlist);
4228 session->evlist = NULL;
4229 return -ENOMEM;
4230 }
4231
perf_event__process_feature(struct perf_session * session,union perf_event * event)4232 int perf_event__process_feature(struct perf_session *session,
4233 union perf_event *event)
4234 {
4235 struct perf_tool *tool = session->tool;
4236 struct feat_fd ff = { .fd = 0 };
4237 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4238 int type = fe->header.type;
4239 u64 feat = fe->feat_id;
4240 int ret = 0;
4241
4242 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4243 pr_warning("invalid record type %d in pipe-mode\n", type);
4244 return 0;
4245 }
4246 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4247 pr_warning("invalid record type %d in pipe-mode\n", type);
4248 return -1;
4249 }
4250
4251 if (!feat_ops[feat].process)
4252 return 0;
4253
4254 ff.buf = (void *)fe->data;
4255 ff.size = event->header.size - sizeof(*fe);
4256 ff.ph = &session->header;
4257
4258 if (feat_ops[feat].process(&ff, NULL)) {
4259 ret = -1;
4260 goto out;
4261 }
4262
4263 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4264 goto out;
4265
4266 if (!feat_ops[feat].full_only ||
4267 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4268 feat_ops[feat].print(&ff, stdout);
4269 } else {
4270 fprintf(stdout, "# %s info available, use -I to display\n",
4271 feat_ops[feat].name);
4272 }
4273 out:
4274 free_event_desc(ff.events);
4275 return ret;
4276 }
4277
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4278 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4279 {
4280 struct perf_record_event_update *ev = &event->event_update;
4281 struct perf_record_event_update_scale *ev_scale;
4282 struct perf_record_event_update_cpus *ev_cpus;
4283 struct perf_cpu_map *map;
4284 size_t ret;
4285
4286 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4287
4288 switch (ev->type) {
4289 case PERF_EVENT_UPDATE__SCALE:
4290 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4291 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4292 break;
4293 case PERF_EVENT_UPDATE__UNIT:
4294 ret += fprintf(fp, "... unit: %s\n", ev->data);
4295 break;
4296 case PERF_EVENT_UPDATE__NAME:
4297 ret += fprintf(fp, "... name: %s\n", ev->data);
4298 break;
4299 case PERF_EVENT_UPDATE__CPUS:
4300 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4301 ret += fprintf(fp, "... ");
4302
4303 map = cpu_map__new_data(&ev_cpus->cpus);
4304 if (map)
4305 ret += cpu_map__fprintf(map, fp);
4306 else
4307 ret += fprintf(fp, "failed to get cpus\n");
4308 break;
4309 default:
4310 ret += fprintf(fp, "... unknown type\n");
4311 break;
4312 }
4313
4314 return ret;
4315 }
4316
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4317 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4318 union perf_event *event,
4319 struct evlist **pevlist)
4320 {
4321 u32 i, ids, n_ids;
4322 struct evsel *evsel;
4323 struct evlist *evlist = *pevlist;
4324
4325 if (evlist == NULL) {
4326 *pevlist = evlist = evlist__new();
4327 if (evlist == NULL)
4328 return -ENOMEM;
4329 }
4330
4331 evsel = evsel__new(&event->attr.attr);
4332 if (evsel == NULL)
4333 return -ENOMEM;
4334
4335 evlist__add(evlist, evsel);
4336
4337 ids = event->header.size;
4338 ids -= (void *)&event->attr.id - (void *)event;
4339 n_ids = ids / sizeof(u64);
4340 /*
4341 * We don't have the cpu and thread maps on the header, so
4342 * for allocating the perf_sample_id table we fake 1 cpu and
4343 * hattr->ids threads.
4344 */
4345 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4346 return -ENOMEM;
4347
4348 for (i = 0; i < n_ids; i++) {
4349 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4350 }
4351
4352 return 0;
4353 }
4354
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4355 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4356 union perf_event *event,
4357 struct evlist **pevlist)
4358 {
4359 struct perf_record_event_update *ev = &event->event_update;
4360 struct perf_record_event_update_scale *ev_scale;
4361 struct perf_record_event_update_cpus *ev_cpus;
4362 struct evlist *evlist;
4363 struct evsel *evsel;
4364 struct perf_cpu_map *map;
4365
4366 if (!pevlist || *pevlist == NULL)
4367 return -EINVAL;
4368
4369 evlist = *pevlist;
4370
4371 evsel = evlist__id2evsel(evlist, ev->id);
4372 if (evsel == NULL)
4373 return -EINVAL;
4374
4375 switch (ev->type) {
4376 case PERF_EVENT_UPDATE__UNIT:
4377 free((char *)evsel->unit);
4378 evsel->unit = strdup(ev->data);
4379 break;
4380 case PERF_EVENT_UPDATE__NAME:
4381 free(evsel->name);
4382 evsel->name = strdup(ev->data);
4383 break;
4384 case PERF_EVENT_UPDATE__SCALE:
4385 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4386 evsel->scale = ev_scale->scale;
4387 break;
4388 case PERF_EVENT_UPDATE__CPUS:
4389 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4390 map = cpu_map__new_data(&ev_cpus->cpus);
4391 if (map) {
4392 perf_cpu_map__put(evsel->core.own_cpus);
4393 evsel->core.own_cpus = map;
4394 } else
4395 pr_err("failed to get event_update cpus\n");
4396 default:
4397 break;
4398 }
4399
4400 return 0;
4401 }
4402
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4403 int perf_event__process_tracing_data(struct perf_session *session,
4404 union perf_event *event)
4405 {
4406 ssize_t size_read, padding, size = event->tracing_data.size;
4407 int fd = perf_data__fd(session->data);
4408 char buf[BUFSIZ];
4409
4410 /*
4411 * The pipe fd is already in proper place and in any case
4412 * we can't move it, and we'd screw the case where we read
4413 * 'pipe' data from regular file. The trace_report reads
4414 * data from 'fd' so we need to set it directly behind the
4415 * event, where the tracing data starts.
4416 */
4417 if (!perf_data__is_pipe(session->data)) {
4418 off_t offset = lseek(fd, 0, SEEK_CUR);
4419
4420 /* setup for reading amidst mmap */
4421 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4422 SEEK_SET);
4423 }
4424
4425 size_read = trace_report(fd, &session->tevent,
4426 session->repipe);
4427 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4428
4429 if (readn(fd, buf, padding) < 0) {
4430 pr_err("%s: reading input file", __func__);
4431 return -1;
4432 }
4433 if (session->repipe) {
4434 int retw = write(STDOUT_FILENO, buf, padding);
4435 if (retw <= 0 || retw != padding) {
4436 pr_err("%s: repiping tracing data padding", __func__);
4437 return -1;
4438 }
4439 }
4440
4441 if (size_read + padding != size) {
4442 pr_err("%s: tracing data size mismatch", __func__);
4443 return -1;
4444 }
4445
4446 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4447
4448 return size_read + padding;
4449 }
4450
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4451 int perf_event__process_build_id(struct perf_session *session,
4452 union perf_event *event)
4453 {
4454 __event_process_build_id(&event->build_id,
4455 event->build_id.filename,
4456 session);
4457 return 0;
4458 }
4459