1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <asm/hw_breakpoint.h>
40 #endif
41 
42 #include <linux/list.h>
43 #include <linux/mutex.h>
44 #include <linux/rculist.h>
45 #include <linux/rcupdate.h>
46 #include <linux/spinlock.h>
47 #include <linux/hrtimer.h>
48 #include <linux/fs.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/workqueue.h>
51 #include <linux/ftrace.h>
52 #include <linux/cpu.h>
53 #include <linux/irq_work.h>
54 #include <linux/static_key.h>
55 #include <linux/jump_label_ratelimit.h>
56 #include <linux/atomic.h>
57 #include <linux/sysfs.h>
58 #include <linux/perf_regs.h>
59 #include <linux/cgroup.h>
60 #include <linux/refcount.h>
61 #include <linux/security.h>
62 #include <linux/static_call.h>
63 #include <asm/local.h>
64 
65 struct perf_callchain_entry {
66 	__u64				nr;
67 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
68 };
69 
70 struct perf_callchain_entry_ctx {
71 	struct perf_callchain_entry *entry;
72 	u32			    max_stack;
73 	u32			    nr;
74 	short			    contexts;
75 	bool			    contexts_maxed;
76 };
77 
78 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
79 				     unsigned long off, unsigned long len);
80 
81 struct perf_raw_frag {
82 	union {
83 		struct perf_raw_frag	*next;
84 		unsigned long		pad;
85 	};
86 	perf_copy_f			copy;
87 	void				*data;
88 	u32				size;
89 } __packed;
90 
91 struct perf_raw_record {
92 	struct perf_raw_frag		frag;
93 	u32				size;
94 };
95 
96 /*
97  * branch stack layout:
98  *  nr: number of taken branches stored in entries[]
99  *  hw_idx: The low level index of raw branch records
100  *          for the most recent branch.
101  *          -1ULL means invalid/unknown.
102  *
103  * Note that nr can vary from sample to sample
104  * branches (to, from) are stored from most recent
105  * to least recent, i.e., entries[0] contains the most
106  * recent branch.
107  * The entries[] is an abstraction of raw branch records,
108  * which may not be stored in age order in HW, e.g. Intel LBR.
109  * The hw_idx is to expose the low level index of raw
110  * branch record for the most recent branch aka entries[0].
111  * The hw_idx index is between -1 (unknown) and max depth,
112  * which can be retrieved in /sys/devices/cpu/caps/branches.
113  * For the architectures whose raw branch records are
114  * already stored in age order, the hw_idx should be 0.
115  */
116 struct perf_branch_stack {
117 	__u64				nr;
118 	__u64				hw_idx;
119 	struct perf_branch_entry	entries[];
120 };
121 
122 struct task_struct;
123 
124 /*
125  * extra PMU register associated with an event
126  */
127 struct hw_perf_event_extra {
128 	u64		config;	/* register value */
129 	unsigned int	reg;	/* register address or index */
130 	int		alloc;	/* extra register already allocated */
131 	int		idx;	/* index in shared_regs->regs[] */
132 };
133 
134 /**
135  * hw_perf_event::flag values
136  *
137  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
138  * usage.
139  */
140 #define PERF_EVENT_FLAG_ARCH			0x0000ffff
141 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
142 
143 /**
144  * struct hw_perf_event - performance event hardware details:
145  */
146 struct hw_perf_event {
147 #ifdef CONFIG_PERF_EVENTS
148 	union {
149 		struct { /* hardware */
150 			u64		config;
151 			u64		last_tag;
152 			unsigned long	config_base;
153 			unsigned long	event_base;
154 			int		event_base_rdpmc;
155 			int		idx;
156 			int		last_cpu;
157 			int		flags;
158 
159 			struct hw_perf_event_extra extra_reg;
160 			struct hw_perf_event_extra branch_reg;
161 		};
162 		struct { /* software */
163 			struct hrtimer	hrtimer;
164 		};
165 		struct { /* tracepoint */
166 			/* for tp_event->class */
167 			struct list_head	tp_list;
168 		};
169 		struct { /* amd_power */
170 			u64	pwr_acc;
171 			u64	ptsc;
172 		};
173 #ifdef CONFIG_HAVE_HW_BREAKPOINT
174 		struct { /* breakpoint */
175 			/*
176 			 * Crufty hack to avoid the chicken and egg
177 			 * problem hw_breakpoint has with context
178 			 * creation and event initalization.
179 			 */
180 			struct arch_hw_breakpoint	info;
181 			struct list_head		bp_list;
182 		};
183 #endif
184 		struct { /* amd_iommu */
185 			u8	iommu_bank;
186 			u8	iommu_cntr;
187 			u16	padding;
188 			u64	conf;
189 			u64	conf1;
190 		};
191 	};
192 	/*
193 	 * If the event is a per task event, this will point to the task in
194 	 * question. See the comment in perf_event_alloc().
195 	 */
196 	struct task_struct		*target;
197 
198 	/*
199 	 * PMU would store hardware filter configuration
200 	 * here.
201 	 */
202 	void				*addr_filters;
203 
204 	/* Last sync'ed generation of filters */
205 	unsigned long			addr_filters_gen;
206 
207 /*
208  * hw_perf_event::state flags; used to track the PERF_EF_* state.
209  */
210 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
211 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
212 #define PERF_HES_ARCH		0x04
213 
214 	int				state;
215 
216 	/*
217 	 * The last observed hardware counter value, updated with a
218 	 * local64_cmpxchg() such that pmu::read() can be called nested.
219 	 */
220 	local64_t			prev_count;
221 
222 	/*
223 	 * The period to start the next sample with.
224 	 */
225 	u64				sample_period;
226 
227 	union {
228 		struct { /* Sampling */
229 			/*
230 			 * The period we started this sample with.
231 			 */
232 			u64				last_period;
233 
234 			/*
235 			 * However much is left of the current period;
236 			 * note that this is a full 64bit value and
237 			 * allows for generation of periods longer
238 			 * than hardware might allow.
239 			 */
240 			local64_t			period_left;
241 		};
242 		struct { /* Topdown events counting for context switch */
243 			u64				saved_metric;
244 			u64				saved_slots;
245 		};
246 	};
247 
248 	/*
249 	 * State for throttling the event, see __perf_event_overflow() and
250 	 * perf_adjust_freq_unthr_context().
251 	 */
252 	u64                             interrupts_seq;
253 	u64				interrupts;
254 
255 	/*
256 	 * State for freq target events, see __perf_event_overflow() and
257 	 * perf_adjust_freq_unthr_context().
258 	 */
259 	u64				freq_time_stamp;
260 	u64				freq_count_stamp;
261 #endif
262 };
263 
264 struct perf_event;
265 
266 /*
267  * Common implementation detail of pmu::{start,commit,cancel}_txn
268  */
269 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
270 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
271 
272 /**
273  * pmu::capabilities flags
274  */
275 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
276 #define PERF_PMU_CAP_NO_NMI			0x0002
277 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
278 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
279 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
280 #define PERF_PMU_CAP_ITRACE			0x0020
281 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x0040
282 #define PERF_PMU_CAP_NO_EXCLUDE			0x0080
283 #define PERF_PMU_CAP_AUX_OUTPUT			0x0100
284 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0200
285 
286 struct perf_output_handle;
287 
288 /**
289  * struct pmu - generic performance monitoring unit
290  */
291 struct pmu {
292 	struct list_head		entry;
293 
294 	struct module			*module;
295 	struct device			*dev;
296 	const struct attribute_group	**attr_groups;
297 	const struct attribute_group	**attr_update;
298 	const char			*name;
299 	int				type;
300 
301 	/*
302 	 * various common per-pmu feature flags
303 	 */
304 	int				capabilities;
305 
306 	int __percpu			*pmu_disable_count;
307 	struct perf_cpu_context __percpu *pmu_cpu_context;
308 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
309 	int				task_ctx_nr;
310 	int				hrtimer_interval_ms;
311 
312 	/* number of address filters this PMU can do */
313 	unsigned int			nr_addr_filters;
314 
315 	/*
316 	 * Fully disable/enable this PMU, can be used to protect from the PMI
317 	 * as well as for lazy/batch writing of the MSRs.
318 	 */
319 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
320 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
321 
322 	/*
323 	 * Try and initialize the event for this PMU.
324 	 *
325 	 * Returns:
326 	 *  -ENOENT	-- @event is not for this PMU
327 	 *
328 	 *  -ENODEV	-- @event is for this PMU but PMU not present
329 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
330 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
331 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
332 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
333 	 *
334 	 *  0		-- @event is for this PMU and valid
335 	 *
336 	 * Other error return values are allowed.
337 	 */
338 	int (*event_init)		(struct perf_event *event);
339 
340 	/*
341 	 * Notification that the event was mapped or unmapped.  Called
342 	 * in the context of the mapping task.
343 	 */
344 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
345 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
346 
347 	/*
348 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
349 	 * matching hw_perf_event::state flags.
350 	 */
351 #define PERF_EF_START	0x01		/* start the counter when adding    */
352 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
353 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
354 
355 	/*
356 	 * Adds/Removes a counter to/from the PMU, can be done inside a
357 	 * transaction, see the ->*_txn() methods.
358 	 *
359 	 * The add/del callbacks will reserve all hardware resources required
360 	 * to service the event, this includes any counter constraint
361 	 * scheduling etc.
362 	 *
363 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
364 	 * is on.
365 	 *
366 	 * ->add() called without PERF_EF_START should result in the same state
367 	 *  as ->add() followed by ->stop().
368 	 *
369 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
370 	 *  ->stop() that must deal with already being stopped without
371 	 *  PERF_EF_UPDATE.
372 	 */
373 	int  (*add)			(struct perf_event *event, int flags);
374 	void (*del)			(struct perf_event *event, int flags);
375 
376 	/*
377 	 * Starts/Stops a counter present on the PMU.
378 	 *
379 	 * The PMI handler should stop the counter when perf_event_overflow()
380 	 * returns !0. ->start() will be used to continue.
381 	 *
382 	 * Also used to change the sample period.
383 	 *
384 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
385 	 * is on -- will be called from NMI context with the PMU generates
386 	 * NMIs.
387 	 *
388 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
389 	 *  period/count values like ->read() would.
390 	 *
391 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
392 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
393 	 */
394 	void (*start)			(struct perf_event *event, int flags);
395 	void (*stop)			(struct perf_event *event, int flags);
396 
397 	/*
398 	 * Updates the counter value of the event.
399 	 *
400 	 * For sampling capable PMUs this will also update the software period
401 	 * hw_perf_event::period_left field.
402 	 */
403 	void (*read)			(struct perf_event *event);
404 
405 	/*
406 	 * Group events scheduling is treated as a transaction, add
407 	 * group events as a whole and perform one schedulability test.
408 	 * If the test fails, roll back the whole group
409 	 *
410 	 * Start the transaction, after this ->add() doesn't need to
411 	 * do schedulability tests.
412 	 *
413 	 * Optional.
414 	 */
415 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
416 	/*
417 	 * If ->start_txn() disabled the ->add() schedulability test
418 	 * then ->commit_txn() is required to perform one. On success
419 	 * the transaction is closed. On error the transaction is kept
420 	 * open until ->cancel_txn() is called.
421 	 *
422 	 * Optional.
423 	 */
424 	int  (*commit_txn)		(struct pmu *pmu);
425 	/*
426 	 * Will cancel the transaction, assumes ->del() is called
427 	 * for each successful ->add() during the transaction.
428 	 *
429 	 * Optional.
430 	 */
431 	void (*cancel_txn)		(struct pmu *pmu);
432 
433 	/*
434 	 * Will return the value for perf_event_mmap_page::index for this event,
435 	 * if no implementation is provided it will default to: event->hw.idx + 1.
436 	 */
437 	int (*event_idx)		(struct perf_event *event); /*optional */
438 
439 	/*
440 	 * context-switches callback
441 	 */
442 	void (*sched_task)		(struct perf_event_context *ctx,
443 					bool sched_in);
444 
445 	/*
446 	 * Kmem cache of PMU specific data
447 	 */
448 	struct kmem_cache		*task_ctx_cache;
449 
450 	/*
451 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
452 	 * can be synchronized using this function. See Intel LBR callstack support
453 	 * implementation and Perf core context switch handling callbacks for usage
454 	 * examples.
455 	 */
456 	void (*swap_task_ctx)		(struct perf_event_context *prev,
457 					 struct perf_event_context *next);
458 					/* optional */
459 
460 	/*
461 	 * Set up pmu-private data structures for an AUX area
462 	 */
463 	void *(*setup_aux)		(struct perf_event *event, void **pages,
464 					 int nr_pages, bool overwrite);
465 					/* optional */
466 
467 	/*
468 	 * Free pmu-private AUX data structures
469 	 */
470 	void (*free_aux)		(void *aux); /* optional */
471 
472 	/*
473 	 * Take a snapshot of the AUX buffer without touching the event
474 	 * state, so that preempting ->start()/->stop() callbacks does
475 	 * not interfere with their logic. Called in PMI context.
476 	 *
477 	 * Returns the size of AUX data copied to the output handle.
478 	 *
479 	 * Optional.
480 	 */
481 	long (*snapshot_aux)		(struct perf_event *event,
482 					 struct perf_output_handle *handle,
483 					 unsigned long size);
484 
485 	/*
486 	 * Validate address range filters: make sure the HW supports the
487 	 * requested configuration and number of filters; return 0 if the
488 	 * supplied filters are valid, -errno otherwise.
489 	 *
490 	 * Runs in the context of the ioctl()ing process and is not serialized
491 	 * with the rest of the PMU callbacks.
492 	 */
493 	int (*addr_filters_validate)	(struct list_head *filters);
494 					/* optional */
495 
496 	/*
497 	 * Synchronize address range filter configuration:
498 	 * translate hw-agnostic filters into hardware configuration in
499 	 * event::hw::addr_filters.
500 	 *
501 	 * Runs as a part of filter sync sequence that is done in ->start()
502 	 * callback by calling perf_event_addr_filters_sync().
503 	 *
504 	 * May (and should) traverse event::addr_filters::list, for which its
505 	 * caller provides necessary serialization.
506 	 */
507 	void (*addr_filters_sync)	(struct perf_event *event);
508 					/* optional */
509 
510 	/*
511 	 * Check if event can be used for aux_output purposes for
512 	 * events of this PMU.
513 	 *
514 	 * Runs from perf_event_open(). Should return 0 for "no match"
515 	 * or non-zero for "match".
516 	 */
517 	int (*aux_output_match)		(struct perf_event *event);
518 					/* optional */
519 
520 	/*
521 	 * Filter events for PMU-specific reasons.
522 	 */
523 	int (*filter_match)		(struct perf_event *event); /* optional */
524 
525 	/*
526 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
527 	 */
528 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
529 };
530 
531 enum perf_addr_filter_action_t {
532 	PERF_ADDR_FILTER_ACTION_STOP = 0,
533 	PERF_ADDR_FILTER_ACTION_START,
534 	PERF_ADDR_FILTER_ACTION_FILTER,
535 };
536 
537 /**
538  * struct perf_addr_filter - address range filter definition
539  * @entry:	event's filter list linkage
540  * @path:	object file's path for file-based filters
541  * @offset:	filter range offset
542  * @size:	filter range size (size==0 means single address trigger)
543  * @action:	filter/start/stop
544  *
545  * This is a hardware-agnostic filter configuration as specified by the user.
546  */
547 struct perf_addr_filter {
548 	struct list_head	entry;
549 	struct path		path;
550 	unsigned long		offset;
551 	unsigned long		size;
552 	enum perf_addr_filter_action_t	action;
553 };
554 
555 /**
556  * struct perf_addr_filters_head - container for address range filters
557  * @list:	list of filters for this event
558  * @lock:	spinlock that serializes accesses to the @list and event's
559  *		(and its children's) filter generations.
560  * @nr_file_filters:	number of file-based filters
561  *
562  * A child event will use parent's @list (and therefore @lock), so they are
563  * bundled together; see perf_event_addr_filters().
564  */
565 struct perf_addr_filters_head {
566 	struct list_head	list;
567 	raw_spinlock_t		lock;
568 	unsigned int		nr_file_filters;
569 };
570 
571 struct perf_addr_filter_range {
572 	unsigned long		start;
573 	unsigned long		size;
574 };
575 
576 /**
577  * enum perf_event_state - the states of an event:
578  */
579 enum perf_event_state {
580 	PERF_EVENT_STATE_DEAD		= -4,
581 	PERF_EVENT_STATE_EXIT		= -3,
582 	PERF_EVENT_STATE_ERROR		= -2,
583 	PERF_EVENT_STATE_OFF		= -1,
584 	PERF_EVENT_STATE_INACTIVE	=  0,
585 	PERF_EVENT_STATE_ACTIVE		=  1,
586 };
587 
588 struct file;
589 struct perf_sample_data;
590 
591 typedef void (*perf_overflow_handler_t)(struct perf_event *,
592 					struct perf_sample_data *,
593 					struct pt_regs *regs);
594 
595 /*
596  * Event capabilities. For event_caps and groups caps.
597  *
598  * PERF_EV_CAP_SOFTWARE: Is a software event.
599  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
600  * from any CPU in the package where it is active.
601  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
602  * cannot be a group leader. If an event with this flag is detached from the
603  * group it is scheduled out and moved into an unrecoverable ERROR state.
604  */
605 #define PERF_EV_CAP_SOFTWARE		BIT(0)
606 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
607 #define PERF_EV_CAP_SIBLING		BIT(2)
608 
609 #define SWEVENT_HLIST_BITS		8
610 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
611 
612 struct swevent_hlist {
613 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
614 	struct rcu_head			rcu_head;
615 };
616 
617 #define PERF_ATTACH_CONTEXT	0x01
618 #define PERF_ATTACH_GROUP	0x02
619 #define PERF_ATTACH_TASK	0x04
620 #define PERF_ATTACH_TASK_DATA	0x08
621 #define PERF_ATTACH_ITRACE	0x10
622 #define PERF_ATTACH_SCHED_CB	0x20
623 #define PERF_ATTACH_CHILD	0x40
624 
625 struct bpf_prog;
626 struct perf_cgroup;
627 struct perf_buffer;
628 
629 struct pmu_event_list {
630 	raw_spinlock_t		lock;
631 	struct list_head	list;
632 };
633 
634 #define for_each_sibling_event(sibling, event)			\
635 	if ((event)->group_leader == (event))			\
636 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
637 
638 /**
639  * struct perf_event - performance event kernel representation:
640  */
641 struct perf_event {
642 #ifdef CONFIG_PERF_EVENTS
643 	/*
644 	 * entry onto perf_event_context::event_list;
645 	 *   modifications require ctx->lock
646 	 *   RCU safe iterations.
647 	 */
648 	struct list_head		event_entry;
649 
650 	/*
651 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
652 	 * either sufficies for read.
653 	 */
654 	struct list_head		sibling_list;
655 	struct list_head		active_list;
656 	/*
657 	 * Node on the pinned or flexible tree located at the event context;
658 	 */
659 	struct rb_node			group_node;
660 	u64				group_index;
661 	/*
662 	 * We need storage to track the entries in perf_pmu_migrate_context; we
663 	 * cannot use the event_entry because of RCU and we want to keep the
664 	 * group in tact which avoids us using the other two entries.
665 	 */
666 	struct list_head		migrate_entry;
667 
668 	struct hlist_node		hlist_entry;
669 	struct list_head		active_entry;
670 	int				nr_siblings;
671 
672 	/* Not serialized. Only written during event initialization. */
673 	int				event_caps;
674 	/* The cumulative AND of all event_caps for events in this group. */
675 	int				group_caps;
676 
677 	struct perf_event		*group_leader;
678 	struct pmu			*pmu;
679 	void				*pmu_private;
680 
681 	enum perf_event_state		state;
682 	unsigned int			attach_state;
683 	local64_t			count;
684 	atomic64_t			child_count;
685 
686 	/*
687 	 * These are the total time in nanoseconds that the event
688 	 * has been enabled (i.e. eligible to run, and the task has
689 	 * been scheduled in, if this is a per-task event)
690 	 * and running (scheduled onto the CPU), respectively.
691 	 */
692 	u64				total_time_enabled;
693 	u64				total_time_running;
694 	u64				tstamp;
695 
696 	struct perf_event_attr		attr;
697 	u16				header_size;
698 	u16				id_header_size;
699 	u16				read_size;
700 	struct hw_perf_event		hw;
701 
702 	struct perf_event_context	*ctx;
703 	atomic_long_t			refcount;
704 
705 	/*
706 	 * These accumulate total time (in nanoseconds) that children
707 	 * events have been enabled and running, respectively.
708 	 */
709 	atomic64_t			child_total_time_enabled;
710 	atomic64_t			child_total_time_running;
711 
712 	/*
713 	 * Protect attach/detach and child_list:
714 	 */
715 	struct mutex			child_mutex;
716 	struct list_head		child_list;
717 	struct perf_event		*parent;
718 
719 	int				oncpu;
720 	int				cpu;
721 
722 	struct list_head		owner_entry;
723 	struct task_struct		*owner;
724 
725 	/* mmap bits */
726 	struct mutex			mmap_mutex;
727 	atomic_t			mmap_count;
728 
729 	struct perf_buffer		*rb;
730 	struct list_head		rb_entry;
731 	unsigned long			rcu_batches;
732 	int				rcu_pending;
733 
734 	/* poll related */
735 	wait_queue_head_t		waitq;
736 	struct fasync_struct		*fasync;
737 
738 	/* delayed work for NMIs and such */
739 	int				pending_wakeup;
740 	int				pending_kill;
741 	int				pending_disable;
742 	unsigned long			pending_addr;	/* SIGTRAP */
743 	struct irq_work			pending;
744 
745 	atomic_t			event_limit;
746 
747 	/* address range filters */
748 	struct perf_addr_filters_head	addr_filters;
749 	/* vma address array for file-based filders */
750 	struct perf_addr_filter_range	*addr_filter_ranges;
751 	unsigned long			addr_filters_gen;
752 
753 	/* for aux_output events */
754 	struct perf_event		*aux_event;
755 
756 	void (*destroy)(struct perf_event *);
757 	struct rcu_head			rcu_head;
758 
759 	struct pid_namespace		*ns;
760 	u64				id;
761 
762 	u64				(*clock)(void);
763 	perf_overflow_handler_t		overflow_handler;
764 	void				*overflow_handler_context;
765 #ifdef CONFIG_BPF_SYSCALL
766 	perf_overflow_handler_t		orig_overflow_handler;
767 	struct bpf_prog			*prog;
768 	u64				bpf_cookie;
769 #endif
770 
771 #ifdef CONFIG_EVENT_TRACING
772 	struct trace_event_call		*tp_event;
773 	struct event_filter		*filter;
774 #ifdef CONFIG_FUNCTION_TRACER
775 	struct ftrace_ops               ftrace_ops;
776 #endif
777 #endif
778 
779 #ifdef CONFIG_CGROUP_PERF
780 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
781 #endif
782 
783 #ifdef CONFIG_SECURITY
784 	void *security;
785 #endif
786 	struct list_head		sb_list;
787 #endif /* CONFIG_PERF_EVENTS */
788 };
789 
790 
791 struct perf_event_groups {
792 	struct rb_root	tree;
793 	u64		index;
794 };
795 
796 /**
797  * struct perf_event_context - event context structure
798  *
799  * Used as a container for task events and CPU events as well:
800  */
801 struct perf_event_context {
802 	struct pmu			*pmu;
803 	/*
804 	 * Protect the states of the events in the list,
805 	 * nr_active, and the list:
806 	 */
807 	raw_spinlock_t			lock;
808 	/*
809 	 * Protect the list of events.  Locking either mutex or lock
810 	 * is sufficient to ensure the list doesn't change; to change
811 	 * the list you need to lock both the mutex and the spinlock.
812 	 */
813 	struct mutex			mutex;
814 
815 	struct list_head		active_ctx_list;
816 	struct perf_event_groups	pinned_groups;
817 	struct perf_event_groups	flexible_groups;
818 	struct list_head		event_list;
819 
820 	struct list_head		pinned_active;
821 	struct list_head		flexible_active;
822 
823 	int				nr_events;
824 	int				nr_active;
825 	int				nr_user;
826 	int				is_active;
827 	int				nr_stat;
828 	int				nr_freq;
829 	int				rotate_disable;
830 	/*
831 	 * Set when nr_events != nr_active, except tolerant to events not
832 	 * necessary to be active due to scheduling constraints, such as cgroups.
833 	 */
834 	int				rotate_necessary;
835 	refcount_t			refcount;
836 	struct task_struct		*task;
837 
838 	/*
839 	 * Context clock, runs when context enabled.
840 	 */
841 	u64				time;
842 	u64				timestamp;
843 	u64				timeoffset;
844 
845 	/*
846 	 * These fields let us detect when two contexts have both
847 	 * been cloned (inherited) from a common ancestor.
848 	 */
849 	struct perf_event_context	*parent_ctx;
850 	u64				parent_gen;
851 	u64				generation;
852 	int				pin_count;
853 #ifdef CONFIG_CGROUP_PERF
854 	int				nr_cgroups;	 /* cgroup evts */
855 #endif
856 	void				*task_ctx_data; /* pmu specific data */
857 	struct rcu_head			rcu_head;
858 };
859 
860 /*
861  * Number of contexts where an event can trigger:
862  *	task, softirq, hardirq, nmi.
863  */
864 #define PERF_NR_CONTEXTS	4
865 
866 /**
867  * struct perf_cpu_context - per cpu event context structure
868  */
869 struct perf_cpu_context {
870 	struct perf_event_context	ctx;
871 	struct perf_event_context	*task_ctx;
872 	int				active_oncpu;
873 	int				exclusive;
874 
875 	raw_spinlock_t			hrtimer_lock;
876 	struct hrtimer			hrtimer;
877 	ktime_t				hrtimer_interval;
878 	unsigned int			hrtimer_active;
879 
880 #ifdef CONFIG_CGROUP_PERF
881 	struct perf_cgroup		*cgrp;
882 	struct list_head		cgrp_cpuctx_entry;
883 #endif
884 
885 	struct list_head		sched_cb_entry;
886 	int				sched_cb_usage;
887 
888 	int				online;
889 	/*
890 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
891 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
892 	 */
893 	int				heap_size;
894 	struct perf_event		**heap;
895 	struct perf_event		*heap_default[2];
896 };
897 
898 struct perf_output_handle {
899 	struct perf_event		*event;
900 	struct perf_buffer		*rb;
901 	unsigned long			wakeup;
902 	unsigned long			size;
903 	u64				aux_flags;
904 	union {
905 		void			*addr;
906 		unsigned long		head;
907 	};
908 	int				page;
909 };
910 
911 struct bpf_perf_event_data_kern {
912 	bpf_user_pt_regs_t *regs;
913 	struct perf_sample_data *data;
914 	struct perf_event *event;
915 };
916 
917 #ifdef CONFIG_CGROUP_PERF
918 
919 /*
920  * perf_cgroup_info keeps track of time_enabled for a cgroup.
921  * This is a per-cpu dynamically allocated data structure.
922  */
923 struct perf_cgroup_info {
924 	u64				time;
925 	u64				timestamp;
926 	u64				timeoffset;
927 	int				active;
928 };
929 
930 struct perf_cgroup {
931 	struct cgroup_subsys_state	css;
932 	struct perf_cgroup_info	__percpu *info;
933 };
934 
935 /*
936  * Must ensure cgroup is pinned (css_get) before calling
937  * this function. In other words, we cannot call this function
938  * if there is no cgroup event for the current CPU context.
939  */
940 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)941 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
942 {
943 	return container_of(task_css_check(task, perf_event_cgrp_id,
944 					   ctx ? lockdep_is_held(&ctx->lock)
945 					       : true),
946 			    struct perf_cgroup, css);
947 }
948 #endif /* CONFIG_CGROUP_PERF */
949 
950 #ifdef CONFIG_PERF_EVENTS
951 
952 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
953 				   struct perf_event *event);
954 extern void perf_aux_output_end(struct perf_output_handle *handle,
955 				unsigned long size);
956 extern int perf_aux_output_skip(struct perf_output_handle *handle,
957 				unsigned long size);
958 extern void *perf_get_aux(struct perf_output_handle *handle);
959 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
960 extern void perf_event_itrace_started(struct perf_event *event);
961 
962 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
963 extern void perf_pmu_unregister(struct pmu *pmu);
964 
965 extern void __perf_event_task_sched_in(struct task_struct *prev,
966 				       struct task_struct *task);
967 extern void __perf_event_task_sched_out(struct task_struct *prev,
968 					struct task_struct *next);
969 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
970 extern void perf_event_exit_task(struct task_struct *child);
971 extern void perf_event_free_task(struct task_struct *task);
972 extern void perf_event_delayed_put(struct task_struct *task);
973 extern struct file *perf_event_get(unsigned int fd);
974 extern const struct perf_event *perf_get_event(struct file *file);
975 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
976 extern void perf_event_print_debug(void);
977 extern void perf_pmu_disable(struct pmu *pmu);
978 extern void perf_pmu_enable(struct pmu *pmu);
979 extern void perf_sched_cb_dec(struct pmu *pmu);
980 extern void perf_sched_cb_inc(struct pmu *pmu);
981 extern int perf_event_task_disable(void);
982 extern int perf_event_task_enable(void);
983 
984 extern void perf_pmu_resched(struct pmu *pmu);
985 
986 extern int perf_event_refresh(struct perf_event *event, int refresh);
987 extern void perf_event_update_userpage(struct perf_event *event);
988 extern int perf_event_release_kernel(struct perf_event *event);
989 extern struct perf_event *
990 perf_event_create_kernel_counter(struct perf_event_attr *attr,
991 				int cpu,
992 				struct task_struct *task,
993 				perf_overflow_handler_t callback,
994 				void *context);
995 extern void perf_pmu_migrate_context(struct pmu *pmu,
996 				int src_cpu, int dst_cpu);
997 int perf_event_read_local(struct perf_event *event, u64 *value,
998 			  u64 *enabled, u64 *running);
999 extern u64 perf_event_read_value(struct perf_event *event,
1000 				 u64 *enabled, u64 *running);
1001 
1002 
1003 struct perf_sample_data {
1004 	/*
1005 	 * Fields set by perf_sample_data_init(), group so as to
1006 	 * minimize the cachelines touched.
1007 	 */
1008 	u64				addr;
1009 	struct perf_raw_record		*raw;
1010 	struct perf_branch_stack	*br_stack;
1011 	u64				period;
1012 	union perf_sample_weight	weight;
1013 	u64				txn;
1014 	union  perf_mem_data_src	data_src;
1015 
1016 	/*
1017 	 * The other fields, optionally {set,used} by
1018 	 * perf_{prepare,output}_sample().
1019 	 */
1020 	u64				type;
1021 	u64				ip;
1022 	struct {
1023 		u32	pid;
1024 		u32	tid;
1025 	}				tid_entry;
1026 	u64				time;
1027 	u64				id;
1028 	u64				stream_id;
1029 	struct {
1030 		u32	cpu;
1031 		u32	reserved;
1032 	}				cpu_entry;
1033 	struct perf_callchain_entry	*callchain;
1034 	u64				aux_size;
1035 
1036 	struct perf_regs		regs_user;
1037 	struct perf_regs		regs_intr;
1038 	u64				stack_user_size;
1039 
1040 	u64				phys_addr;
1041 	u64				cgroup;
1042 	u64				data_page_size;
1043 	u64				code_page_size;
1044 } ____cacheline_aligned;
1045 
1046 /* default value for data source */
1047 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1048 		    PERF_MEM_S(LVL, NA)   |\
1049 		    PERF_MEM_S(SNOOP, NA) |\
1050 		    PERF_MEM_S(LOCK, NA)  |\
1051 		    PERF_MEM_S(TLB, NA))
1052 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1053 static inline void perf_sample_data_init(struct perf_sample_data *data,
1054 					 u64 addr, u64 period)
1055 {
1056 	/* remaining struct members initialized in perf_prepare_sample() */
1057 	data->addr = addr;
1058 	data->raw  = NULL;
1059 	data->br_stack = NULL;
1060 	data->period = period;
1061 	data->weight.full = 0;
1062 	data->data_src.val = PERF_MEM_NA;
1063 	data->txn = 0;
1064 }
1065 
1066 /*
1067  * Clear all bitfields in the perf_branch_entry.
1068  * The to and from fields are not cleared because they are
1069  * systematically modified by caller.
1070  */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1071 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1072 {
1073 	br->mispred = 0;
1074 	br->predicted = 0;
1075 	br->in_tx = 0;
1076 	br->abort = 0;
1077 	br->cycles = 0;
1078 	br->type = 0;
1079 	br->reserved = 0;
1080 }
1081 
1082 extern void perf_output_sample(struct perf_output_handle *handle,
1083 			       struct perf_event_header *header,
1084 			       struct perf_sample_data *data,
1085 			       struct perf_event *event);
1086 extern void perf_prepare_sample(struct perf_event_header *header,
1087 				struct perf_sample_data *data,
1088 				struct perf_event *event,
1089 				struct pt_regs *regs);
1090 
1091 extern int perf_event_overflow(struct perf_event *event,
1092 				 struct perf_sample_data *data,
1093 				 struct pt_regs *regs);
1094 
1095 extern void perf_event_output_forward(struct perf_event *event,
1096 				     struct perf_sample_data *data,
1097 				     struct pt_regs *regs);
1098 extern void perf_event_output_backward(struct perf_event *event,
1099 				       struct perf_sample_data *data,
1100 				       struct pt_regs *regs);
1101 extern int perf_event_output(struct perf_event *event,
1102 			     struct perf_sample_data *data,
1103 			     struct pt_regs *regs);
1104 
1105 static inline bool
is_default_overflow_handler(struct perf_event * event)1106 is_default_overflow_handler(struct perf_event *event)
1107 {
1108 	if (likely(event->overflow_handler == perf_event_output_forward))
1109 		return true;
1110 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1111 		return true;
1112 	return false;
1113 }
1114 
1115 extern void
1116 perf_event_header__init_id(struct perf_event_header *header,
1117 			   struct perf_sample_data *data,
1118 			   struct perf_event *event);
1119 extern void
1120 perf_event__output_id_sample(struct perf_event *event,
1121 			     struct perf_output_handle *handle,
1122 			     struct perf_sample_data *sample);
1123 
1124 extern void
1125 perf_log_lost_samples(struct perf_event *event, u64 lost);
1126 
event_has_any_exclude_flag(struct perf_event * event)1127 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1128 {
1129 	struct perf_event_attr *attr = &event->attr;
1130 
1131 	return attr->exclude_idle || attr->exclude_user ||
1132 	       attr->exclude_kernel || attr->exclude_hv ||
1133 	       attr->exclude_guest || attr->exclude_host;
1134 }
1135 
is_sampling_event(struct perf_event * event)1136 static inline bool is_sampling_event(struct perf_event *event)
1137 {
1138 	return event->attr.sample_period != 0;
1139 }
1140 
1141 /*
1142  * Return 1 for a software event, 0 for a hardware event
1143  */
is_software_event(struct perf_event * event)1144 static inline int is_software_event(struct perf_event *event)
1145 {
1146 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1147 }
1148 
1149 /*
1150  * Return 1 for event in sw context, 0 for event in hw context
1151  */
in_software_context(struct perf_event * event)1152 static inline int in_software_context(struct perf_event *event)
1153 {
1154 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1155 }
1156 
is_exclusive_pmu(struct pmu * pmu)1157 static inline int is_exclusive_pmu(struct pmu *pmu)
1158 {
1159 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1160 }
1161 
1162 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1163 
1164 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1165 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1166 
1167 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1168 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1169 #endif
1170 
1171 /*
1172  * When generating a perf sample in-line, instead of from an interrupt /
1173  * exception, we lack a pt_regs. This is typically used from software events
1174  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1175  *
1176  * We typically don't need a full set, but (for x86) do require:
1177  * - ip for PERF_SAMPLE_IP
1178  * - cs for user_mode() tests
1179  * - sp for PERF_SAMPLE_CALLCHAIN
1180  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1181  *
1182  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1183  * things like PERF_SAMPLE_REGS_INTR.
1184  */
perf_fetch_caller_regs(struct pt_regs * regs)1185 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1186 {
1187 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1188 }
1189 
1190 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1191 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1192 {
1193 	if (static_key_false(&perf_swevent_enabled[event_id]))
1194 		__perf_sw_event(event_id, nr, regs, addr);
1195 }
1196 
1197 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1198 
1199 /*
1200  * 'Special' version for the scheduler, it hard assumes no recursion,
1201  * which is guaranteed by us not actually scheduling inside other swevents
1202  * because those disable preemption.
1203  */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1204 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1205 {
1206 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1207 
1208 	perf_fetch_caller_regs(regs);
1209 	___perf_sw_event(event_id, nr, regs, addr);
1210 }
1211 
1212 extern struct static_key_false perf_sched_events;
1213 
__perf_sw_enabled(int swevt)1214 static __always_inline bool __perf_sw_enabled(int swevt)
1215 {
1216 	return static_key_false(&perf_swevent_enabled[swevt]);
1217 }
1218 
perf_event_task_migrate(struct task_struct * task)1219 static inline void perf_event_task_migrate(struct task_struct *task)
1220 {
1221 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1222 		task->sched_migrated = 1;
1223 }
1224 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1225 static inline void perf_event_task_sched_in(struct task_struct *prev,
1226 					    struct task_struct *task)
1227 {
1228 	if (static_branch_unlikely(&perf_sched_events))
1229 		__perf_event_task_sched_in(prev, task);
1230 
1231 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1232 	    task->sched_migrated) {
1233 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1234 		task->sched_migrated = 0;
1235 	}
1236 }
1237 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1238 static inline void perf_event_task_sched_out(struct task_struct *prev,
1239 					     struct task_struct *next)
1240 {
1241 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1242 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1243 
1244 #ifdef CONFIG_CGROUP_PERF
1245 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1246 	    perf_cgroup_from_task(prev, NULL) !=
1247 	    perf_cgroup_from_task(next, NULL))
1248 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1249 #endif
1250 
1251 	if (static_branch_unlikely(&perf_sched_events))
1252 		__perf_event_task_sched_out(prev, next);
1253 }
1254 
1255 extern void perf_event_mmap(struct vm_area_struct *vma);
1256 
1257 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1258 			       bool unregister, const char *sym);
1259 extern void perf_event_bpf_event(struct bpf_prog *prog,
1260 				 enum perf_bpf_event_type type,
1261 				 u16 flags);
1262 
1263 #ifdef CONFIG_GUEST_PERF_EVENTS
1264 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1265 
1266 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1267 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1268 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1269 
perf_guest_state(void)1270 static inline unsigned int perf_guest_state(void)
1271 {
1272 	return static_call(__perf_guest_state)();
1273 }
perf_guest_get_ip(void)1274 static inline unsigned long perf_guest_get_ip(void)
1275 {
1276 	return static_call(__perf_guest_get_ip)();
1277 }
perf_guest_handle_intel_pt_intr(void)1278 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1279 {
1280 	return static_call(__perf_guest_handle_intel_pt_intr)();
1281 }
1282 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1283 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1284 #else
perf_guest_state(void)1285 static inline unsigned int perf_guest_state(void)		 { return 0; }
perf_guest_get_ip(void)1286 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
perf_guest_handle_intel_pt_intr(void)1287 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1288 #endif /* CONFIG_GUEST_PERF_EVENTS */
1289 
1290 extern void perf_event_exec(void);
1291 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1292 extern void perf_event_namespaces(struct task_struct *tsk);
1293 extern void perf_event_fork(struct task_struct *tsk);
1294 extern void perf_event_text_poke(const void *addr,
1295 				 const void *old_bytes, size_t old_len,
1296 				 const void *new_bytes, size_t new_len);
1297 
1298 /* Callchains */
1299 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1300 
1301 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1302 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1303 extern struct perf_callchain_entry *
1304 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1305 		   u32 max_stack, bool crosstask, bool add_mark);
1306 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1307 extern int get_callchain_buffers(int max_stack);
1308 extern void put_callchain_buffers(void);
1309 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1310 extern void put_callchain_entry(int rctx);
1311 
1312 extern int sysctl_perf_event_max_stack;
1313 extern int sysctl_perf_event_max_contexts_per_stack;
1314 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1315 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1316 {
1317 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1318 		struct perf_callchain_entry *entry = ctx->entry;
1319 		entry->ip[entry->nr++] = ip;
1320 		++ctx->contexts;
1321 		return 0;
1322 	} else {
1323 		ctx->contexts_maxed = true;
1324 		return -1; /* no more room, stop walking the stack */
1325 	}
1326 }
1327 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1328 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1329 {
1330 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1331 		struct perf_callchain_entry *entry = ctx->entry;
1332 		entry->ip[entry->nr++] = ip;
1333 		++ctx->nr;
1334 		return 0;
1335 	} else {
1336 		return -1; /* no more room, stop walking the stack */
1337 	}
1338 }
1339 
1340 extern int sysctl_perf_event_paranoid;
1341 extern int sysctl_perf_event_mlock;
1342 extern int sysctl_perf_event_sample_rate;
1343 extern int sysctl_perf_cpu_time_max_percent;
1344 
1345 extern void perf_sample_event_took(u64 sample_len_ns);
1346 
1347 int perf_proc_update_handler(struct ctl_table *table, int write,
1348 		void *buffer, size_t *lenp, loff_t *ppos);
1349 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1350 		void *buffer, size_t *lenp, loff_t *ppos);
1351 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1352 		void *buffer, size_t *lenp, loff_t *ppos);
1353 
1354 /* Access to perf_event_open(2) syscall. */
1355 #define PERF_SECURITY_OPEN		0
1356 
1357 /* Finer grained perf_event_open(2) access control. */
1358 #define PERF_SECURITY_CPU		1
1359 #define PERF_SECURITY_KERNEL		2
1360 #define PERF_SECURITY_TRACEPOINT	3
1361 
perf_is_paranoid(void)1362 static inline int perf_is_paranoid(void)
1363 {
1364 	return sysctl_perf_event_paranoid > -1;
1365 }
1366 
perf_allow_kernel(struct perf_event_attr * attr)1367 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1368 {
1369 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1370 		return -EACCES;
1371 
1372 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1373 }
1374 
perf_allow_cpu(struct perf_event_attr * attr)1375 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1376 {
1377 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1378 		return -EACCES;
1379 
1380 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1381 }
1382 
perf_allow_tracepoint(struct perf_event_attr * attr)1383 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1384 {
1385 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1386 		return -EPERM;
1387 
1388 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1389 }
1390 
1391 extern void perf_event_init(void);
1392 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1393 			  int entry_size, struct pt_regs *regs,
1394 			  struct hlist_head *head, int rctx,
1395 			  struct task_struct *task);
1396 extern void perf_bp_event(struct perf_event *event, void *data);
1397 
1398 #ifndef perf_misc_flags
1399 # define perf_misc_flags(regs) \
1400 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1401 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1402 #endif
1403 #ifndef perf_arch_bpf_user_pt_regs
1404 # define perf_arch_bpf_user_pt_regs(regs) regs
1405 #endif
1406 
has_branch_stack(struct perf_event * event)1407 static inline bool has_branch_stack(struct perf_event *event)
1408 {
1409 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1410 }
1411 
needs_branch_stack(struct perf_event * event)1412 static inline bool needs_branch_stack(struct perf_event *event)
1413 {
1414 	return event->attr.branch_sample_type != 0;
1415 }
1416 
has_aux(struct perf_event * event)1417 static inline bool has_aux(struct perf_event *event)
1418 {
1419 	return event->pmu->setup_aux;
1420 }
1421 
is_write_backward(struct perf_event * event)1422 static inline bool is_write_backward(struct perf_event *event)
1423 {
1424 	return !!event->attr.write_backward;
1425 }
1426 
has_addr_filter(struct perf_event * event)1427 static inline bool has_addr_filter(struct perf_event *event)
1428 {
1429 	return event->pmu->nr_addr_filters;
1430 }
1431 
1432 /*
1433  * An inherited event uses parent's filters
1434  */
1435 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1436 perf_event_addr_filters(struct perf_event *event)
1437 {
1438 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1439 
1440 	if (event->parent)
1441 		ifh = &event->parent->addr_filters;
1442 
1443 	return ifh;
1444 }
1445 
1446 extern void perf_event_addr_filters_sync(struct perf_event *event);
1447 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1448 
1449 extern int perf_output_begin(struct perf_output_handle *handle,
1450 			     struct perf_sample_data *data,
1451 			     struct perf_event *event, unsigned int size);
1452 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1453 				     struct perf_sample_data *data,
1454 				     struct perf_event *event,
1455 				     unsigned int size);
1456 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1457 				      struct perf_sample_data *data,
1458 				      struct perf_event *event,
1459 				      unsigned int size);
1460 
1461 extern void perf_output_end(struct perf_output_handle *handle);
1462 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1463 			     const void *buf, unsigned int len);
1464 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1465 				     unsigned int len);
1466 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1467 				 struct perf_output_handle *handle,
1468 				 unsigned long from, unsigned long to);
1469 extern int perf_swevent_get_recursion_context(void);
1470 extern void perf_swevent_put_recursion_context(int rctx);
1471 extern u64 perf_swevent_set_period(struct perf_event *event);
1472 extern void perf_event_enable(struct perf_event *event);
1473 extern void perf_event_disable(struct perf_event *event);
1474 extern void perf_event_disable_local(struct perf_event *event);
1475 extern void perf_event_disable_inatomic(struct perf_event *event);
1476 extern void perf_event_task_tick(void);
1477 extern int perf_event_account_interrupt(struct perf_event *event);
1478 extern int perf_event_period(struct perf_event *event, u64 value);
1479 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1480 #else /* !CONFIG_PERF_EVENTS: */
1481 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1482 perf_aux_output_begin(struct perf_output_handle *handle,
1483 		      struct perf_event *event)				{ return NULL; }
1484 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1485 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1486 									{ }
1487 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1488 perf_aux_output_skip(struct perf_output_handle *handle,
1489 		     unsigned long size)				{ return -EINVAL; }
1490 static inline void *
perf_get_aux(struct perf_output_handle * handle)1491 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1492 static inline void
perf_event_task_migrate(struct task_struct * task)1493 perf_event_task_migrate(struct task_struct *task)			{ }
1494 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1495 perf_event_task_sched_in(struct task_struct *prev,
1496 			 struct task_struct *task)			{ }
1497 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1498 perf_event_task_sched_out(struct task_struct *prev,
1499 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1500 static inline int perf_event_init_task(struct task_struct *child,
1501 				       u64 clone_flags)			{ return 0; }
perf_event_exit_task(struct task_struct * child)1502 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1503 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1504 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1505 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1506 static inline const struct perf_event *perf_get_event(struct file *file)
1507 {
1508 	return ERR_PTR(-EINVAL);
1509 }
perf_event_attrs(struct perf_event * event)1510 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1511 {
1512 	return ERR_PTR(-EINVAL);
1513 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1514 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1515 					u64 *enabled, u64 *running)
1516 {
1517 	return -EINVAL;
1518 }
perf_event_print_debug(void)1519 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1520 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1521 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1522 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1523 {
1524 	return -EINVAL;
1525 }
1526 
1527 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1528 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1529 static inline void
perf_bp_event(struct perf_event * event,void * data)1530 perf_bp_event(struct perf_event *event, void *data)			{ }
1531 
perf_event_mmap(struct vm_area_struct * vma)1532 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1533 
1534 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1535 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1536 				      bool unregister, const char *sym)	{ }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1537 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1538 					enum perf_bpf_event_type type,
1539 					u16 flags)			{ }
perf_event_exec(void)1540 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1541 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1542 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1543 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1544 static inline void perf_event_text_poke(const void *addr,
1545 					const void *old_bytes,
1546 					size_t old_len,
1547 					const void *new_bytes,
1548 					size_t new_len)			{ }
perf_event_init(void)1549 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1550 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1551 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1552 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1553 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1554 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1555 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1556 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1557 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
perf_event_period(struct perf_event * event,u64 value)1558 static inline int perf_event_period(struct perf_event *event, u64 value)
1559 {
1560 	return -EINVAL;
1561 }
perf_event_pause(struct perf_event * event,bool reset)1562 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1563 {
1564 	return 0;
1565 }
1566 #endif
1567 
1568 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1569 extern void perf_restore_debug_store(void);
1570 #else
perf_restore_debug_store(void)1571 static inline void perf_restore_debug_store(void)			{ }
1572 #endif
1573 
perf_raw_frag_last(const struct perf_raw_frag * frag)1574 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1575 {
1576 	return frag->pad < sizeof(u64);
1577 }
1578 
1579 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1580 
1581 struct perf_pmu_events_attr {
1582 	struct device_attribute attr;
1583 	u64 id;
1584 	const char *event_str;
1585 };
1586 
1587 struct perf_pmu_events_ht_attr {
1588 	struct device_attribute			attr;
1589 	u64					id;
1590 	const char				*event_str_ht;
1591 	const char				*event_str_noht;
1592 };
1593 
1594 struct perf_pmu_events_hybrid_attr {
1595 	struct device_attribute			attr;
1596 	u64					id;
1597 	const char				*event_str;
1598 	u64					pmu_type;
1599 };
1600 
1601 struct perf_pmu_format_hybrid_attr {
1602 	struct device_attribute			attr;
1603 	u64					pmu_type;
1604 };
1605 
1606 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1607 			      char *page);
1608 
1609 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1610 static struct perf_pmu_events_attr _var = {				\
1611 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1612 	.id   =  _id,							\
1613 };
1614 
1615 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1616 static struct perf_pmu_events_attr _var = {				    \
1617 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1618 	.id		= 0,						    \
1619 	.event_str	= _str,						    \
1620 };
1621 
1622 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1623 	(&((struct perf_pmu_events_attr[]) {				\
1624 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1625 		  .id = _id, }						\
1626 	})[0].attr.attr)
1627 
1628 #define PMU_FORMAT_ATTR(_name, _format)					\
1629 static ssize_t								\
1630 _name##_show(struct device *dev,					\
1631 			       struct device_attribute *attr,		\
1632 			       char *page)				\
1633 {									\
1634 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1635 	return sprintf(page, _format "\n");				\
1636 }									\
1637 									\
1638 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1639 
1640 /* Performance counter hotplug functions */
1641 #ifdef CONFIG_PERF_EVENTS
1642 int perf_event_init_cpu(unsigned int cpu);
1643 int perf_event_exit_cpu(unsigned int cpu);
1644 #else
1645 #define perf_event_init_cpu	NULL
1646 #define perf_event_exit_cpu	NULL
1647 #endif
1648 
1649 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1650 					     struct perf_event_mmap_page *userpg,
1651 					     u64 now);
1652 
1653 #ifdef CONFIG_MMU
1654 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1655 #endif
1656 
1657 /*
1658  * Snapshot branch stack on software events.
1659  *
1660  * Branch stack can be very useful in understanding software events. For
1661  * example, when a long function, e.g. sys_perf_event_open, returns an
1662  * errno, it is not obvious why the function failed. Branch stack could
1663  * provide very helpful information in this type of scenarios.
1664  *
1665  * On software event, it is necessary to stop the hardware branch recorder
1666  * fast. Otherwise, the hardware register/buffer will be flushed with
1667  * entries of the triggering event. Therefore, static call is used to
1668  * stop the hardware recorder.
1669  */
1670 
1671 /*
1672  * cnt is the number of entries allocated for entries.
1673  * Return number of entries copied to .
1674  */
1675 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1676 					   unsigned int cnt);
1677 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1678 
1679 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)1680 static inline void perf_lopwr_cb(bool mode)
1681 {
1682 }
1683 #endif
1684 
1685 #endif /* _LINUX_PERF_EVENT_H */
1686