1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
4  *
5  *	PDC == Processor Dependent Code
6  *
7  * See PDC documentation at
8  * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9  * for documentation describing the entry points and calling
10  * conventions defined below.
11  *
12  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17  */
18 
19 /*	I think it would be in everyone's best interest to follow this
20  *	guidelines when writing PDC wrappers:
21  *
22  *	 - the name of the pdc wrapper should match one of the macros
23  *	   used for the first two arguments
24  *	 - don't use caps for random parts of the name
25  *	 - use the static PDC result buffers and "copyout" to structs
26  *	   supplied by the caller to encapsulate alignment restrictions
27  *	 - hold pdc_lock while in PDC or using static result buffers
28  *	 - use __pa() to convert virtual (kernel) pointers to physical
29  *	   ones.
30  *	 - the name of the struct used for pdc return values should equal
31  *	   one of the macros used for the first two arguments to the
32  *	   corresponding PDC call
33  *	 - keep the order of arguments
34  *	 - don't be smart (setting trailing NUL bytes for strings, return
35  *	   something useful even if the call failed) unless you are sure
36  *	   it's not going to affect functionality or performance
37  *
38  *	Example:
39  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
40  *	{
41  *		int retval;
42  *
43  *		spin_lock_irq(&pdc_lock);
44  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45  *		convert_to_wide(pdc_result);
46  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
47  *		spin_unlock_irq(&pdc_lock);
48  *
49  *		return retval;
50  *	}
51  *					prumpf	991016
52  */
53 
54 #include <linux/stdarg.h>
55 
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62 
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h>	/* for boot_cpu_data */
67 
68 #if defined(BOOTLOADER)
69 # undef  spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef  spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76 
77 static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
78 static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79 
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE 0x1
82 #define NARROW_FIRMWARE 0x2
83 
84 /* Firmware needs to be initially set to narrow to determine the
85  * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = 2;
87 #endif
88 
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90  * and MEM_PDC calls are always the same width as the OS.
91  * Some PAT boxes may have 64-bit IODC I/O.
92  *
93  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95  * This allowed wide kernels to run on Cxxx boxes.
96  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98  */
99 
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104 
105 #ifdef CONFIG_64BIT
106 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112 
113 
114 /**
115  * f_extend - Convert PDC addresses to kernel addresses.
116  * @address: Address returned from PDC.
117  *
118  * This function is used to convert PDC addresses into kernel addresses
119  * when the PDC address size and kernel address size are different.
120  */
f_extend(unsigned long address)121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 	if(unlikely(parisc_narrow_firmware)) {
125 		if((address & 0xff000000) == 0xf0000000)
126 			return (0xfffffff0UL << 32) | (u32)address;
127 
128 		if((address & 0xf0000000) == 0xf0000000)
129 			return (0xffffffffUL << 32) | (u32)address;
130 	}
131 #endif
132 	return address;
133 }
134 
135 /**
136  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137  * @addr: The return buffer from PDC.
138  *
139  * This function is used to convert the return buffer addresses retrieved from PDC
140  * into kernel addresses when the PDC address size and kernel address size are
141  * different.
142  */
convert_to_wide(unsigned long * addr)143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 	int i;
147 	unsigned int *p = (unsigned int *)addr;
148 
149 	if (unlikely(parisc_narrow_firmware)) {
150 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 			addr[i] = p[i];
152 	}
153 #endif
154 }
155 
156 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)157 void set_firmware_width_unlocked(void)
158 {
159 	int ret;
160 
161 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 		__pa(pdc_result), 0);
163 	if (ret < 0)
164 		return;
165 	convert_to_wide(pdc_result);
166 	if (pdc_result[0] != NARROW_FIRMWARE)
167 		parisc_narrow_firmware = 0;
168 }
169 
170 /**
171  * set_firmware_width - Determine if the firmware is wide or narrow.
172  *
173  * This function must be called before any pdc_* function that uses the
174  * convert_to_wide function.
175  */
set_firmware_width(void)176 void set_firmware_width(void)
177 {
178 	unsigned long flags;
179 
180 	/* already initialized? */
181 	if (parisc_narrow_firmware != 2)
182 		return;
183 
184 	spin_lock_irqsave(&pdc_lock, flags);
185 	set_firmware_width_unlocked();
186 	spin_unlock_irqrestore(&pdc_lock, flags);
187 }
188 #else
set_firmware_width_unlocked(void)189 void set_firmware_width_unlocked(void)
190 {
191 	return;
192 }
193 
set_firmware_width(void)194 void set_firmware_width(void)
195 {
196 	return;
197 }
198 #endif /*CONFIG_64BIT*/
199 
200 
201 #if !defined(BOOTLOADER)
202 /**
203  * pdc_emergency_unlock - Unlock the linux pdc lock
204  *
205  * This call unlocks the linux pdc lock in case we need some PDC functions
206  * (like pdc_add_valid) during kernel stack dump.
207  */
pdc_emergency_unlock(void)208 void pdc_emergency_unlock(void)
209 {
210  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
211         if (spin_is_locked(&pdc_lock))
212 		spin_unlock(&pdc_lock);
213 }
214 
215 
216 /**
217  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
218  * @address: Address to be verified.
219  *
220  * This PDC call attempts to read from the specified address and verifies
221  * if the address is valid.
222  *
223  * The return value is PDC_OK (0) in case accessing this address is valid.
224  */
pdc_add_valid(unsigned long address)225 int pdc_add_valid(unsigned long address)
226 {
227         int retval;
228 	unsigned long flags;
229 
230         spin_lock_irqsave(&pdc_lock, flags);
231         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
232         spin_unlock_irqrestore(&pdc_lock, flags);
233 
234         return retval;
235 }
236 EXPORT_SYMBOL(pdc_add_valid);
237 
238 /**
239  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
240  * @instr: Pointer to variable which will get instruction opcode.
241  *
242  * The return value is PDC_OK (0) in case call succeeded.
243  */
pdc_instr(unsigned int * instr)244 int __init pdc_instr(unsigned int *instr)
245 {
246 	int retval;
247 	unsigned long flags;
248 
249 	spin_lock_irqsave(&pdc_lock, flags);
250 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
251 	convert_to_wide(pdc_result);
252 	*instr = pdc_result[0];
253 	spin_unlock_irqrestore(&pdc_lock, flags);
254 
255 	return retval;
256 }
257 
258 /**
259  * pdc_chassis_info - Return chassis information.
260  * @chassis_info: The memory buffer address.
261  * @led_info: The size of the memory buffer address.
262  * @len: The size of the memory buffer address.
263  *
264  * An HVERSION dependent call for returning the chassis information.
265  */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
267 {
268         int retval;
269 	unsigned long flags;
270 
271         spin_lock_irqsave(&pdc_lock, flags);
272         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
273         memcpy(&pdc_result2, led_info, len);
274         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
275                               __pa(pdc_result), __pa(pdc_result2), len);
276         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
277         memcpy(led_info, pdc_result2, len);
278         spin_unlock_irqrestore(&pdc_lock, flags);
279 
280         return retval;
281 }
282 
283 /**
284  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
285  * @state: state of the machine
286  * @data: value for that state
287  *
288  * Must be correctly formatted or expect system crash
289  */
290 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
292 {
293 	int retval = 0;
294 	unsigned long flags;
295 
296 	if (!is_pdc_pat())
297 		return -1;
298 
299 	spin_lock_irqsave(&pdc_lock, flags);
300 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
301 	spin_unlock_irqrestore(&pdc_lock, flags);
302 
303 	return retval;
304 }
305 #endif
306 
307 /**
308  * pdc_chassis_disp - Updates chassis code
309  * @disp: value to show on display
310  */
pdc_chassis_disp(unsigned long disp)311 int pdc_chassis_disp(unsigned long disp)
312 {
313 	int retval = 0;
314 	unsigned long flags;
315 
316 	spin_lock_irqsave(&pdc_lock, flags);
317 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
318 	spin_unlock_irqrestore(&pdc_lock, flags);
319 
320 	return retval;
321 }
322 
323 /**
324  * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
325  */
__pdc_cpu_rendezvous(void)326 int __pdc_cpu_rendezvous(void)
327 {
328 	if (is_pdc_pat())
329 		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
330 	else
331 		return mem_pdc_call(PDC_PROC, 1, 0);
332 }
333 
334 /**
335  * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
336  */
pdc_cpu_rendezvous_lock(void)337 void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
338 {
339 	spin_lock(&pdc_lock);
340 }
341 
342 /**
343  * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
344  */
pdc_cpu_rendezvous_unlock(void)345 void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
346 {
347 	spin_unlock(&pdc_lock);
348 }
349 
350 /**
351  * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
352  * @pdc_entry: pointer to where the PDC entry point should be stored
353  */
pdc_pat_get_PDC_entrypoint(unsigned long * pdc_entry)354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
355 {
356 	int retval = 0;
357 	unsigned long flags;
358 
359 	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
360 		*pdc_entry = MEM_PDC;
361 		return 0;
362 	}
363 
364 	spin_lock_irqsave(&pdc_lock, flags);
365 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
366 			__pa(pdc_result));
367 	*pdc_entry = pdc_result[0];
368 	spin_unlock_irqrestore(&pdc_lock, flags);
369 
370 	return retval;
371 }
372 /**
373  * pdc_chassis_warn - Fetches chassis warnings
374  * @warn: The warning value to be shown
375  */
pdc_chassis_warn(unsigned long * warn)376 int pdc_chassis_warn(unsigned long *warn)
377 {
378 	int retval = 0;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&pdc_lock, flags);
382 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
383 	*warn = pdc_result[0];
384 	spin_unlock_irqrestore(&pdc_lock, flags);
385 
386 	return retval;
387 }
388 
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
390 {
391 	int ret;
392 
393 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
394 	convert_to_wide(pdc_result);
395 	pdc_coproc_info->ccr_functional = pdc_result[0];
396 	pdc_coproc_info->ccr_present = pdc_result[1];
397 	pdc_coproc_info->revision = pdc_result[17];
398 	pdc_coproc_info->model = pdc_result[18];
399 
400 	return ret;
401 }
402 
403 /**
404  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
405  * @pdc_coproc_info: Return buffer address.
406  *
407  * This PDC call returns the presence and status of all the coprocessors
408  * attached to the processor.
409  */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
411 {
412 	int ret;
413 	unsigned long flags;
414 
415 	spin_lock_irqsave(&pdc_lock, flags);
416 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
417 	spin_unlock_irqrestore(&pdc_lock, flags);
418 
419 	return ret;
420 }
421 
422 /**
423  * pdc_iodc_read - Read data from the modules IODC.
424  * @actcnt: The actual number of bytes.
425  * @hpa: The HPA of the module for the iodc read.
426  * @index: The iodc entry point.
427  * @iodc_data: A buffer memory for the iodc options.
428  * @iodc_data_size: Size of the memory buffer.
429  *
430  * This PDC call reads from the IODC of the module specified by the hpa
431  * argument.
432  */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
434 		  void *iodc_data, unsigned int iodc_data_size)
435 {
436 	int retval;
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&pdc_lock, flags);
440 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
441 			      index, __pa(pdc_result2), iodc_data_size);
442 	convert_to_wide(pdc_result);
443 	*actcnt = pdc_result[0];
444 	memcpy(iodc_data, pdc_result2, iodc_data_size);
445 	spin_unlock_irqrestore(&pdc_lock, flags);
446 
447 	return retval;
448 }
449 EXPORT_SYMBOL(pdc_iodc_read);
450 
451 /**
452  * pdc_system_map_find_mods - Locate unarchitected modules.
453  * @pdc_mod_info: Return buffer address.
454  * @mod_path: pointer to dev path structure.
455  * @mod_index: fixed address module index.
456  *
457  * To locate and identify modules which reside at fixed I/O addresses, which
458  * do not self-identify via architected bus walks.
459  */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
461 			     struct pdc_module_path *mod_path, long mod_index)
462 {
463 	int retval;
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&pdc_lock, flags);
467 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
468 			      __pa(pdc_result2), mod_index);
469 	convert_to_wide(pdc_result);
470 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
471 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
472 	spin_unlock_irqrestore(&pdc_lock, flags);
473 
474 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
475 	return retval;
476 }
477 
478 /**
479  * pdc_system_map_find_addrs - Retrieve additional address ranges.
480  * @pdc_addr_info: Return buffer address.
481  * @mod_index: Fixed address module index.
482  * @addr_index: Address range index.
483  *
484  * Retrieve additional information about subsequent address ranges for modules
485  * with multiple address ranges.
486  */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)487 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
488 			      long mod_index, long addr_index)
489 {
490 	int retval;
491 	unsigned long flags;
492 
493 	spin_lock_irqsave(&pdc_lock, flags);
494 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
495 			      mod_index, addr_index);
496 	convert_to_wide(pdc_result);
497 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
498 	spin_unlock_irqrestore(&pdc_lock, flags);
499 
500 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
501 	return retval;
502 }
503 
504 /**
505  * pdc_model_info - Return model information about the processor.
506  * @model: The return buffer.
507  *
508  * Returns the version numbers, identifiers, and capabilities from the processor module.
509  */
pdc_model_info(struct pdc_model * model)510 int pdc_model_info(struct pdc_model *model)
511 {
512 	int retval;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&pdc_lock, flags);
516 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
517 	convert_to_wide(pdc_result);
518 	memcpy(model, pdc_result, sizeof(*model));
519 	spin_unlock_irqrestore(&pdc_lock, flags);
520 
521 	return retval;
522 }
523 
524 /**
525  * pdc_model_sysmodel - Get the system model name.
526  * @os_id: The operating system ID asked for (an OS_ID_* value)
527  * @name: A char array of at least 81 characters.
528  *
529  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
530  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
531  * on HP/UX.
532  */
pdc_model_sysmodel(unsigned int os_id,char * name)533 int pdc_model_sysmodel(unsigned int os_id, char *name)
534 {
535         int retval;
536 	unsigned long flags;
537 
538         spin_lock_irqsave(&pdc_lock, flags);
539         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
540                               os_id, __pa(name));
541         convert_to_wide(pdc_result);
542 
543         if (retval == PDC_OK) {
544                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
545         } else {
546                 name[0] = 0;
547         }
548         spin_unlock_irqrestore(&pdc_lock, flags);
549 
550         return retval;
551 }
552 
553 /**
554  * pdc_model_versions - Identify the version number of each processor.
555  * @versions: The return buffer.
556  * @id: The id of the processor to check.
557  *
558  * Returns the version number for each processor component.
559  *
560  * This comment was here before, but I do not know what it means :( -RB
561  * id: 0 = cpu revision, 1 = boot-rom-version
562  */
pdc_model_versions(unsigned long * versions,int id)563 int pdc_model_versions(unsigned long *versions, int id)
564 {
565         int retval;
566 	unsigned long flags;
567 
568         spin_lock_irqsave(&pdc_lock, flags);
569         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
570         convert_to_wide(pdc_result);
571         *versions = pdc_result[0];
572         spin_unlock_irqrestore(&pdc_lock, flags);
573 
574         return retval;
575 }
576 
577 /**
578  * pdc_model_cpuid - Returns the CPU_ID.
579  * @cpu_id: The return buffer.
580  *
581  * Returns the CPU_ID value which uniquely identifies the cpu portion of
582  * the processor module.
583  */
pdc_model_cpuid(unsigned long * cpu_id)584 int pdc_model_cpuid(unsigned long *cpu_id)
585 {
586         int retval;
587 	unsigned long flags;
588 
589         spin_lock_irqsave(&pdc_lock, flags);
590         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
591         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
592         convert_to_wide(pdc_result);
593         *cpu_id = pdc_result[0];
594         spin_unlock_irqrestore(&pdc_lock, flags);
595 
596         return retval;
597 }
598 
599 /**
600  * pdc_model_capabilities - Returns the platform capabilities.
601  * @capabilities: The return buffer.
602  *
603  * Returns information about platform support for 32- and/or 64-bit
604  * OSes, IO-PDIR coherency, and virtual aliasing.
605  */
pdc_model_capabilities(unsigned long * capabilities)606 int pdc_model_capabilities(unsigned long *capabilities)
607 {
608         int retval;
609 	unsigned long flags;
610 
611         spin_lock_irqsave(&pdc_lock, flags);
612         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
613         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
614         convert_to_wide(pdc_result);
615         if (retval == PDC_OK) {
616                 *capabilities = pdc_result[0];
617         } else {
618                 *capabilities = PDC_MODEL_OS32;
619         }
620         spin_unlock_irqrestore(&pdc_lock, flags);
621 
622         return retval;
623 }
624 
625 /**
626  * pdc_model_platform_info - Returns machine product and serial number.
627  * @orig_prod_num: Return buffer for original product number.
628  * @current_prod_num: Return buffer for current product number.
629  * @serial_no: Return buffer for serial number.
630  *
631  * Returns strings containing the original and current product numbers and the
632  * serial number of the system.
633  */
pdc_model_platform_info(char * orig_prod_num,char * current_prod_num,char * serial_no)634 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
635 		char *serial_no)
636 {
637 	int retval;
638 	unsigned long flags;
639 
640 	spin_lock_irqsave(&pdc_lock, flags);
641 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
642 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
643 	convert_to_wide(pdc_result);
644 	spin_unlock_irqrestore(&pdc_lock, flags);
645 
646 	return retval;
647 }
648 
649 /**
650  * pdc_cache_info - Return cache and TLB information.
651  * @cache_info: The return buffer.
652  *
653  * Returns information about the processor's cache and TLB.
654  */
pdc_cache_info(struct pdc_cache_info * cache_info)655 int pdc_cache_info(struct pdc_cache_info *cache_info)
656 {
657         int retval;
658 	unsigned long flags;
659 
660         spin_lock_irqsave(&pdc_lock, flags);
661         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
662         convert_to_wide(pdc_result);
663         memcpy(cache_info, pdc_result, sizeof(*cache_info));
664         spin_unlock_irqrestore(&pdc_lock, flags);
665 
666         return retval;
667 }
668 
669 /**
670  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
671  * @space_bits: Should be 0, if not, bad mojo!
672  *
673  * Returns information about Space ID hashing.
674  */
pdc_spaceid_bits(unsigned long * space_bits)675 int pdc_spaceid_bits(unsigned long *space_bits)
676 {
677 	int retval;
678 	unsigned long flags;
679 
680 	spin_lock_irqsave(&pdc_lock, flags);
681 	pdc_result[0] = 0;
682 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
683 	convert_to_wide(pdc_result);
684 	*space_bits = pdc_result[0];
685 	spin_unlock_irqrestore(&pdc_lock, flags);
686 
687 	return retval;
688 }
689 
690 /**
691  * pdc_btlb_info - Return block TLB information.
692  * @btlb: The return buffer.
693  *
694  * Returns information about the hardware Block TLB.
695  */
pdc_btlb_info(struct pdc_btlb_info * btlb)696 int pdc_btlb_info(struct pdc_btlb_info *btlb)
697 {
698 	int retval;
699 	unsigned long flags;
700 
701 	if (IS_ENABLED(CONFIG_PA20))
702 		return PDC_BAD_PROC;
703 
704 	spin_lock_irqsave(&pdc_lock, flags);
705 	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
706 	memcpy(btlb, pdc_result, sizeof(*btlb));
707 	spin_unlock_irqrestore(&pdc_lock, flags);
708 
709 	if(retval < 0) {
710 		btlb->max_size = 0;
711 	}
712 	return retval;
713 }
714 
pdc_btlb_insert(unsigned long long vpage,unsigned long physpage,unsigned long len,unsigned long entry_info,unsigned long slot)715 int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
716 		    unsigned long entry_info, unsigned long slot)
717 {
718 	int retval;
719 	unsigned long flags;
720 
721 	if (IS_ENABLED(CONFIG_PA20))
722 		return PDC_BAD_PROC;
723 
724 	spin_lock_irqsave(&pdc_lock, flags);
725 	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
726 			      (unsigned long) vpage, physpage, len, entry_info, slot);
727 	spin_unlock_irqrestore(&pdc_lock, flags);
728 	return retval;
729 }
730 
pdc_btlb_purge_all(void)731 int pdc_btlb_purge_all(void)
732 {
733 	int retval;
734 	unsigned long flags;
735 
736 	if (IS_ENABLED(CONFIG_PA20))
737 		return PDC_BAD_PROC;
738 
739 	spin_lock_irqsave(&pdc_lock, flags);
740 	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
741 	spin_unlock_irqrestore(&pdc_lock, flags);
742 	return retval;
743 }
744 
745 /**
746  * pdc_mem_map_hpa - Find fixed module information.
747  * @address: The return buffer
748  * @mod_path: pointer to dev path structure.
749  *
750  * This call was developed for S700 workstations to allow the kernel to find
751  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
752  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
753  * call.
754  *
755  * This call is supported by all existing S700 workstations (up to  Gecko).
756  */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)757 int pdc_mem_map_hpa(struct pdc_memory_map *address,
758 		struct pdc_module_path *mod_path)
759 {
760         int retval;
761 	unsigned long flags;
762 
763 	if (IS_ENABLED(CONFIG_PA20))
764 		return PDC_BAD_PROC;
765 
766         spin_lock_irqsave(&pdc_lock, flags);
767         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
768         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
769 				__pa(pdc_result2));
770         memcpy(address, pdc_result, sizeof(*address));
771         spin_unlock_irqrestore(&pdc_lock, flags);
772 
773         return retval;
774 }
775 
776 /**
777  * pdc_lan_station_id - Get the LAN address.
778  * @lan_addr: The return buffer.
779  * @hpa: The network device HPA.
780  *
781  * Get the LAN station address when it is not directly available from the LAN hardware.
782  */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)783 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
784 {
785 	int retval;
786 	unsigned long flags;
787 
788 	spin_lock_irqsave(&pdc_lock, flags);
789 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
790 			__pa(pdc_result), hpa);
791 	if (retval < 0) {
792 		/* FIXME: else read MAC from NVRAM */
793 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
794 	} else {
795 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
796 	}
797 	spin_unlock_irqrestore(&pdc_lock, flags);
798 
799 	return retval;
800 }
801 EXPORT_SYMBOL(pdc_lan_station_id);
802 
803 /**
804  * pdc_stable_read - Read data from Stable Storage.
805  * @staddr: Stable Storage address to access.
806  * @memaddr: The memory address where Stable Storage data shall be copied.
807  * @count: number of bytes to transfer. count is multiple of 4.
808  *
809  * This PDC call reads from the Stable Storage address supplied in staddr
810  * and copies count bytes to the memory address memaddr.
811  * The call will fail if staddr+count > PDC_STABLE size.
812  */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)813 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
814 {
815        int retval;
816 	unsigned long flags;
817 
818        spin_lock_irqsave(&pdc_lock, flags);
819        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
820                __pa(pdc_result), count);
821        convert_to_wide(pdc_result);
822        memcpy(memaddr, pdc_result, count);
823        spin_unlock_irqrestore(&pdc_lock, flags);
824 
825        return retval;
826 }
827 EXPORT_SYMBOL(pdc_stable_read);
828 
829 /**
830  * pdc_stable_write - Write data to Stable Storage.
831  * @staddr: Stable Storage address to access.
832  * @memaddr: The memory address where Stable Storage data shall be read from.
833  * @count: number of bytes to transfer. count is multiple of 4.
834  *
835  * This PDC call reads count bytes from the supplied memaddr address,
836  * and copies count bytes to the Stable Storage address staddr.
837  * The call will fail if staddr+count > PDC_STABLE size.
838  */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)839 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
840 {
841        int retval;
842 	unsigned long flags;
843 
844        spin_lock_irqsave(&pdc_lock, flags);
845        memcpy(pdc_result, memaddr, count);
846        convert_to_wide(pdc_result);
847        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
848                __pa(pdc_result), count);
849        spin_unlock_irqrestore(&pdc_lock, flags);
850 
851        return retval;
852 }
853 EXPORT_SYMBOL(pdc_stable_write);
854 
855 /**
856  * pdc_stable_get_size - Get Stable Storage size in bytes.
857  * @size: pointer where the size will be stored.
858  *
859  * This PDC call returns the number of bytes in the processor's Stable
860  * Storage, which is the number of contiguous bytes implemented in Stable
861  * Storage starting from staddr=0. size in an unsigned 64-bit integer
862  * which is a multiple of four.
863  */
pdc_stable_get_size(unsigned long * size)864 int pdc_stable_get_size(unsigned long *size)
865 {
866        int retval;
867 	unsigned long flags;
868 
869        spin_lock_irqsave(&pdc_lock, flags);
870        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
871        *size = pdc_result[0];
872        spin_unlock_irqrestore(&pdc_lock, flags);
873 
874        return retval;
875 }
876 EXPORT_SYMBOL(pdc_stable_get_size);
877 
878 /**
879  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
880  *
881  * This PDC call is meant to be used to check the integrity of the current
882  * contents of Stable Storage.
883  */
pdc_stable_verify_contents(void)884 int pdc_stable_verify_contents(void)
885 {
886        int retval;
887 	unsigned long flags;
888 
889        spin_lock_irqsave(&pdc_lock, flags);
890        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
891        spin_unlock_irqrestore(&pdc_lock, flags);
892 
893        return retval;
894 }
895 EXPORT_SYMBOL(pdc_stable_verify_contents);
896 
897 /**
898  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
899  * the validity indicator.
900  *
901  * This PDC call will erase all contents of Stable Storage. Use with care!
902  */
pdc_stable_initialize(void)903 int pdc_stable_initialize(void)
904 {
905        int retval;
906 	unsigned long flags;
907 
908        spin_lock_irqsave(&pdc_lock, flags);
909        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
910        spin_unlock_irqrestore(&pdc_lock, flags);
911 
912        return retval;
913 }
914 EXPORT_SYMBOL(pdc_stable_initialize);
915 
916 /**
917  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
918  * @hwpath: fully bc.mod style path to the device.
919  * @initiator: the array to return the result into
920  *
921  * Get the SCSI operational parameters from PDC.
922  * Needed since HPUX never used BIOS or symbios card NVRAM.
923  * Most ncr/sym cards won't have an entry and just use whatever
924  * capabilities of the card are (eg Ultra, LVD). But there are
925  * several cases where it's useful:
926  *    o set SCSI id for Multi-initiator clusters,
927  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
928  *    o bus width exported is less than what the interface chip supports.
929  */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)930 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
931 {
932 	int retval;
933 	unsigned long flags;
934 
935 	spin_lock_irqsave(&pdc_lock, flags);
936 
937 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
938 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
939 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
940 
941 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
942 			      __pa(pdc_result), __pa(hwpath));
943 	if (retval < PDC_OK)
944 		goto out;
945 
946 	if (pdc_result[0] < 16) {
947 		initiator->host_id = pdc_result[0];
948 	} else {
949 		initiator->host_id = -1;
950 	}
951 
952 	/*
953 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
954 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
955 	 */
956 	switch (pdc_result[1]) {
957 		case  1: initiator->factor = 50; break;
958 		case  2: initiator->factor = 25; break;
959 		case  5: initiator->factor = 12; break;
960 		case 25: initiator->factor = 10; break;
961 		case 20: initiator->factor = 12; break;
962 		case 40: initiator->factor = 10; break;
963 		default: initiator->factor = -1; break;
964 	}
965 
966 	if (IS_SPROCKETS()) {
967 		initiator->width = pdc_result[4];
968 		initiator->mode = pdc_result[5];
969 	} else {
970 		initiator->width = -1;
971 		initiator->mode = -1;
972 	}
973 
974  out:
975 	spin_unlock_irqrestore(&pdc_lock, flags);
976 
977 	return (retval >= PDC_OK);
978 }
979 EXPORT_SYMBOL(pdc_get_initiator);
980 
981 
982 /**
983  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
984  * @num_entries: The return value.
985  * @hpa: The HPA for the device.
986  *
987  * This PDC function returns the number of entries in the specified cell's
988  * interrupt table.
989  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
990  */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)991 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
992 {
993 	int retval;
994 	unsigned long flags;
995 
996 	spin_lock_irqsave(&pdc_lock, flags);
997 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
998 			      __pa(pdc_result), hpa);
999 	convert_to_wide(pdc_result);
1000 	*num_entries = pdc_result[0];
1001 	spin_unlock_irqrestore(&pdc_lock, flags);
1002 
1003 	return retval;
1004 }
1005 
1006 /**
1007  * pdc_pci_irt - Get the PCI interrupt routing table.
1008  * @num_entries: The number of entries in the table.
1009  * @hpa: The Hard Physical Address of the device.
1010  * @tbl:
1011  *
1012  * Get the PCI interrupt routing table for the device at the given HPA.
1013  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014  */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)1015 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016 {
1017 	int retval;
1018 	unsigned long flags;
1019 
1020 	BUG_ON((unsigned long)tbl & 0x7);
1021 
1022 	spin_lock_irqsave(&pdc_lock, flags);
1023 	pdc_result[0] = num_entries;
1024 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
1025 			      __pa(pdc_result), hpa, __pa(tbl));
1026 	spin_unlock_irqrestore(&pdc_lock, flags);
1027 
1028 	return retval;
1029 }
1030 
1031 
1032 #if 0	/* UNTEST CODE - left here in case someone needs it */
1033 
1034 /**
1035  * pdc_pci_config_read - read PCI config space.
1036  * @hpa: Token from PDC to indicate which PCI device
1037  * @cfg_addr: Configuration space address to read from
1038  *
1039  * Read PCI Configuration space *before* linux PCI subsystem is running.
1040  */
1041 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042 {
1043 	int retval;
1044 	unsigned long flags;
1045 
1046 	spin_lock_irqsave(&pdc_lock, flags);
1047 	pdc_result[0] = 0;
1048 	pdc_result[1] = 0;
1049 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1050 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051 	spin_unlock_irqrestore(&pdc_lock, flags);
1052 
1053 	return retval ? ~0 : (unsigned int) pdc_result[0];
1054 }
1055 
1056 
1057 /**
1058  * pdc_pci_config_write - read PCI config space.
1059  * @hpa: Token from PDC to indicate which PCI device
1060  * @cfg_addr: Configuration space address to write
1061  * @val: Value we want in the 32-bit register
1062  *
1063  * Write PCI Configuration space *before* linux PCI subsystem is running.
1064  */
1065 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066 {
1067 	int retval;
1068 	unsigned long flags;
1069 
1070 	spin_lock_irqsave(&pdc_lock, flags);
1071 	pdc_result[0] = 0;
1072 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1073 			      __pa(pdc_result), hpa,
1074 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1075 	spin_unlock_irqrestore(&pdc_lock, flags);
1076 
1077 	return retval;
1078 }
1079 #endif /* UNTESTED CODE */
1080 
1081 /**
1082  * pdc_tod_read - Read the Time-Of-Day clock.
1083  * @tod: The return buffer:
1084  *
1085  * Read the Time-Of-Day clock
1086  */
pdc_tod_read(struct pdc_tod * tod)1087 int pdc_tod_read(struct pdc_tod *tod)
1088 {
1089         int retval;
1090 	unsigned long flags;
1091 
1092         spin_lock_irqsave(&pdc_lock, flags);
1093         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094         convert_to_wide(pdc_result);
1095         memcpy(tod, pdc_result, sizeof(*tod));
1096         spin_unlock_irqrestore(&pdc_lock, flags);
1097 
1098         return retval;
1099 }
1100 EXPORT_SYMBOL(pdc_tod_read);
1101 
pdc_mem_pdt_info(struct pdc_mem_retinfo * rinfo)1102 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103 {
1104 	int retval;
1105 	unsigned long flags;
1106 
1107 	spin_lock_irqsave(&pdc_lock, flags);
1108 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109 	convert_to_wide(pdc_result);
1110 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111 	spin_unlock_irqrestore(&pdc_lock, flags);
1112 
1113 	return retval;
1114 }
1115 
pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt * pret,unsigned long * pdt_entries_ptr)1116 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117 		unsigned long *pdt_entries_ptr)
1118 {
1119 	int retval;
1120 	unsigned long flags;
1121 
1122 	spin_lock_irqsave(&pdc_lock, flags);
1123 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124 			__pa(pdt_entries_ptr));
1125 	if (retval == PDC_OK) {
1126 		convert_to_wide(pdc_result);
1127 		memcpy(pret, pdc_result, sizeof(*pret));
1128 	}
1129 	spin_unlock_irqrestore(&pdc_lock, flags);
1130 
1131 #ifdef CONFIG_64BIT
1132 	/*
1133 	 * 64-bit kernels should not call this PDT function in narrow mode.
1134 	 * The pdt_entries_ptr array above will now contain 32-bit values
1135 	 */
1136 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137 		return PDC_ERROR;
1138 #endif
1139 
1140 	return retval;
1141 }
1142 
1143 /**
1144  * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145  * @ret: pointer to return buffer
1146  */
pdc_pim_toc11(struct pdc_toc_pim_11 * ret)1147 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148 {
1149 	int retval;
1150 	unsigned long flags;
1151 
1152 	spin_lock_irqsave(&pdc_lock, flags);
1153 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154 			      __pa(ret), sizeof(*ret));
1155 	spin_unlock_irqrestore(&pdc_lock, flags);
1156 	return retval;
1157 }
1158 
1159 /**
1160  * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161  * @ret: pointer to return buffer
1162  */
pdc_pim_toc20(struct pdc_toc_pim_20 * ret)1163 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164 {
1165 	int retval;
1166 	unsigned long flags;
1167 
1168 	spin_lock_irqsave(&pdc_lock, flags);
1169 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170 			      __pa(ret), sizeof(*ret));
1171 	spin_unlock_irqrestore(&pdc_lock, flags);
1172 	return retval;
1173 }
1174 
1175 /**
1176  * pdc_tod_set - Set the Time-Of-Day clock.
1177  * @sec: The number of seconds since epoch.
1178  * @usec: The number of micro seconds.
1179  *
1180  * Set the Time-Of-Day clock.
1181  */
pdc_tod_set(unsigned long sec,unsigned long usec)1182 int pdc_tod_set(unsigned long sec, unsigned long usec)
1183 {
1184         int retval;
1185 	unsigned long flags;
1186 
1187         spin_lock_irqsave(&pdc_lock, flags);
1188         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189         spin_unlock_irqrestore(&pdc_lock, flags);
1190 
1191         return retval;
1192 }
1193 EXPORT_SYMBOL(pdc_tod_set);
1194 
1195 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)1196 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197 		struct pdc_memory_table *tbl, unsigned long entries)
1198 {
1199 	int retval;
1200 	unsigned long flags;
1201 
1202 	spin_lock_irqsave(&pdc_lock, flags);
1203 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204 	convert_to_wide(pdc_result);
1205 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207 	spin_unlock_irqrestore(&pdc_lock, flags);
1208 
1209 	return retval;
1210 }
1211 #endif /* CONFIG_64BIT */
1212 
1213 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1214  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1215  * it later. :)
1216  */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1217 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218 {
1219         int retval;
1220 	unsigned long flags;
1221 
1222         spin_lock_irqsave(&pdc_lock, flags);
1223         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225         spin_unlock_irqrestore(&pdc_lock, flags);
1226 
1227         return retval;
1228 }
1229 
1230 /*
1231  * pdc_do_reset - Reset the system.
1232  *
1233  * Reset the system.
1234  */
pdc_do_reset(void)1235 int pdc_do_reset(void)
1236 {
1237         int retval;
1238 	unsigned long flags;
1239 
1240         spin_lock_irqsave(&pdc_lock, flags);
1241         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242         spin_unlock_irqrestore(&pdc_lock, flags);
1243 
1244         return retval;
1245 }
1246 
1247 /*
1248  * pdc_soft_power_info - Enable soft power switch.
1249  * @power_reg: address of soft power register
1250  *
1251  * Return the absolute address of the soft power switch register
1252  */
pdc_soft_power_info(unsigned long * power_reg)1253 int __init pdc_soft_power_info(unsigned long *power_reg)
1254 {
1255 	int retval;
1256 	unsigned long flags;
1257 
1258 	*power_reg = (unsigned long) (-1);
1259 
1260 	spin_lock_irqsave(&pdc_lock, flags);
1261 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262 	if (retval == PDC_OK) {
1263                 convert_to_wide(pdc_result);
1264                 *power_reg = f_extend(pdc_result[0]);
1265 	}
1266 	spin_unlock_irqrestore(&pdc_lock, flags);
1267 
1268 	return retval;
1269 }
1270 
1271 /*
1272  * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273  * @sw_control: 0 for hardware control, 1 for software control
1274  *
1275  *
1276  * This PDC function places the soft power button under software or
1277  * hardware control.
1278  * Under software control the OS may control to when to allow to shut
1279  * down the system. Under hardware control pressing the power button
1280  * powers off the system immediately.
1281  *
1282  * The _panic version relies on spin_trylock to prevent deadlock
1283  * on panic path.
1284  */
pdc_soft_power_button(int sw_control)1285 int pdc_soft_power_button(int sw_control)
1286 {
1287 	int retval;
1288 	unsigned long flags;
1289 
1290 	spin_lock_irqsave(&pdc_lock, flags);
1291 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292 	spin_unlock_irqrestore(&pdc_lock, flags);
1293 
1294 	return retval;
1295 }
1296 
pdc_soft_power_button_panic(int sw_control)1297 int pdc_soft_power_button_panic(int sw_control)
1298 {
1299 	int retval;
1300 	unsigned long flags;
1301 
1302 	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303 		pr_emerg("Couldn't enable soft power button\n");
1304 		return -EBUSY; /* ignored by the panic notifier */
1305 	}
1306 
1307 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308 	spin_unlock_irqrestore(&pdc_lock, flags);
1309 
1310 	return retval;
1311 }
1312 
1313 /*
1314  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316  * who knows what other platform firmware might do with this OS "hook".
1317  */
pdc_io_reset(void)1318 void pdc_io_reset(void)
1319 {
1320 	unsigned long flags;
1321 
1322 	spin_lock_irqsave(&pdc_lock, flags);
1323 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324 	spin_unlock_irqrestore(&pdc_lock, flags);
1325 }
1326 
1327 /*
1328  * pdc_io_reset_devices - Hack to Stop USB controller
1329  *
1330  * If PDC used the usb controller, the usb controller
1331  * is still running and will crash the machines during iommu
1332  * setup, because of still running DMA. This PDC call
1333  * stops the USB controller.
1334  * Normally called after calling pdc_io_reset().
1335  */
pdc_io_reset_devices(void)1336 void pdc_io_reset_devices(void)
1337 {
1338 	unsigned long flags;
1339 
1340 	spin_lock_irqsave(&pdc_lock, flags);
1341 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342 	spin_unlock_irqrestore(&pdc_lock, flags);
1343 }
1344 
1345 #endif /* defined(BOOTLOADER) */
1346 
1347 /* locked by pdc_lock */
1348 static char iodc_dbuf[4096] __page_aligned_bss;
1349 
1350 /**
1351  * pdc_iodc_print - Console print using IODC.
1352  * @str: the string to output.
1353  * @count: length of str
1354  *
1355  * Note that only these special chars are architected for console IODC io:
1356  * BEL, BS, CR, and LF. Others are passed through.
1357  * Since the HP console requires CR+LF to perform a 'newline', we translate
1358  * "\n" to "\r\n".
1359  */
pdc_iodc_print(const unsigned char * str,unsigned count)1360 int pdc_iodc_print(const unsigned char *str, unsigned count)
1361 {
1362 	unsigned int i, found = 0;
1363 	unsigned long flags;
1364 
1365 	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366 
1367 	spin_lock_irqsave(&pdc_lock, flags);
1368 	for (i = 0; i < count;) {
1369 		switch(str[i]) {
1370 		case '\n':
1371 			iodc_dbuf[i+0] = '\r';
1372 			iodc_dbuf[i+1] = '\n';
1373 			i += 2;
1374 			found = 1;
1375 			goto print;
1376 		default:
1377 			iodc_dbuf[i] = str[i];
1378 			i++;
1379 			break;
1380 		}
1381 	}
1382 
1383 print:
1384 	real32_call(PAGE0->mem_cons.iodc_io,
1385 		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386 		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387 		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388 	spin_unlock_irqrestore(&pdc_lock, flags);
1389 
1390 	return i - found;
1391 }
1392 
1393 #if !defined(BOOTLOADER)
1394 /**
1395  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396  *
1397  * Read a character (non-blocking) from the PDC console, returns -1 if
1398  * key is not present.
1399  */
pdc_iodc_getc(void)1400 int pdc_iodc_getc(void)
1401 {
1402 	int ch;
1403 	int status;
1404 	unsigned long flags;
1405 
1406 	/* Bail if no console input device. */
1407 	if (!PAGE0->mem_kbd.iodc_io)
1408 		return 0;
1409 
1410 	/* wait for a keyboard (rs232)-input */
1411 	spin_lock_irqsave(&pdc_lock, flags);
1412 	real32_call(PAGE0->mem_kbd.iodc_io,
1413 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1415 		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416 
1417 	ch = *iodc_dbuf;
1418 	/* like convert_to_wide() but for first return value only: */
1419 	status = *(int *)&pdc_result;
1420 	spin_unlock_irqrestore(&pdc_lock, flags);
1421 
1422 	if (status == 0)
1423 	    return -1;
1424 
1425 	return ch;
1426 }
1427 
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg,int do_call64)1428 int pdc_sti_call(unsigned long func, unsigned long flags,
1429 		unsigned long inptr, unsigned long outputr,
1430 		unsigned long glob_cfg, int do_call64)
1431 {
1432 	int retval = 0;
1433 	unsigned long irqflags;
1434 
1435 	spin_lock_irqsave(&pdc_lock, irqflags);
1436 	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437 #ifdef CONFIG_64BIT
1438 		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439 #else
1440 		WARN_ON(1);
1441 #endif
1442 	} else {
1443 		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444 	}
1445 	spin_unlock_irqrestore(&pdc_lock, irqflags);
1446 
1447 	return retval;
1448 }
1449 EXPORT_SYMBOL(pdc_sti_call);
1450 
1451 #ifdef CONFIG_64BIT
1452 /**
1453  * pdc_pat_cell_get_number - Returns the cell number.
1454  * @cell_info: The return buffer.
1455  *
1456  * This PDC call returns the cell number of the cell from which the call
1457  * is made.
1458  */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1459 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460 {
1461 	int retval;
1462 	unsigned long flags;
1463 
1464 	spin_lock_irqsave(&pdc_lock, flags);
1465 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467 	spin_unlock_irqrestore(&pdc_lock, flags);
1468 
1469 	return retval;
1470 }
1471 
1472 /**
1473  * pdc_pat_cell_module - Retrieve the cell's module information.
1474  * @actcnt: The number of bytes written to mem_addr.
1475  * @ploc: The physical location.
1476  * @mod: The module index.
1477  * @view_type: The view of the address type.
1478  * @mem_addr: The return buffer.
1479  *
1480  * This PDC call returns information about each module attached to the cell
1481  * at the specified location.
1482  */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1483 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484 			unsigned long view_type, void *mem_addr)
1485 {
1486 	int retval;
1487 	unsigned long flags;
1488 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489 
1490 	spin_lock_irqsave(&pdc_lock, flags);
1491 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1492 			      ploc, mod, view_type, __pa(&result));
1493 	if(!retval) {
1494 		*actcnt = pdc_result[0];
1495 		memcpy(mem_addr, &result, *actcnt);
1496 	}
1497 	spin_unlock_irqrestore(&pdc_lock, flags);
1498 
1499 	return retval;
1500 }
1501 
1502 /**
1503  * pdc_pat_cell_info - Retrieve the cell's information.
1504  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505  * @actcnt: The number of bytes which should be written to info.
1506  * @offset: offset of the structure.
1507  * @cell_number: The cell number which should be asked, or -1 for current cell.
1508  *
1509  * This PDC call returns information about the given cell (or all cells).
1510  */
pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block * info,unsigned long * actcnt,unsigned long offset,unsigned long cell_number)1511 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512 		unsigned long *actcnt, unsigned long offset,
1513 		unsigned long cell_number)
1514 {
1515 	int retval;
1516 	unsigned long flags;
1517 	struct pdc_pat_cell_info_rtn_block result;
1518 
1519 	spin_lock_irqsave(&pdc_lock, flags);
1520 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521 			__pa(pdc_result), __pa(&result), *actcnt,
1522 			offset, cell_number);
1523 	if (!retval) {
1524 		*actcnt = pdc_result[0];
1525 		memcpy(info, &result, *actcnt);
1526 	}
1527 	spin_unlock_irqrestore(&pdc_lock, flags);
1528 
1529 	return retval;
1530 }
1531 
1532 /**
1533  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534  * @cpu_info: The return buffer.
1535  * @hpa: The Hard Physical Address of the CPU.
1536  *
1537  * Retrieve the cpu number for the cpu at the specified HPA.
1538  */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,unsigned long hpa)1539 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540 {
1541 	int retval;
1542 	unsigned long flags;
1543 
1544 	spin_lock_irqsave(&pdc_lock, flags);
1545 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546 			      __pa(&pdc_result), hpa);
1547 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548 	spin_unlock_irqrestore(&pdc_lock, flags);
1549 
1550 	return retval;
1551 }
1552 
1553 /**
1554  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555  * @num_entries: The return value.
1556  * @cell_num: The target cell.
1557  *
1558  * This PDC function returns the number of entries in the specified cell's
1559  * interrupt table.
1560  */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1561 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562 {
1563 	int retval;
1564 	unsigned long flags;
1565 
1566 	spin_lock_irqsave(&pdc_lock, flags);
1567 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568 			      __pa(pdc_result), cell_num);
1569 	*num_entries = pdc_result[0];
1570 	spin_unlock_irqrestore(&pdc_lock, flags);
1571 
1572 	return retval;
1573 }
1574 
1575 /**
1576  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577  * @r_addr: The return buffer.
1578  * @cell_num: The target cell.
1579  *
1580  * This PDC function returns the actual interrupt table for the specified cell.
1581  */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1582 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583 {
1584 	int retval;
1585 	unsigned long flags;
1586 
1587 	spin_lock_irqsave(&pdc_lock, flags);
1588 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589 			      __pa(r_addr), cell_num);
1590 	spin_unlock_irqrestore(&pdc_lock, flags);
1591 
1592 	return retval;
1593 }
1594 
1595 /**
1596  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597  * @actual_len: The return buffer.
1598  * @mem_addr: Pointer to the memory buffer.
1599  * @count: The number of bytes to read from the buffer.
1600  * @offset: The offset with respect to the beginning of the buffer.
1601  *
1602  */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1603 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1604 			    unsigned long count, unsigned long offset)
1605 {
1606 	int retval;
1607 	unsigned long flags;
1608 
1609 	spin_lock_irqsave(&pdc_lock, flags);
1610 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1611 			      __pa(pdc_result2), count, offset);
1612 	*actual_len = pdc_result[0];
1613 	memcpy(mem_addr, pdc_result2, *actual_len);
1614 	spin_unlock_irqrestore(&pdc_lock, flags);
1615 
1616 	return retval;
1617 }
1618 
1619 /**
1620  * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621  * @legacy_rev: The legacy revision.
1622  * @pat_rev: The PAT revision.
1623  * @pdc_cap: The PDC capabilities.
1624  *
1625  */
pdc_pat_pd_get_pdc_revisions(unsigned long * legacy_rev,unsigned long * pat_rev,unsigned long * pdc_cap)1626 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627 		unsigned long *pat_rev, unsigned long *pdc_cap)
1628 {
1629 	int retval;
1630 	unsigned long flags;
1631 
1632 	spin_lock_irqsave(&pdc_lock, flags);
1633 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634 				__pa(pdc_result));
1635 	if (retval == PDC_OK) {
1636 		*legacy_rev = pdc_result[0];
1637 		*pat_rev = pdc_result[1];
1638 		*pdc_cap = pdc_result[2];
1639 	}
1640 	spin_unlock_irqrestore(&pdc_lock, flags);
1641 
1642 	return retval;
1643 }
1644 
1645 
1646 /**
1647  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648  * @pci_addr: PCI configuration space address for which the read request is being made.
1649  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1650  * @mem_addr: Pointer to return memory buffer.
1651  *
1652  */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1653 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654 {
1655 	int retval;
1656 	unsigned long flags;
1657 
1658 	spin_lock_irqsave(&pdc_lock, flags);
1659 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660 					__pa(pdc_result), pci_addr, pci_size);
1661 	switch(pci_size) {
1662 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1663 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1664 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1665 	}
1666 	spin_unlock_irqrestore(&pdc_lock, flags);
1667 
1668 	return retval;
1669 }
1670 
1671 /**
1672  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673  * @pci_addr: PCI configuration space address for which the write  request is being made.
1674  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1675  * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676  *         written to PCI Config space.
1677  *
1678  */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1679 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680 {
1681 	int retval;
1682 	unsigned long flags;
1683 
1684 	spin_lock_irqsave(&pdc_lock, flags);
1685 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686 				pci_addr, pci_size, val);
1687 	spin_unlock_irqrestore(&pdc_lock, flags);
1688 
1689 	return retval;
1690 }
1691 
1692 /**
1693  * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694  * @rinfo: memory pdt information
1695  *
1696  */
pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo * rinfo)1697 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698 {
1699 	int retval;
1700 	unsigned long flags;
1701 
1702 	spin_lock_irqsave(&pdc_lock, flags);
1703 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704 			__pa(&pdc_result));
1705 	if (retval == PDC_OK)
1706 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707 	spin_unlock_irqrestore(&pdc_lock, flags);
1708 
1709 	return retval;
1710 }
1711 
1712 /**
1713  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714  *				table of a cell
1715  * @rinfo: memory pdt information
1716  * @cell: cell number
1717  *
1718  */
pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo * rinfo,unsigned long cell)1719 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720 		unsigned long cell)
1721 {
1722 	int retval;
1723 	unsigned long flags;
1724 
1725 	spin_lock_irqsave(&pdc_lock, flags);
1726 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727 			__pa(&pdc_result), cell);
1728 	if (retval == PDC_OK)
1729 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730 	spin_unlock_irqrestore(&pdc_lock, flags);
1731 
1732 	return retval;
1733 }
1734 
1735 /**
1736  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737  * @pret: array of PDT entries
1738  * @pdt_entries_ptr: ptr to hold number of PDT entries
1739  * @max_entries: maximum number of entries to be read
1740  *
1741  */
pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long max_entries)1742 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744 {
1745 	int retval;
1746 	unsigned long flags, entries;
1747 
1748 	spin_lock_irqsave(&pdc_lock, flags);
1749 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751 			__pa(&pdc_result), parisc_cell_num,
1752 			__pa(pdt_entries_ptr));
1753 
1754 	if (retval == PDC_OK) {
1755 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1756 		entries = min(pdc_result[0], max_entries);
1757 		pret->pdt_entries = entries;
1758 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1759 	}
1760 
1761 	spin_unlock_irqrestore(&pdc_lock, flags);
1762 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763 
1764 	return retval;
1765 }
1766 /**
1767  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768  * @pret: array of PDT entries
1769  * @pdt_entries_ptr: ptr to hold number of PDT entries
1770  * @count: number of bytes to read
1771  * @offset: offset to start (in bytes)
1772  *
1773  */
pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long count,unsigned long offset)1774 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775 		unsigned long *pdt_entries_ptr, unsigned long count,
1776 		unsigned long offset)
1777 {
1778 	int retval;
1779 	unsigned long flags, entries;
1780 
1781 	spin_lock_irqsave(&pdc_lock, flags);
1782 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1784 		count, offset);
1785 
1786 	if (retval == PDC_OK) {
1787 		entries = min(pdc_result[0], count);
1788 		pret->actual_count_bytes = entries;
1789 		pret->pdt_entries = entries / sizeof(unsigned long);
1790 	}
1791 
1792 	spin_unlock_irqrestore(&pdc_lock, flags);
1793 
1794 	return retval;
1795 }
1796 
1797 /**
1798  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799  * @pret: ptr to hold returned information
1800  * @phys_addr: physical address to examine
1801  *
1802  */
pdc_pat_mem_get_dimm_phys_location(struct pdc_pat_mem_phys_mem_location * pret,unsigned long phys_addr)1803 int pdc_pat_mem_get_dimm_phys_location(
1804 		struct pdc_pat_mem_phys_mem_location *pret,
1805 		unsigned long phys_addr)
1806 {
1807 	int retval;
1808 	unsigned long flags;
1809 
1810 	spin_lock_irqsave(&pdc_lock, flags);
1811 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812 		__pa(&pdc_result), phys_addr);
1813 
1814 	if (retval == PDC_OK)
1815 		memcpy(pret, &pdc_result, sizeof(*pret));
1816 
1817 	spin_unlock_irqrestore(&pdc_lock, flags);
1818 
1819 	return retval;
1820 }
1821 #endif /* CONFIG_64BIT */
1822 #endif /* defined(BOOTLOADER) */
1823 
1824 
1825 /***************** 32-bit real-mode calls ***********/
1826 /* The struct below is used
1827  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828  * real32_call_asm() then uses this stack in narrow real mode
1829  */
1830 
1831 struct narrow_stack {
1832 	/* use int, not long which is 64 bits */
1833 	unsigned int arg13;
1834 	unsigned int arg12;
1835 	unsigned int arg11;
1836 	unsigned int arg10;
1837 	unsigned int arg9;
1838 	unsigned int arg8;
1839 	unsigned int arg7;
1840 	unsigned int arg6;
1841 	unsigned int arg5;
1842 	unsigned int arg4;
1843 	unsigned int arg3;
1844 	unsigned int arg2;
1845 	unsigned int arg1;
1846 	unsigned int arg0;
1847 	unsigned int frame_marker[8];
1848 	unsigned int sp;
1849 	/* in reality, there's nearly 8k of stack after this */
1850 };
1851 
real32_call(unsigned long fn,...)1852 long real32_call(unsigned long fn, ...)
1853 {
1854 	va_list args;
1855 	extern struct narrow_stack real_stack;
1856 	extern unsigned long real32_call_asm(unsigned int *,
1857 					     unsigned int *,
1858 					     unsigned int);
1859 
1860 	va_start(args, fn);
1861 	real_stack.arg0 = va_arg(args, unsigned int);
1862 	real_stack.arg1 = va_arg(args, unsigned int);
1863 	real_stack.arg2 = va_arg(args, unsigned int);
1864 	real_stack.arg3 = va_arg(args, unsigned int);
1865 	real_stack.arg4 = va_arg(args, unsigned int);
1866 	real_stack.arg5 = va_arg(args, unsigned int);
1867 	real_stack.arg6 = va_arg(args, unsigned int);
1868 	real_stack.arg7 = va_arg(args, unsigned int);
1869 	real_stack.arg8 = va_arg(args, unsigned int);
1870 	real_stack.arg9 = va_arg(args, unsigned int);
1871 	real_stack.arg10 = va_arg(args, unsigned int);
1872 	real_stack.arg11 = va_arg(args, unsigned int);
1873 	real_stack.arg12 = va_arg(args, unsigned int);
1874 	real_stack.arg13 = va_arg(args, unsigned int);
1875 	va_end(args);
1876 
1877 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878 }
1879 
1880 #ifdef CONFIG_64BIT
1881 /***************** 64-bit real-mode calls ***********/
1882 
1883 struct wide_stack {
1884 	unsigned long arg0;
1885 	unsigned long arg1;
1886 	unsigned long arg2;
1887 	unsigned long arg3;
1888 	unsigned long arg4;
1889 	unsigned long arg5;
1890 	unsigned long arg6;
1891 	unsigned long arg7;
1892 	unsigned long arg8;
1893 	unsigned long arg9;
1894 	unsigned long arg10;
1895 	unsigned long arg11;
1896 	unsigned long arg12;
1897 	unsigned long arg13;
1898 	unsigned long frame_marker[2];	/* rp, previous sp */
1899 	unsigned long sp;
1900 	/* in reality, there's nearly 8k of stack after this */
1901 };
1902 
real64_call(unsigned long fn,...)1903 long real64_call(unsigned long fn, ...)
1904 {
1905 	va_list args;
1906 	extern struct wide_stack real64_stack;
1907 	extern unsigned long real64_call_asm(unsigned long *,
1908 					     unsigned long *,
1909 					     unsigned long);
1910 
1911 	va_start(args, fn);
1912 	real64_stack.arg0 = va_arg(args, unsigned long);
1913 	real64_stack.arg1 = va_arg(args, unsigned long);
1914 	real64_stack.arg2 = va_arg(args, unsigned long);
1915 	real64_stack.arg3 = va_arg(args, unsigned long);
1916 	real64_stack.arg4 = va_arg(args, unsigned long);
1917 	real64_stack.arg5 = va_arg(args, unsigned long);
1918 	real64_stack.arg6 = va_arg(args, unsigned long);
1919 	real64_stack.arg7 = va_arg(args, unsigned long);
1920 	real64_stack.arg8 = va_arg(args, unsigned long);
1921 	real64_stack.arg9 = va_arg(args, unsigned long);
1922 	real64_stack.arg10 = va_arg(args, unsigned long);
1923 	real64_stack.arg11 = va_arg(args, unsigned long);
1924 	real64_stack.arg12 = va_arg(args, unsigned long);
1925 	real64_stack.arg13 = va_arg(args, unsigned long);
1926 	va_end(args);
1927 
1928 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929 }
1930 
1931 #endif /* CONFIG_64BIT */
1932