1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14 
15 struct perf_env perf_env;
16 
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include "bpf-utils.h"
20 #include <bpf/libbpf.h>
21 
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)22 void perf_env__insert_bpf_prog_info(struct perf_env *env,
23 				    struct bpf_prog_info_node *info_node)
24 {
25 	__u32 prog_id = info_node->info_linear->info.id;
26 	struct bpf_prog_info_node *node;
27 	struct rb_node *parent = NULL;
28 	struct rb_node **p;
29 
30 	down_write(&env->bpf_progs.lock);
31 	p = &env->bpf_progs.infos.rb_node;
32 
33 	while (*p != NULL) {
34 		parent = *p;
35 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
36 		if (prog_id < node->info_linear->info.id) {
37 			p = &(*p)->rb_left;
38 		} else if (prog_id > node->info_linear->info.id) {
39 			p = &(*p)->rb_right;
40 		} else {
41 			pr_debug("duplicated bpf prog info %u\n", prog_id);
42 			goto out;
43 		}
44 	}
45 
46 	rb_link_node(&info_node->rb_node, parent, p);
47 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
48 	env->bpf_progs.infos_cnt++;
49 out:
50 	up_write(&env->bpf_progs.lock);
51 }
52 
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)53 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
54 							__u32 prog_id)
55 {
56 	struct bpf_prog_info_node *node = NULL;
57 	struct rb_node *n;
58 
59 	down_read(&env->bpf_progs.lock);
60 	n = env->bpf_progs.infos.rb_node;
61 
62 	while (n) {
63 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
64 		if (prog_id < node->info_linear->info.id)
65 			n = n->rb_left;
66 		else if (prog_id > node->info_linear->info.id)
67 			n = n->rb_right;
68 		else
69 			goto out;
70 	}
71 	node = NULL;
72 
73 out:
74 	up_read(&env->bpf_progs.lock);
75 	return node;
76 }
77 
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)78 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
79 {
80 	struct rb_node *parent = NULL;
81 	__u32 btf_id = btf_node->id;
82 	struct btf_node *node;
83 	struct rb_node **p;
84 	bool ret = true;
85 
86 	down_write(&env->bpf_progs.lock);
87 	p = &env->bpf_progs.btfs.rb_node;
88 
89 	while (*p != NULL) {
90 		parent = *p;
91 		node = rb_entry(parent, struct btf_node, rb_node);
92 		if (btf_id < node->id) {
93 			p = &(*p)->rb_left;
94 		} else if (btf_id > node->id) {
95 			p = &(*p)->rb_right;
96 		} else {
97 			pr_debug("duplicated btf %u\n", btf_id);
98 			ret = false;
99 			goto out;
100 		}
101 	}
102 
103 	rb_link_node(&btf_node->rb_node, parent, p);
104 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
105 	env->bpf_progs.btfs_cnt++;
106 out:
107 	up_write(&env->bpf_progs.lock);
108 	return ret;
109 }
110 
perf_env__find_btf(struct perf_env * env,__u32 btf_id)111 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
112 {
113 	struct btf_node *node = NULL;
114 	struct rb_node *n;
115 
116 	down_read(&env->bpf_progs.lock);
117 	n = env->bpf_progs.btfs.rb_node;
118 
119 	while (n) {
120 		node = rb_entry(n, struct btf_node, rb_node);
121 		if (btf_id < node->id)
122 			n = n->rb_left;
123 		else if (btf_id > node->id)
124 			n = n->rb_right;
125 		else
126 			goto out;
127 	}
128 	node = NULL;
129 
130 out:
131 	up_read(&env->bpf_progs.lock);
132 	return node;
133 }
134 
135 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)136 static void perf_env__purge_bpf(struct perf_env *env)
137 {
138 	struct rb_root *root;
139 	struct rb_node *next;
140 
141 	down_write(&env->bpf_progs.lock);
142 
143 	root = &env->bpf_progs.infos;
144 	next = rb_first(root);
145 
146 	while (next) {
147 		struct bpf_prog_info_node *node;
148 
149 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
150 		next = rb_next(&node->rb_node);
151 		rb_erase(&node->rb_node, root);
152 		free(node->info_linear);
153 		free(node);
154 	}
155 
156 	env->bpf_progs.infos_cnt = 0;
157 
158 	root = &env->bpf_progs.btfs;
159 	next = rb_first(root);
160 
161 	while (next) {
162 		struct btf_node *node;
163 
164 		node = rb_entry(next, struct btf_node, rb_node);
165 		next = rb_next(&node->rb_node);
166 		rb_erase(&node->rb_node, root);
167 		free(node);
168 	}
169 
170 	env->bpf_progs.btfs_cnt = 0;
171 
172 	up_write(&env->bpf_progs.lock);
173 }
174 #else // HAVE_LIBBPF_SUPPORT
perf_env__purge_bpf(struct perf_env * env __maybe_unused)175 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
176 {
177 }
178 #endif // HAVE_LIBBPF_SUPPORT
179 
perf_env__exit(struct perf_env * env)180 void perf_env__exit(struct perf_env *env)
181 {
182 	int i, j;
183 
184 	perf_env__purge_bpf(env);
185 	perf_env__purge_cgroups(env);
186 	zfree(&env->hostname);
187 	zfree(&env->os_release);
188 	zfree(&env->version);
189 	zfree(&env->arch);
190 	zfree(&env->cpu_desc);
191 	zfree(&env->cpuid);
192 	zfree(&env->cmdline);
193 	zfree(&env->cmdline_argv);
194 	zfree(&env->sibling_dies);
195 	zfree(&env->sibling_cores);
196 	zfree(&env->sibling_threads);
197 	zfree(&env->pmu_mappings);
198 	zfree(&env->cpu);
199 	for (i = 0; i < env->nr_cpu_pmu_caps; i++)
200 		zfree(&env->cpu_pmu_caps[i]);
201 	zfree(&env->cpu_pmu_caps);
202 	zfree(&env->numa_map);
203 
204 	for (i = 0; i < env->nr_numa_nodes; i++)
205 		perf_cpu_map__put(env->numa_nodes[i].map);
206 	zfree(&env->numa_nodes);
207 
208 	for (i = 0; i < env->caches_cnt; i++)
209 		cpu_cache_level__free(&env->caches[i]);
210 	zfree(&env->caches);
211 
212 	for (i = 0; i < env->nr_memory_nodes; i++)
213 		zfree(&env->memory_nodes[i].set);
214 	zfree(&env->memory_nodes);
215 
216 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
217 		zfree(&env->hybrid_nodes[i].pmu_name);
218 		zfree(&env->hybrid_nodes[i].cpus);
219 	}
220 	zfree(&env->hybrid_nodes);
221 
222 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
223 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
224 			zfree(&env->pmu_caps[i].caps[j]);
225 		zfree(&env->pmu_caps[i].caps);
226 		zfree(&env->pmu_caps[i].pmu_name);
227 	}
228 	zfree(&env->pmu_caps);
229 }
230 
perf_env__init(struct perf_env * env)231 void perf_env__init(struct perf_env *env)
232 {
233 #ifdef HAVE_LIBBPF_SUPPORT
234 	env->bpf_progs.infos = RB_ROOT;
235 	env->bpf_progs.btfs = RB_ROOT;
236 	init_rwsem(&env->bpf_progs.lock);
237 #endif
238 	env->kernel_is_64_bit = -1;
239 }
240 
perf_env__init_kernel_mode(struct perf_env * env)241 static void perf_env__init_kernel_mode(struct perf_env *env)
242 {
243 	const char *arch = perf_env__raw_arch(env);
244 
245 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
246 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
247 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
248 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
249 		env->kernel_is_64_bit = 1;
250 	else
251 		env->kernel_is_64_bit = 0;
252 }
253 
perf_env__kernel_is_64_bit(struct perf_env * env)254 int perf_env__kernel_is_64_bit(struct perf_env *env)
255 {
256 	if (env->kernel_is_64_bit == -1)
257 		perf_env__init_kernel_mode(env);
258 
259 	return env->kernel_is_64_bit;
260 }
261 
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])262 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
263 {
264 	int i;
265 
266 	/* do not include NULL termination */
267 	env->cmdline_argv = calloc(argc, sizeof(char *));
268 	if (env->cmdline_argv == NULL)
269 		goto out_enomem;
270 
271 	/*
272 	 * Must copy argv contents because it gets moved around during option
273 	 * parsing:
274 	 */
275 	for (i = 0; i < argc ; i++) {
276 		env->cmdline_argv[i] = argv[i];
277 		if (env->cmdline_argv[i] == NULL)
278 			goto out_free;
279 	}
280 
281 	env->nr_cmdline = argc;
282 
283 	return 0;
284 out_free:
285 	zfree(&env->cmdline_argv);
286 out_enomem:
287 	return -ENOMEM;
288 }
289 
perf_env__read_cpu_topology_map(struct perf_env * env)290 int perf_env__read_cpu_topology_map(struct perf_env *env)
291 {
292 	int idx, nr_cpus;
293 
294 	if (env->cpu != NULL)
295 		return 0;
296 
297 	if (env->nr_cpus_avail == 0)
298 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
299 
300 	nr_cpus = env->nr_cpus_avail;
301 	if (nr_cpus == -1)
302 		return -EINVAL;
303 
304 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
305 	if (env->cpu == NULL)
306 		return -ENOMEM;
307 
308 	for (idx = 0; idx < nr_cpus; ++idx) {
309 		struct perf_cpu cpu = { .cpu = idx };
310 
311 		env->cpu[idx].core_id	= cpu__get_core_id(cpu);
312 		env->cpu[idx].socket_id	= cpu__get_socket_id(cpu);
313 		env->cpu[idx].die_id	= cpu__get_die_id(cpu);
314 	}
315 
316 	env->nr_cpus_avail = nr_cpus;
317 	return 0;
318 }
319 
perf_env__read_pmu_mappings(struct perf_env * env)320 int perf_env__read_pmu_mappings(struct perf_env *env)
321 {
322 	struct perf_pmu *pmu = NULL;
323 	u32 pmu_num = 0;
324 	struct strbuf sb;
325 
326 	while ((pmu = perf_pmu__scan(pmu))) {
327 		if (!pmu->name)
328 			continue;
329 		pmu_num++;
330 	}
331 	if (!pmu_num) {
332 		pr_debug("pmu mappings not available\n");
333 		return -ENOENT;
334 	}
335 	env->nr_pmu_mappings = pmu_num;
336 
337 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
338 		return -ENOMEM;
339 
340 	while ((pmu = perf_pmu__scan(pmu))) {
341 		if (!pmu->name)
342 			continue;
343 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
344 			goto error;
345 		/* include a NULL character at the end */
346 		if (strbuf_add(&sb, "", 1) < 0)
347 			goto error;
348 	}
349 
350 	env->pmu_mappings = strbuf_detach(&sb, NULL);
351 
352 	return 0;
353 
354 error:
355 	strbuf_release(&sb);
356 	return -1;
357 }
358 
perf_env__read_cpuid(struct perf_env * env)359 int perf_env__read_cpuid(struct perf_env *env)
360 {
361 	char cpuid[128];
362 	int err = get_cpuid(cpuid, sizeof(cpuid));
363 
364 	if (err)
365 		return err;
366 
367 	free(env->cpuid);
368 	env->cpuid = strdup(cpuid);
369 	if (env->cpuid == NULL)
370 		return ENOMEM;
371 	return 0;
372 }
373 
perf_env__read_arch(struct perf_env * env)374 static int perf_env__read_arch(struct perf_env *env)
375 {
376 	struct utsname uts;
377 
378 	if (env->arch)
379 		return 0;
380 
381 	if (!uname(&uts))
382 		env->arch = strdup(uts.machine);
383 
384 	return env->arch ? 0 : -ENOMEM;
385 }
386 
perf_env__read_nr_cpus_avail(struct perf_env * env)387 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
388 {
389 	if (env->nr_cpus_avail == 0)
390 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
391 
392 	return env->nr_cpus_avail ? 0 : -ENOENT;
393 }
394 
perf_env__raw_arch(struct perf_env * env)395 const char *perf_env__raw_arch(struct perf_env *env)
396 {
397 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
398 }
399 
perf_env__nr_cpus_avail(struct perf_env * env)400 int perf_env__nr_cpus_avail(struct perf_env *env)
401 {
402 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
403 }
404 
cpu_cache_level__free(struct cpu_cache_level * cache)405 void cpu_cache_level__free(struct cpu_cache_level *cache)
406 {
407 	zfree(&cache->type);
408 	zfree(&cache->map);
409 	zfree(&cache->size);
410 }
411 
412 /*
413  * Return architecture name in a normalized form.
414  * The conversion logic comes from the Makefile.
415  */
normalize_arch(char * arch)416 static const char *normalize_arch(char *arch)
417 {
418 	if (!strcmp(arch, "x86_64"))
419 		return "x86";
420 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
421 		return "x86";
422 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
423 		return "sparc";
424 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
425 		return "arm64";
426 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
427 		return "arm";
428 	if (!strncmp(arch, "s390", 4))
429 		return "s390";
430 	if (!strncmp(arch, "parisc", 6))
431 		return "parisc";
432 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
433 		return "powerpc";
434 	if (!strncmp(arch, "mips", 4))
435 		return "mips";
436 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
437 		return "sh";
438 
439 	return arch;
440 }
441 
perf_env__arch(struct perf_env * env)442 const char *perf_env__arch(struct perf_env *env)
443 {
444 	char *arch_name;
445 
446 	if (!env || !env->arch) { /* Assume local operation */
447 		static struct utsname uts = { .machine[0] = '\0', };
448 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
449 			return NULL;
450 		arch_name = uts.machine;
451 	} else
452 		arch_name = env->arch;
453 
454 	return normalize_arch(arch_name);
455 }
456 
perf_env__cpuid(struct perf_env * env)457 const char *perf_env__cpuid(struct perf_env *env)
458 {
459 	int status;
460 
461 	if (!env || !env->cpuid) { /* Assume local operation */
462 		status = perf_env__read_cpuid(env);
463 		if (status)
464 			return NULL;
465 	}
466 
467 	return env->cpuid;
468 }
469 
perf_env__nr_pmu_mappings(struct perf_env * env)470 int perf_env__nr_pmu_mappings(struct perf_env *env)
471 {
472 	int status;
473 
474 	if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
475 		status = perf_env__read_pmu_mappings(env);
476 		if (status)
477 			return 0;
478 	}
479 
480 	return env->nr_pmu_mappings;
481 }
482 
perf_env__pmu_mappings(struct perf_env * env)483 const char *perf_env__pmu_mappings(struct perf_env *env)
484 {
485 	int status;
486 
487 	if (!env || !env->pmu_mappings) { /* Assume local operation */
488 		status = perf_env__read_pmu_mappings(env);
489 		if (status)
490 			return NULL;
491 	}
492 
493 	return env->pmu_mappings;
494 }
495 
perf_env__numa_node(struct perf_env * env,struct perf_cpu cpu)496 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
497 {
498 	if (!env->nr_numa_map) {
499 		struct numa_node *nn;
500 		int i, nr = 0;
501 
502 		for (i = 0; i < env->nr_numa_nodes; i++) {
503 			nn = &env->numa_nodes[i];
504 			nr = max(nr, perf_cpu_map__max(nn->map).cpu);
505 		}
506 
507 		nr++;
508 
509 		/*
510 		 * We initialize the numa_map array to prepare
511 		 * it for missing cpus, which return node -1
512 		 */
513 		env->numa_map = malloc(nr * sizeof(int));
514 		if (!env->numa_map)
515 			return -1;
516 
517 		for (i = 0; i < nr; i++)
518 			env->numa_map[i] = -1;
519 
520 		env->nr_numa_map = nr;
521 
522 		for (i = 0; i < env->nr_numa_nodes; i++) {
523 			struct perf_cpu tmp;
524 			int j;
525 
526 			nn = &env->numa_nodes[i];
527 			perf_cpu_map__for_each_cpu(tmp, j, nn->map)
528 				env->numa_map[tmp.cpu] = i;
529 		}
530 	}
531 
532 	return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
533 }
534 
perf_env__find_pmu_cap(struct perf_env * env,const char * pmu_name,const char * cap)535 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
536 			     const char *cap)
537 {
538 	char *cap_eq;
539 	int cap_size;
540 	char **ptr;
541 	int i, j;
542 
543 	if (!pmu_name || !cap)
544 		return NULL;
545 
546 	cap_size = strlen(cap);
547 	cap_eq = zalloc(cap_size + 2);
548 	if (!cap_eq)
549 		return NULL;
550 
551 	memcpy(cap_eq, cap, cap_size);
552 	cap_eq[cap_size] = '=';
553 
554 	if (!strcmp(pmu_name, "cpu")) {
555 		for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
556 			if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
557 				free(cap_eq);
558 				return &env->cpu_pmu_caps[i][cap_size + 1];
559 			}
560 		}
561 		goto out;
562 	}
563 
564 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
565 		if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
566 			continue;
567 
568 		ptr = env->pmu_caps[i].caps;
569 
570 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
571 			if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
572 				free(cap_eq);
573 				return &ptr[j][cap_size + 1];
574 			}
575 		}
576 	}
577 
578 out:
579 	free(cap_eq);
580 	return NULL;
581 }
582