1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27
28 const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38
39 unsigned int pci_pm_d3_delay;
40
41 static void pci_pme_list_scan(struct work_struct *work);
42
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46
47 struct pci_pme_device {
48 struct list_head list;
49 struct pci_dev *dev;
50 };
51
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53
pci_dev_d3_sleep(struct pci_dev * dev)54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 unsigned int delay = dev->d3_delay;
57
58 if (delay < pci_pm_d3_delay)
59 delay = pci_pm_d3_delay;
60
61 msleep(delay);
62 }
63
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67
68 #define DEFAULT_CARDBUS_IO_SIZE (256)
69 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73
74 #define DEFAULT_HOTPLUG_IO_SIZE (256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79
80 /*
81 * The default CLS is used if arch didn't set CLS explicitly and not
82 * all pci devices agree on the same value. Arch can override either
83 * the dfl or actual value as it sees fit. Don't forget this is
84 * measured in 32-bit words, not bytes.
85 */
86 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
87 u8 pci_cache_line_size;
88
89 /**
90 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
91 * @bus: pointer to PCI bus structure to search
92 *
93 * Given a PCI bus, returns the highest PCI bus number present in the set
94 * including the given PCI bus and its list of child PCI buses.
95 */
pci_bus_max_busnr(struct pci_bus * bus)96 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
97 {
98 struct list_head *tmp;
99 unsigned char max, n;
100
101 max = bus->subordinate;
102 list_for_each(tmp, &bus->children) {
103 n = pci_bus_max_busnr(pci_bus_b(tmp));
104 if(n > max)
105 max = n;
106 }
107 return max;
108 }
109 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
110
111 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)112 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
113 {
114 /*
115 * Make sure the BAR is actually a memory resource, not an IO resource
116 */
117 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
118 WARN_ON(1);
119 return NULL;
120 }
121 return ioremap_nocache(pci_resource_start(pdev, bar),
122 pci_resource_len(pdev, bar));
123 }
124 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
125 #endif
126
127 #if 0
128 /**
129 * pci_max_busnr - returns maximum PCI bus number
130 *
131 * Returns the highest PCI bus number present in the system global list of
132 * PCI buses.
133 */
134 unsigned char __devinit
135 pci_max_busnr(void)
136 {
137 struct pci_bus *bus = NULL;
138 unsigned char max, n;
139
140 max = 0;
141 while ((bus = pci_find_next_bus(bus)) != NULL) {
142 n = pci_bus_max_busnr(bus);
143 if(n > max)
144 max = n;
145 }
146 return max;
147 }
148
149 #endif /* 0 */
150
151 #define PCI_FIND_CAP_TTL 48
152
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)153 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
154 u8 pos, int cap, int *ttl)
155 {
156 u8 id;
157
158 while ((*ttl)--) {
159 pci_bus_read_config_byte(bus, devfn, pos, &pos);
160 if (pos < 0x40)
161 break;
162 pos &= ~3;
163 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
164 &id);
165 if (id == 0xff)
166 break;
167 if (id == cap)
168 return pos;
169 pos += PCI_CAP_LIST_NEXT;
170 }
171 return 0;
172 }
173
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)174 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
175 u8 pos, int cap)
176 {
177 int ttl = PCI_FIND_CAP_TTL;
178
179 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
180 }
181
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)182 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
183 {
184 return __pci_find_next_cap(dev->bus, dev->devfn,
185 pos + PCI_CAP_LIST_NEXT, cap);
186 }
187 EXPORT_SYMBOL_GPL(pci_find_next_capability);
188
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)189 static int __pci_bus_find_cap_start(struct pci_bus *bus,
190 unsigned int devfn, u8 hdr_type)
191 {
192 u16 status;
193
194 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
195 if (!(status & PCI_STATUS_CAP_LIST))
196 return 0;
197
198 switch (hdr_type) {
199 case PCI_HEADER_TYPE_NORMAL:
200 case PCI_HEADER_TYPE_BRIDGE:
201 return PCI_CAPABILITY_LIST;
202 case PCI_HEADER_TYPE_CARDBUS:
203 return PCI_CB_CAPABILITY_LIST;
204 default:
205 return 0;
206 }
207
208 return 0;
209 }
210
211 /**
212 * pci_find_capability - query for devices' capabilities
213 * @dev: PCI device to query
214 * @cap: capability code
215 *
216 * Tell if a device supports a given PCI capability.
217 * Returns the address of the requested capability structure within the
218 * device's PCI configuration space or 0 in case the device does not
219 * support it. Possible values for @cap:
220 *
221 * %PCI_CAP_ID_PM Power Management
222 * %PCI_CAP_ID_AGP Accelerated Graphics Port
223 * %PCI_CAP_ID_VPD Vital Product Data
224 * %PCI_CAP_ID_SLOTID Slot Identification
225 * %PCI_CAP_ID_MSI Message Signalled Interrupts
226 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
227 * %PCI_CAP_ID_PCIX PCI-X
228 * %PCI_CAP_ID_EXP PCI Express
229 */
pci_find_capability(struct pci_dev * dev,int cap)230 int pci_find_capability(struct pci_dev *dev, int cap)
231 {
232 int pos;
233
234 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
235 if (pos)
236 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
237
238 return pos;
239 }
240
241 /**
242 * pci_bus_find_capability - query for devices' capabilities
243 * @bus: the PCI bus to query
244 * @devfn: PCI device to query
245 * @cap: capability code
246 *
247 * Like pci_find_capability() but works for pci devices that do not have a
248 * pci_dev structure set up yet.
249 *
250 * Returns the address of the requested capability structure within the
251 * device's PCI configuration space or 0 in case the device does not
252 * support it.
253 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)254 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
255 {
256 int pos;
257 u8 hdr_type;
258
259 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
260
261 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
262 if (pos)
263 pos = __pci_find_next_cap(bus, devfn, pos, cap);
264
265 return pos;
266 }
267
268 /**
269 * pci_find_ext_capability - Find an extended capability
270 * @dev: PCI device to query
271 * @cap: capability code
272 *
273 * Returns the address of the requested extended capability structure
274 * within the device's PCI configuration space or 0 if the device does
275 * not support it. Possible values for @cap:
276 *
277 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
278 * %PCI_EXT_CAP_ID_VC Virtual Channel
279 * %PCI_EXT_CAP_ID_DSN Device Serial Number
280 * %PCI_EXT_CAP_ID_PWR Power Budgeting
281 */
pci_find_ext_capability(struct pci_dev * dev,int cap)282 int pci_find_ext_capability(struct pci_dev *dev, int cap)
283 {
284 u32 header;
285 int ttl;
286 int pos = PCI_CFG_SPACE_SIZE;
287
288 /* minimum 8 bytes per capability */
289 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
290
291 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
292 return 0;
293
294 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
295 return 0;
296
297 /*
298 * If we have no capabilities, this is indicated by cap ID,
299 * cap version and next pointer all being 0.
300 */
301 if (header == 0)
302 return 0;
303
304 while (ttl-- > 0) {
305 if (PCI_EXT_CAP_ID(header) == cap)
306 return pos;
307
308 pos = PCI_EXT_CAP_NEXT(header);
309 if (pos < PCI_CFG_SPACE_SIZE)
310 break;
311
312 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
313 break;
314 }
315
316 return 0;
317 }
318 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
319
320 /**
321 * pci_bus_find_ext_capability - find an extended capability
322 * @bus: the PCI bus to query
323 * @devfn: PCI device to query
324 * @cap: capability code
325 *
326 * Like pci_find_ext_capability() but works for pci devices that do not have a
327 * pci_dev structure set up yet.
328 *
329 * Returns the address of the requested capability structure within the
330 * device's PCI configuration space or 0 in case the device does not
331 * support it.
332 */
pci_bus_find_ext_capability(struct pci_bus * bus,unsigned int devfn,int cap)333 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
334 int cap)
335 {
336 u32 header;
337 int ttl;
338 int pos = PCI_CFG_SPACE_SIZE;
339
340 /* minimum 8 bytes per capability */
341 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
342
343 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
344 return 0;
345 if (header == 0xffffffff || header == 0)
346 return 0;
347
348 while (ttl-- > 0) {
349 if (PCI_EXT_CAP_ID(header) == cap)
350 return pos;
351
352 pos = PCI_EXT_CAP_NEXT(header);
353 if (pos < PCI_CFG_SPACE_SIZE)
354 break;
355
356 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
357 break;
358 }
359
360 return 0;
361 }
362
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)363 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
364 {
365 int rc, ttl = PCI_FIND_CAP_TTL;
366 u8 cap, mask;
367
368 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
369 mask = HT_3BIT_CAP_MASK;
370 else
371 mask = HT_5BIT_CAP_MASK;
372
373 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
374 PCI_CAP_ID_HT, &ttl);
375 while (pos) {
376 rc = pci_read_config_byte(dev, pos + 3, &cap);
377 if (rc != PCIBIOS_SUCCESSFUL)
378 return 0;
379
380 if ((cap & mask) == ht_cap)
381 return pos;
382
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
384 pos + PCI_CAP_LIST_NEXT,
385 PCI_CAP_ID_HT, &ttl);
386 }
387
388 return 0;
389 }
390 /**
391 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
392 * @dev: PCI device to query
393 * @pos: Position from which to continue searching
394 * @ht_cap: Hypertransport capability code
395 *
396 * To be used in conjunction with pci_find_ht_capability() to search for
397 * all capabilities matching @ht_cap. @pos should always be a value returned
398 * from pci_find_ht_capability().
399 *
400 * NB. To be 100% safe against broken PCI devices, the caller should take
401 * steps to avoid an infinite loop.
402 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)403 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
404 {
405 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
406 }
407 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
408
409 /**
410 * pci_find_ht_capability - query a device's Hypertransport capabilities
411 * @dev: PCI device to query
412 * @ht_cap: Hypertransport capability code
413 *
414 * Tell if a device supports a given Hypertransport capability.
415 * Returns an address within the device's PCI configuration space
416 * or 0 in case the device does not support the request capability.
417 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
418 * which has a Hypertransport capability matching @ht_cap.
419 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)420 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
421 {
422 int pos;
423
424 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
425 if (pos)
426 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
427
428 return pos;
429 }
430 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
431
432 /**
433 * pci_find_parent_resource - return resource region of parent bus of given region
434 * @dev: PCI device structure contains resources to be searched
435 * @res: child resource record for which parent is sought
436 *
437 * For given resource region of given device, return the resource
438 * region of parent bus the given region is contained in or where
439 * it should be allocated from.
440 */
441 struct resource *
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)442 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
443 {
444 const struct pci_bus *bus = dev->bus;
445 int i;
446 struct resource *best = NULL, *r;
447
448 pci_bus_for_each_resource(bus, r, i) {
449 if (!r)
450 continue;
451 if (res->start && !(res->start >= r->start && res->end <= r->end))
452 continue; /* Not contained */
453 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
454 continue; /* Wrong type */
455 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
456 return r; /* Exact match */
457 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
458 if (r->flags & IORESOURCE_PREFETCH)
459 continue;
460 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
461 if (!best)
462 best = r;
463 }
464 return best;
465 }
466
467 /**
468 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
469 * @dev: PCI device to have its BARs restored
470 *
471 * Restore the BAR values for a given device, so as to make it
472 * accessible by its driver.
473 */
474 static void
pci_restore_bars(struct pci_dev * dev)475 pci_restore_bars(struct pci_dev *dev)
476 {
477 int i;
478
479 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
480 pci_update_resource(dev, i);
481 }
482
483 static struct pci_platform_pm_ops *pci_platform_pm;
484
pci_set_platform_pm(struct pci_platform_pm_ops * ops)485 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
486 {
487 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
488 || !ops->sleep_wake || !ops->can_wakeup)
489 return -EINVAL;
490 pci_platform_pm = ops;
491 return 0;
492 }
493
platform_pci_power_manageable(struct pci_dev * dev)494 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
495 {
496 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
497 }
498
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)499 static inline int platform_pci_set_power_state(struct pci_dev *dev,
500 pci_power_t t)
501 {
502 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
503 }
504
platform_pci_choose_state(struct pci_dev * dev)505 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
506 {
507 return pci_platform_pm ?
508 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
509 }
510
platform_pci_can_wakeup(struct pci_dev * dev)511 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
512 {
513 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
514 }
515
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)516 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
517 {
518 return pci_platform_pm ?
519 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
520 }
521
platform_pci_run_wake(struct pci_dev * dev,bool enable)522 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
523 {
524 return pci_platform_pm ?
525 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
526 }
527
528 /**
529 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
530 * given PCI device
531 * @dev: PCI device to handle.
532 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
533 *
534 * RETURN VALUE:
535 * -EINVAL if the requested state is invalid.
536 * -EIO if device does not support PCI PM or its PM capabilities register has a
537 * wrong version, or device doesn't support the requested state.
538 * 0 if device already is in the requested state.
539 * 0 if device's power state has been successfully changed.
540 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)541 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
542 {
543 u16 pmcsr;
544 bool need_restore = false;
545
546 /* Check if we're already there */
547 if (dev->current_state == state)
548 return 0;
549
550 if (!dev->pm_cap)
551 return -EIO;
552
553 if (state < PCI_D0 || state > PCI_D3hot)
554 return -EINVAL;
555
556 /* Validate current state:
557 * Can enter D0 from any state, but if we can only go deeper
558 * to sleep if we're already in a low power state
559 */
560 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
561 && dev->current_state > state) {
562 dev_err(&dev->dev, "invalid power transition "
563 "(from state %d to %d)\n", dev->current_state, state);
564 return -EINVAL;
565 }
566
567 /* check if this device supports the desired state */
568 if ((state == PCI_D1 && !dev->d1_support)
569 || (state == PCI_D2 && !dev->d2_support))
570 return -EIO;
571
572 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573
574 /* If we're (effectively) in D3, force entire word to 0.
575 * This doesn't affect PME_Status, disables PME_En, and
576 * sets PowerState to 0.
577 */
578 switch (dev->current_state) {
579 case PCI_D0:
580 case PCI_D1:
581 case PCI_D2:
582 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
583 pmcsr |= state;
584 break;
585 case PCI_D3hot:
586 case PCI_D3cold:
587 case PCI_UNKNOWN: /* Boot-up */
588 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
589 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
590 need_restore = true;
591 /* Fall-through: force to D0 */
592 default:
593 pmcsr = 0;
594 break;
595 }
596
597 /* enter specified state */
598 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
599
600 /* Mandatory power management transition delays */
601 /* see PCI PM 1.1 5.6.1 table 18 */
602 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
603 pci_dev_d3_sleep(dev);
604 else if (state == PCI_D2 || dev->current_state == PCI_D2)
605 udelay(PCI_PM_D2_DELAY);
606
607 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
608 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
609 if (dev->current_state != state && printk_ratelimit())
610 dev_info(&dev->dev, "Refused to change power state, "
611 "currently in D%d\n", dev->current_state);
612
613 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
614 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
615 * from D3hot to D0 _may_ perform an internal reset, thereby
616 * going to "D0 Uninitialized" rather than "D0 Initialized".
617 * For example, at least some versions of the 3c905B and the
618 * 3c556B exhibit this behaviour.
619 *
620 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
621 * devices in a D3hot state at boot. Consequently, we need to
622 * restore at least the BARs so that the device will be
623 * accessible to its driver.
624 */
625 if (need_restore)
626 pci_restore_bars(dev);
627
628 if (dev->bus->self)
629 pcie_aspm_pm_state_change(dev->bus->self);
630
631 return 0;
632 }
633
634 /**
635 * pci_update_current_state - Read PCI power state of given device from its
636 * PCI PM registers and cache it
637 * @dev: PCI device to handle.
638 * @state: State to cache in case the device doesn't have the PM capability
639 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)640 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
641 {
642 if (dev->pm_cap) {
643 u16 pmcsr;
644
645 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
646 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
647 } else {
648 dev->current_state = state;
649 }
650 }
651
652 /**
653 * pci_platform_power_transition - Use platform to change device power state
654 * @dev: PCI device to handle.
655 * @state: State to put the device into.
656 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)657 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
658 {
659 int error;
660
661 if (platform_pci_power_manageable(dev)) {
662 error = platform_pci_set_power_state(dev, state);
663 if (!error)
664 pci_update_current_state(dev, state);
665 } else {
666 error = -ENODEV;
667 /* Fall back to PCI_D0 if native PM is not supported */
668 if (!dev->pm_cap)
669 dev->current_state = PCI_D0;
670 }
671
672 return error;
673 }
674
675 /**
676 * __pci_start_power_transition - Start power transition of a PCI device
677 * @dev: PCI device to handle.
678 * @state: State to put the device into.
679 */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)680 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
681 {
682 if (state == PCI_D0)
683 pci_platform_power_transition(dev, PCI_D0);
684 }
685
686 /**
687 * __pci_complete_power_transition - Complete power transition of a PCI device
688 * @dev: PCI device to handle.
689 * @state: State to put the device into.
690 *
691 * This function should not be called directly by device drivers.
692 */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)693 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
694 {
695 return state >= PCI_D0 ?
696 pci_platform_power_transition(dev, state) : -EINVAL;
697 }
698 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
699
700 /**
701 * pci_set_power_state - Set the power state of a PCI device
702 * @dev: PCI device to handle.
703 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
704 *
705 * Transition a device to a new power state, using the platform firmware and/or
706 * the device's PCI PM registers.
707 *
708 * RETURN VALUE:
709 * -EINVAL if the requested state is invalid.
710 * -EIO if device does not support PCI PM or its PM capabilities register has a
711 * wrong version, or device doesn't support the requested state.
712 * 0 if device already is in the requested state.
713 * 0 if device's power state has been successfully changed.
714 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)715 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
716 {
717 int error;
718
719 /* bound the state we're entering */
720 if (state > PCI_D3hot)
721 state = PCI_D3hot;
722 else if (state < PCI_D0)
723 state = PCI_D0;
724 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
725 /*
726 * If the device or the parent bridge do not support PCI PM,
727 * ignore the request if we're doing anything other than putting
728 * it into D0 (which would only happen on boot).
729 */
730 return 0;
731
732 __pci_start_power_transition(dev, state);
733
734 /* This device is quirked not to be put into D3, so
735 don't put it in D3 */
736 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
737 return 0;
738
739 error = pci_raw_set_power_state(dev, state);
740
741 if (!__pci_complete_power_transition(dev, state))
742 error = 0;
743 /*
744 * When aspm_policy is "powersave" this call ensures
745 * that ASPM is configured.
746 */
747 if (!error && dev->bus->self)
748 pcie_aspm_powersave_config_link(dev->bus->self);
749
750 return error;
751 }
752
753 /**
754 * pci_choose_state - Choose the power state of a PCI device
755 * @dev: PCI device to be suspended
756 * @state: target sleep state for the whole system. This is the value
757 * that is passed to suspend() function.
758 *
759 * Returns PCI power state suitable for given device and given system
760 * message.
761 */
762
pci_choose_state(struct pci_dev * dev,pm_message_t state)763 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
764 {
765 pci_power_t ret;
766
767 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
768 return PCI_D0;
769
770 ret = platform_pci_choose_state(dev);
771 if (ret != PCI_POWER_ERROR)
772 return ret;
773
774 switch (state.event) {
775 case PM_EVENT_ON:
776 return PCI_D0;
777 case PM_EVENT_FREEZE:
778 case PM_EVENT_PRETHAW:
779 /* REVISIT both freeze and pre-thaw "should" use D0 */
780 case PM_EVENT_SUSPEND:
781 case PM_EVENT_HIBERNATE:
782 return PCI_D3hot;
783 default:
784 dev_info(&dev->dev, "unrecognized suspend event %d\n",
785 state.event);
786 BUG();
787 }
788 return PCI_D0;
789 }
790
791 EXPORT_SYMBOL(pci_choose_state);
792
793 #define PCI_EXP_SAVE_REGS 7
794
795 #define pcie_cap_has_devctl(type, flags) 1
796 #define pcie_cap_has_lnkctl(type, flags) \
797 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
798 (type == PCI_EXP_TYPE_ROOT_PORT || \
799 type == PCI_EXP_TYPE_ENDPOINT || \
800 type == PCI_EXP_TYPE_LEG_END))
801 #define pcie_cap_has_sltctl(type, flags) \
802 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
803 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
804 (type == PCI_EXP_TYPE_DOWNSTREAM && \
805 (flags & PCI_EXP_FLAGS_SLOT))))
806 #define pcie_cap_has_rtctl(type, flags) \
807 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
808 (type == PCI_EXP_TYPE_ROOT_PORT || \
809 type == PCI_EXP_TYPE_RC_EC))
810 #define pcie_cap_has_devctl2(type, flags) \
811 ((flags & PCI_EXP_FLAGS_VERS) > 1)
812 #define pcie_cap_has_lnkctl2(type, flags) \
813 ((flags & PCI_EXP_FLAGS_VERS) > 1)
814 #define pcie_cap_has_sltctl2(type, flags) \
815 ((flags & PCI_EXP_FLAGS_VERS) > 1)
816
pci_save_pcie_state(struct pci_dev * dev)817 static int pci_save_pcie_state(struct pci_dev *dev)
818 {
819 int pos, i = 0;
820 struct pci_cap_saved_state *save_state;
821 u16 *cap;
822 u16 flags;
823
824 pos = pci_pcie_cap(dev);
825 if (!pos)
826 return 0;
827
828 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
829 if (!save_state) {
830 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
831 return -ENOMEM;
832 }
833 cap = (u16 *)&save_state->data[0];
834
835 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
836
837 if (pcie_cap_has_devctl(dev->pcie_type, flags))
838 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
839 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
840 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
841 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
842 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
843 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
844 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
845 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
846 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
847 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
848 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
849 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
850 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
851
852 return 0;
853 }
854
pci_restore_pcie_state(struct pci_dev * dev)855 static void pci_restore_pcie_state(struct pci_dev *dev)
856 {
857 int i = 0, pos;
858 struct pci_cap_saved_state *save_state;
859 u16 *cap;
860 u16 flags;
861
862 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
863 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
864 if (!save_state || pos <= 0)
865 return;
866 cap = (u16 *)&save_state->data[0];
867
868 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
869
870 if (pcie_cap_has_devctl(dev->pcie_type, flags))
871 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
872 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
873 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
874 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
875 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
876 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
877 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
878 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
879 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
880 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
881 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
882 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
883 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
884 }
885
886
pci_save_pcix_state(struct pci_dev * dev)887 static int pci_save_pcix_state(struct pci_dev *dev)
888 {
889 int pos;
890 struct pci_cap_saved_state *save_state;
891
892 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
893 if (pos <= 0)
894 return 0;
895
896 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
897 if (!save_state) {
898 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
899 return -ENOMEM;
900 }
901
902 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
903
904 return 0;
905 }
906
pci_restore_pcix_state(struct pci_dev * dev)907 static void pci_restore_pcix_state(struct pci_dev *dev)
908 {
909 int i = 0, pos;
910 struct pci_cap_saved_state *save_state;
911 u16 *cap;
912
913 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
914 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
915 if (!save_state || pos <= 0)
916 return;
917 cap = (u16 *)&save_state->data[0];
918
919 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
920 }
921
922
923 /**
924 * pci_save_state - save the PCI configuration space of a device before suspending
925 * @dev: - PCI device that we're dealing with
926 */
927 int
pci_save_state(struct pci_dev * dev)928 pci_save_state(struct pci_dev *dev)
929 {
930 int i;
931 /* XXX: 100% dword access ok here? */
932 for (i = 0; i < 16; i++)
933 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
934 dev->state_saved = true;
935 if ((i = pci_save_pcie_state(dev)) != 0)
936 return i;
937 if ((i = pci_save_pcix_state(dev)) != 0)
938 return i;
939 return 0;
940 }
941
942 /**
943 * pci_restore_state - Restore the saved state of a PCI device
944 * @dev: - PCI device that we're dealing with
945 */
pci_restore_state(struct pci_dev * dev)946 void pci_restore_state(struct pci_dev *dev)
947 {
948 int i;
949 u32 val;
950
951 if (!dev->state_saved)
952 return;
953
954 /* PCI Express register must be restored first */
955 pci_restore_pcie_state(dev);
956
957 /*
958 * The Base Address register should be programmed before the command
959 * register(s)
960 */
961 for (i = 15; i >= 0; i--) {
962 pci_read_config_dword(dev, i * 4, &val);
963 if (val != dev->saved_config_space[i]) {
964 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
965 "space at offset %#x (was %#x, writing %#x)\n",
966 i, val, (int)dev->saved_config_space[i]);
967 pci_write_config_dword(dev,i * 4,
968 dev->saved_config_space[i]);
969 }
970 }
971 pci_restore_pcix_state(dev);
972 pci_restore_msi_state(dev);
973 pci_restore_iov_state(dev);
974
975 dev->state_saved = false;
976 }
977
do_pci_enable_device(struct pci_dev * dev,int bars)978 static int do_pci_enable_device(struct pci_dev *dev, int bars)
979 {
980 int err;
981
982 err = pci_set_power_state(dev, PCI_D0);
983 if (err < 0 && err != -EIO)
984 return err;
985 err = pcibios_enable_device(dev, bars);
986 if (err < 0)
987 return err;
988 pci_fixup_device(pci_fixup_enable, dev);
989
990 return 0;
991 }
992
993 /**
994 * pci_reenable_device - Resume abandoned device
995 * @dev: PCI device to be resumed
996 *
997 * Note this function is a backend of pci_default_resume and is not supposed
998 * to be called by normal code, write proper resume handler and use it instead.
999 */
pci_reenable_device(struct pci_dev * dev)1000 int pci_reenable_device(struct pci_dev *dev)
1001 {
1002 if (pci_is_enabled(dev))
1003 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1004 return 0;
1005 }
1006
__pci_enable_device_flags(struct pci_dev * dev,resource_size_t flags)1007 static int __pci_enable_device_flags(struct pci_dev *dev,
1008 resource_size_t flags)
1009 {
1010 int err;
1011 int i, bars = 0;
1012
1013 /*
1014 * Power state could be unknown at this point, either due to a fresh
1015 * boot or a device removal call. So get the current power state
1016 * so that things like MSI message writing will behave as expected
1017 * (e.g. if the device really is in D0 at enable time).
1018 */
1019 if (dev->pm_cap) {
1020 u16 pmcsr;
1021 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1022 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1023 }
1024
1025 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1026 return 0; /* already enabled */
1027
1028 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1029 if (dev->resource[i].flags & flags)
1030 bars |= (1 << i);
1031
1032 err = do_pci_enable_device(dev, bars);
1033 if (err < 0)
1034 atomic_dec(&dev->enable_cnt);
1035 return err;
1036 }
1037
1038 /**
1039 * pci_enable_device_io - Initialize a device for use with IO space
1040 * @dev: PCI device to be initialized
1041 *
1042 * Initialize device before it's used by a driver. Ask low-level code
1043 * to enable I/O resources. Wake up the device if it was suspended.
1044 * Beware, this function can fail.
1045 */
pci_enable_device_io(struct pci_dev * dev)1046 int pci_enable_device_io(struct pci_dev *dev)
1047 {
1048 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1049 }
1050
1051 /**
1052 * pci_enable_device_mem - Initialize a device for use with Memory space
1053 * @dev: PCI device to be initialized
1054 *
1055 * Initialize device before it's used by a driver. Ask low-level code
1056 * to enable Memory resources. Wake up the device if it was suspended.
1057 * Beware, this function can fail.
1058 */
pci_enable_device_mem(struct pci_dev * dev)1059 int pci_enable_device_mem(struct pci_dev *dev)
1060 {
1061 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1062 }
1063
1064 /**
1065 * pci_enable_device - Initialize device before it's used by a driver.
1066 * @dev: PCI device to be initialized
1067 *
1068 * Initialize device before it's used by a driver. Ask low-level code
1069 * to enable I/O and memory. Wake up the device if it was suspended.
1070 * Beware, this function can fail.
1071 *
1072 * Note we don't actually enable the device many times if we call
1073 * this function repeatedly (we just increment the count).
1074 */
pci_enable_device(struct pci_dev * dev)1075 int pci_enable_device(struct pci_dev *dev)
1076 {
1077 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1078 }
1079
1080 /*
1081 * Managed PCI resources. This manages device on/off, intx/msi/msix
1082 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1083 * there's no need to track it separately. pci_devres is initialized
1084 * when a device is enabled using managed PCI device enable interface.
1085 */
1086 struct pci_devres {
1087 unsigned int enabled:1;
1088 unsigned int pinned:1;
1089 unsigned int orig_intx:1;
1090 unsigned int restore_intx:1;
1091 u32 region_mask;
1092 };
1093
pcim_release(struct device * gendev,void * res)1094 static void pcim_release(struct device *gendev, void *res)
1095 {
1096 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1097 struct pci_devres *this = res;
1098 int i;
1099
1100 if (dev->msi_enabled)
1101 pci_disable_msi(dev);
1102 if (dev->msix_enabled)
1103 pci_disable_msix(dev);
1104
1105 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1106 if (this->region_mask & (1 << i))
1107 pci_release_region(dev, i);
1108
1109 if (this->restore_intx)
1110 pci_intx(dev, this->orig_intx);
1111
1112 if (this->enabled && !this->pinned)
1113 pci_disable_device(dev);
1114 }
1115
get_pci_dr(struct pci_dev * pdev)1116 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1117 {
1118 struct pci_devres *dr, *new_dr;
1119
1120 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1121 if (dr)
1122 return dr;
1123
1124 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1125 if (!new_dr)
1126 return NULL;
1127 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1128 }
1129
find_pci_dr(struct pci_dev * pdev)1130 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1131 {
1132 if (pci_is_managed(pdev))
1133 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1134 return NULL;
1135 }
1136
1137 /**
1138 * pcim_enable_device - Managed pci_enable_device()
1139 * @pdev: PCI device to be initialized
1140 *
1141 * Managed pci_enable_device().
1142 */
pcim_enable_device(struct pci_dev * pdev)1143 int pcim_enable_device(struct pci_dev *pdev)
1144 {
1145 struct pci_devres *dr;
1146 int rc;
1147
1148 dr = get_pci_dr(pdev);
1149 if (unlikely(!dr))
1150 return -ENOMEM;
1151 if (dr->enabled)
1152 return 0;
1153
1154 rc = pci_enable_device(pdev);
1155 if (!rc) {
1156 pdev->is_managed = 1;
1157 dr->enabled = 1;
1158 }
1159 return rc;
1160 }
1161
1162 /**
1163 * pcim_pin_device - Pin managed PCI device
1164 * @pdev: PCI device to pin
1165 *
1166 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1167 * driver detach. @pdev must have been enabled with
1168 * pcim_enable_device().
1169 */
pcim_pin_device(struct pci_dev * pdev)1170 void pcim_pin_device(struct pci_dev *pdev)
1171 {
1172 struct pci_devres *dr;
1173
1174 dr = find_pci_dr(pdev);
1175 WARN_ON(!dr || !dr->enabled);
1176 if (dr)
1177 dr->pinned = 1;
1178 }
1179
1180 /**
1181 * pcibios_disable_device - disable arch specific PCI resources for device dev
1182 * @dev: the PCI device to disable
1183 *
1184 * Disables architecture specific PCI resources for the device. This
1185 * is the default implementation. Architecture implementations can
1186 * override this.
1187 */
pcibios_disable_device(struct pci_dev * dev)1188 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1189
do_pci_disable_device(struct pci_dev * dev)1190 static void do_pci_disable_device(struct pci_dev *dev)
1191 {
1192 u16 pci_command;
1193
1194 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1195 if (pci_command & PCI_COMMAND_MASTER) {
1196 pci_command &= ~PCI_COMMAND_MASTER;
1197 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1198 }
1199
1200 pcibios_disable_device(dev);
1201 }
1202
1203 /**
1204 * pci_disable_enabled_device - Disable device without updating enable_cnt
1205 * @dev: PCI device to disable
1206 *
1207 * NOTE: This function is a backend of PCI power management routines and is
1208 * not supposed to be called drivers.
1209 */
pci_disable_enabled_device(struct pci_dev * dev)1210 void pci_disable_enabled_device(struct pci_dev *dev)
1211 {
1212 if (pci_is_enabled(dev))
1213 do_pci_disable_device(dev);
1214 }
1215
1216 /**
1217 * pci_disable_device - Disable PCI device after use
1218 * @dev: PCI device to be disabled
1219 *
1220 * Signal to the system that the PCI device is not in use by the system
1221 * anymore. This only involves disabling PCI bus-mastering, if active.
1222 *
1223 * Note we don't actually disable the device until all callers of
1224 * pci_enable_device() have called pci_disable_device().
1225 */
1226 void
pci_disable_device(struct pci_dev * dev)1227 pci_disable_device(struct pci_dev *dev)
1228 {
1229 struct pci_devres *dr;
1230
1231 dr = find_pci_dr(dev);
1232 if (dr)
1233 dr->enabled = 0;
1234
1235 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1236 return;
1237
1238 do_pci_disable_device(dev);
1239
1240 dev->is_busmaster = 0;
1241 }
1242
1243 /**
1244 * pcibios_set_pcie_reset_state - set reset state for device dev
1245 * @dev: the PCIe device reset
1246 * @state: Reset state to enter into
1247 *
1248 *
1249 * Sets the PCIe reset state for the device. This is the default
1250 * implementation. Architecture implementations can override this.
1251 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1252 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1253 enum pcie_reset_state state)
1254 {
1255 return -EINVAL;
1256 }
1257
1258 /**
1259 * pci_set_pcie_reset_state - set reset state for device dev
1260 * @dev: the PCIe device reset
1261 * @state: Reset state to enter into
1262 *
1263 *
1264 * Sets the PCI reset state for the device.
1265 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1266 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1267 {
1268 return pcibios_set_pcie_reset_state(dev, state);
1269 }
1270
1271 /**
1272 * pci_check_pme_status - Check if given device has generated PME.
1273 * @dev: Device to check.
1274 *
1275 * Check the PME status of the device and if set, clear it and clear PME enable
1276 * (if set). Return 'true' if PME status and PME enable were both set or
1277 * 'false' otherwise.
1278 */
pci_check_pme_status(struct pci_dev * dev)1279 bool pci_check_pme_status(struct pci_dev *dev)
1280 {
1281 int pmcsr_pos;
1282 u16 pmcsr;
1283 bool ret = false;
1284
1285 if (!dev->pm_cap)
1286 return false;
1287
1288 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1289 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1290 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1291 return false;
1292
1293 /* Clear PME status. */
1294 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1295 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1296 /* Disable PME to avoid interrupt flood. */
1297 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1298 ret = true;
1299 }
1300
1301 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1302
1303 return ret;
1304 }
1305
1306 /**
1307 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1308 * @dev: Device to handle.
1309 * @ign: Ignored.
1310 *
1311 * Check if @dev has generated PME and queue a resume request for it in that
1312 * case.
1313 */
pci_pme_wakeup(struct pci_dev * dev,void * ign)1314 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1315 {
1316 if (pci_check_pme_status(dev)) {
1317 pci_wakeup_event(dev);
1318 pm_request_resume(&dev->dev);
1319 }
1320 return 0;
1321 }
1322
1323 /**
1324 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1325 * @bus: Top bus of the subtree to walk.
1326 */
pci_pme_wakeup_bus(struct pci_bus * bus)1327 void pci_pme_wakeup_bus(struct pci_bus *bus)
1328 {
1329 if (bus)
1330 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1331 }
1332
1333 /**
1334 * pci_pme_capable - check the capability of PCI device to generate PME#
1335 * @dev: PCI device to handle.
1336 * @state: PCI state from which device will issue PME#.
1337 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1338 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1339 {
1340 if (!dev->pm_cap)
1341 return false;
1342
1343 return !!(dev->pme_support & (1 << state));
1344 }
1345
pci_pme_list_scan(struct work_struct * work)1346 static void pci_pme_list_scan(struct work_struct *work)
1347 {
1348 struct pci_pme_device *pme_dev;
1349
1350 mutex_lock(&pci_pme_list_mutex);
1351 if (!list_empty(&pci_pme_list)) {
1352 list_for_each_entry(pme_dev, &pci_pme_list, list)
1353 pci_pme_wakeup(pme_dev->dev, NULL);
1354 schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1355 }
1356 mutex_unlock(&pci_pme_list_mutex);
1357 }
1358
1359 /**
1360 * pci_external_pme - is a device an external PCI PME source?
1361 * @dev: PCI device to check
1362 *
1363 */
1364
pci_external_pme(struct pci_dev * dev)1365 static bool pci_external_pme(struct pci_dev *dev)
1366 {
1367 if (pci_is_pcie(dev) || dev->bus->number == 0)
1368 return false;
1369 return true;
1370 }
1371
1372 /**
1373 * pci_pme_active - enable or disable PCI device's PME# function
1374 * @dev: PCI device to handle.
1375 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1376 *
1377 * The caller must verify that the device is capable of generating PME# before
1378 * calling this function with @enable equal to 'true'.
1379 */
pci_pme_active(struct pci_dev * dev,bool enable)1380 void pci_pme_active(struct pci_dev *dev, bool enable)
1381 {
1382 u16 pmcsr;
1383
1384 if (!dev->pm_cap)
1385 return;
1386
1387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 /* Clear PME_Status by writing 1 to it and enable PME# */
1389 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1390 if (!enable)
1391 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1392
1393 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1394
1395 /* PCI (as opposed to PCIe) PME requires that the device have
1396 its PME# line hooked up correctly. Not all hardware vendors
1397 do this, so the PME never gets delivered and the device
1398 remains asleep. The easiest way around this is to
1399 periodically walk the list of suspended devices and check
1400 whether any have their PME flag set. The assumption is that
1401 we'll wake up often enough anyway that this won't be a huge
1402 hit, and the power savings from the devices will still be a
1403 win. */
1404
1405 if (pci_external_pme(dev)) {
1406 struct pci_pme_device *pme_dev;
1407 if (enable) {
1408 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1409 GFP_KERNEL);
1410 if (!pme_dev)
1411 goto out;
1412 pme_dev->dev = dev;
1413 mutex_lock(&pci_pme_list_mutex);
1414 list_add(&pme_dev->list, &pci_pme_list);
1415 if (list_is_singular(&pci_pme_list))
1416 schedule_delayed_work(&pci_pme_work,
1417 msecs_to_jiffies(PME_TIMEOUT));
1418 mutex_unlock(&pci_pme_list_mutex);
1419 } else {
1420 mutex_lock(&pci_pme_list_mutex);
1421 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1422 if (pme_dev->dev == dev) {
1423 list_del(&pme_dev->list);
1424 kfree(pme_dev);
1425 break;
1426 }
1427 }
1428 mutex_unlock(&pci_pme_list_mutex);
1429 }
1430 }
1431
1432 out:
1433 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1434 enable ? "enabled" : "disabled");
1435 }
1436
1437 /**
1438 * __pci_enable_wake - enable PCI device as wakeup event source
1439 * @dev: PCI device affected
1440 * @state: PCI state from which device will issue wakeup events
1441 * @runtime: True if the events are to be generated at run time
1442 * @enable: True to enable event generation; false to disable
1443 *
1444 * This enables the device as a wakeup event source, or disables it.
1445 * When such events involves platform-specific hooks, those hooks are
1446 * called automatically by this routine.
1447 *
1448 * Devices with legacy power management (no standard PCI PM capabilities)
1449 * always require such platform hooks.
1450 *
1451 * RETURN VALUE:
1452 * 0 is returned on success
1453 * -EINVAL is returned if device is not supposed to wake up the system
1454 * Error code depending on the platform is returned if both the platform and
1455 * the native mechanism fail to enable the generation of wake-up events
1456 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1457 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1458 bool runtime, bool enable)
1459 {
1460 int ret = 0;
1461
1462 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1463 return -EINVAL;
1464
1465 /* Don't do the same thing twice in a row for one device. */
1466 if (!!enable == !!dev->wakeup_prepared)
1467 return 0;
1468
1469 /*
1470 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1471 * Anderson we should be doing PME# wake enable followed by ACPI wake
1472 * enable. To disable wake-up we call the platform first, for symmetry.
1473 */
1474
1475 if (enable) {
1476 int error;
1477
1478 if (pci_pme_capable(dev, state))
1479 pci_pme_active(dev, true);
1480 else
1481 ret = 1;
1482 error = runtime ? platform_pci_run_wake(dev, true) :
1483 platform_pci_sleep_wake(dev, true);
1484 if (ret)
1485 ret = error;
1486 if (!ret)
1487 dev->wakeup_prepared = true;
1488 } else {
1489 if (runtime)
1490 platform_pci_run_wake(dev, false);
1491 else
1492 platform_pci_sleep_wake(dev, false);
1493 pci_pme_active(dev, false);
1494 dev->wakeup_prepared = false;
1495 }
1496
1497 return ret;
1498 }
1499 EXPORT_SYMBOL(__pci_enable_wake);
1500
1501 /**
1502 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1503 * @dev: PCI device to prepare
1504 * @enable: True to enable wake-up event generation; false to disable
1505 *
1506 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1507 * and this function allows them to set that up cleanly - pci_enable_wake()
1508 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1509 * ordering constraints.
1510 *
1511 * This function only returns error code if the device is not capable of
1512 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1513 * enable wake-up power for it.
1514 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1515 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1516 {
1517 return pci_pme_capable(dev, PCI_D3cold) ?
1518 pci_enable_wake(dev, PCI_D3cold, enable) :
1519 pci_enable_wake(dev, PCI_D3hot, enable);
1520 }
1521
1522 /**
1523 * pci_target_state - find an appropriate low power state for a given PCI dev
1524 * @dev: PCI device
1525 *
1526 * Use underlying platform code to find a supported low power state for @dev.
1527 * If the platform can't manage @dev, return the deepest state from which it
1528 * can generate wake events, based on any available PME info.
1529 */
pci_target_state(struct pci_dev * dev)1530 pci_power_t pci_target_state(struct pci_dev *dev)
1531 {
1532 pci_power_t target_state = PCI_D3hot;
1533
1534 if (platform_pci_power_manageable(dev)) {
1535 /*
1536 * Call the platform to choose the target state of the device
1537 * and enable wake-up from this state if supported.
1538 */
1539 pci_power_t state = platform_pci_choose_state(dev);
1540
1541 switch (state) {
1542 case PCI_POWER_ERROR:
1543 case PCI_UNKNOWN:
1544 break;
1545 case PCI_D1:
1546 case PCI_D2:
1547 if (pci_no_d1d2(dev))
1548 break;
1549 default:
1550 target_state = state;
1551 }
1552 } else if (!dev->pm_cap) {
1553 target_state = PCI_D0;
1554 } else if (device_may_wakeup(&dev->dev)) {
1555 /*
1556 * Find the deepest state from which the device can generate
1557 * wake-up events, make it the target state and enable device
1558 * to generate PME#.
1559 */
1560 if (dev->pme_support) {
1561 while (target_state
1562 && !(dev->pme_support & (1 << target_state)))
1563 target_state--;
1564 }
1565 }
1566
1567 return target_state;
1568 }
1569
1570 /**
1571 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1572 * @dev: Device to handle.
1573 *
1574 * Choose the power state appropriate for the device depending on whether
1575 * it can wake up the system and/or is power manageable by the platform
1576 * (PCI_D3hot is the default) and put the device into that state.
1577 */
pci_prepare_to_sleep(struct pci_dev * dev)1578 int pci_prepare_to_sleep(struct pci_dev *dev)
1579 {
1580 pci_power_t target_state = pci_target_state(dev);
1581 int error;
1582
1583 if (target_state == PCI_POWER_ERROR)
1584 return -EIO;
1585
1586 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1587
1588 error = pci_set_power_state(dev, target_state);
1589
1590 if (error)
1591 pci_enable_wake(dev, target_state, false);
1592
1593 return error;
1594 }
1595
1596 /**
1597 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1598 * @dev: Device to handle.
1599 *
1600 * Disable device's system wake-up capability and put it into D0.
1601 */
pci_back_from_sleep(struct pci_dev * dev)1602 int pci_back_from_sleep(struct pci_dev *dev)
1603 {
1604 pci_enable_wake(dev, PCI_D0, false);
1605 return pci_set_power_state(dev, PCI_D0);
1606 }
1607
1608 /**
1609 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1610 * @dev: PCI device being suspended.
1611 *
1612 * Prepare @dev to generate wake-up events at run time and put it into a low
1613 * power state.
1614 */
pci_finish_runtime_suspend(struct pci_dev * dev)1615 int pci_finish_runtime_suspend(struct pci_dev *dev)
1616 {
1617 pci_power_t target_state = pci_target_state(dev);
1618 int error;
1619
1620 if (target_state == PCI_POWER_ERROR)
1621 return -EIO;
1622
1623 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1624
1625 error = pci_set_power_state(dev, target_state);
1626
1627 if (error)
1628 __pci_enable_wake(dev, target_state, true, false);
1629
1630 return error;
1631 }
1632
1633 /**
1634 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1635 * @dev: Device to check.
1636 *
1637 * Return true if the device itself is cabable of generating wake-up events
1638 * (through the platform or using the native PCIe PME) or if the device supports
1639 * PME and one of its upstream bridges can generate wake-up events.
1640 */
pci_dev_run_wake(struct pci_dev * dev)1641 bool pci_dev_run_wake(struct pci_dev *dev)
1642 {
1643 struct pci_bus *bus = dev->bus;
1644
1645 if (device_run_wake(&dev->dev))
1646 return true;
1647
1648 if (!dev->pme_support)
1649 return false;
1650
1651 while (bus->parent) {
1652 struct pci_dev *bridge = bus->self;
1653
1654 if (device_run_wake(&bridge->dev))
1655 return true;
1656
1657 bus = bus->parent;
1658 }
1659
1660 /* We have reached the root bus. */
1661 if (bus->bridge)
1662 return device_run_wake(bus->bridge);
1663
1664 return false;
1665 }
1666 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1667
1668 /**
1669 * pci_pm_init - Initialize PM functions of given PCI device
1670 * @dev: PCI device to handle.
1671 */
pci_pm_init(struct pci_dev * dev)1672 void pci_pm_init(struct pci_dev *dev)
1673 {
1674 int pm;
1675 u16 pmc;
1676
1677 pm_runtime_forbid(&dev->dev);
1678 device_enable_async_suspend(&dev->dev);
1679 dev->wakeup_prepared = false;
1680
1681 dev->pm_cap = 0;
1682
1683 /* find PCI PM capability in list */
1684 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1685 if (!pm)
1686 return;
1687 /* Check device's ability to generate PME# */
1688 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1689
1690 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1691 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1692 pmc & PCI_PM_CAP_VER_MASK);
1693 return;
1694 }
1695
1696 dev->pm_cap = pm;
1697 dev->d3_delay = PCI_PM_D3_WAIT;
1698
1699 dev->d1_support = false;
1700 dev->d2_support = false;
1701 if (!pci_no_d1d2(dev)) {
1702 if (pmc & PCI_PM_CAP_D1)
1703 dev->d1_support = true;
1704 if (pmc & PCI_PM_CAP_D2)
1705 dev->d2_support = true;
1706
1707 if (dev->d1_support || dev->d2_support)
1708 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1709 dev->d1_support ? " D1" : "",
1710 dev->d2_support ? " D2" : "");
1711 }
1712
1713 pmc &= PCI_PM_CAP_PME_MASK;
1714 if (pmc) {
1715 dev_printk(KERN_DEBUG, &dev->dev,
1716 "PME# supported from%s%s%s%s%s\n",
1717 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1718 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1719 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1720 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1721 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1722 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1723 /*
1724 * Make device's PM flags reflect the wake-up capability, but
1725 * let the user space enable it to wake up the system as needed.
1726 */
1727 device_set_wakeup_capable(&dev->dev, true);
1728 /* Disable the PME# generation functionality */
1729 pci_pme_active(dev, false);
1730 } else {
1731 dev->pme_support = 0;
1732 }
1733 }
1734
1735 /**
1736 * platform_pci_wakeup_init - init platform wakeup if present
1737 * @dev: PCI device
1738 *
1739 * Some devices don't have PCI PM caps but can still generate wakeup
1740 * events through platform methods (like ACPI events). If @dev supports
1741 * platform wakeup events, set the device flag to indicate as much. This
1742 * may be redundant if the device also supports PCI PM caps, but double
1743 * initialization should be safe in that case.
1744 */
platform_pci_wakeup_init(struct pci_dev * dev)1745 void platform_pci_wakeup_init(struct pci_dev *dev)
1746 {
1747 if (!platform_pci_can_wakeup(dev))
1748 return;
1749
1750 device_set_wakeup_capable(&dev->dev, true);
1751 platform_pci_sleep_wake(dev, false);
1752 }
1753
1754 /**
1755 * pci_add_save_buffer - allocate buffer for saving given capability registers
1756 * @dev: the PCI device
1757 * @cap: the capability to allocate the buffer for
1758 * @size: requested size of the buffer
1759 */
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)1760 static int pci_add_cap_save_buffer(
1761 struct pci_dev *dev, char cap, unsigned int size)
1762 {
1763 int pos;
1764 struct pci_cap_saved_state *save_state;
1765
1766 pos = pci_find_capability(dev, cap);
1767 if (pos <= 0)
1768 return 0;
1769
1770 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1771 if (!save_state)
1772 return -ENOMEM;
1773
1774 save_state->cap_nr = cap;
1775 pci_add_saved_cap(dev, save_state);
1776
1777 return 0;
1778 }
1779
1780 /**
1781 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1782 * @dev: the PCI device
1783 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)1784 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1785 {
1786 int error;
1787
1788 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1789 PCI_EXP_SAVE_REGS * sizeof(u16));
1790 if (error)
1791 dev_err(&dev->dev,
1792 "unable to preallocate PCI Express save buffer\n");
1793
1794 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1795 if (error)
1796 dev_err(&dev->dev,
1797 "unable to preallocate PCI-X save buffer\n");
1798 }
1799
1800 /**
1801 * pci_enable_ari - enable ARI forwarding if hardware support it
1802 * @dev: the PCI device
1803 */
pci_enable_ari(struct pci_dev * dev)1804 void pci_enable_ari(struct pci_dev *dev)
1805 {
1806 int pos;
1807 u32 cap;
1808 u16 ctrl;
1809 struct pci_dev *bridge;
1810
1811 if (!pci_is_pcie(dev) || dev->devfn)
1812 return;
1813
1814 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1815 if (!pos)
1816 return;
1817
1818 bridge = dev->bus->self;
1819 if (!bridge || !pci_is_pcie(bridge))
1820 return;
1821
1822 pos = pci_pcie_cap(bridge);
1823 if (!pos)
1824 return;
1825
1826 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1827 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1828 return;
1829
1830 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1831 ctrl |= PCI_EXP_DEVCTL2_ARI;
1832 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1833
1834 bridge->ari_enabled = 1;
1835 }
1836
1837 static int pci_acs_enable;
1838
1839 /**
1840 * pci_request_acs - ask for ACS to be enabled if supported
1841 */
pci_request_acs(void)1842 void pci_request_acs(void)
1843 {
1844 pci_acs_enable = 1;
1845 }
1846
1847 /**
1848 * pci_enable_acs - enable ACS if hardware support it
1849 * @dev: the PCI device
1850 */
pci_enable_acs(struct pci_dev * dev)1851 void pci_enable_acs(struct pci_dev *dev)
1852 {
1853 int pos;
1854 u16 cap;
1855 u16 ctrl;
1856
1857 if (!pci_acs_enable)
1858 return;
1859
1860 if (!pci_is_pcie(dev))
1861 return;
1862
1863 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1864 if (!pos)
1865 return;
1866
1867 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1868 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1869
1870 /* Source Validation */
1871 ctrl |= (cap & PCI_ACS_SV);
1872
1873 /* P2P Request Redirect */
1874 ctrl |= (cap & PCI_ACS_RR);
1875
1876 /* P2P Completion Redirect */
1877 ctrl |= (cap & PCI_ACS_CR);
1878
1879 /* Upstream Forwarding */
1880 ctrl |= (cap & PCI_ACS_UF);
1881
1882 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1883 }
1884
1885 /**
1886 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1887 * @dev: the PCI device
1888 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1889 *
1890 * Perform INTx swizzling for a device behind one level of bridge. This is
1891 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1892 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1893 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1894 * the PCI Express Base Specification, Revision 2.1)
1895 */
pci_swizzle_interrupt_pin(struct pci_dev * dev,u8 pin)1896 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1897 {
1898 int slot;
1899
1900 if (pci_ari_enabled(dev->bus))
1901 slot = 0;
1902 else
1903 slot = PCI_SLOT(dev->devfn);
1904
1905 return (((pin - 1) + slot) % 4) + 1;
1906 }
1907
1908 int
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)1909 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1910 {
1911 u8 pin;
1912
1913 pin = dev->pin;
1914 if (!pin)
1915 return -1;
1916
1917 while (!pci_is_root_bus(dev->bus)) {
1918 pin = pci_swizzle_interrupt_pin(dev, pin);
1919 dev = dev->bus->self;
1920 }
1921 *bridge = dev;
1922 return pin;
1923 }
1924
1925 /**
1926 * pci_common_swizzle - swizzle INTx all the way to root bridge
1927 * @dev: the PCI device
1928 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1929 *
1930 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1931 * bridges all the way up to a PCI root bus.
1932 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)1933 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1934 {
1935 u8 pin = *pinp;
1936
1937 while (!pci_is_root_bus(dev->bus)) {
1938 pin = pci_swizzle_interrupt_pin(dev, pin);
1939 dev = dev->bus->self;
1940 }
1941 *pinp = pin;
1942 return PCI_SLOT(dev->devfn);
1943 }
1944
1945 /**
1946 * pci_release_region - Release a PCI bar
1947 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1948 * @bar: BAR to release
1949 *
1950 * Releases the PCI I/O and memory resources previously reserved by a
1951 * successful call to pci_request_region. Call this function only
1952 * after all use of the PCI regions has ceased.
1953 */
pci_release_region(struct pci_dev * pdev,int bar)1954 void pci_release_region(struct pci_dev *pdev, int bar)
1955 {
1956 struct pci_devres *dr;
1957
1958 if (pci_resource_len(pdev, bar) == 0)
1959 return;
1960 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1961 release_region(pci_resource_start(pdev, bar),
1962 pci_resource_len(pdev, bar));
1963 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1964 release_mem_region(pci_resource_start(pdev, bar),
1965 pci_resource_len(pdev, bar));
1966
1967 dr = find_pci_dr(pdev);
1968 if (dr)
1969 dr->region_mask &= ~(1 << bar);
1970 }
1971
1972 /**
1973 * __pci_request_region - Reserved PCI I/O and memory resource
1974 * @pdev: PCI device whose resources are to be reserved
1975 * @bar: BAR to be reserved
1976 * @res_name: Name to be associated with resource.
1977 * @exclusive: whether the region access is exclusive or not
1978 *
1979 * Mark the PCI region associated with PCI device @pdev BR @bar as
1980 * being reserved by owner @res_name. Do not access any
1981 * address inside the PCI regions unless this call returns
1982 * successfully.
1983 *
1984 * If @exclusive is set, then the region is marked so that userspace
1985 * is explicitly not allowed to map the resource via /dev/mem or
1986 * sysfs MMIO access.
1987 *
1988 * Returns 0 on success, or %EBUSY on error. A warning
1989 * message is also printed on failure.
1990 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)1991 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1992 int exclusive)
1993 {
1994 struct pci_devres *dr;
1995
1996 if (pci_resource_len(pdev, bar) == 0)
1997 return 0;
1998
1999 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2000 if (!request_region(pci_resource_start(pdev, bar),
2001 pci_resource_len(pdev, bar), res_name))
2002 goto err_out;
2003 }
2004 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2005 if (!__request_mem_region(pci_resource_start(pdev, bar),
2006 pci_resource_len(pdev, bar), res_name,
2007 exclusive))
2008 goto err_out;
2009 }
2010
2011 dr = find_pci_dr(pdev);
2012 if (dr)
2013 dr->region_mask |= 1 << bar;
2014
2015 return 0;
2016
2017 err_out:
2018 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2019 &pdev->resource[bar]);
2020 return -EBUSY;
2021 }
2022
2023 /**
2024 * pci_request_region - Reserve PCI I/O and memory resource
2025 * @pdev: PCI device whose resources are to be reserved
2026 * @bar: BAR to be reserved
2027 * @res_name: Name to be associated with resource
2028 *
2029 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2030 * being reserved by owner @res_name. Do not access any
2031 * address inside the PCI regions unless this call returns
2032 * successfully.
2033 *
2034 * Returns 0 on success, or %EBUSY on error. A warning
2035 * message is also printed on failure.
2036 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2037 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2038 {
2039 return __pci_request_region(pdev, bar, res_name, 0);
2040 }
2041
2042 /**
2043 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2044 * @pdev: PCI device whose resources are to be reserved
2045 * @bar: BAR to be reserved
2046 * @res_name: Name to be associated with resource.
2047 *
2048 * Mark the PCI region associated with PCI device @pdev BR @bar as
2049 * being reserved by owner @res_name. Do not access any
2050 * address inside the PCI regions unless this call returns
2051 * successfully.
2052 *
2053 * Returns 0 on success, or %EBUSY on error. A warning
2054 * message is also printed on failure.
2055 *
2056 * The key difference that _exclusive makes it that userspace is
2057 * explicitly not allowed to map the resource via /dev/mem or
2058 * sysfs.
2059 */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2060 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2061 {
2062 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2063 }
2064 /**
2065 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2066 * @pdev: PCI device whose resources were previously reserved
2067 * @bars: Bitmask of BARs to be released
2068 *
2069 * Release selected PCI I/O and memory resources previously reserved.
2070 * Call this function only after all use of the PCI regions has ceased.
2071 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2072 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2073 {
2074 int i;
2075
2076 for (i = 0; i < 6; i++)
2077 if (bars & (1 << i))
2078 pci_release_region(pdev, i);
2079 }
2080
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2081 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2082 const char *res_name, int excl)
2083 {
2084 int i;
2085
2086 for (i = 0; i < 6; i++)
2087 if (bars & (1 << i))
2088 if (__pci_request_region(pdev, i, res_name, excl))
2089 goto err_out;
2090 return 0;
2091
2092 err_out:
2093 while(--i >= 0)
2094 if (bars & (1 << i))
2095 pci_release_region(pdev, i);
2096
2097 return -EBUSY;
2098 }
2099
2100
2101 /**
2102 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2103 * @pdev: PCI device whose resources are to be reserved
2104 * @bars: Bitmask of BARs to be requested
2105 * @res_name: Name to be associated with resource
2106 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2107 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2108 const char *res_name)
2109 {
2110 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2111 }
2112
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2113 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2114 int bars, const char *res_name)
2115 {
2116 return __pci_request_selected_regions(pdev, bars, res_name,
2117 IORESOURCE_EXCLUSIVE);
2118 }
2119
2120 /**
2121 * pci_release_regions - Release reserved PCI I/O and memory resources
2122 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2123 *
2124 * Releases all PCI I/O and memory resources previously reserved by a
2125 * successful call to pci_request_regions. Call this function only
2126 * after all use of the PCI regions has ceased.
2127 */
2128
pci_release_regions(struct pci_dev * pdev)2129 void pci_release_regions(struct pci_dev *pdev)
2130 {
2131 pci_release_selected_regions(pdev, (1 << 6) - 1);
2132 }
2133
2134 /**
2135 * pci_request_regions - Reserved PCI I/O and memory resources
2136 * @pdev: PCI device whose resources are to be reserved
2137 * @res_name: Name to be associated with resource.
2138 *
2139 * Mark all PCI regions associated with PCI device @pdev as
2140 * being reserved by owner @res_name. Do not access any
2141 * address inside the PCI regions unless this call returns
2142 * successfully.
2143 *
2144 * Returns 0 on success, or %EBUSY on error. A warning
2145 * message is also printed on failure.
2146 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)2147 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2148 {
2149 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2150 }
2151
2152 /**
2153 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2154 * @pdev: PCI device whose resources are to be reserved
2155 * @res_name: Name to be associated with resource.
2156 *
2157 * Mark all PCI regions associated with PCI device @pdev as
2158 * being reserved by owner @res_name. Do not access any
2159 * address inside the PCI regions unless this call returns
2160 * successfully.
2161 *
2162 * pci_request_regions_exclusive() will mark the region so that
2163 * /dev/mem and the sysfs MMIO access will not be allowed.
2164 *
2165 * Returns 0 on success, or %EBUSY on error. A warning
2166 * message is also printed on failure.
2167 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)2168 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2169 {
2170 return pci_request_selected_regions_exclusive(pdev,
2171 ((1 << 6) - 1), res_name);
2172 }
2173
__pci_set_master(struct pci_dev * dev,bool enable)2174 static void __pci_set_master(struct pci_dev *dev, bool enable)
2175 {
2176 u16 old_cmd, cmd;
2177
2178 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2179 if (enable)
2180 cmd = old_cmd | PCI_COMMAND_MASTER;
2181 else
2182 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2183 if (cmd != old_cmd) {
2184 dev_dbg(&dev->dev, "%s bus mastering\n",
2185 enable ? "enabling" : "disabling");
2186 pci_write_config_word(dev, PCI_COMMAND, cmd);
2187 }
2188 dev->is_busmaster = enable;
2189 }
2190
2191 /**
2192 * pci_set_master - enables bus-mastering for device dev
2193 * @dev: the PCI device to enable
2194 *
2195 * Enables bus-mastering on the device and calls pcibios_set_master()
2196 * to do the needed arch specific settings.
2197 */
pci_set_master(struct pci_dev * dev)2198 void pci_set_master(struct pci_dev *dev)
2199 {
2200 __pci_set_master(dev, true);
2201 pcibios_set_master(dev);
2202 }
2203
2204 /**
2205 * pci_clear_master - disables bus-mastering for device dev
2206 * @dev: the PCI device to disable
2207 */
pci_clear_master(struct pci_dev * dev)2208 void pci_clear_master(struct pci_dev *dev)
2209 {
2210 __pci_set_master(dev, false);
2211 }
2212
2213 /**
2214 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2215 * @dev: the PCI device for which MWI is to be enabled
2216 *
2217 * Helper function for pci_set_mwi.
2218 * Originally copied from drivers/net/acenic.c.
2219 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2220 *
2221 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2222 */
pci_set_cacheline_size(struct pci_dev * dev)2223 int pci_set_cacheline_size(struct pci_dev *dev)
2224 {
2225 u8 cacheline_size;
2226
2227 if (!pci_cache_line_size)
2228 return -EINVAL;
2229
2230 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2231 equal to or multiple of the right value. */
2232 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2233 if (cacheline_size >= pci_cache_line_size &&
2234 (cacheline_size % pci_cache_line_size) == 0)
2235 return 0;
2236
2237 /* Write the correct value. */
2238 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2239 /* Read it back. */
2240 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2241 if (cacheline_size == pci_cache_line_size)
2242 return 0;
2243
2244 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2245 "supported\n", pci_cache_line_size << 2);
2246
2247 return -EINVAL;
2248 }
2249 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2250
2251 #ifdef PCI_DISABLE_MWI
pci_set_mwi(struct pci_dev * dev)2252 int pci_set_mwi(struct pci_dev *dev)
2253 {
2254 return 0;
2255 }
2256
pci_try_set_mwi(struct pci_dev * dev)2257 int pci_try_set_mwi(struct pci_dev *dev)
2258 {
2259 return 0;
2260 }
2261
pci_clear_mwi(struct pci_dev * dev)2262 void pci_clear_mwi(struct pci_dev *dev)
2263 {
2264 }
2265
2266 #else
2267
2268 /**
2269 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2270 * @dev: the PCI device for which MWI is enabled
2271 *
2272 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2273 *
2274 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2275 */
2276 int
pci_set_mwi(struct pci_dev * dev)2277 pci_set_mwi(struct pci_dev *dev)
2278 {
2279 int rc;
2280 u16 cmd;
2281
2282 rc = pci_set_cacheline_size(dev);
2283 if (rc)
2284 return rc;
2285
2286 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2287 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2288 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2289 cmd |= PCI_COMMAND_INVALIDATE;
2290 pci_write_config_word(dev, PCI_COMMAND, cmd);
2291 }
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2298 * @dev: the PCI device for which MWI is enabled
2299 *
2300 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2301 * Callers are not required to check the return value.
2302 *
2303 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2304 */
pci_try_set_mwi(struct pci_dev * dev)2305 int pci_try_set_mwi(struct pci_dev *dev)
2306 {
2307 int rc = pci_set_mwi(dev);
2308 return rc;
2309 }
2310
2311 /**
2312 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2313 * @dev: the PCI device to disable
2314 *
2315 * Disables PCI Memory-Write-Invalidate transaction on the device
2316 */
2317 void
pci_clear_mwi(struct pci_dev * dev)2318 pci_clear_mwi(struct pci_dev *dev)
2319 {
2320 u16 cmd;
2321
2322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2323 if (cmd & PCI_COMMAND_INVALIDATE) {
2324 cmd &= ~PCI_COMMAND_INVALIDATE;
2325 pci_write_config_word(dev, PCI_COMMAND, cmd);
2326 }
2327 }
2328 #endif /* ! PCI_DISABLE_MWI */
2329
2330 /**
2331 * pci_intx - enables/disables PCI INTx for device dev
2332 * @pdev: the PCI device to operate on
2333 * @enable: boolean: whether to enable or disable PCI INTx
2334 *
2335 * Enables/disables PCI INTx for device dev
2336 */
2337 void
pci_intx(struct pci_dev * pdev,int enable)2338 pci_intx(struct pci_dev *pdev, int enable)
2339 {
2340 u16 pci_command, new;
2341
2342 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2343
2344 if (enable) {
2345 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2346 } else {
2347 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2348 }
2349
2350 if (new != pci_command) {
2351 struct pci_devres *dr;
2352
2353 pci_write_config_word(pdev, PCI_COMMAND, new);
2354
2355 dr = find_pci_dr(pdev);
2356 if (dr && !dr->restore_intx) {
2357 dr->restore_intx = 1;
2358 dr->orig_intx = !enable;
2359 }
2360 }
2361 }
2362
2363 /**
2364 * pci_msi_off - disables any msi or msix capabilities
2365 * @dev: the PCI device to operate on
2366 *
2367 * If you want to use msi see pci_enable_msi and friends.
2368 * This is a lower level primitive that allows us to disable
2369 * msi operation at the device level.
2370 */
pci_msi_off(struct pci_dev * dev)2371 void pci_msi_off(struct pci_dev *dev)
2372 {
2373 int pos;
2374 u16 control;
2375
2376 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2377 if (pos) {
2378 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2379 control &= ~PCI_MSI_FLAGS_ENABLE;
2380 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2381 }
2382 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2383 if (pos) {
2384 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2385 control &= ~PCI_MSIX_FLAGS_ENABLE;
2386 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2387 }
2388 }
2389 EXPORT_SYMBOL_GPL(pci_msi_off);
2390
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)2391 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2392 {
2393 return dma_set_max_seg_size(&dev->dev, size);
2394 }
2395 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2396
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)2397 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2398 {
2399 return dma_set_seg_boundary(&dev->dev, mask);
2400 }
2401 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2402
pcie_flr(struct pci_dev * dev,int probe)2403 static int pcie_flr(struct pci_dev *dev, int probe)
2404 {
2405 int i;
2406 int pos;
2407 u32 cap;
2408 u16 status, control;
2409
2410 pos = pci_pcie_cap(dev);
2411 if (!pos)
2412 return -ENOTTY;
2413
2414 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2415 if (!(cap & PCI_EXP_DEVCAP_FLR))
2416 return -ENOTTY;
2417
2418 if (probe)
2419 return 0;
2420
2421 /* Wait for Transaction Pending bit clean */
2422 for (i = 0; i < 4; i++) {
2423 if (i)
2424 msleep((1 << (i - 1)) * 100);
2425
2426 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2427 if (!(status & PCI_EXP_DEVSTA_TRPND))
2428 goto clear;
2429 }
2430
2431 dev_err(&dev->dev, "transaction is not cleared; "
2432 "proceeding with reset anyway\n");
2433
2434 clear:
2435 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2436 control |= PCI_EXP_DEVCTL_BCR_FLR;
2437 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2438
2439 msleep(100);
2440
2441 return 0;
2442 }
2443
pci_af_flr(struct pci_dev * dev,int probe)2444 static int pci_af_flr(struct pci_dev *dev, int probe)
2445 {
2446 int i;
2447 int pos;
2448 u8 cap;
2449 u8 status;
2450
2451 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2452 if (!pos)
2453 return -ENOTTY;
2454
2455 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2456 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2457 return -ENOTTY;
2458
2459 if (probe)
2460 return 0;
2461
2462 /* Wait for Transaction Pending bit clean */
2463 for (i = 0; i < 4; i++) {
2464 if (i)
2465 msleep((1 << (i - 1)) * 100);
2466
2467 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2468 if (!(status & PCI_AF_STATUS_TP))
2469 goto clear;
2470 }
2471
2472 dev_err(&dev->dev, "transaction is not cleared; "
2473 "proceeding with reset anyway\n");
2474
2475 clear:
2476 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2477 msleep(100);
2478
2479 return 0;
2480 }
2481
pci_pm_reset(struct pci_dev * dev,int probe)2482 static int pci_pm_reset(struct pci_dev *dev, int probe)
2483 {
2484 u16 csr;
2485
2486 if (!dev->pm_cap)
2487 return -ENOTTY;
2488
2489 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2490 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2491 return -ENOTTY;
2492
2493 if (probe)
2494 return 0;
2495
2496 if (dev->current_state != PCI_D0)
2497 return -EINVAL;
2498
2499 csr &= ~PCI_PM_CTRL_STATE_MASK;
2500 csr |= PCI_D3hot;
2501 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2502 pci_dev_d3_sleep(dev);
2503
2504 csr &= ~PCI_PM_CTRL_STATE_MASK;
2505 csr |= PCI_D0;
2506 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2507 pci_dev_d3_sleep(dev);
2508
2509 return 0;
2510 }
2511
pci_parent_bus_reset(struct pci_dev * dev,int probe)2512 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2513 {
2514 u16 ctrl;
2515 struct pci_dev *pdev;
2516
2517 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2518 return -ENOTTY;
2519
2520 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2521 if (pdev != dev)
2522 return -ENOTTY;
2523
2524 if (probe)
2525 return 0;
2526
2527 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2528 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2529 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2530 msleep(100);
2531
2532 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2533 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2534 msleep(100);
2535
2536 return 0;
2537 }
2538
pci_dev_reset(struct pci_dev * dev,int probe)2539 static int pci_dev_reset(struct pci_dev *dev, int probe)
2540 {
2541 int rc;
2542
2543 might_sleep();
2544
2545 if (!probe) {
2546 pci_block_user_cfg_access(dev);
2547 /* block PM suspend, driver probe, etc. */
2548 device_lock(&dev->dev);
2549 }
2550
2551 rc = pci_dev_specific_reset(dev, probe);
2552 if (rc != -ENOTTY)
2553 goto done;
2554
2555 rc = pcie_flr(dev, probe);
2556 if (rc != -ENOTTY)
2557 goto done;
2558
2559 rc = pci_af_flr(dev, probe);
2560 if (rc != -ENOTTY)
2561 goto done;
2562
2563 rc = pci_pm_reset(dev, probe);
2564 if (rc != -ENOTTY)
2565 goto done;
2566
2567 rc = pci_parent_bus_reset(dev, probe);
2568 done:
2569 if (!probe) {
2570 device_unlock(&dev->dev);
2571 pci_unblock_user_cfg_access(dev);
2572 }
2573
2574 return rc;
2575 }
2576
2577 /**
2578 * __pci_reset_function - reset a PCI device function
2579 * @dev: PCI device to reset
2580 *
2581 * Some devices allow an individual function to be reset without affecting
2582 * other functions in the same device. The PCI device must be responsive
2583 * to PCI config space in order to use this function.
2584 *
2585 * The device function is presumed to be unused when this function is called.
2586 * Resetting the device will make the contents of PCI configuration space
2587 * random, so any caller of this must be prepared to reinitialise the
2588 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2589 * etc.
2590 *
2591 * Returns 0 if the device function was successfully reset or negative if the
2592 * device doesn't support resetting a single function.
2593 */
__pci_reset_function(struct pci_dev * dev)2594 int __pci_reset_function(struct pci_dev *dev)
2595 {
2596 return pci_dev_reset(dev, 0);
2597 }
2598 EXPORT_SYMBOL_GPL(__pci_reset_function);
2599
2600 /**
2601 * pci_probe_reset_function - check whether the device can be safely reset
2602 * @dev: PCI device to reset
2603 *
2604 * Some devices allow an individual function to be reset without affecting
2605 * other functions in the same device. The PCI device must be responsive
2606 * to PCI config space in order to use this function.
2607 *
2608 * Returns 0 if the device function can be reset or negative if the
2609 * device doesn't support resetting a single function.
2610 */
pci_probe_reset_function(struct pci_dev * dev)2611 int pci_probe_reset_function(struct pci_dev *dev)
2612 {
2613 return pci_dev_reset(dev, 1);
2614 }
2615
2616 /**
2617 * pci_reset_function - quiesce and reset a PCI device function
2618 * @dev: PCI device to reset
2619 *
2620 * Some devices allow an individual function to be reset without affecting
2621 * other functions in the same device. The PCI device must be responsive
2622 * to PCI config space in order to use this function.
2623 *
2624 * This function does not just reset the PCI portion of a device, but
2625 * clears all the state associated with the device. This function differs
2626 * from __pci_reset_function in that it saves and restores device state
2627 * over the reset.
2628 *
2629 * Returns 0 if the device function was successfully reset or negative if the
2630 * device doesn't support resetting a single function.
2631 */
pci_reset_function(struct pci_dev * dev)2632 int pci_reset_function(struct pci_dev *dev)
2633 {
2634 int rc;
2635
2636 rc = pci_dev_reset(dev, 1);
2637 if (rc)
2638 return rc;
2639
2640 pci_save_state(dev);
2641
2642 /*
2643 * both INTx and MSI are disabled after the Interrupt Disable bit
2644 * is set and the Bus Master bit is cleared.
2645 */
2646 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2647
2648 rc = pci_dev_reset(dev, 0);
2649
2650 pci_restore_state(dev);
2651
2652 return rc;
2653 }
2654 EXPORT_SYMBOL_GPL(pci_reset_function);
2655
2656 /**
2657 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2658 * @dev: PCI device to query
2659 *
2660 * Returns mmrbc: maximum designed memory read count in bytes
2661 * or appropriate error value.
2662 */
pcix_get_max_mmrbc(struct pci_dev * dev)2663 int pcix_get_max_mmrbc(struct pci_dev *dev)
2664 {
2665 int cap;
2666 u32 stat;
2667
2668 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2669 if (!cap)
2670 return -EINVAL;
2671
2672 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2673 return -EINVAL;
2674
2675 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
2676 }
2677 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2678
2679 /**
2680 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2681 * @dev: PCI device to query
2682 *
2683 * Returns mmrbc: maximum memory read count in bytes
2684 * or appropriate error value.
2685 */
pcix_get_mmrbc(struct pci_dev * dev)2686 int pcix_get_mmrbc(struct pci_dev *dev)
2687 {
2688 int cap;
2689 u16 cmd;
2690
2691 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2692 if (!cap)
2693 return -EINVAL;
2694
2695 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2696 return -EINVAL;
2697
2698 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2699 }
2700 EXPORT_SYMBOL(pcix_get_mmrbc);
2701
2702 /**
2703 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2704 * @dev: PCI device to query
2705 * @mmrbc: maximum memory read count in bytes
2706 * valid values are 512, 1024, 2048, 4096
2707 *
2708 * If possible sets maximum memory read byte count, some bridges have erratas
2709 * that prevent this.
2710 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)2711 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2712 {
2713 int cap;
2714 u32 stat, v, o;
2715 u16 cmd;
2716
2717 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2718 return -EINVAL;
2719
2720 v = ffs(mmrbc) - 10;
2721
2722 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2723 if (!cap)
2724 return -EINVAL;
2725
2726 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2727 return -EINVAL;
2728
2729 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2730 return -E2BIG;
2731
2732 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2733 return -EINVAL;
2734
2735 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2736 if (o != v) {
2737 if (v > o && dev->bus &&
2738 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2739 return -EIO;
2740
2741 cmd &= ~PCI_X_CMD_MAX_READ;
2742 cmd |= v << 2;
2743 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
2744 return -EIO;
2745 }
2746 return 0;
2747 }
2748 EXPORT_SYMBOL(pcix_set_mmrbc);
2749
2750 /**
2751 * pcie_get_readrq - get PCI Express read request size
2752 * @dev: PCI device to query
2753 *
2754 * Returns maximum memory read request in bytes
2755 * or appropriate error value.
2756 */
pcie_get_readrq(struct pci_dev * dev)2757 int pcie_get_readrq(struct pci_dev *dev)
2758 {
2759 int ret, cap;
2760 u16 ctl;
2761
2762 cap = pci_pcie_cap(dev);
2763 if (!cap)
2764 return -EINVAL;
2765
2766 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2767 if (!ret)
2768 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2769
2770 return ret;
2771 }
2772 EXPORT_SYMBOL(pcie_get_readrq);
2773
2774 /**
2775 * pcie_set_readrq - set PCI Express maximum memory read request
2776 * @dev: PCI device to query
2777 * @rq: maximum memory read count in bytes
2778 * valid values are 128, 256, 512, 1024, 2048, 4096
2779 *
2780 * If possible sets maximum read byte count
2781 */
pcie_set_readrq(struct pci_dev * dev,int rq)2782 int pcie_set_readrq(struct pci_dev *dev, int rq)
2783 {
2784 int cap, err = -EINVAL;
2785 u16 ctl, v;
2786
2787 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2788 goto out;
2789
2790 v = (ffs(rq) - 8) << 12;
2791
2792 cap = pci_pcie_cap(dev);
2793 if (!cap)
2794 goto out;
2795
2796 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2797 if (err)
2798 goto out;
2799
2800 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2801 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2802 ctl |= v;
2803 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2804 }
2805
2806 out:
2807 return err;
2808 }
2809 EXPORT_SYMBOL(pcie_set_readrq);
2810
2811 /**
2812 * pci_select_bars - Make BAR mask from the type of resource
2813 * @dev: the PCI device for which BAR mask is made
2814 * @flags: resource type mask to be selected
2815 *
2816 * This helper routine makes bar mask from the type of resource.
2817 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)2818 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2819 {
2820 int i, bars = 0;
2821 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2822 if (pci_resource_flags(dev, i) & flags)
2823 bars |= (1 << i);
2824 return bars;
2825 }
2826
2827 /**
2828 * pci_resource_bar - get position of the BAR associated with a resource
2829 * @dev: the PCI device
2830 * @resno: the resource number
2831 * @type: the BAR type to be filled in
2832 *
2833 * Returns BAR position in config space, or 0 if the BAR is invalid.
2834 */
pci_resource_bar(struct pci_dev * dev,int resno,enum pci_bar_type * type)2835 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2836 {
2837 int reg;
2838
2839 if (resno < PCI_ROM_RESOURCE) {
2840 *type = pci_bar_unknown;
2841 return PCI_BASE_ADDRESS_0 + 4 * resno;
2842 } else if (resno == PCI_ROM_RESOURCE) {
2843 *type = pci_bar_mem32;
2844 return dev->rom_base_reg;
2845 } else if (resno < PCI_BRIDGE_RESOURCES) {
2846 /* device specific resource */
2847 reg = pci_iov_resource_bar(dev, resno, type);
2848 if (reg)
2849 return reg;
2850 }
2851
2852 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2853 return 0;
2854 }
2855
2856 /* Some architectures require additional programming to enable VGA */
2857 static arch_set_vga_state_t arch_set_vga_state;
2858
pci_register_set_vga_state(arch_set_vga_state_t func)2859 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2860 {
2861 arch_set_vga_state = func; /* NULL disables */
2862 }
2863
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,bool change_bridge)2864 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2865 unsigned int command_bits, bool change_bridge)
2866 {
2867 if (arch_set_vga_state)
2868 return arch_set_vga_state(dev, decode, command_bits,
2869 change_bridge);
2870 return 0;
2871 }
2872
2873 /**
2874 * pci_set_vga_state - set VGA decode state on device and parents if requested
2875 * @dev: the PCI device
2876 * @decode: true = enable decoding, false = disable decoding
2877 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2878 * @change_bridge: traverse ancestors and change bridges
2879 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,bool change_bridge)2880 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2881 unsigned int command_bits, bool change_bridge)
2882 {
2883 struct pci_bus *bus;
2884 struct pci_dev *bridge;
2885 u16 cmd;
2886 int rc;
2887
2888 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2889
2890 /* ARCH specific VGA enables */
2891 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2892 if (rc)
2893 return rc;
2894
2895 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2896 if (decode == true)
2897 cmd |= command_bits;
2898 else
2899 cmd &= ~command_bits;
2900 pci_write_config_word(dev, PCI_COMMAND, cmd);
2901
2902 if (change_bridge == false)
2903 return 0;
2904
2905 bus = dev->bus;
2906 while (bus) {
2907 bridge = bus->self;
2908 if (bridge) {
2909 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2910 &cmd);
2911 if (decode == true)
2912 cmd |= PCI_BRIDGE_CTL_VGA;
2913 else
2914 cmd &= ~PCI_BRIDGE_CTL_VGA;
2915 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2916 cmd);
2917 }
2918 bus = bus->parent;
2919 }
2920 return 0;
2921 }
2922
2923 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2924 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2925 static DEFINE_SPINLOCK(resource_alignment_lock);
2926
2927 /**
2928 * pci_specified_resource_alignment - get resource alignment specified by user.
2929 * @dev: the PCI device to get
2930 *
2931 * RETURNS: Resource alignment if it is specified.
2932 * Zero if it is not specified.
2933 */
pci_specified_resource_alignment(struct pci_dev * dev)2934 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2935 {
2936 int seg, bus, slot, func, align_order, count;
2937 resource_size_t align = 0;
2938 char *p;
2939
2940 spin_lock(&resource_alignment_lock);
2941 p = resource_alignment_param;
2942 while (*p) {
2943 count = 0;
2944 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2945 p[count] == '@') {
2946 p += count + 1;
2947 } else {
2948 align_order = -1;
2949 }
2950 if (sscanf(p, "%x:%x:%x.%x%n",
2951 &seg, &bus, &slot, &func, &count) != 4) {
2952 seg = 0;
2953 if (sscanf(p, "%x:%x.%x%n",
2954 &bus, &slot, &func, &count) != 3) {
2955 /* Invalid format */
2956 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2957 p);
2958 break;
2959 }
2960 }
2961 p += count;
2962 if (seg == pci_domain_nr(dev->bus) &&
2963 bus == dev->bus->number &&
2964 slot == PCI_SLOT(dev->devfn) &&
2965 func == PCI_FUNC(dev->devfn)) {
2966 if (align_order == -1) {
2967 align = PAGE_SIZE;
2968 } else {
2969 align = 1 << align_order;
2970 }
2971 /* Found */
2972 break;
2973 }
2974 if (*p != ';' && *p != ',') {
2975 /* End of param or invalid format */
2976 break;
2977 }
2978 p++;
2979 }
2980 spin_unlock(&resource_alignment_lock);
2981 return align;
2982 }
2983
2984 /**
2985 * pci_is_reassigndev - check if specified PCI is target device to reassign
2986 * @dev: the PCI device to check
2987 *
2988 * RETURNS: non-zero for PCI device is a target device to reassign,
2989 * or zero is not.
2990 */
pci_is_reassigndev(struct pci_dev * dev)2991 int pci_is_reassigndev(struct pci_dev *dev)
2992 {
2993 return (pci_specified_resource_alignment(dev) != 0);
2994 }
2995
pci_set_resource_alignment_param(const char * buf,size_t count)2996 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2997 {
2998 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2999 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3000 spin_lock(&resource_alignment_lock);
3001 strncpy(resource_alignment_param, buf, count);
3002 resource_alignment_param[count] = '\0';
3003 spin_unlock(&resource_alignment_lock);
3004 return count;
3005 }
3006
pci_get_resource_alignment_param(char * buf,size_t size)3007 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3008 {
3009 size_t count;
3010 spin_lock(&resource_alignment_lock);
3011 count = snprintf(buf, size, "%s", resource_alignment_param);
3012 spin_unlock(&resource_alignment_lock);
3013 return count;
3014 }
3015
pci_resource_alignment_show(struct bus_type * bus,char * buf)3016 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3017 {
3018 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3019 }
3020
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)3021 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3022 const char *buf, size_t count)
3023 {
3024 return pci_set_resource_alignment_param(buf, count);
3025 }
3026
3027 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3028 pci_resource_alignment_store);
3029
pci_resource_alignment_sysfs_init(void)3030 static int __init pci_resource_alignment_sysfs_init(void)
3031 {
3032 return bus_create_file(&pci_bus_type,
3033 &bus_attr_resource_alignment);
3034 }
3035
3036 late_initcall(pci_resource_alignment_sysfs_init);
3037
pci_no_domains(void)3038 static void __devinit pci_no_domains(void)
3039 {
3040 #ifdef CONFIG_PCI_DOMAINS
3041 pci_domains_supported = 0;
3042 #endif
3043 }
3044
3045 /**
3046 * pci_ext_cfg_enabled - can we access extended PCI config space?
3047 * @dev: The PCI device of the root bridge.
3048 *
3049 * Returns 1 if we can access PCI extended config space (offsets
3050 * greater than 0xff). This is the default implementation. Architecture
3051 * implementations can override this.
3052 */
pci_ext_cfg_avail(struct pci_dev * dev)3053 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3054 {
3055 return 1;
3056 }
3057
pci_fixup_cardbus(struct pci_bus * bus)3058 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3059 {
3060 }
3061 EXPORT_SYMBOL(pci_fixup_cardbus);
3062
pci_setup(char * str)3063 static int __init pci_setup(char *str)
3064 {
3065 while (str) {
3066 char *k = strchr(str, ',');
3067 if (k)
3068 *k++ = 0;
3069 if (*str && (str = pcibios_setup(str)) && *str) {
3070 if (!strcmp(str, "nomsi")) {
3071 pci_no_msi();
3072 } else if (!strcmp(str, "noaer")) {
3073 pci_no_aer();
3074 } else if (!strcmp(str, "nodomains")) {
3075 pci_no_domains();
3076 } else if (!strncmp(str, "cbiosize=", 9)) {
3077 pci_cardbus_io_size = memparse(str + 9, &str);
3078 } else if (!strncmp(str, "cbmemsize=", 10)) {
3079 pci_cardbus_mem_size = memparse(str + 10, &str);
3080 } else if (!strncmp(str, "resource_alignment=", 19)) {
3081 pci_set_resource_alignment_param(str + 19,
3082 strlen(str + 19));
3083 } else if (!strncmp(str, "ecrc=", 5)) {
3084 pcie_ecrc_get_policy(str + 5);
3085 } else if (!strncmp(str, "hpiosize=", 9)) {
3086 pci_hotplug_io_size = memparse(str + 9, &str);
3087 } else if (!strncmp(str, "hpmemsize=", 10)) {
3088 pci_hotplug_mem_size = memparse(str + 10, &str);
3089 } else {
3090 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3091 str);
3092 }
3093 }
3094 str = k;
3095 }
3096 return 0;
3097 }
3098 early_param("pci", pci_setup);
3099
3100 EXPORT_SYMBOL(pci_reenable_device);
3101 EXPORT_SYMBOL(pci_enable_device_io);
3102 EXPORT_SYMBOL(pci_enable_device_mem);
3103 EXPORT_SYMBOL(pci_enable_device);
3104 EXPORT_SYMBOL(pcim_enable_device);
3105 EXPORT_SYMBOL(pcim_pin_device);
3106 EXPORT_SYMBOL(pci_disable_device);
3107 EXPORT_SYMBOL(pci_find_capability);
3108 EXPORT_SYMBOL(pci_bus_find_capability);
3109 EXPORT_SYMBOL(pci_release_regions);
3110 EXPORT_SYMBOL(pci_request_regions);
3111 EXPORT_SYMBOL(pci_request_regions_exclusive);
3112 EXPORT_SYMBOL(pci_release_region);
3113 EXPORT_SYMBOL(pci_request_region);
3114 EXPORT_SYMBOL(pci_request_region_exclusive);
3115 EXPORT_SYMBOL(pci_release_selected_regions);
3116 EXPORT_SYMBOL(pci_request_selected_regions);
3117 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3118 EXPORT_SYMBOL(pci_set_master);
3119 EXPORT_SYMBOL(pci_clear_master);
3120 EXPORT_SYMBOL(pci_set_mwi);
3121 EXPORT_SYMBOL(pci_try_set_mwi);
3122 EXPORT_SYMBOL(pci_clear_mwi);
3123 EXPORT_SYMBOL_GPL(pci_intx);
3124 EXPORT_SYMBOL(pci_assign_resource);
3125 EXPORT_SYMBOL(pci_find_parent_resource);
3126 EXPORT_SYMBOL(pci_select_bars);
3127
3128 EXPORT_SYMBOL(pci_set_power_state);
3129 EXPORT_SYMBOL(pci_save_state);
3130 EXPORT_SYMBOL(pci_restore_state);
3131 EXPORT_SYMBOL(pci_pme_capable);
3132 EXPORT_SYMBOL(pci_pme_active);
3133 EXPORT_SYMBOL(pci_wake_from_d3);
3134 EXPORT_SYMBOL(pci_target_state);
3135 EXPORT_SYMBOL(pci_prepare_to_sleep);
3136 EXPORT_SYMBOL(pci_back_from_sleep);
3137 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3138