1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71 
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76 
77 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 
80 #ifdef CONFIG_SMP
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr)					\
84 	(void __percpu *)((unsigned long)(addr) -			\
85 			  (unsigned long)pcpu_base_addr	+		\
86 			  (unsigned long)__per_cpu_start)
87 #endif
88 #ifndef __pcpu_ptr_to_addr
89 #define __pcpu_ptr_to_addr(ptr)						\
90 	(void __force *)((unsigned long)(ptr) +				\
91 			 (unsigned long)pcpu_base_addr -		\
92 			 (unsigned long)__per_cpu_start)
93 #endif
94 #else	/* CONFIG_SMP */
95 /* on UP, it's always identity mapped */
96 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
97 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
98 #endif	/* CONFIG_SMP */
99 
100 struct pcpu_chunk {
101 	struct list_head	list;		/* linked to pcpu_slot lists */
102 	int			free_size;	/* free bytes in the chunk */
103 	int			contig_hint;	/* max contiguous size hint */
104 	void			*base_addr;	/* base address of this chunk */
105 	int			map_used;	/* # of map entries used */
106 	int			map_alloc;	/* # of map entries allocated */
107 	int			*map;		/* allocation map */
108 	void			*data;		/* chunk data */
109 	bool			immutable;	/* no [de]population allowed */
110 	unsigned long		populated[];	/* populated bitmap */
111 };
112 
113 static int pcpu_unit_pages __read_mostly;
114 static int pcpu_unit_size __read_mostly;
115 static int pcpu_nr_units __read_mostly;
116 static int pcpu_atom_size __read_mostly;
117 static int pcpu_nr_slots __read_mostly;
118 static size_t pcpu_chunk_struct_size __read_mostly;
119 
120 /* cpus with the lowest and highest unit addresses */
121 static unsigned int pcpu_low_unit_cpu __read_mostly;
122 static unsigned int pcpu_high_unit_cpu __read_mostly;
123 
124 /* the address of the first chunk which starts with the kernel static area */
125 void *pcpu_base_addr __read_mostly;
126 EXPORT_SYMBOL_GPL(pcpu_base_addr);
127 
128 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
129 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
130 
131 /* group information, used for vm allocation */
132 static int pcpu_nr_groups __read_mostly;
133 static const unsigned long *pcpu_group_offsets __read_mostly;
134 static const size_t *pcpu_group_sizes __read_mostly;
135 
136 /*
137  * The first chunk which always exists.  Note that unlike other
138  * chunks, this one can be allocated and mapped in several different
139  * ways and thus often doesn't live in the vmalloc area.
140  */
141 static struct pcpu_chunk *pcpu_first_chunk;
142 
143 /*
144  * Optional reserved chunk.  This chunk reserves part of the first
145  * chunk and serves it for reserved allocations.  The amount of
146  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
147  * area doesn't exist, the following variables contain NULL and 0
148  * respectively.
149  */
150 static struct pcpu_chunk *pcpu_reserved_chunk;
151 static int pcpu_reserved_chunk_limit;
152 
153 /*
154  * Synchronization rules.
155  *
156  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
157  * protects allocation/reclaim paths, chunks, populated bitmap and
158  * vmalloc mapping.  The latter is a spinlock and protects the index
159  * data structures - chunk slots, chunks and area maps in chunks.
160  *
161  * During allocation, pcpu_alloc_mutex is kept locked all the time and
162  * pcpu_lock is grabbed and released as necessary.  All actual memory
163  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
164  * general, percpu memory can't be allocated with irq off but
165  * irqsave/restore are still used in alloc path so that it can be used
166  * from early init path - sched_init() specifically.
167  *
168  * Free path accesses and alters only the index data structures, so it
169  * can be safely called from atomic context.  When memory needs to be
170  * returned to the system, free path schedules reclaim_work which
171  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
172  * reclaimed, release both locks and frees the chunks.  Note that it's
173  * necessary to grab both locks to remove a chunk from circulation as
174  * allocation path might be referencing the chunk with only
175  * pcpu_alloc_mutex locked.
176  */
177 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
178 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
179 
180 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
181 
182 /* reclaim work to release fully free chunks, scheduled from free path */
183 static void pcpu_reclaim(struct work_struct *work);
184 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
185 
pcpu_addr_in_first_chunk(void * addr)186 static bool pcpu_addr_in_first_chunk(void *addr)
187 {
188 	void *first_start = pcpu_first_chunk->base_addr;
189 
190 	return addr >= first_start && addr < first_start + pcpu_unit_size;
191 }
192 
pcpu_addr_in_reserved_chunk(void * addr)193 static bool pcpu_addr_in_reserved_chunk(void *addr)
194 {
195 	void *first_start = pcpu_first_chunk->base_addr;
196 
197 	return addr >= first_start &&
198 		addr < first_start + pcpu_reserved_chunk_limit;
199 }
200 
__pcpu_size_to_slot(int size)201 static int __pcpu_size_to_slot(int size)
202 {
203 	int highbit = fls(size);	/* size is in bytes */
204 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
205 }
206 
pcpu_size_to_slot(int size)207 static int pcpu_size_to_slot(int size)
208 {
209 	if (size == pcpu_unit_size)
210 		return pcpu_nr_slots - 1;
211 	return __pcpu_size_to_slot(size);
212 }
213 
pcpu_chunk_slot(const struct pcpu_chunk * chunk)214 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
215 {
216 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
217 		return 0;
218 
219 	return pcpu_size_to_slot(chunk->free_size);
220 }
221 
222 /* set the pointer to a chunk in a page struct */
pcpu_set_page_chunk(struct page * page,struct pcpu_chunk * pcpu)223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 {
225 	page->index = (unsigned long)pcpu;
226 }
227 
228 /* obtain pointer to a chunk from a page struct */
pcpu_get_page_chunk(struct page * page)229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 {
231 	return (struct pcpu_chunk *)page->index;
232 }
233 
pcpu_page_idx(unsigned int cpu,int page_idx)234 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
235 {
236 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
237 }
238 
pcpu_chunk_addr(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)239 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
240 				     unsigned int cpu, int page_idx)
241 {
242 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
243 		(page_idx << PAGE_SHIFT);
244 }
245 
pcpu_next_unpop(struct pcpu_chunk * chunk,int * rs,int * re,int end)246 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
247 					   int *rs, int *re, int end)
248 {
249 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
250 	*re = find_next_bit(chunk->populated, end, *rs + 1);
251 }
252 
pcpu_next_pop(struct pcpu_chunk * chunk,int * rs,int * re,int end)253 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
254 					 int *rs, int *re, int end)
255 {
256 	*rs = find_next_bit(chunk->populated, end, *rs);
257 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
258 }
259 
260 /*
261  * (Un)populated page region iterators.  Iterate over (un)populated
262  * page regions between @start and @end in @chunk.  @rs and @re should
263  * be integer variables and will be set to start and end page index of
264  * the current region.
265  */
266 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
267 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
268 	     (rs) < (re);						    \
269 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
270 
271 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
272 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
273 	     (rs) < (re);						    \
274 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
275 
276 /**
277  * pcpu_mem_zalloc - allocate memory
278  * @size: bytes to allocate
279  *
280  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
281  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
282  * memory is always zeroed.
283  *
284  * CONTEXT:
285  * Does GFP_KERNEL allocation.
286  *
287  * RETURNS:
288  * Pointer to the allocated area on success, NULL on failure.
289  */
pcpu_mem_zalloc(size_t size)290 static void *pcpu_mem_zalloc(size_t size)
291 {
292 	if (WARN_ON_ONCE(!slab_is_available()))
293 		return NULL;
294 
295 	if (size <= PAGE_SIZE)
296 		return kzalloc(size, GFP_KERNEL);
297 	else
298 		return vzalloc(size);
299 }
300 
301 /**
302  * pcpu_mem_free - free memory
303  * @ptr: memory to free
304  * @size: size of the area
305  *
306  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
307  */
pcpu_mem_free(void * ptr,size_t size)308 static void pcpu_mem_free(void *ptr, size_t size)
309 {
310 	if (size <= PAGE_SIZE)
311 		kfree(ptr);
312 	else
313 		vfree(ptr);
314 }
315 
316 /**
317  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
318  * @chunk: chunk of interest
319  * @oslot: the previous slot it was on
320  *
321  * This function is called after an allocation or free changed @chunk.
322  * New slot according to the changed state is determined and @chunk is
323  * moved to the slot.  Note that the reserved chunk is never put on
324  * chunk slots.
325  *
326  * CONTEXT:
327  * pcpu_lock.
328  */
pcpu_chunk_relocate(struct pcpu_chunk * chunk,int oslot)329 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
330 {
331 	int nslot = pcpu_chunk_slot(chunk);
332 
333 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
334 		if (oslot < nslot)
335 			list_move(&chunk->list, &pcpu_slot[nslot]);
336 		else
337 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
338 	}
339 }
340 
341 /**
342  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
343  * @chunk: chunk of interest
344  *
345  * Determine whether area map of @chunk needs to be extended to
346  * accommodate a new allocation.
347  *
348  * CONTEXT:
349  * pcpu_lock.
350  *
351  * RETURNS:
352  * New target map allocation length if extension is necessary, 0
353  * otherwise.
354  */
pcpu_need_to_extend(struct pcpu_chunk * chunk)355 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
356 {
357 	int new_alloc;
358 
359 	if (chunk->map_alloc >= chunk->map_used + 2)
360 		return 0;
361 
362 	new_alloc = PCPU_DFL_MAP_ALLOC;
363 	while (new_alloc < chunk->map_used + 2)
364 		new_alloc *= 2;
365 
366 	return new_alloc;
367 }
368 
369 /**
370  * pcpu_extend_area_map - extend area map of a chunk
371  * @chunk: chunk of interest
372  * @new_alloc: new target allocation length of the area map
373  *
374  * Extend area map of @chunk to have @new_alloc entries.
375  *
376  * CONTEXT:
377  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
378  *
379  * RETURNS:
380  * 0 on success, -errno on failure.
381  */
pcpu_extend_area_map(struct pcpu_chunk * chunk,int new_alloc)382 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
383 {
384 	int *old = NULL, *new = NULL;
385 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
386 	unsigned long flags;
387 
388 	new = pcpu_mem_zalloc(new_size);
389 	if (!new)
390 		return -ENOMEM;
391 
392 	/* acquire pcpu_lock and switch to new area map */
393 	spin_lock_irqsave(&pcpu_lock, flags);
394 
395 	if (new_alloc <= chunk->map_alloc)
396 		goto out_unlock;
397 
398 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
399 	old = chunk->map;
400 
401 	memcpy(new, old, old_size);
402 
403 	chunk->map_alloc = new_alloc;
404 	chunk->map = new;
405 	new = NULL;
406 
407 out_unlock:
408 	spin_unlock_irqrestore(&pcpu_lock, flags);
409 
410 	/*
411 	 * pcpu_mem_free() might end up calling vfree() which uses
412 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
413 	 */
414 	pcpu_mem_free(old, old_size);
415 	pcpu_mem_free(new, new_size);
416 
417 	return 0;
418 }
419 
420 /**
421  * pcpu_split_block - split a map block
422  * @chunk: chunk of interest
423  * @i: index of map block to split
424  * @head: head size in bytes (can be 0)
425  * @tail: tail size in bytes (can be 0)
426  *
427  * Split the @i'th map block into two or three blocks.  If @head is
428  * non-zero, @head bytes block is inserted before block @i moving it
429  * to @i+1 and reducing its size by @head bytes.
430  *
431  * If @tail is non-zero, the target block, which can be @i or @i+1
432  * depending on @head, is reduced by @tail bytes and @tail byte block
433  * is inserted after the target block.
434  *
435  * @chunk->map must have enough free slots to accommodate the split.
436  *
437  * CONTEXT:
438  * pcpu_lock.
439  */
pcpu_split_block(struct pcpu_chunk * chunk,int i,int head,int tail)440 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
441 			     int head, int tail)
442 {
443 	int nr_extra = !!head + !!tail;
444 
445 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
446 
447 	/* insert new subblocks */
448 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
449 		sizeof(chunk->map[0]) * (chunk->map_used - i));
450 	chunk->map_used += nr_extra;
451 
452 	if (head) {
453 		chunk->map[i + 1] = chunk->map[i] - head;
454 		chunk->map[i++] = head;
455 	}
456 	if (tail) {
457 		chunk->map[i++] -= tail;
458 		chunk->map[i] = tail;
459 	}
460 }
461 
462 /**
463  * pcpu_alloc_area - allocate area from a pcpu_chunk
464  * @chunk: chunk of interest
465  * @size: wanted size in bytes
466  * @align: wanted align
467  *
468  * Try to allocate @size bytes area aligned at @align from @chunk.
469  * Note that this function only allocates the offset.  It doesn't
470  * populate or map the area.
471  *
472  * @chunk->map must have at least two free slots.
473  *
474  * CONTEXT:
475  * pcpu_lock.
476  *
477  * RETURNS:
478  * Allocated offset in @chunk on success, -1 if no matching area is
479  * found.
480  */
pcpu_alloc_area(struct pcpu_chunk * chunk,int size,int align)481 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
482 {
483 	int oslot = pcpu_chunk_slot(chunk);
484 	int max_contig = 0;
485 	int i, off;
486 
487 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
488 		bool is_last = i + 1 == chunk->map_used;
489 		int head, tail;
490 
491 		/* extra for alignment requirement */
492 		head = ALIGN(off, align) - off;
493 		BUG_ON(i == 0 && head != 0);
494 
495 		if (chunk->map[i] < 0)
496 			continue;
497 		if (chunk->map[i] < head + size) {
498 			max_contig = max(chunk->map[i], max_contig);
499 			continue;
500 		}
501 
502 		/*
503 		 * If head is small or the previous block is free,
504 		 * merge'em.  Note that 'small' is defined as smaller
505 		 * than sizeof(int), which is very small but isn't too
506 		 * uncommon for percpu allocations.
507 		 */
508 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
509 			if (chunk->map[i - 1] > 0)
510 				chunk->map[i - 1] += head;
511 			else {
512 				chunk->map[i - 1] -= head;
513 				chunk->free_size -= head;
514 			}
515 			chunk->map[i] -= head;
516 			off += head;
517 			head = 0;
518 		}
519 
520 		/* if tail is small, just keep it around */
521 		tail = chunk->map[i] - head - size;
522 		if (tail < sizeof(int))
523 			tail = 0;
524 
525 		/* split if warranted */
526 		if (head || tail) {
527 			pcpu_split_block(chunk, i, head, tail);
528 			if (head) {
529 				i++;
530 				off += head;
531 				max_contig = max(chunk->map[i - 1], max_contig);
532 			}
533 			if (tail)
534 				max_contig = max(chunk->map[i + 1], max_contig);
535 		}
536 
537 		/* update hint and mark allocated */
538 		if (is_last)
539 			chunk->contig_hint = max_contig; /* fully scanned */
540 		else
541 			chunk->contig_hint = max(chunk->contig_hint,
542 						 max_contig);
543 
544 		chunk->free_size -= chunk->map[i];
545 		chunk->map[i] = -chunk->map[i];
546 
547 		pcpu_chunk_relocate(chunk, oslot);
548 		return off;
549 	}
550 
551 	chunk->contig_hint = max_contig;	/* fully scanned */
552 	pcpu_chunk_relocate(chunk, oslot);
553 
554 	/* tell the upper layer that this chunk has no matching area */
555 	return -1;
556 }
557 
558 /**
559  * pcpu_free_area - free area to a pcpu_chunk
560  * @chunk: chunk of interest
561  * @freeme: offset of area to free
562  *
563  * Free area starting from @freeme to @chunk.  Note that this function
564  * only modifies the allocation map.  It doesn't depopulate or unmap
565  * the area.
566  *
567  * CONTEXT:
568  * pcpu_lock.
569  */
pcpu_free_area(struct pcpu_chunk * chunk,int freeme)570 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
571 {
572 	int oslot = pcpu_chunk_slot(chunk);
573 	int i, off;
574 
575 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
576 		if (off == freeme)
577 			break;
578 	BUG_ON(off != freeme);
579 	BUG_ON(chunk->map[i] > 0);
580 
581 	chunk->map[i] = -chunk->map[i];
582 	chunk->free_size += chunk->map[i];
583 
584 	/* merge with previous? */
585 	if (i > 0 && chunk->map[i - 1] >= 0) {
586 		chunk->map[i - 1] += chunk->map[i];
587 		chunk->map_used--;
588 		memmove(&chunk->map[i], &chunk->map[i + 1],
589 			(chunk->map_used - i) * sizeof(chunk->map[0]));
590 		i--;
591 	}
592 	/* merge with next? */
593 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
594 		chunk->map[i] += chunk->map[i + 1];
595 		chunk->map_used--;
596 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
597 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
598 	}
599 
600 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
601 	pcpu_chunk_relocate(chunk, oslot);
602 }
603 
pcpu_alloc_chunk(void)604 static struct pcpu_chunk *pcpu_alloc_chunk(void)
605 {
606 	struct pcpu_chunk *chunk;
607 
608 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
609 	if (!chunk)
610 		return NULL;
611 
612 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
613 						sizeof(chunk->map[0]));
614 	if (!chunk->map) {
615 		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
616 		return NULL;
617 	}
618 
619 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
620 	chunk->map[chunk->map_used++] = pcpu_unit_size;
621 
622 	INIT_LIST_HEAD(&chunk->list);
623 	chunk->free_size = pcpu_unit_size;
624 	chunk->contig_hint = pcpu_unit_size;
625 
626 	return chunk;
627 }
628 
pcpu_free_chunk(struct pcpu_chunk * chunk)629 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
630 {
631 	if (!chunk)
632 		return;
633 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
634 	kfree(chunk);
635 }
636 
637 /*
638  * Chunk management implementation.
639  *
640  * To allow different implementations, chunk alloc/free and
641  * [de]population are implemented in a separate file which is pulled
642  * into this file and compiled together.  The following functions
643  * should be implemented.
644  *
645  * pcpu_populate_chunk		- populate the specified range of a chunk
646  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
647  * pcpu_create_chunk		- create a new chunk
648  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
649  * pcpu_addr_to_page		- translate address to physical address
650  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
651  */
652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
654 static struct pcpu_chunk *pcpu_create_chunk(void);
655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
656 static struct page *pcpu_addr_to_page(void *addr);
657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
658 
659 #ifdef CONFIG_NEED_PER_CPU_KM
660 #include "percpu-km.c"
661 #else
662 #include "percpu-vm.c"
663 #endif
664 
665 /**
666  * pcpu_chunk_addr_search - determine chunk containing specified address
667  * @addr: address for which the chunk needs to be determined.
668  *
669  * RETURNS:
670  * The address of the found chunk.
671  */
pcpu_chunk_addr_search(void * addr)672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
673 {
674 	/* is it in the first chunk? */
675 	if (pcpu_addr_in_first_chunk(addr)) {
676 		/* is it in the reserved area? */
677 		if (pcpu_addr_in_reserved_chunk(addr))
678 			return pcpu_reserved_chunk;
679 		return pcpu_first_chunk;
680 	}
681 
682 	/*
683 	 * The address is relative to unit0 which might be unused and
684 	 * thus unmapped.  Offset the address to the unit space of the
685 	 * current processor before looking it up in the vmalloc
686 	 * space.  Note that any possible cpu id can be used here, so
687 	 * there's no need to worry about preemption or cpu hotplug.
688 	 */
689 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
690 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
691 }
692 
693 /**
694  * pcpu_alloc - the percpu allocator
695  * @size: size of area to allocate in bytes
696  * @align: alignment of area (max PAGE_SIZE)
697  * @reserved: allocate from the reserved chunk if available
698  *
699  * Allocate percpu area of @size bytes aligned at @align.
700  *
701  * CONTEXT:
702  * Does GFP_KERNEL allocation.
703  *
704  * RETURNS:
705  * Percpu pointer to the allocated area on success, NULL on failure.
706  */
pcpu_alloc(size_t size,size_t align,bool reserved)707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
708 {
709 	static int warn_limit = 10;
710 	struct pcpu_chunk *chunk;
711 	const char *err;
712 	int slot, off, new_alloc;
713 	unsigned long flags;
714 	void __percpu *ptr;
715 
716 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
717 		WARN(true, "illegal size (%zu) or align (%zu) for "
718 		     "percpu allocation\n", size, align);
719 		return NULL;
720 	}
721 
722 	mutex_lock(&pcpu_alloc_mutex);
723 	spin_lock_irqsave(&pcpu_lock, flags);
724 
725 	/* serve reserved allocations from the reserved chunk if available */
726 	if (reserved && pcpu_reserved_chunk) {
727 		chunk = pcpu_reserved_chunk;
728 
729 		if (size > chunk->contig_hint) {
730 			err = "alloc from reserved chunk failed";
731 			goto fail_unlock;
732 		}
733 
734 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
735 			spin_unlock_irqrestore(&pcpu_lock, flags);
736 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
737 				err = "failed to extend area map of reserved chunk";
738 				goto fail_unlock_mutex;
739 			}
740 			spin_lock_irqsave(&pcpu_lock, flags);
741 		}
742 
743 		off = pcpu_alloc_area(chunk, size, align);
744 		if (off >= 0)
745 			goto area_found;
746 
747 		err = "alloc from reserved chunk failed";
748 		goto fail_unlock;
749 	}
750 
751 restart:
752 	/* search through normal chunks */
753 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
754 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
755 			if (size > chunk->contig_hint)
756 				continue;
757 
758 			new_alloc = pcpu_need_to_extend(chunk);
759 			if (new_alloc) {
760 				spin_unlock_irqrestore(&pcpu_lock, flags);
761 				if (pcpu_extend_area_map(chunk,
762 							 new_alloc) < 0) {
763 					err = "failed to extend area map";
764 					goto fail_unlock_mutex;
765 				}
766 				spin_lock_irqsave(&pcpu_lock, flags);
767 				/*
768 				 * pcpu_lock has been dropped, need to
769 				 * restart cpu_slot list walking.
770 				 */
771 				goto restart;
772 			}
773 
774 			off = pcpu_alloc_area(chunk, size, align);
775 			if (off >= 0)
776 				goto area_found;
777 		}
778 	}
779 
780 	/* hmmm... no space left, create a new chunk */
781 	spin_unlock_irqrestore(&pcpu_lock, flags);
782 
783 	chunk = pcpu_create_chunk();
784 	if (!chunk) {
785 		err = "failed to allocate new chunk";
786 		goto fail_unlock_mutex;
787 	}
788 
789 	spin_lock_irqsave(&pcpu_lock, flags);
790 	pcpu_chunk_relocate(chunk, -1);
791 	goto restart;
792 
793 area_found:
794 	spin_unlock_irqrestore(&pcpu_lock, flags);
795 
796 	/* populate, map and clear the area */
797 	if (pcpu_populate_chunk(chunk, off, size)) {
798 		spin_lock_irqsave(&pcpu_lock, flags);
799 		pcpu_free_area(chunk, off);
800 		err = "failed to populate";
801 		goto fail_unlock;
802 	}
803 
804 	mutex_unlock(&pcpu_alloc_mutex);
805 
806 	/* return address relative to base address */
807 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
808 	kmemleak_alloc_percpu(ptr, size);
809 	return ptr;
810 
811 fail_unlock:
812 	spin_unlock_irqrestore(&pcpu_lock, flags);
813 fail_unlock_mutex:
814 	mutex_unlock(&pcpu_alloc_mutex);
815 	if (warn_limit) {
816 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
817 			   "%s\n", size, align, err);
818 		dump_stack();
819 		if (!--warn_limit)
820 			pr_info("PERCPU: limit reached, disable warning\n");
821 	}
822 	return NULL;
823 }
824 
825 /**
826  * __alloc_percpu - allocate dynamic percpu area
827  * @size: size of area to allocate in bytes
828  * @align: alignment of area (max PAGE_SIZE)
829  *
830  * Allocate zero-filled percpu area of @size bytes aligned at @align.
831  * Might sleep.  Might trigger writeouts.
832  *
833  * CONTEXT:
834  * Does GFP_KERNEL allocation.
835  *
836  * RETURNS:
837  * Percpu pointer to the allocated area on success, NULL on failure.
838  */
__alloc_percpu(size_t size,size_t align)839 void __percpu *__alloc_percpu(size_t size, size_t align)
840 {
841 	return pcpu_alloc(size, align, false);
842 }
843 EXPORT_SYMBOL_GPL(__alloc_percpu);
844 
845 /**
846  * __alloc_reserved_percpu - allocate reserved percpu area
847  * @size: size of area to allocate in bytes
848  * @align: alignment of area (max PAGE_SIZE)
849  *
850  * Allocate zero-filled percpu area of @size bytes aligned at @align
851  * from reserved percpu area if arch has set it up; otherwise,
852  * allocation is served from the same dynamic area.  Might sleep.
853  * Might trigger writeouts.
854  *
855  * CONTEXT:
856  * Does GFP_KERNEL allocation.
857  *
858  * RETURNS:
859  * Percpu pointer to the allocated area on success, NULL on failure.
860  */
__alloc_reserved_percpu(size_t size,size_t align)861 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
862 {
863 	return pcpu_alloc(size, align, true);
864 }
865 
866 /**
867  * pcpu_reclaim - reclaim fully free chunks, workqueue function
868  * @work: unused
869  *
870  * Reclaim all fully free chunks except for the first one.
871  *
872  * CONTEXT:
873  * workqueue context.
874  */
pcpu_reclaim(struct work_struct * work)875 static void pcpu_reclaim(struct work_struct *work)
876 {
877 	LIST_HEAD(todo);
878 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
879 	struct pcpu_chunk *chunk, *next;
880 
881 	mutex_lock(&pcpu_alloc_mutex);
882 	spin_lock_irq(&pcpu_lock);
883 
884 	list_for_each_entry_safe(chunk, next, head, list) {
885 		WARN_ON(chunk->immutable);
886 
887 		/* spare the first one */
888 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
889 			continue;
890 
891 		list_move(&chunk->list, &todo);
892 	}
893 
894 	spin_unlock_irq(&pcpu_lock);
895 
896 	list_for_each_entry_safe(chunk, next, &todo, list) {
897 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
898 		pcpu_destroy_chunk(chunk);
899 	}
900 
901 	mutex_unlock(&pcpu_alloc_mutex);
902 }
903 
904 /**
905  * free_percpu - free percpu area
906  * @ptr: pointer to area to free
907  *
908  * Free percpu area @ptr.
909  *
910  * CONTEXT:
911  * Can be called from atomic context.
912  */
free_percpu(void __percpu * ptr)913 void free_percpu(void __percpu *ptr)
914 {
915 	void *addr;
916 	struct pcpu_chunk *chunk;
917 	unsigned long flags;
918 	int off;
919 
920 	if (!ptr)
921 		return;
922 
923 	kmemleak_free_percpu(ptr);
924 
925 	addr = __pcpu_ptr_to_addr(ptr);
926 
927 	spin_lock_irqsave(&pcpu_lock, flags);
928 
929 	chunk = pcpu_chunk_addr_search(addr);
930 	off = addr - chunk->base_addr;
931 
932 	pcpu_free_area(chunk, off);
933 
934 	/* if there are more than one fully free chunks, wake up grim reaper */
935 	if (chunk->free_size == pcpu_unit_size) {
936 		struct pcpu_chunk *pos;
937 
938 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
939 			if (pos != chunk) {
940 				schedule_work(&pcpu_reclaim_work);
941 				break;
942 			}
943 	}
944 
945 	spin_unlock_irqrestore(&pcpu_lock, flags);
946 }
947 EXPORT_SYMBOL_GPL(free_percpu);
948 
949 /**
950  * is_kernel_percpu_address - test whether address is from static percpu area
951  * @addr: address to test
952  *
953  * Test whether @addr belongs to in-kernel static percpu area.  Module
954  * static percpu areas are not considered.  For those, use
955  * is_module_percpu_address().
956  *
957  * RETURNS:
958  * %true if @addr is from in-kernel static percpu area, %false otherwise.
959  */
is_kernel_percpu_address(unsigned long addr)960 bool is_kernel_percpu_address(unsigned long addr)
961 {
962 #ifdef CONFIG_SMP
963 	const size_t static_size = __per_cpu_end - __per_cpu_start;
964 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
965 	unsigned int cpu;
966 
967 	for_each_possible_cpu(cpu) {
968 		void *start = per_cpu_ptr(base, cpu);
969 
970 		if ((void *)addr >= start && (void *)addr < start + static_size)
971 			return true;
972         }
973 #endif
974 	/* on UP, can't distinguish from other static vars, always false */
975 	return false;
976 }
977 
978 /**
979  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
980  * @addr: the address to be converted to physical address
981  *
982  * Given @addr which is dereferenceable address obtained via one of
983  * percpu access macros, this function translates it into its physical
984  * address.  The caller is responsible for ensuring @addr stays valid
985  * until this function finishes.
986  *
987  * percpu allocator has special setup for the first chunk, which currently
988  * supports either embedding in linear address space or vmalloc mapping,
989  * and, from the second one, the backing allocator (currently either vm or
990  * km) provides translation.
991  *
992  * The addr can be tranlated simply without checking if it falls into the
993  * first chunk. But the current code reflects better how percpu allocator
994  * actually works, and the verification can discover both bugs in percpu
995  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
996  * code.
997  *
998  * RETURNS:
999  * The physical address for @addr.
1000  */
per_cpu_ptr_to_phys(void * addr)1001 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1002 {
1003 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1004 	bool in_first_chunk = false;
1005 	unsigned long first_low, first_high;
1006 	unsigned int cpu;
1007 
1008 	/*
1009 	 * The following test on unit_low/high isn't strictly
1010 	 * necessary but will speed up lookups of addresses which
1011 	 * aren't in the first chunk.
1012 	 */
1013 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1014 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1015 				     pcpu_unit_pages);
1016 	if ((unsigned long)addr >= first_low &&
1017 	    (unsigned long)addr < first_high) {
1018 		for_each_possible_cpu(cpu) {
1019 			void *start = per_cpu_ptr(base, cpu);
1020 
1021 			if (addr >= start && addr < start + pcpu_unit_size) {
1022 				in_first_chunk = true;
1023 				break;
1024 			}
1025 		}
1026 	}
1027 
1028 	if (in_first_chunk) {
1029 		if (!is_vmalloc_addr(addr))
1030 			return __pa(addr);
1031 		else
1032 			return page_to_phys(vmalloc_to_page(addr)) +
1033 			       offset_in_page(addr);
1034 	} else
1035 		return page_to_phys(pcpu_addr_to_page(addr)) +
1036 		       offset_in_page(addr);
1037 }
1038 
1039 /**
1040  * pcpu_alloc_alloc_info - allocate percpu allocation info
1041  * @nr_groups: the number of groups
1042  * @nr_units: the number of units
1043  *
1044  * Allocate ai which is large enough for @nr_groups groups containing
1045  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1046  * cpu_map array which is long enough for @nr_units and filled with
1047  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1048  * pointer of other groups.
1049  *
1050  * RETURNS:
1051  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1052  * failure.
1053  */
pcpu_alloc_alloc_info(int nr_groups,int nr_units)1054 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1055 						      int nr_units)
1056 {
1057 	struct pcpu_alloc_info *ai;
1058 	size_t base_size, ai_size;
1059 	void *ptr;
1060 	int unit;
1061 
1062 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1063 			  __alignof__(ai->groups[0].cpu_map[0]));
1064 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1065 
1066 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1067 	if (!ptr)
1068 		return NULL;
1069 	ai = ptr;
1070 	ptr += base_size;
1071 
1072 	ai->groups[0].cpu_map = ptr;
1073 
1074 	for (unit = 0; unit < nr_units; unit++)
1075 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1076 
1077 	ai->nr_groups = nr_groups;
1078 	ai->__ai_size = PFN_ALIGN(ai_size);
1079 
1080 	return ai;
1081 }
1082 
1083 /**
1084  * pcpu_free_alloc_info - free percpu allocation info
1085  * @ai: pcpu_alloc_info to free
1086  *
1087  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1088  */
pcpu_free_alloc_info(struct pcpu_alloc_info * ai)1089 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1090 {
1091 	free_bootmem(__pa(ai), ai->__ai_size);
1092 }
1093 
1094 /**
1095  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1096  * @lvl: loglevel
1097  * @ai: allocation info to dump
1098  *
1099  * Print out information about @ai using loglevel @lvl.
1100  */
pcpu_dump_alloc_info(const char * lvl,const struct pcpu_alloc_info * ai)1101 static void pcpu_dump_alloc_info(const char *lvl,
1102 				 const struct pcpu_alloc_info *ai)
1103 {
1104 	int group_width = 1, cpu_width = 1, width;
1105 	char empty_str[] = "--------";
1106 	int alloc = 0, alloc_end = 0;
1107 	int group, v;
1108 	int upa, apl;	/* units per alloc, allocs per line */
1109 
1110 	v = ai->nr_groups;
1111 	while (v /= 10)
1112 		group_width++;
1113 
1114 	v = num_possible_cpus();
1115 	while (v /= 10)
1116 		cpu_width++;
1117 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1118 
1119 	upa = ai->alloc_size / ai->unit_size;
1120 	width = upa * (cpu_width + 1) + group_width + 3;
1121 	apl = rounddown_pow_of_two(max(60 / width, 1));
1122 
1123 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1124 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1125 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1126 
1127 	for (group = 0; group < ai->nr_groups; group++) {
1128 		const struct pcpu_group_info *gi = &ai->groups[group];
1129 		int unit = 0, unit_end = 0;
1130 
1131 		BUG_ON(gi->nr_units % upa);
1132 		for (alloc_end += gi->nr_units / upa;
1133 		     alloc < alloc_end; alloc++) {
1134 			if (!(alloc % apl)) {
1135 				printk(KERN_CONT "\n");
1136 				printk("%spcpu-alloc: ", lvl);
1137 			}
1138 			printk(KERN_CONT "[%0*d] ", group_width, group);
1139 
1140 			for (unit_end += upa; unit < unit_end; unit++)
1141 				if (gi->cpu_map[unit] != NR_CPUS)
1142 					printk(KERN_CONT "%0*d ", cpu_width,
1143 					       gi->cpu_map[unit]);
1144 				else
1145 					printk(KERN_CONT "%s ", empty_str);
1146 		}
1147 	}
1148 	printk(KERN_CONT "\n");
1149 }
1150 
1151 /**
1152  * pcpu_setup_first_chunk - initialize the first percpu chunk
1153  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1154  * @base_addr: mapped address
1155  *
1156  * Initialize the first percpu chunk which contains the kernel static
1157  * perpcu area.  This function is to be called from arch percpu area
1158  * setup path.
1159  *
1160  * @ai contains all information necessary to initialize the first
1161  * chunk and prime the dynamic percpu allocator.
1162  *
1163  * @ai->static_size is the size of static percpu area.
1164  *
1165  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1166  * reserve after the static area in the first chunk.  This reserves
1167  * the first chunk such that it's available only through reserved
1168  * percpu allocation.  This is primarily used to serve module percpu
1169  * static areas on architectures where the addressing model has
1170  * limited offset range for symbol relocations to guarantee module
1171  * percpu symbols fall inside the relocatable range.
1172  *
1173  * @ai->dyn_size determines the number of bytes available for dynamic
1174  * allocation in the first chunk.  The area between @ai->static_size +
1175  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1176  *
1177  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1178  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1179  * @ai->dyn_size.
1180  *
1181  * @ai->atom_size is the allocation atom size and used as alignment
1182  * for vm areas.
1183  *
1184  * @ai->alloc_size is the allocation size and always multiple of
1185  * @ai->atom_size.  This is larger than @ai->atom_size if
1186  * @ai->unit_size is larger than @ai->atom_size.
1187  *
1188  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1189  * percpu areas.  Units which should be colocated are put into the
1190  * same group.  Dynamic VM areas will be allocated according to these
1191  * groupings.  If @ai->nr_groups is zero, a single group containing
1192  * all units is assumed.
1193  *
1194  * The caller should have mapped the first chunk at @base_addr and
1195  * copied static data to each unit.
1196  *
1197  * If the first chunk ends up with both reserved and dynamic areas, it
1198  * is served by two chunks - one to serve the core static and reserved
1199  * areas and the other for the dynamic area.  They share the same vm
1200  * and page map but uses different area allocation map to stay away
1201  * from each other.  The latter chunk is circulated in the chunk slots
1202  * and available for dynamic allocation like any other chunks.
1203  *
1204  * RETURNS:
1205  * 0 on success, -errno on failure.
1206  */
pcpu_setup_first_chunk(const struct pcpu_alloc_info * ai,void * base_addr)1207 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1208 				  void *base_addr)
1209 {
1210 	static char cpus_buf[4096] __initdata;
1211 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1212 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1213 	size_t dyn_size = ai->dyn_size;
1214 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1215 	struct pcpu_chunk *schunk, *dchunk = NULL;
1216 	unsigned long *group_offsets;
1217 	size_t *group_sizes;
1218 	unsigned long *unit_off;
1219 	unsigned int cpu;
1220 	int *unit_map;
1221 	int group, unit, i;
1222 
1223 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1224 
1225 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1226 	if (unlikely(cond)) {						\
1227 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1228 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1229 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1230 		BUG();							\
1231 	}								\
1232 } while (0)
1233 
1234 	/* sanity checks */
1235 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1236 #ifdef CONFIG_SMP
1237 	PCPU_SETUP_BUG_ON(!ai->static_size);
1238 	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1239 #endif
1240 	PCPU_SETUP_BUG_ON(!base_addr);
1241 	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1242 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1243 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1244 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1245 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1246 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1247 
1248 	/* process group information and build config tables accordingly */
1249 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1250 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1251 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1252 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1253 
1254 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1255 		unit_map[cpu] = UINT_MAX;
1256 
1257 	pcpu_low_unit_cpu = NR_CPUS;
1258 	pcpu_high_unit_cpu = NR_CPUS;
1259 
1260 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1261 		const struct pcpu_group_info *gi = &ai->groups[group];
1262 
1263 		group_offsets[group] = gi->base_offset;
1264 		group_sizes[group] = gi->nr_units * ai->unit_size;
1265 
1266 		for (i = 0; i < gi->nr_units; i++) {
1267 			cpu = gi->cpu_map[i];
1268 			if (cpu == NR_CPUS)
1269 				continue;
1270 
1271 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1272 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1273 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1274 
1275 			unit_map[cpu] = unit + i;
1276 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1277 
1278 			/* determine low/high unit_cpu */
1279 			if (pcpu_low_unit_cpu == NR_CPUS ||
1280 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1281 				pcpu_low_unit_cpu = cpu;
1282 			if (pcpu_high_unit_cpu == NR_CPUS ||
1283 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1284 				pcpu_high_unit_cpu = cpu;
1285 		}
1286 	}
1287 	pcpu_nr_units = unit;
1288 
1289 	for_each_possible_cpu(cpu)
1290 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1291 
1292 	/* we're done parsing the input, undefine BUG macro and dump config */
1293 #undef PCPU_SETUP_BUG_ON
1294 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1295 
1296 	pcpu_nr_groups = ai->nr_groups;
1297 	pcpu_group_offsets = group_offsets;
1298 	pcpu_group_sizes = group_sizes;
1299 	pcpu_unit_map = unit_map;
1300 	pcpu_unit_offsets = unit_off;
1301 
1302 	/* determine basic parameters */
1303 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1304 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1305 	pcpu_atom_size = ai->atom_size;
1306 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1307 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1308 
1309 	/*
1310 	 * Allocate chunk slots.  The additional last slot is for
1311 	 * empty chunks.
1312 	 */
1313 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1314 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1315 	for (i = 0; i < pcpu_nr_slots; i++)
1316 		INIT_LIST_HEAD(&pcpu_slot[i]);
1317 
1318 	/*
1319 	 * Initialize static chunk.  If reserved_size is zero, the
1320 	 * static chunk covers static area + dynamic allocation area
1321 	 * in the first chunk.  If reserved_size is not zero, it
1322 	 * covers static area + reserved area (mostly used for module
1323 	 * static percpu allocation).
1324 	 */
1325 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1326 	INIT_LIST_HEAD(&schunk->list);
1327 	schunk->base_addr = base_addr;
1328 	schunk->map = smap;
1329 	schunk->map_alloc = ARRAY_SIZE(smap);
1330 	schunk->immutable = true;
1331 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1332 
1333 	if (ai->reserved_size) {
1334 		schunk->free_size = ai->reserved_size;
1335 		pcpu_reserved_chunk = schunk;
1336 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1337 	} else {
1338 		schunk->free_size = dyn_size;
1339 		dyn_size = 0;			/* dynamic area covered */
1340 	}
1341 	schunk->contig_hint = schunk->free_size;
1342 
1343 	schunk->map[schunk->map_used++] = -ai->static_size;
1344 	if (schunk->free_size)
1345 		schunk->map[schunk->map_used++] = schunk->free_size;
1346 
1347 	/* init dynamic chunk if necessary */
1348 	if (dyn_size) {
1349 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1350 		INIT_LIST_HEAD(&dchunk->list);
1351 		dchunk->base_addr = base_addr;
1352 		dchunk->map = dmap;
1353 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1354 		dchunk->immutable = true;
1355 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1356 
1357 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1358 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1359 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1360 	}
1361 
1362 	/* link the first chunk in */
1363 	pcpu_first_chunk = dchunk ?: schunk;
1364 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1365 
1366 	/* we're done */
1367 	pcpu_base_addr = base_addr;
1368 	return 0;
1369 }
1370 
1371 #ifdef CONFIG_SMP
1372 
1373 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1374 	[PCPU_FC_AUTO]	= "auto",
1375 	[PCPU_FC_EMBED]	= "embed",
1376 	[PCPU_FC_PAGE]	= "page",
1377 };
1378 
1379 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1380 
percpu_alloc_setup(char * str)1381 static int __init percpu_alloc_setup(char *str)
1382 {
1383 	if (0)
1384 		/* nada */;
1385 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1386 	else if (!strcmp(str, "embed"))
1387 		pcpu_chosen_fc = PCPU_FC_EMBED;
1388 #endif
1389 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1390 	else if (!strcmp(str, "page"))
1391 		pcpu_chosen_fc = PCPU_FC_PAGE;
1392 #endif
1393 	else
1394 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1395 
1396 	return 0;
1397 }
1398 early_param("percpu_alloc", percpu_alloc_setup);
1399 
1400 /*
1401  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1402  * Build it if needed by the arch config or the generic setup is going
1403  * to be used.
1404  */
1405 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1406 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1407 #define BUILD_EMBED_FIRST_CHUNK
1408 #endif
1409 
1410 /* build pcpu_page_first_chunk() iff needed by the arch config */
1411 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1412 #define BUILD_PAGE_FIRST_CHUNK
1413 #endif
1414 
1415 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1416 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1417 /**
1418  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1419  * @reserved_size: the size of reserved percpu area in bytes
1420  * @dyn_size: minimum free size for dynamic allocation in bytes
1421  * @atom_size: allocation atom size
1422  * @cpu_distance_fn: callback to determine distance between cpus, optional
1423  *
1424  * This function determines grouping of units, their mappings to cpus
1425  * and other parameters considering needed percpu size, allocation
1426  * atom size and distances between CPUs.
1427  *
1428  * Groups are always mutliples of atom size and CPUs which are of
1429  * LOCAL_DISTANCE both ways are grouped together and share space for
1430  * units in the same group.  The returned configuration is guaranteed
1431  * to have CPUs on different nodes on different groups and >=75% usage
1432  * of allocated virtual address space.
1433  *
1434  * RETURNS:
1435  * On success, pointer to the new allocation_info is returned.  On
1436  * failure, ERR_PTR value is returned.
1437  */
pcpu_build_alloc_info(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn)1438 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1439 				size_t reserved_size, size_t dyn_size,
1440 				size_t atom_size,
1441 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1442 {
1443 	static int group_map[NR_CPUS] __initdata;
1444 	static int group_cnt[NR_CPUS] __initdata;
1445 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1446 	int nr_groups = 1, nr_units = 0;
1447 	size_t size_sum, min_unit_size, alloc_size;
1448 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1449 	int last_allocs, group, unit;
1450 	unsigned int cpu, tcpu;
1451 	struct pcpu_alloc_info *ai;
1452 	unsigned int *cpu_map;
1453 
1454 	/* this function may be called multiple times */
1455 	memset(group_map, 0, sizeof(group_map));
1456 	memset(group_cnt, 0, sizeof(group_cnt));
1457 
1458 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1459 	size_sum = PFN_ALIGN(static_size + reserved_size +
1460 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1461 	dyn_size = size_sum - static_size - reserved_size;
1462 
1463 	/*
1464 	 * Determine min_unit_size, alloc_size and max_upa such that
1465 	 * alloc_size is multiple of atom_size and is the smallest
1466 	 * which can accommodate 4k aligned segments which are equal to
1467 	 * or larger than min_unit_size.
1468 	 */
1469 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1470 
1471 	alloc_size = roundup(min_unit_size, atom_size);
1472 	upa = alloc_size / min_unit_size;
1473 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1474 		upa--;
1475 	max_upa = upa;
1476 
1477 	/* group cpus according to their proximity */
1478 	for_each_possible_cpu(cpu) {
1479 		group = 0;
1480 	next_group:
1481 		for_each_possible_cpu(tcpu) {
1482 			if (cpu == tcpu)
1483 				break;
1484 			if (group_map[tcpu] == group && cpu_distance_fn &&
1485 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1486 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1487 				group++;
1488 				nr_groups = max(nr_groups, group + 1);
1489 				goto next_group;
1490 			}
1491 		}
1492 		group_map[cpu] = group;
1493 		group_cnt[group]++;
1494 	}
1495 
1496 	/*
1497 	 * Expand unit size until address space usage goes over 75%
1498 	 * and then as much as possible without using more address
1499 	 * space.
1500 	 */
1501 	last_allocs = INT_MAX;
1502 	for (upa = max_upa; upa; upa--) {
1503 		int allocs = 0, wasted = 0;
1504 
1505 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1506 			continue;
1507 
1508 		for (group = 0; group < nr_groups; group++) {
1509 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1510 			allocs += this_allocs;
1511 			wasted += this_allocs * upa - group_cnt[group];
1512 		}
1513 
1514 		/*
1515 		 * Don't accept if wastage is over 1/3.  The
1516 		 * greater-than comparison ensures upa==1 always
1517 		 * passes the following check.
1518 		 */
1519 		if (wasted > num_possible_cpus() / 3)
1520 			continue;
1521 
1522 		/* and then don't consume more memory */
1523 		if (allocs > last_allocs)
1524 			break;
1525 		last_allocs = allocs;
1526 		best_upa = upa;
1527 	}
1528 	upa = best_upa;
1529 
1530 	/* allocate and fill alloc_info */
1531 	for (group = 0; group < nr_groups; group++)
1532 		nr_units += roundup(group_cnt[group], upa);
1533 
1534 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1535 	if (!ai)
1536 		return ERR_PTR(-ENOMEM);
1537 	cpu_map = ai->groups[0].cpu_map;
1538 
1539 	for (group = 0; group < nr_groups; group++) {
1540 		ai->groups[group].cpu_map = cpu_map;
1541 		cpu_map += roundup(group_cnt[group], upa);
1542 	}
1543 
1544 	ai->static_size = static_size;
1545 	ai->reserved_size = reserved_size;
1546 	ai->dyn_size = dyn_size;
1547 	ai->unit_size = alloc_size / upa;
1548 	ai->atom_size = atom_size;
1549 	ai->alloc_size = alloc_size;
1550 
1551 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1552 		struct pcpu_group_info *gi = &ai->groups[group];
1553 
1554 		/*
1555 		 * Initialize base_offset as if all groups are located
1556 		 * back-to-back.  The caller should update this to
1557 		 * reflect actual allocation.
1558 		 */
1559 		gi->base_offset = unit * ai->unit_size;
1560 
1561 		for_each_possible_cpu(cpu)
1562 			if (group_map[cpu] == group)
1563 				gi->cpu_map[gi->nr_units++] = cpu;
1564 		gi->nr_units = roundup(gi->nr_units, upa);
1565 		unit += gi->nr_units;
1566 	}
1567 	BUG_ON(unit != nr_units);
1568 
1569 	return ai;
1570 }
1571 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1572 
1573 #if defined(BUILD_EMBED_FIRST_CHUNK)
1574 /**
1575  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1576  * @reserved_size: the size of reserved percpu area in bytes
1577  * @dyn_size: minimum free size for dynamic allocation in bytes
1578  * @atom_size: allocation atom size
1579  * @cpu_distance_fn: callback to determine distance between cpus, optional
1580  * @alloc_fn: function to allocate percpu page
1581  * @free_fn: function to free percpu page
1582  *
1583  * This is a helper to ease setting up embedded first percpu chunk and
1584  * can be called where pcpu_setup_first_chunk() is expected.
1585  *
1586  * If this function is used to setup the first chunk, it is allocated
1587  * by calling @alloc_fn and used as-is without being mapped into
1588  * vmalloc area.  Allocations are always whole multiples of @atom_size
1589  * aligned to @atom_size.
1590  *
1591  * This enables the first chunk to piggy back on the linear physical
1592  * mapping which often uses larger page size.  Please note that this
1593  * can result in very sparse cpu->unit mapping on NUMA machines thus
1594  * requiring large vmalloc address space.  Don't use this allocator if
1595  * vmalloc space is not orders of magnitude larger than distances
1596  * between node memory addresses (ie. 32bit NUMA machines).
1597  *
1598  * @dyn_size specifies the minimum dynamic area size.
1599  *
1600  * If the needed size is smaller than the minimum or specified unit
1601  * size, the leftover is returned using @free_fn.
1602  *
1603  * RETURNS:
1604  * 0 on success, -errno on failure.
1605  */
pcpu_embed_first_chunk(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn)1606 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1607 				  size_t atom_size,
1608 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1609 				  pcpu_fc_alloc_fn_t alloc_fn,
1610 				  pcpu_fc_free_fn_t free_fn)
1611 {
1612 	void *base = (void *)ULONG_MAX;
1613 	void **areas = NULL;
1614 	struct pcpu_alloc_info *ai;
1615 	size_t size_sum, areas_size, max_distance;
1616 	int group, i, rc;
1617 
1618 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1619 				   cpu_distance_fn);
1620 	if (IS_ERR(ai))
1621 		return PTR_ERR(ai);
1622 
1623 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1624 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1625 
1626 	areas = alloc_bootmem_nopanic(areas_size);
1627 	if (!areas) {
1628 		rc = -ENOMEM;
1629 		goto out_free;
1630 	}
1631 
1632 	/* allocate, copy and determine base address */
1633 	for (group = 0; group < ai->nr_groups; group++) {
1634 		struct pcpu_group_info *gi = &ai->groups[group];
1635 		unsigned int cpu = NR_CPUS;
1636 		void *ptr;
1637 
1638 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1639 			cpu = gi->cpu_map[i];
1640 		BUG_ON(cpu == NR_CPUS);
1641 
1642 		/* allocate space for the whole group */
1643 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1644 		if (!ptr) {
1645 			rc = -ENOMEM;
1646 			goto out_free_areas;
1647 		}
1648 		/* kmemleak tracks the percpu allocations separately */
1649 		kmemleak_free(ptr);
1650 		areas[group] = ptr;
1651 
1652 		base = min(ptr, base);
1653 	}
1654 
1655 	/*
1656 	 * Copy data and free unused parts.  This should happen after all
1657 	 * allocations are complete; otherwise, we may end up with
1658 	 * overlapping groups.
1659 	 */
1660 	for (group = 0; group < ai->nr_groups; group++) {
1661 		struct pcpu_group_info *gi = &ai->groups[group];
1662 		void *ptr = areas[group];
1663 
1664 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1665 			if (gi->cpu_map[i] == NR_CPUS) {
1666 				/* unused unit, free whole */
1667 				free_fn(ptr, ai->unit_size);
1668 				continue;
1669 			}
1670 			/* copy and return the unused part */
1671 			memcpy(ptr, __per_cpu_load, ai->static_size);
1672 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1673 		}
1674 	}
1675 
1676 	/* base address is now known, determine group base offsets */
1677 	max_distance = 0;
1678 	for (group = 0; group < ai->nr_groups; group++) {
1679 		ai->groups[group].base_offset = areas[group] - base;
1680 		max_distance = max_t(size_t, max_distance,
1681 				     ai->groups[group].base_offset);
1682 	}
1683 	max_distance += ai->unit_size;
1684 
1685 	/* warn if maximum distance is further than 75% of vmalloc space */
1686 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1687 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1688 			   "space 0x%lx\n", max_distance,
1689 			   (unsigned long)(VMALLOC_END - VMALLOC_START));
1690 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1691 		/* and fail if we have fallback */
1692 		rc = -EINVAL;
1693 		goto out_free;
1694 #endif
1695 	}
1696 
1697 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1698 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1699 		ai->dyn_size, ai->unit_size);
1700 
1701 	rc = pcpu_setup_first_chunk(ai, base);
1702 	goto out_free;
1703 
1704 out_free_areas:
1705 	for (group = 0; group < ai->nr_groups; group++)
1706 		free_fn(areas[group],
1707 			ai->groups[group].nr_units * ai->unit_size);
1708 out_free:
1709 	pcpu_free_alloc_info(ai);
1710 	if (areas)
1711 		free_bootmem(__pa(areas), areas_size);
1712 	return rc;
1713 }
1714 #endif /* BUILD_EMBED_FIRST_CHUNK */
1715 
1716 #ifdef BUILD_PAGE_FIRST_CHUNK
1717 /**
1718  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1719  * @reserved_size: the size of reserved percpu area in bytes
1720  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1721  * @free_fn: function to free percpu page, always called with PAGE_SIZE
1722  * @populate_pte_fn: function to populate pte
1723  *
1724  * This is a helper to ease setting up page-remapped first percpu
1725  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1726  *
1727  * This is the basic allocator.  Static percpu area is allocated
1728  * page-by-page into vmalloc area.
1729  *
1730  * RETURNS:
1731  * 0 on success, -errno on failure.
1732  */
pcpu_page_first_chunk(size_t reserved_size,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn,pcpu_fc_populate_pte_fn_t populate_pte_fn)1733 int __init pcpu_page_first_chunk(size_t reserved_size,
1734 				 pcpu_fc_alloc_fn_t alloc_fn,
1735 				 pcpu_fc_free_fn_t free_fn,
1736 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1737 {
1738 	static struct vm_struct vm;
1739 	struct pcpu_alloc_info *ai;
1740 	char psize_str[16];
1741 	int unit_pages;
1742 	size_t pages_size;
1743 	struct page **pages;
1744 	int unit, i, j, rc;
1745 
1746 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1747 
1748 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1749 	if (IS_ERR(ai))
1750 		return PTR_ERR(ai);
1751 	BUG_ON(ai->nr_groups != 1);
1752 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1753 
1754 	unit_pages = ai->unit_size >> PAGE_SHIFT;
1755 
1756 	/* unaligned allocations can't be freed, round up to page size */
1757 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1758 			       sizeof(pages[0]));
1759 	pages = alloc_bootmem(pages_size);
1760 
1761 	/* allocate pages */
1762 	j = 0;
1763 	for (unit = 0; unit < num_possible_cpus(); unit++)
1764 		for (i = 0; i < unit_pages; i++) {
1765 			unsigned int cpu = ai->groups[0].cpu_map[unit];
1766 			void *ptr;
1767 
1768 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1769 			if (!ptr) {
1770 				pr_warning("PERCPU: failed to allocate %s page "
1771 					   "for cpu%u\n", psize_str, cpu);
1772 				goto enomem;
1773 			}
1774 			/* kmemleak tracks the percpu allocations separately */
1775 			kmemleak_free(ptr);
1776 			pages[j++] = virt_to_page(ptr);
1777 		}
1778 
1779 	/* allocate vm area, map the pages and copy static data */
1780 	vm.flags = VM_ALLOC;
1781 	vm.size = num_possible_cpus() * ai->unit_size;
1782 	vm_area_register_early(&vm, PAGE_SIZE);
1783 
1784 	for (unit = 0; unit < num_possible_cpus(); unit++) {
1785 		unsigned long unit_addr =
1786 			(unsigned long)vm.addr + unit * ai->unit_size;
1787 
1788 		for (i = 0; i < unit_pages; i++)
1789 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1790 
1791 		/* pte already populated, the following shouldn't fail */
1792 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1793 				      unit_pages);
1794 		if (rc < 0)
1795 			panic("failed to map percpu area, err=%d\n", rc);
1796 
1797 		/*
1798 		 * FIXME: Archs with virtual cache should flush local
1799 		 * cache for the linear mapping here - something
1800 		 * equivalent to flush_cache_vmap() on the local cpu.
1801 		 * flush_cache_vmap() can't be used as most supporting
1802 		 * data structures are not set up yet.
1803 		 */
1804 
1805 		/* copy static data */
1806 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1807 	}
1808 
1809 	/* we're ready, commit */
1810 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1811 		unit_pages, psize_str, vm.addr, ai->static_size,
1812 		ai->reserved_size, ai->dyn_size);
1813 
1814 	rc = pcpu_setup_first_chunk(ai, vm.addr);
1815 	goto out_free_ar;
1816 
1817 enomem:
1818 	while (--j >= 0)
1819 		free_fn(page_address(pages[j]), PAGE_SIZE);
1820 	rc = -ENOMEM;
1821 out_free_ar:
1822 	free_bootmem(__pa(pages), pages_size);
1823 	pcpu_free_alloc_info(ai);
1824 	return rc;
1825 }
1826 #endif /* BUILD_PAGE_FIRST_CHUNK */
1827 
1828 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1829 /*
1830  * Generic SMP percpu area setup.
1831  *
1832  * The embedding helper is used because its behavior closely resembles
1833  * the original non-dynamic generic percpu area setup.  This is
1834  * important because many archs have addressing restrictions and might
1835  * fail if the percpu area is located far away from the previous
1836  * location.  As an added bonus, in non-NUMA cases, embedding is
1837  * generally a good idea TLB-wise because percpu area can piggy back
1838  * on the physical linear memory mapping which uses large page
1839  * mappings on applicable archs.
1840  */
1841 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1842 EXPORT_SYMBOL(__per_cpu_offset);
1843 
pcpu_dfl_fc_alloc(unsigned int cpu,size_t size,size_t align)1844 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1845 				       size_t align)
1846 {
1847 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1848 }
1849 
pcpu_dfl_fc_free(void * ptr,size_t size)1850 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1851 {
1852 	free_bootmem(__pa(ptr), size);
1853 }
1854 
setup_per_cpu_areas(void)1855 void __init setup_per_cpu_areas(void)
1856 {
1857 	unsigned long delta;
1858 	unsigned int cpu;
1859 	int rc;
1860 
1861 	/*
1862 	 * Always reserve area for module percpu variables.  That's
1863 	 * what the legacy allocator did.
1864 	 */
1865 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1866 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1867 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1868 	if (rc < 0)
1869 		panic("Failed to initialize percpu areas.");
1870 
1871 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1872 	for_each_possible_cpu(cpu)
1873 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1874 }
1875 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1876 
1877 #else	/* CONFIG_SMP */
1878 
1879 /*
1880  * UP percpu area setup.
1881  *
1882  * UP always uses km-based percpu allocator with identity mapping.
1883  * Static percpu variables are indistinguishable from the usual static
1884  * variables and don't require any special preparation.
1885  */
setup_per_cpu_areas(void)1886 void __init setup_per_cpu_areas(void)
1887 {
1888 	const size_t unit_size =
1889 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1890 					 PERCPU_DYNAMIC_RESERVE));
1891 	struct pcpu_alloc_info *ai;
1892 	void *fc;
1893 
1894 	ai = pcpu_alloc_alloc_info(1, 1);
1895 	fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1896 	if (!ai || !fc)
1897 		panic("Failed to allocate memory for percpu areas.");
1898 	/* kmemleak tracks the percpu allocations separately */
1899 	kmemleak_free(fc);
1900 
1901 	ai->dyn_size = unit_size;
1902 	ai->unit_size = unit_size;
1903 	ai->atom_size = unit_size;
1904 	ai->alloc_size = unit_size;
1905 	ai->groups[0].nr_units = 1;
1906 	ai->groups[0].cpu_map[0] = 0;
1907 
1908 	if (pcpu_setup_first_chunk(ai, fc) < 0)
1909 		panic("Failed to initialize percpu areas.");
1910 }
1911 
1912 #endif	/* CONFIG_SMP */
1913 
1914 /*
1915  * First and reserved chunks are initialized with temporary allocation
1916  * map in initdata so that they can be used before slab is online.
1917  * This function is called after slab is brought up and replaces those
1918  * with properly allocated maps.
1919  */
percpu_init_late(void)1920 void __init percpu_init_late(void)
1921 {
1922 	struct pcpu_chunk *target_chunks[] =
1923 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1924 	struct pcpu_chunk *chunk;
1925 	unsigned long flags;
1926 	int i;
1927 
1928 	for (i = 0; (chunk = target_chunks[i]); i++) {
1929 		int *map;
1930 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1931 
1932 		BUILD_BUG_ON(size > PAGE_SIZE);
1933 
1934 		map = pcpu_mem_zalloc(size);
1935 		BUG_ON(!map);
1936 
1937 		spin_lock_irqsave(&pcpu_lock, flags);
1938 		memcpy(map, chunk->map, size);
1939 		chunk->map = map;
1940 		spin_unlock_irqrestore(&pcpu_lock, flags);
1941 	}
1942 }
1943