1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14
15 struct perf_env perf_env;
16
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include "bpf-utils.h"
20 #include <bpf/libbpf.h>
21
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)22 void perf_env__insert_bpf_prog_info(struct perf_env *env,
23 struct bpf_prog_info_node *info_node)
24 {
25 __u32 prog_id = info_node->info_linear->info.id;
26 struct bpf_prog_info_node *node;
27 struct rb_node *parent = NULL;
28 struct rb_node **p;
29
30 down_write(&env->bpf_progs.lock);
31 p = &env->bpf_progs.infos.rb_node;
32
33 while (*p != NULL) {
34 parent = *p;
35 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
36 if (prog_id < node->info_linear->info.id) {
37 p = &(*p)->rb_left;
38 } else if (prog_id > node->info_linear->info.id) {
39 p = &(*p)->rb_right;
40 } else {
41 pr_debug("duplicated bpf prog info %u\n", prog_id);
42 goto out;
43 }
44 }
45
46 rb_link_node(&info_node->rb_node, parent, p);
47 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
48 env->bpf_progs.infos_cnt++;
49 out:
50 up_write(&env->bpf_progs.lock);
51 }
52
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)53 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
54 __u32 prog_id)
55 {
56 struct bpf_prog_info_node *node = NULL;
57 struct rb_node *n;
58
59 down_read(&env->bpf_progs.lock);
60 n = env->bpf_progs.infos.rb_node;
61
62 while (n) {
63 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
64 if (prog_id < node->info_linear->info.id)
65 n = n->rb_left;
66 else if (prog_id > node->info_linear->info.id)
67 n = n->rb_right;
68 else
69 goto out;
70 }
71 node = NULL;
72
73 out:
74 up_read(&env->bpf_progs.lock);
75 return node;
76 }
77
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)78 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
79 {
80 struct rb_node *parent = NULL;
81 __u32 btf_id = btf_node->id;
82 struct btf_node *node;
83 struct rb_node **p;
84 bool ret = true;
85
86 down_write(&env->bpf_progs.lock);
87 p = &env->bpf_progs.btfs.rb_node;
88
89 while (*p != NULL) {
90 parent = *p;
91 node = rb_entry(parent, struct btf_node, rb_node);
92 if (btf_id < node->id) {
93 p = &(*p)->rb_left;
94 } else if (btf_id > node->id) {
95 p = &(*p)->rb_right;
96 } else {
97 pr_debug("duplicated btf %u\n", btf_id);
98 ret = false;
99 goto out;
100 }
101 }
102
103 rb_link_node(&btf_node->rb_node, parent, p);
104 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
105 env->bpf_progs.btfs_cnt++;
106 out:
107 up_write(&env->bpf_progs.lock);
108 return ret;
109 }
110
perf_env__find_btf(struct perf_env * env,__u32 btf_id)111 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
112 {
113 struct btf_node *node = NULL;
114 struct rb_node *n;
115
116 down_read(&env->bpf_progs.lock);
117 n = env->bpf_progs.btfs.rb_node;
118
119 while (n) {
120 node = rb_entry(n, struct btf_node, rb_node);
121 if (btf_id < node->id)
122 n = n->rb_left;
123 else if (btf_id > node->id)
124 n = n->rb_right;
125 else
126 goto out;
127 }
128 node = NULL;
129
130 out:
131 up_read(&env->bpf_progs.lock);
132 return node;
133 }
134
135 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)136 static void perf_env__purge_bpf(struct perf_env *env)
137 {
138 struct rb_root *root;
139 struct rb_node *next;
140
141 down_write(&env->bpf_progs.lock);
142
143 root = &env->bpf_progs.infos;
144 next = rb_first(root);
145
146 while (next) {
147 struct bpf_prog_info_node *node;
148
149 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
150 next = rb_next(&node->rb_node);
151 rb_erase(&node->rb_node, root);
152 free(node->info_linear);
153 free(node);
154 }
155
156 env->bpf_progs.infos_cnt = 0;
157
158 root = &env->bpf_progs.btfs;
159 next = rb_first(root);
160
161 while (next) {
162 struct btf_node *node;
163
164 node = rb_entry(next, struct btf_node, rb_node);
165 next = rb_next(&node->rb_node);
166 rb_erase(&node->rb_node, root);
167 free(node);
168 }
169
170 env->bpf_progs.btfs_cnt = 0;
171
172 up_write(&env->bpf_progs.lock);
173 }
174 #else // HAVE_LIBBPF_SUPPORT
perf_env__purge_bpf(struct perf_env * env __maybe_unused)175 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
176 {
177 }
178 #endif // HAVE_LIBBPF_SUPPORT
179
perf_env__exit(struct perf_env * env)180 void perf_env__exit(struct perf_env *env)
181 {
182 int i, j;
183
184 perf_env__purge_bpf(env);
185 perf_env__purge_cgroups(env);
186 zfree(&env->hostname);
187 zfree(&env->os_release);
188 zfree(&env->version);
189 zfree(&env->arch);
190 zfree(&env->cpu_desc);
191 zfree(&env->cpuid);
192 zfree(&env->cmdline);
193 zfree(&env->cmdline_argv);
194 zfree(&env->sibling_dies);
195 zfree(&env->sibling_cores);
196 zfree(&env->sibling_threads);
197 zfree(&env->pmu_mappings);
198 zfree(&env->cpu);
199 for (i = 0; i < env->nr_cpu_pmu_caps; i++)
200 zfree(&env->cpu_pmu_caps[i]);
201 zfree(&env->cpu_pmu_caps);
202 zfree(&env->numa_map);
203
204 for (i = 0; i < env->nr_numa_nodes; i++)
205 perf_cpu_map__put(env->numa_nodes[i].map);
206 zfree(&env->numa_nodes);
207
208 for (i = 0; i < env->caches_cnt; i++)
209 cpu_cache_level__free(&env->caches[i]);
210 zfree(&env->caches);
211
212 for (i = 0; i < env->nr_memory_nodes; i++)
213 zfree(&env->memory_nodes[i].set);
214 zfree(&env->memory_nodes);
215
216 for (i = 0; i < env->nr_hybrid_nodes; i++) {
217 zfree(&env->hybrid_nodes[i].pmu_name);
218 zfree(&env->hybrid_nodes[i].cpus);
219 }
220 zfree(&env->hybrid_nodes);
221
222 for (i = 0; i < env->nr_pmus_with_caps; i++) {
223 for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
224 zfree(&env->pmu_caps[i].caps[j]);
225 zfree(&env->pmu_caps[i].caps);
226 zfree(&env->pmu_caps[i].pmu_name);
227 }
228 zfree(&env->pmu_caps);
229 }
230
perf_env__init(struct perf_env * env)231 void perf_env__init(struct perf_env *env)
232 {
233 #ifdef HAVE_LIBBPF_SUPPORT
234 env->bpf_progs.infos = RB_ROOT;
235 env->bpf_progs.btfs = RB_ROOT;
236 init_rwsem(&env->bpf_progs.lock);
237 #endif
238 env->kernel_is_64_bit = -1;
239 }
240
perf_env__init_kernel_mode(struct perf_env * env)241 static void perf_env__init_kernel_mode(struct perf_env *env)
242 {
243 const char *arch = perf_env__raw_arch(env);
244
245 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
246 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
247 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
248 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
249 env->kernel_is_64_bit = 1;
250 else
251 env->kernel_is_64_bit = 0;
252 }
253
perf_env__kernel_is_64_bit(struct perf_env * env)254 int perf_env__kernel_is_64_bit(struct perf_env *env)
255 {
256 if (env->kernel_is_64_bit == -1)
257 perf_env__init_kernel_mode(env);
258
259 return env->kernel_is_64_bit;
260 }
261
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])262 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
263 {
264 int i;
265
266 /* do not include NULL termination */
267 env->cmdline_argv = calloc(argc, sizeof(char *));
268 if (env->cmdline_argv == NULL)
269 goto out_enomem;
270
271 /*
272 * Must copy argv contents because it gets moved around during option
273 * parsing:
274 */
275 for (i = 0; i < argc ; i++) {
276 env->cmdline_argv[i] = argv[i];
277 if (env->cmdline_argv[i] == NULL)
278 goto out_free;
279 }
280
281 env->nr_cmdline = argc;
282
283 return 0;
284 out_free:
285 zfree(&env->cmdline_argv);
286 out_enomem:
287 return -ENOMEM;
288 }
289
perf_env__read_cpu_topology_map(struct perf_env * env)290 int perf_env__read_cpu_topology_map(struct perf_env *env)
291 {
292 int idx, nr_cpus;
293
294 if (env->cpu != NULL)
295 return 0;
296
297 if (env->nr_cpus_avail == 0)
298 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
299
300 nr_cpus = env->nr_cpus_avail;
301 if (nr_cpus == -1)
302 return -EINVAL;
303
304 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
305 if (env->cpu == NULL)
306 return -ENOMEM;
307
308 for (idx = 0; idx < nr_cpus; ++idx) {
309 struct perf_cpu cpu = { .cpu = idx };
310
311 env->cpu[idx].core_id = cpu__get_core_id(cpu);
312 env->cpu[idx].socket_id = cpu__get_socket_id(cpu);
313 env->cpu[idx].die_id = cpu__get_die_id(cpu);
314 }
315
316 env->nr_cpus_avail = nr_cpus;
317 return 0;
318 }
319
perf_env__read_pmu_mappings(struct perf_env * env)320 int perf_env__read_pmu_mappings(struct perf_env *env)
321 {
322 struct perf_pmu *pmu = NULL;
323 u32 pmu_num = 0;
324 struct strbuf sb;
325
326 while ((pmu = perf_pmu__scan(pmu))) {
327 if (!pmu->name)
328 continue;
329 pmu_num++;
330 }
331 if (!pmu_num) {
332 pr_debug("pmu mappings not available\n");
333 return -ENOENT;
334 }
335 env->nr_pmu_mappings = pmu_num;
336
337 if (strbuf_init(&sb, 128 * pmu_num) < 0)
338 return -ENOMEM;
339
340 while ((pmu = perf_pmu__scan(pmu))) {
341 if (!pmu->name)
342 continue;
343 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
344 goto error;
345 /* include a NULL character at the end */
346 if (strbuf_add(&sb, "", 1) < 0)
347 goto error;
348 }
349
350 env->pmu_mappings = strbuf_detach(&sb, NULL);
351
352 return 0;
353
354 error:
355 strbuf_release(&sb);
356 return -1;
357 }
358
perf_env__read_cpuid(struct perf_env * env)359 int perf_env__read_cpuid(struct perf_env *env)
360 {
361 char cpuid[128];
362 int err = get_cpuid(cpuid, sizeof(cpuid));
363
364 if (err)
365 return err;
366
367 free(env->cpuid);
368 env->cpuid = strdup(cpuid);
369 if (env->cpuid == NULL)
370 return ENOMEM;
371 return 0;
372 }
373
perf_env__read_arch(struct perf_env * env)374 static int perf_env__read_arch(struct perf_env *env)
375 {
376 struct utsname uts;
377
378 if (env->arch)
379 return 0;
380
381 if (!uname(&uts))
382 env->arch = strdup(uts.machine);
383
384 return env->arch ? 0 : -ENOMEM;
385 }
386
perf_env__read_nr_cpus_avail(struct perf_env * env)387 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
388 {
389 if (env->nr_cpus_avail == 0)
390 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
391
392 return env->nr_cpus_avail ? 0 : -ENOENT;
393 }
394
perf_env__raw_arch(struct perf_env * env)395 const char *perf_env__raw_arch(struct perf_env *env)
396 {
397 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
398 }
399
perf_env__nr_cpus_avail(struct perf_env * env)400 int perf_env__nr_cpus_avail(struct perf_env *env)
401 {
402 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
403 }
404
cpu_cache_level__free(struct cpu_cache_level * cache)405 void cpu_cache_level__free(struct cpu_cache_level *cache)
406 {
407 zfree(&cache->type);
408 zfree(&cache->map);
409 zfree(&cache->size);
410 }
411
412 /*
413 * Return architecture name in a normalized form.
414 * The conversion logic comes from the Makefile.
415 */
normalize_arch(char * arch)416 static const char *normalize_arch(char *arch)
417 {
418 if (!strcmp(arch, "x86_64"))
419 return "x86";
420 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
421 return "x86";
422 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
423 return "sparc";
424 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
425 return "arm64";
426 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
427 return "arm";
428 if (!strncmp(arch, "s390", 4))
429 return "s390";
430 if (!strncmp(arch, "parisc", 6))
431 return "parisc";
432 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
433 return "powerpc";
434 if (!strncmp(arch, "mips", 4))
435 return "mips";
436 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
437 return "sh";
438
439 return arch;
440 }
441
perf_env__arch(struct perf_env * env)442 const char *perf_env__arch(struct perf_env *env)
443 {
444 char *arch_name;
445
446 if (!env || !env->arch) { /* Assume local operation */
447 static struct utsname uts = { .machine[0] = '\0', };
448 if (uts.machine[0] == '\0' && uname(&uts) < 0)
449 return NULL;
450 arch_name = uts.machine;
451 } else
452 arch_name = env->arch;
453
454 return normalize_arch(arch_name);
455 }
456
perf_env__cpuid(struct perf_env * env)457 const char *perf_env__cpuid(struct perf_env *env)
458 {
459 int status;
460
461 if (!env || !env->cpuid) { /* Assume local operation */
462 status = perf_env__read_cpuid(env);
463 if (status)
464 return NULL;
465 }
466
467 return env->cpuid;
468 }
469
perf_env__nr_pmu_mappings(struct perf_env * env)470 int perf_env__nr_pmu_mappings(struct perf_env *env)
471 {
472 int status;
473
474 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
475 status = perf_env__read_pmu_mappings(env);
476 if (status)
477 return 0;
478 }
479
480 return env->nr_pmu_mappings;
481 }
482
perf_env__pmu_mappings(struct perf_env * env)483 const char *perf_env__pmu_mappings(struct perf_env *env)
484 {
485 int status;
486
487 if (!env || !env->pmu_mappings) { /* Assume local operation */
488 status = perf_env__read_pmu_mappings(env);
489 if (status)
490 return NULL;
491 }
492
493 return env->pmu_mappings;
494 }
495
perf_env__numa_node(struct perf_env * env,struct perf_cpu cpu)496 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
497 {
498 if (!env->nr_numa_map) {
499 struct numa_node *nn;
500 int i, nr = 0;
501
502 for (i = 0; i < env->nr_numa_nodes; i++) {
503 nn = &env->numa_nodes[i];
504 nr = max(nr, perf_cpu_map__max(nn->map).cpu);
505 }
506
507 nr++;
508
509 /*
510 * We initialize the numa_map array to prepare
511 * it for missing cpus, which return node -1
512 */
513 env->numa_map = malloc(nr * sizeof(int));
514 if (!env->numa_map)
515 return -1;
516
517 for (i = 0; i < nr; i++)
518 env->numa_map[i] = -1;
519
520 env->nr_numa_map = nr;
521
522 for (i = 0; i < env->nr_numa_nodes; i++) {
523 struct perf_cpu tmp;
524 int j;
525
526 nn = &env->numa_nodes[i];
527 perf_cpu_map__for_each_cpu(tmp, j, nn->map)
528 env->numa_map[tmp.cpu] = i;
529 }
530 }
531
532 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
533 }
534
perf_env__find_pmu_cap(struct perf_env * env,const char * pmu_name,const char * cap)535 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
536 const char *cap)
537 {
538 char *cap_eq;
539 int cap_size;
540 char **ptr;
541 int i, j;
542
543 if (!pmu_name || !cap)
544 return NULL;
545
546 cap_size = strlen(cap);
547 cap_eq = zalloc(cap_size + 2);
548 if (!cap_eq)
549 return NULL;
550
551 memcpy(cap_eq, cap, cap_size);
552 cap_eq[cap_size] = '=';
553
554 if (!strcmp(pmu_name, "cpu")) {
555 for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
556 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
557 free(cap_eq);
558 return &env->cpu_pmu_caps[i][cap_size + 1];
559 }
560 }
561 goto out;
562 }
563
564 for (i = 0; i < env->nr_pmus_with_caps; i++) {
565 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
566 continue;
567
568 ptr = env->pmu_caps[i].caps;
569
570 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
571 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
572 free(cap_eq);
573 return &ptr[j][cap_size + 1];
574 }
575 }
576 }
577
578 out:
579 free(cap_eq);
580 return NULL;
581 }
582