1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27 
28 const char *pci_power_names[] = {
29 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32 
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35 
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38 
39 unsigned int pci_pm_d3_delay;
40 
41 static void pci_pme_list_scan(struct work_struct *work);
42 
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46 
47 struct pci_pme_device {
48 	struct list_head list;
49 	struct pci_dev *dev;
50 };
51 
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53 
pci_dev_d3_sleep(struct pci_dev * dev)54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 	unsigned int delay = dev->d3_delay;
57 
58 	if (delay < pci_pm_d3_delay)
59 		delay = pci_pm_d3_delay;
60 
61 	msleep(delay);
62 }
63 
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67 
68 #define DEFAULT_CARDBUS_IO_SIZE		(256)
69 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73 
74 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79 
80 /*
81  * The default CLS is used if arch didn't set CLS explicitly and not
82  * all pci devices agree on the same value.  Arch can override either
83  * the dfl or actual value as it sees fit.  Don't forget this is
84  * measured in 32-bit words, not bytes.
85  */
86 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
87 u8 pci_cache_line_size;
88 
89 /**
90  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
91  * @bus: pointer to PCI bus structure to search
92  *
93  * Given a PCI bus, returns the highest PCI bus number present in the set
94  * including the given PCI bus and its list of child PCI buses.
95  */
pci_bus_max_busnr(struct pci_bus * bus)96 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
97 {
98 	struct list_head *tmp;
99 	unsigned char max, n;
100 
101 	max = bus->subordinate;
102 	list_for_each(tmp, &bus->children) {
103 		n = pci_bus_max_busnr(pci_bus_b(tmp));
104 		if(n > max)
105 			max = n;
106 	}
107 	return max;
108 }
109 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
110 
111 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)112 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
113 {
114 	/*
115 	 * Make sure the BAR is actually a memory resource, not an IO resource
116 	 */
117 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
118 		WARN_ON(1);
119 		return NULL;
120 	}
121 	return ioremap_nocache(pci_resource_start(pdev, bar),
122 				     pci_resource_len(pdev, bar));
123 }
124 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
125 #endif
126 
127 #if 0
128 /**
129  * pci_max_busnr - returns maximum PCI bus number
130  *
131  * Returns the highest PCI bus number present in the system global list of
132  * PCI buses.
133  */
134 unsigned char __devinit
135 pci_max_busnr(void)
136 {
137 	struct pci_bus *bus = NULL;
138 	unsigned char max, n;
139 
140 	max = 0;
141 	while ((bus = pci_find_next_bus(bus)) != NULL) {
142 		n = pci_bus_max_busnr(bus);
143 		if(n > max)
144 			max = n;
145 	}
146 	return max;
147 }
148 
149 #endif  /*  0  */
150 
151 #define PCI_FIND_CAP_TTL	48
152 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)153 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
154 				   u8 pos, int cap, int *ttl)
155 {
156 	u8 id;
157 
158 	while ((*ttl)--) {
159 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
160 		if (pos < 0x40)
161 			break;
162 		pos &= ~3;
163 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
164 					 &id);
165 		if (id == 0xff)
166 			break;
167 		if (id == cap)
168 			return pos;
169 		pos += PCI_CAP_LIST_NEXT;
170 	}
171 	return 0;
172 }
173 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)174 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
175 			       u8 pos, int cap)
176 {
177 	int ttl = PCI_FIND_CAP_TTL;
178 
179 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
180 }
181 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)182 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
183 {
184 	return __pci_find_next_cap(dev->bus, dev->devfn,
185 				   pos + PCI_CAP_LIST_NEXT, cap);
186 }
187 EXPORT_SYMBOL_GPL(pci_find_next_capability);
188 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)189 static int __pci_bus_find_cap_start(struct pci_bus *bus,
190 				    unsigned int devfn, u8 hdr_type)
191 {
192 	u16 status;
193 
194 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
195 	if (!(status & PCI_STATUS_CAP_LIST))
196 		return 0;
197 
198 	switch (hdr_type) {
199 	case PCI_HEADER_TYPE_NORMAL:
200 	case PCI_HEADER_TYPE_BRIDGE:
201 		return PCI_CAPABILITY_LIST;
202 	case PCI_HEADER_TYPE_CARDBUS:
203 		return PCI_CB_CAPABILITY_LIST;
204 	default:
205 		return 0;
206 	}
207 
208 	return 0;
209 }
210 
211 /**
212  * pci_find_capability - query for devices' capabilities
213  * @dev: PCI device to query
214  * @cap: capability code
215  *
216  * Tell if a device supports a given PCI capability.
217  * Returns the address of the requested capability structure within the
218  * device's PCI configuration space or 0 in case the device does not
219  * support it.  Possible values for @cap:
220  *
221  *  %PCI_CAP_ID_PM           Power Management
222  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
223  *  %PCI_CAP_ID_VPD          Vital Product Data
224  *  %PCI_CAP_ID_SLOTID       Slot Identification
225  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
226  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
227  *  %PCI_CAP_ID_PCIX         PCI-X
228  *  %PCI_CAP_ID_EXP          PCI Express
229  */
pci_find_capability(struct pci_dev * dev,int cap)230 int pci_find_capability(struct pci_dev *dev, int cap)
231 {
232 	int pos;
233 
234 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
235 	if (pos)
236 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
237 
238 	return pos;
239 }
240 
241 /**
242  * pci_bus_find_capability - query for devices' capabilities
243  * @bus:   the PCI bus to query
244  * @devfn: PCI device to query
245  * @cap:   capability code
246  *
247  * Like pci_find_capability() but works for pci devices that do not have a
248  * pci_dev structure set up yet.
249  *
250  * Returns the address of the requested capability structure within the
251  * device's PCI configuration space or 0 in case the device does not
252  * support it.
253  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)254 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
255 {
256 	int pos;
257 	u8 hdr_type;
258 
259 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
260 
261 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
262 	if (pos)
263 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
264 
265 	return pos;
266 }
267 
268 /**
269  * pci_find_ext_capability - Find an extended capability
270  * @dev: PCI device to query
271  * @cap: capability code
272  *
273  * Returns the address of the requested extended capability structure
274  * within the device's PCI configuration space or 0 if the device does
275  * not support it.  Possible values for @cap:
276  *
277  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
278  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
279  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
280  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
281  */
pci_find_ext_capability(struct pci_dev * dev,int cap)282 int pci_find_ext_capability(struct pci_dev *dev, int cap)
283 {
284 	u32 header;
285 	int ttl;
286 	int pos = PCI_CFG_SPACE_SIZE;
287 
288 	/* minimum 8 bytes per capability */
289 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
290 
291 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
292 		return 0;
293 
294 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
295 		return 0;
296 
297 	/*
298 	 * If we have no capabilities, this is indicated by cap ID,
299 	 * cap version and next pointer all being 0.
300 	 */
301 	if (header == 0)
302 		return 0;
303 
304 	while (ttl-- > 0) {
305 		if (PCI_EXT_CAP_ID(header) == cap)
306 			return pos;
307 
308 		pos = PCI_EXT_CAP_NEXT(header);
309 		if (pos < PCI_CFG_SPACE_SIZE)
310 			break;
311 
312 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
313 			break;
314 	}
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
319 
320 /**
321  * pci_bus_find_ext_capability - find an extended capability
322  * @bus:   the PCI bus to query
323  * @devfn: PCI device to query
324  * @cap:   capability code
325  *
326  * Like pci_find_ext_capability() but works for pci devices that do not have a
327  * pci_dev structure set up yet.
328  *
329  * Returns the address of the requested capability structure within the
330  * device's PCI configuration space or 0 in case the device does not
331  * support it.
332  */
pci_bus_find_ext_capability(struct pci_bus * bus,unsigned int devfn,int cap)333 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
334 				int cap)
335 {
336 	u32 header;
337 	int ttl;
338 	int pos = PCI_CFG_SPACE_SIZE;
339 
340 	/* minimum 8 bytes per capability */
341 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
342 
343 	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
344 		return 0;
345 	if (header == 0xffffffff || header == 0)
346 		return 0;
347 
348 	while (ttl-- > 0) {
349 		if (PCI_EXT_CAP_ID(header) == cap)
350 			return pos;
351 
352 		pos = PCI_EXT_CAP_NEXT(header);
353 		if (pos < PCI_CFG_SPACE_SIZE)
354 			break;
355 
356 		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
357 			break;
358 	}
359 
360 	return 0;
361 }
362 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)363 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
364 {
365 	int rc, ttl = PCI_FIND_CAP_TTL;
366 	u8 cap, mask;
367 
368 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
369 		mask = HT_3BIT_CAP_MASK;
370 	else
371 		mask = HT_5BIT_CAP_MASK;
372 
373 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
374 				      PCI_CAP_ID_HT, &ttl);
375 	while (pos) {
376 		rc = pci_read_config_byte(dev, pos + 3, &cap);
377 		if (rc != PCIBIOS_SUCCESSFUL)
378 			return 0;
379 
380 		if ((cap & mask) == ht_cap)
381 			return pos;
382 
383 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
384 					      pos + PCI_CAP_LIST_NEXT,
385 					      PCI_CAP_ID_HT, &ttl);
386 	}
387 
388 	return 0;
389 }
390 /**
391  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
392  * @dev: PCI device to query
393  * @pos: Position from which to continue searching
394  * @ht_cap: Hypertransport capability code
395  *
396  * To be used in conjunction with pci_find_ht_capability() to search for
397  * all capabilities matching @ht_cap. @pos should always be a value returned
398  * from pci_find_ht_capability().
399  *
400  * NB. To be 100% safe against broken PCI devices, the caller should take
401  * steps to avoid an infinite loop.
402  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)403 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
404 {
405 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
406 }
407 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
408 
409 /**
410  * pci_find_ht_capability - query a device's Hypertransport capabilities
411  * @dev: PCI device to query
412  * @ht_cap: Hypertransport capability code
413  *
414  * Tell if a device supports a given Hypertransport capability.
415  * Returns an address within the device's PCI configuration space
416  * or 0 in case the device does not support the request capability.
417  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
418  * which has a Hypertransport capability matching @ht_cap.
419  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)420 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
421 {
422 	int pos;
423 
424 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
425 	if (pos)
426 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
427 
428 	return pos;
429 }
430 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
431 
432 /**
433  * pci_find_parent_resource - return resource region of parent bus of given region
434  * @dev: PCI device structure contains resources to be searched
435  * @res: child resource record for which parent is sought
436  *
437  *  For given resource region of given device, return the resource
438  *  region of parent bus the given region is contained in or where
439  *  it should be allocated from.
440  */
441 struct resource *
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)442 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
443 {
444 	const struct pci_bus *bus = dev->bus;
445 	int i;
446 	struct resource *best = NULL, *r;
447 
448 	pci_bus_for_each_resource(bus, r, i) {
449 		if (!r)
450 			continue;
451 		if (res->start && !(res->start >= r->start && res->end <= r->end))
452 			continue;	/* Not contained */
453 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
454 			continue;	/* Wrong type */
455 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
456 			return r;	/* Exact match */
457 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
458 		if (r->flags & IORESOURCE_PREFETCH)
459 			continue;
460 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
461 		if (!best)
462 			best = r;
463 	}
464 	return best;
465 }
466 
467 /**
468  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
469  * @dev: PCI device to have its BARs restored
470  *
471  * Restore the BAR values for a given device, so as to make it
472  * accessible by its driver.
473  */
474 static void
pci_restore_bars(struct pci_dev * dev)475 pci_restore_bars(struct pci_dev *dev)
476 {
477 	int i;
478 
479 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
480 		pci_update_resource(dev, i);
481 }
482 
483 static struct pci_platform_pm_ops *pci_platform_pm;
484 
pci_set_platform_pm(struct pci_platform_pm_ops * ops)485 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
486 {
487 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
488 	    || !ops->sleep_wake || !ops->can_wakeup)
489 		return -EINVAL;
490 	pci_platform_pm = ops;
491 	return 0;
492 }
493 
platform_pci_power_manageable(struct pci_dev * dev)494 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
495 {
496 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
497 }
498 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)499 static inline int platform_pci_set_power_state(struct pci_dev *dev,
500                                                 pci_power_t t)
501 {
502 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
503 }
504 
platform_pci_choose_state(struct pci_dev * dev)505 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
506 {
507 	return pci_platform_pm ?
508 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
509 }
510 
platform_pci_can_wakeup(struct pci_dev * dev)511 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
512 {
513 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
514 }
515 
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)516 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
517 {
518 	return pci_platform_pm ?
519 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
520 }
521 
platform_pci_run_wake(struct pci_dev * dev,bool enable)522 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
523 {
524 	return pci_platform_pm ?
525 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
526 }
527 
528 /**
529  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
530  *                           given PCI device
531  * @dev: PCI device to handle.
532  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
533  *
534  * RETURN VALUE:
535  * -EINVAL if the requested state is invalid.
536  * -EIO if device does not support PCI PM or its PM capabilities register has a
537  * wrong version, or device doesn't support the requested state.
538  * 0 if device already is in the requested state.
539  * 0 if device's power state has been successfully changed.
540  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)541 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
542 {
543 	u16 pmcsr;
544 	bool need_restore = false;
545 
546 	/* Check if we're already there */
547 	if (dev->current_state == state)
548 		return 0;
549 
550 	if (!dev->pm_cap)
551 		return -EIO;
552 
553 	if (state < PCI_D0 || state > PCI_D3hot)
554 		return -EINVAL;
555 
556 	/* Validate current state:
557 	 * Can enter D0 from any state, but if we can only go deeper
558 	 * to sleep if we're already in a low power state
559 	 */
560 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
561 	    && dev->current_state > state) {
562 		dev_err(&dev->dev, "invalid power transition "
563 			"(from state %d to %d)\n", dev->current_state, state);
564 		return -EINVAL;
565 	}
566 
567 	/* check if this device supports the desired state */
568 	if ((state == PCI_D1 && !dev->d1_support)
569 	   || (state == PCI_D2 && !dev->d2_support))
570 		return -EIO;
571 
572 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573 
574 	/* If we're (effectively) in D3, force entire word to 0.
575 	 * This doesn't affect PME_Status, disables PME_En, and
576 	 * sets PowerState to 0.
577 	 */
578 	switch (dev->current_state) {
579 	case PCI_D0:
580 	case PCI_D1:
581 	case PCI_D2:
582 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
583 		pmcsr |= state;
584 		break;
585 	case PCI_D3hot:
586 	case PCI_D3cold:
587 	case PCI_UNKNOWN: /* Boot-up */
588 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
589 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
590 			need_restore = true;
591 		/* Fall-through: force to D0 */
592 	default:
593 		pmcsr = 0;
594 		break;
595 	}
596 
597 	/* enter specified state */
598 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
599 
600 	/* Mandatory power management transition delays */
601 	/* see PCI PM 1.1 5.6.1 table 18 */
602 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
603 		pci_dev_d3_sleep(dev);
604 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
605 		udelay(PCI_PM_D2_DELAY);
606 
607 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
608 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
609 	if (dev->current_state != state && printk_ratelimit())
610 		dev_info(&dev->dev, "Refused to change power state, "
611 			"currently in D%d\n", dev->current_state);
612 
613 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
614 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
615 	 * from D3hot to D0 _may_ perform an internal reset, thereby
616 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
617 	 * For example, at least some versions of the 3c905B and the
618 	 * 3c556B exhibit this behaviour.
619 	 *
620 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
621 	 * devices in a D3hot state at boot.  Consequently, we need to
622 	 * restore at least the BARs so that the device will be
623 	 * accessible to its driver.
624 	 */
625 	if (need_restore)
626 		pci_restore_bars(dev);
627 
628 	if (dev->bus->self)
629 		pcie_aspm_pm_state_change(dev->bus->self);
630 
631 	return 0;
632 }
633 
634 /**
635  * pci_update_current_state - Read PCI power state of given device from its
636  *                            PCI PM registers and cache it
637  * @dev: PCI device to handle.
638  * @state: State to cache in case the device doesn't have the PM capability
639  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)640 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
641 {
642 	if (dev->pm_cap) {
643 		u16 pmcsr;
644 
645 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
646 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
647 	} else {
648 		dev->current_state = state;
649 	}
650 }
651 
652 /**
653  * pci_platform_power_transition - Use platform to change device power state
654  * @dev: PCI device to handle.
655  * @state: State to put the device into.
656  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)657 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
658 {
659 	int error;
660 
661 	if (platform_pci_power_manageable(dev)) {
662 		error = platform_pci_set_power_state(dev, state);
663 		if (!error)
664 			pci_update_current_state(dev, state);
665 	} else {
666 		error = -ENODEV;
667 		/* Fall back to PCI_D0 if native PM is not supported */
668 		if (!dev->pm_cap)
669 			dev->current_state = PCI_D0;
670 	}
671 
672 	return error;
673 }
674 
675 /**
676  * __pci_start_power_transition - Start power transition of a PCI device
677  * @dev: PCI device to handle.
678  * @state: State to put the device into.
679  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)680 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
681 {
682 	if (state == PCI_D0)
683 		pci_platform_power_transition(dev, PCI_D0);
684 }
685 
686 /**
687  * __pci_complete_power_transition - Complete power transition of a PCI device
688  * @dev: PCI device to handle.
689  * @state: State to put the device into.
690  *
691  * This function should not be called directly by device drivers.
692  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)693 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
694 {
695 	return state >= PCI_D0 ?
696 			pci_platform_power_transition(dev, state) : -EINVAL;
697 }
698 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
699 
700 /**
701  * pci_set_power_state - Set the power state of a PCI device
702  * @dev: PCI device to handle.
703  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
704  *
705  * Transition a device to a new power state, using the platform firmware and/or
706  * the device's PCI PM registers.
707  *
708  * RETURN VALUE:
709  * -EINVAL if the requested state is invalid.
710  * -EIO if device does not support PCI PM or its PM capabilities register has a
711  * wrong version, or device doesn't support the requested state.
712  * 0 if device already is in the requested state.
713  * 0 if device's power state has been successfully changed.
714  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)715 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
716 {
717 	int error;
718 
719 	/* bound the state we're entering */
720 	if (state > PCI_D3hot)
721 		state = PCI_D3hot;
722 	else if (state < PCI_D0)
723 		state = PCI_D0;
724 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
725 		/*
726 		 * If the device or the parent bridge do not support PCI PM,
727 		 * ignore the request if we're doing anything other than putting
728 		 * it into D0 (which would only happen on boot).
729 		 */
730 		return 0;
731 
732 	__pci_start_power_transition(dev, state);
733 
734 	/* This device is quirked not to be put into D3, so
735 	   don't put it in D3 */
736 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
737 		return 0;
738 
739 	error = pci_raw_set_power_state(dev, state);
740 
741 	if (!__pci_complete_power_transition(dev, state))
742 		error = 0;
743 	/*
744 	 * When aspm_policy is "powersave" this call ensures
745 	 * that ASPM is configured.
746 	 */
747 	if (!error && dev->bus->self)
748 		pcie_aspm_powersave_config_link(dev->bus->self);
749 
750 	return error;
751 }
752 
753 /**
754  * pci_choose_state - Choose the power state of a PCI device
755  * @dev: PCI device to be suspended
756  * @state: target sleep state for the whole system. This is the value
757  *	that is passed to suspend() function.
758  *
759  * Returns PCI power state suitable for given device and given system
760  * message.
761  */
762 
pci_choose_state(struct pci_dev * dev,pm_message_t state)763 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
764 {
765 	pci_power_t ret;
766 
767 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
768 		return PCI_D0;
769 
770 	ret = platform_pci_choose_state(dev);
771 	if (ret != PCI_POWER_ERROR)
772 		return ret;
773 
774 	switch (state.event) {
775 	case PM_EVENT_ON:
776 		return PCI_D0;
777 	case PM_EVENT_FREEZE:
778 	case PM_EVENT_PRETHAW:
779 		/* REVISIT both freeze and pre-thaw "should" use D0 */
780 	case PM_EVENT_SUSPEND:
781 	case PM_EVENT_HIBERNATE:
782 		return PCI_D3hot;
783 	default:
784 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
785 			 state.event);
786 		BUG();
787 	}
788 	return PCI_D0;
789 }
790 
791 EXPORT_SYMBOL(pci_choose_state);
792 
793 #define PCI_EXP_SAVE_REGS	7
794 
795 #define pcie_cap_has_devctl(type, flags)	1
796 #define pcie_cap_has_lnkctl(type, flags)		\
797 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
798 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
799 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
800 		  type == PCI_EXP_TYPE_LEG_END))
801 #define pcie_cap_has_sltctl(type, flags)		\
802 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
803 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
804 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
805 		   (flags & PCI_EXP_FLAGS_SLOT))))
806 #define pcie_cap_has_rtctl(type, flags)			\
807 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
808 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
809 		  type == PCI_EXP_TYPE_RC_EC))
810 #define pcie_cap_has_devctl2(type, flags)		\
811 		((flags & PCI_EXP_FLAGS_VERS) > 1)
812 #define pcie_cap_has_lnkctl2(type, flags)		\
813 		((flags & PCI_EXP_FLAGS_VERS) > 1)
814 #define pcie_cap_has_sltctl2(type, flags)		\
815 		((flags & PCI_EXP_FLAGS_VERS) > 1)
816 
pci_save_pcie_state(struct pci_dev * dev)817 static int pci_save_pcie_state(struct pci_dev *dev)
818 {
819 	int pos, i = 0;
820 	struct pci_cap_saved_state *save_state;
821 	u16 *cap;
822 	u16 flags;
823 
824 	pos = pci_pcie_cap(dev);
825 	if (!pos)
826 		return 0;
827 
828 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
829 	if (!save_state) {
830 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
831 		return -ENOMEM;
832 	}
833 	cap = (u16 *)&save_state->data[0];
834 
835 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
836 
837 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
838 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
839 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
840 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
841 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
842 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
843 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
844 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
845 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
846 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
847 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
848 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
849 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
850 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
851 
852 	return 0;
853 }
854 
pci_restore_pcie_state(struct pci_dev * dev)855 static void pci_restore_pcie_state(struct pci_dev *dev)
856 {
857 	int i = 0, pos;
858 	struct pci_cap_saved_state *save_state;
859 	u16 *cap;
860 	u16 flags;
861 
862 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
863 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
864 	if (!save_state || pos <= 0)
865 		return;
866 	cap = (u16 *)&save_state->data[0];
867 
868 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
869 
870 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
871 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
872 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
873 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
874 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
875 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
876 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
877 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
878 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
879 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
880 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
881 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
882 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
883 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
884 }
885 
886 
pci_save_pcix_state(struct pci_dev * dev)887 static int pci_save_pcix_state(struct pci_dev *dev)
888 {
889 	int pos;
890 	struct pci_cap_saved_state *save_state;
891 
892 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
893 	if (pos <= 0)
894 		return 0;
895 
896 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
897 	if (!save_state) {
898 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
899 		return -ENOMEM;
900 	}
901 
902 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
903 
904 	return 0;
905 }
906 
pci_restore_pcix_state(struct pci_dev * dev)907 static void pci_restore_pcix_state(struct pci_dev *dev)
908 {
909 	int i = 0, pos;
910 	struct pci_cap_saved_state *save_state;
911 	u16 *cap;
912 
913 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
914 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
915 	if (!save_state || pos <= 0)
916 		return;
917 	cap = (u16 *)&save_state->data[0];
918 
919 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
920 }
921 
922 
923 /**
924  * pci_save_state - save the PCI configuration space of a device before suspending
925  * @dev: - PCI device that we're dealing with
926  */
927 int
pci_save_state(struct pci_dev * dev)928 pci_save_state(struct pci_dev *dev)
929 {
930 	int i;
931 	/* XXX: 100% dword access ok here? */
932 	for (i = 0; i < 16; i++)
933 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
934 	dev->state_saved = true;
935 	if ((i = pci_save_pcie_state(dev)) != 0)
936 		return i;
937 	if ((i = pci_save_pcix_state(dev)) != 0)
938 		return i;
939 	return 0;
940 }
941 
942 /**
943  * pci_restore_state - Restore the saved state of a PCI device
944  * @dev: - PCI device that we're dealing with
945  */
pci_restore_state(struct pci_dev * dev)946 void pci_restore_state(struct pci_dev *dev)
947 {
948 	int i;
949 	u32 val;
950 
951 	if (!dev->state_saved)
952 		return;
953 
954 	/* PCI Express register must be restored first */
955 	pci_restore_pcie_state(dev);
956 
957 	/*
958 	 * The Base Address register should be programmed before the command
959 	 * register(s)
960 	 */
961 	for (i = 15; i >= 0; i--) {
962 		pci_read_config_dword(dev, i * 4, &val);
963 		if (val != dev->saved_config_space[i]) {
964 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
965 				"space at offset %#x (was %#x, writing %#x)\n",
966 				i, val, (int)dev->saved_config_space[i]);
967 			pci_write_config_dword(dev,i * 4,
968 				dev->saved_config_space[i]);
969 		}
970 	}
971 	pci_restore_pcix_state(dev);
972 	pci_restore_msi_state(dev);
973 	pci_restore_iov_state(dev);
974 
975 	dev->state_saved = false;
976 }
977 
do_pci_enable_device(struct pci_dev * dev,int bars)978 static int do_pci_enable_device(struct pci_dev *dev, int bars)
979 {
980 	int err;
981 
982 	err = pci_set_power_state(dev, PCI_D0);
983 	if (err < 0 && err != -EIO)
984 		return err;
985 	err = pcibios_enable_device(dev, bars);
986 	if (err < 0)
987 		return err;
988 	pci_fixup_device(pci_fixup_enable, dev);
989 
990 	return 0;
991 }
992 
993 /**
994  * pci_reenable_device - Resume abandoned device
995  * @dev: PCI device to be resumed
996  *
997  *  Note this function is a backend of pci_default_resume and is not supposed
998  *  to be called by normal code, write proper resume handler and use it instead.
999  */
pci_reenable_device(struct pci_dev * dev)1000 int pci_reenable_device(struct pci_dev *dev)
1001 {
1002 	if (pci_is_enabled(dev))
1003 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1004 	return 0;
1005 }
1006 
__pci_enable_device_flags(struct pci_dev * dev,resource_size_t flags)1007 static int __pci_enable_device_flags(struct pci_dev *dev,
1008 				     resource_size_t flags)
1009 {
1010 	int err;
1011 	int i, bars = 0;
1012 
1013 	/*
1014 	 * Power state could be unknown at this point, either due to a fresh
1015 	 * boot or a device removal call.  So get the current power state
1016 	 * so that things like MSI message writing will behave as expected
1017 	 * (e.g. if the device really is in D0 at enable time).
1018 	 */
1019 	if (dev->pm_cap) {
1020 		u16 pmcsr;
1021 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1022 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1023 	}
1024 
1025 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1026 		return 0;		/* already enabled */
1027 
1028 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1029 		if (dev->resource[i].flags & flags)
1030 			bars |= (1 << i);
1031 
1032 	err = do_pci_enable_device(dev, bars);
1033 	if (err < 0)
1034 		atomic_dec(&dev->enable_cnt);
1035 	return err;
1036 }
1037 
1038 /**
1039  * pci_enable_device_io - Initialize a device for use with IO space
1040  * @dev: PCI device to be initialized
1041  *
1042  *  Initialize device before it's used by a driver. Ask low-level code
1043  *  to enable I/O resources. Wake up the device if it was suspended.
1044  *  Beware, this function can fail.
1045  */
pci_enable_device_io(struct pci_dev * dev)1046 int pci_enable_device_io(struct pci_dev *dev)
1047 {
1048 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1049 }
1050 
1051 /**
1052  * pci_enable_device_mem - Initialize a device for use with Memory space
1053  * @dev: PCI device to be initialized
1054  *
1055  *  Initialize device before it's used by a driver. Ask low-level code
1056  *  to enable Memory resources. Wake up the device if it was suspended.
1057  *  Beware, this function can fail.
1058  */
pci_enable_device_mem(struct pci_dev * dev)1059 int pci_enable_device_mem(struct pci_dev *dev)
1060 {
1061 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1062 }
1063 
1064 /**
1065  * pci_enable_device - Initialize device before it's used by a driver.
1066  * @dev: PCI device to be initialized
1067  *
1068  *  Initialize device before it's used by a driver. Ask low-level code
1069  *  to enable I/O and memory. Wake up the device if it was suspended.
1070  *  Beware, this function can fail.
1071  *
1072  *  Note we don't actually enable the device many times if we call
1073  *  this function repeatedly (we just increment the count).
1074  */
pci_enable_device(struct pci_dev * dev)1075 int pci_enable_device(struct pci_dev *dev)
1076 {
1077 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1078 }
1079 
1080 /*
1081  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1082  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1083  * there's no need to track it separately.  pci_devres is initialized
1084  * when a device is enabled using managed PCI device enable interface.
1085  */
1086 struct pci_devres {
1087 	unsigned int enabled:1;
1088 	unsigned int pinned:1;
1089 	unsigned int orig_intx:1;
1090 	unsigned int restore_intx:1;
1091 	u32 region_mask;
1092 };
1093 
pcim_release(struct device * gendev,void * res)1094 static void pcim_release(struct device *gendev, void *res)
1095 {
1096 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1097 	struct pci_devres *this = res;
1098 	int i;
1099 
1100 	if (dev->msi_enabled)
1101 		pci_disable_msi(dev);
1102 	if (dev->msix_enabled)
1103 		pci_disable_msix(dev);
1104 
1105 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1106 		if (this->region_mask & (1 << i))
1107 			pci_release_region(dev, i);
1108 
1109 	if (this->restore_intx)
1110 		pci_intx(dev, this->orig_intx);
1111 
1112 	if (this->enabled && !this->pinned)
1113 		pci_disable_device(dev);
1114 }
1115 
get_pci_dr(struct pci_dev * pdev)1116 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1117 {
1118 	struct pci_devres *dr, *new_dr;
1119 
1120 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1121 	if (dr)
1122 		return dr;
1123 
1124 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1125 	if (!new_dr)
1126 		return NULL;
1127 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1128 }
1129 
find_pci_dr(struct pci_dev * pdev)1130 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1131 {
1132 	if (pci_is_managed(pdev))
1133 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1134 	return NULL;
1135 }
1136 
1137 /**
1138  * pcim_enable_device - Managed pci_enable_device()
1139  * @pdev: PCI device to be initialized
1140  *
1141  * Managed pci_enable_device().
1142  */
pcim_enable_device(struct pci_dev * pdev)1143 int pcim_enable_device(struct pci_dev *pdev)
1144 {
1145 	struct pci_devres *dr;
1146 	int rc;
1147 
1148 	dr = get_pci_dr(pdev);
1149 	if (unlikely(!dr))
1150 		return -ENOMEM;
1151 	if (dr->enabled)
1152 		return 0;
1153 
1154 	rc = pci_enable_device(pdev);
1155 	if (!rc) {
1156 		pdev->is_managed = 1;
1157 		dr->enabled = 1;
1158 	}
1159 	return rc;
1160 }
1161 
1162 /**
1163  * pcim_pin_device - Pin managed PCI device
1164  * @pdev: PCI device to pin
1165  *
1166  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1167  * driver detach.  @pdev must have been enabled with
1168  * pcim_enable_device().
1169  */
pcim_pin_device(struct pci_dev * pdev)1170 void pcim_pin_device(struct pci_dev *pdev)
1171 {
1172 	struct pci_devres *dr;
1173 
1174 	dr = find_pci_dr(pdev);
1175 	WARN_ON(!dr || !dr->enabled);
1176 	if (dr)
1177 		dr->pinned = 1;
1178 }
1179 
1180 /**
1181  * pcibios_disable_device - disable arch specific PCI resources for device dev
1182  * @dev: the PCI device to disable
1183  *
1184  * Disables architecture specific PCI resources for the device. This
1185  * is the default implementation. Architecture implementations can
1186  * override this.
1187  */
pcibios_disable_device(struct pci_dev * dev)1188 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1189 
do_pci_disable_device(struct pci_dev * dev)1190 static void do_pci_disable_device(struct pci_dev *dev)
1191 {
1192 	u16 pci_command;
1193 
1194 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1195 	if (pci_command & PCI_COMMAND_MASTER) {
1196 		pci_command &= ~PCI_COMMAND_MASTER;
1197 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1198 	}
1199 
1200 	pcibios_disable_device(dev);
1201 }
1202 
1203 /**
1204  * pci_disable_enabled_device - Disable device without updating enable_cnt
1205  * @dev: PCI device to disable
1206  *
1207  * NOTE: This function is a backend of PCI power management routines and is
1208  * not supposed to be called drivers.
1209  */
pci_disable_enabled_device(struct pci_dev * dev)1210 void pci_disable_enabled_device(struct pci_dev *dev)
1211 {
1212 	if (pci_is_enabled(dev))
1213 		do_pci_disable_device(dev);
1214 }
1215 
1216 /**
1217  * pci_disable_device - Disable PCI device after use
1218  * @dev: PCI device to be disabled
1219  *
1220  * Signal to the system that the PCI device is not in use by the system
1221  * anymore.  This only involves disabling PCI bus-mastering, if active.
1222  *
1223  * Note we don't actually disable the device until all callers of
1224  * pci_enable_device() have called pci_disable_device().
1225  */
1226 void
pci_disable_device(struct pci_dev * dev)1227 pci_disable_device(struct pci_dev *dev)
1228 {
1229 	struct pci_devres *dr;
1230 
1231 	dr = find_pci_dr(dev);
1232 	if (dr)
1233 		dr->enabled = 0;
1234 
1235 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1236 		return;
1237 
1238 	do_pci_disable_device(dev);
1239 
1240 	dev->is_busmaster = 0;
1241 }
1242 
1243 /**
1244  * pcibios_set_pcie_reset_state - set reset state for device dev
1245  * @dev: the PCIe device reset
1246  * @state: Reset state to enter into
1247  *
1248  *
1249  * Sets the PCIe reset state for the device. This is the default
1250  * implementation. Architecture implementations can override this.
1251  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1252 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1253 							enum pcie_reset_state state)
1254 {
1255 	return -EINVAL;
1256 }
1257 
1258 /**
1259  * pci_set_pcie_reset_state - set reset state for device dev
1260  * @dev: the PCIe device reset
1261  * @state: Reset state to enter into
1262  *
1263  *
1264  * Sets the PCI reset state for the device.
1265  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1266 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1267 {
1268 	return pcibios_set_pcie_reset_state(dev, state);
1269 }
1270 
1271 /**
1272  * pci_check_pme_status - Check if given device has generated PME.
1273  * @dev: Device to check.
1274  *
1275  * Check the PME status of the device and if set, clear it and clear PME enable
1276  * (if set).  Return 'true' if PME status and PME enable were both set or
1277  * 'false' otherwise.
1278  */
pci_check_pme_status(struct pci_dev * dev)1279 bool pci_check_pme_status(struct pci_dev *dev)
1280 {
1281 	int pmcsr_pos;
1282 	u16 pmcsr;
1283 	bool ret = false;
1284 
1285 	if (!dev->pm_cap)
1286 		return false;
1287 
1288 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1289 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1290 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1291 		return false;
1292 
1293 	/* Clear PME status. */
1294 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1295 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1296 		/* Disable PME to avoid interrupt flood. */
1297 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1298 		ret = true;
1299 	}
1300 
1301 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1302 
1303 	return ret;
1304 }
1305 
1306 /**
1307  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1308  * @dev: Device to handle.
1309  * @ign: Ignored.
1310  *
1311  * Check if @dev has generated PME and queue a resume request for it in that
1312  * case.
1313  */
pci_pme_wakeup(struct pci_dev * dev,void * ign)1314 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1315 {
1316 	if (pci_check_pme_status(dev)) {
1317 		pci_wakeup_event(dev);
1318 		pm_request_resume(&dev->dev);
1319 	}
1320 	return 0;
1321 }
1322 
1323 /**
1324  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1325  * @bus: Top bus of the subtree to walk.
1326  */
pci_pme_wakeup_bus(struct pci_bus * bus)1327 void pci_pme_wakeup_bus(struct pci_bus *bus)
1328 {
1329 	if (bus)
1330 		pci_walk_bus(bus, pci_pme_wakeup, NULL);
1331 }
1332 
1333 /**
1334  * pci_pme_capable - check the capability of PCI device to generate PME#
1335  * @dev: PCI device to handle.
1336  * @state: PCI state from which device will issue PME#.
1337  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1338 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1339 {
1340 	if (!dev->pm_cap)
1341 		return false;
1342 
1343 	return !!(dev->pme_support & (1 << state));
1344 }
1345 
pci_pme_list_scan(struct work_struct * work)1346 static void pci_pme_list_scan(struct work_struct *work)
1347 {
1348 	struct pci_pme_device *pme_dev;
1349 
1350 	mutex_lock(&pci_pme_list_mutex);
1351 	if (!list_empty(&pci_pme_list)) {
1352 		list_for_each_entry(pme_dev, &pci_pme_list, list)
1353 			pci_pme_wakeup(pme_dev->dev, NULL);
1354 		schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1355 	}
1356 	mutex_unlock(&pci_pme_list_mutex);
1357 }
1358 
1359 /**
1360  * pci_external_pme - is a device an external PCI PME source?
1361  * @dev: PCI device to check
1362  *
1363  */
1364 
pci_external_pme(struct pci_dev * dev)1365 static bool pci_external_pme(struct pci_dev *dev)
1366 {
1367 	if (pci_is_pcie(dev) || dev->bus->number == 0)
1368 		return false;
1369 	return true;
1370 }
1371 
1372 /**
1373  * pci_pme_active - enable or disable PCI device's PME# function
1374  * @dev: PCI device to handle.
1375  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1376  *
1377  * The caller must verify that the device is capable of generating PME# before
1378  * calling this function with @enable equal to 'true'.
1379  */
pci_pme_active(struct pci_dev * dev,bool enable)1380 void pci_pme_active(struct pci_dev *dev, bool enable)
1381 {
1382 	u16 pmcsr;
1383 
1384 	if (!dev->pm_cap)
1385 		return;
1386 
1387 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 	/* Clear PME_Status by writing 1 to it and enable PME# */
1389 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1390 	if (!enable)
1391 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1392 
1393 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1394 
1395 	/* PCI (as opposed to PCIe) PME requires that the device have
1396 	   its PME# line hooked up correctly. Not all hardware vendors
1397 	   do this, so the PME never gets delivered and the device
1398 	   remains asleep. The easiest way around this is to
1399 	   periodically walk the list of suspended devices and check
1400 	   whether any have their PME flag set. The assumption is that
1401 	   we'll wake up often enough anyway that this won't be a huge
1402 	   hit, and the power savings from the devices will still be a
1403 	   win. */
1404 
1405 	if (pci_external_pme(dev)) {
1406 		struct pci_pme_device *pme_dev;
1407 		if (enable) {
1408 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1409 					  GFP_KERNEL);
1410 			if (!pme_dev)
1411 				goto out;
1412 			pme_dev->dev = dev;
1413 			mutex_lock(&pci_pme_list_mutex);
1414 			list_add(&pme_dev->list, &pci_pme_list);
1415 			if (list_is_singular(&pci_pme_list))
1416 				schedule_delayed_work(&pci_pme_work,
1417 						      msecs_to_jiffies(PME_TIMEOUT));
1418 			mutex_unlock(&pci_pme_list_mutex);
1419 		} else {
1420 			mutex_lock(&pci_pme_list_mutex);
1421 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1422 				if (pme_dev->dev == dev) {
1423 					list_del(&pme_dev->list);
1424 					kfree(pme_dev);
1425 					break;
1426 				}
1427 			}
1428 			mutex_unlock(&pci_pme_list_mutex);
1429 		}
1430 	}
1431 
1432 out:
1433 	dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1434 			enable ? "enabled" : "disabled");
1435 }
1436 
1437 /**
1438  * __pci_enable_wake - enable PCI device as wakeup event source
1439  * @dev: PCI device affected
1440  * @state: PCI state from which device will issue wakeup events
1441  * @runtime: True if the events are to be generated at run time
1442  * @enable: True to enable event generation; false to disable
1443  *
1444  * This enables the device as a wakeup event source, or disables it.
1445  * When such events involves platform-specific hooks, those hooks are
1446  * called automatically by this routine.
1447  *
1448  * Devices with legacy power management (no standard PCI PM capabilities)
1449  * always require such platform hooks.
1450  *
1451  * RETURN VALUE:
1452  * 0 is returned on success
1453  * -EINVAL is returned if device is not supposed to wake up the system
1454  * Error code depending on the platform is returned if both the platform and
1455  * the native mechanism fail to enable the generation of wake-up events
1456  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1457 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1458 		      bool runtime, bool enable)
1459 {
1460 	int ret = 0;
1461 
1462 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1463 		return -EINVAL;
1464 
1465 	/* Don't do the same thing twice in a row for one device. */
1466 	if (!!enable == !!dev->wakeup_prepared)
1467 		return 0;
1468 
1469 	/*
1470 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1471 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1472 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1473 	 */
1474 
1475 	if (enable) {
1476 		int error;
1477 
1478 		if (pci_pme_capable(dev, state))
1479 			pci_pme_active(dev, true);
1480 		else
1481 			ret = 1;
1482 		error = runtime ? platform_pci_run_wake(dev, true) :
1483 					platform_pci_sleep_wake(dev, true);
1484 		if (ret)
1485 			ret = error;
1486 		if (!ret)
1487 			dev->wakeup_prepared = true;
1488 	} else {
1489 		if (runtime)
1490 			platform_pci_run_wake(dev, false);
1491 		else
1492 			platform_pci_sleep_wake(dev, false);
1493 		pci_pme_active(dev, false);
1494 		dev->wakeup_prepared = false;
1495 	}
1496 
1497 	return ret;
1498 }
1499 EXPORT_SYMBOL(__pci_enable_wake);
1500 
1501 /**
1502  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1503  * @dev: PCI device to prepare
1504  * @enable: True to enable wake-up event generation; false to disable
1505  *
1506  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1507  * and this function allows them to set that up cleanly - pci_enable_wake()
1508  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1509  * ordering constraints.
1510  *
1511  * This function only returns error code if the device is not capable of
1512  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1513  * enable wake-up power for it.
1514  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1515 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1516 {
1517 	return pci_pme_capable(dev, PCI_D3cold) ?
1518 			pci_enable_wake(dev, PCI_D3cold, enable) :
1519 			pci_enable_wake(dev, PCI_D3hot, enable);
1520 }
1521 
1522 /**
1523  * pci_target_state - find an appropriate low power state for a given PCI dev
1524  * @dev: PCI device
1525  *
1526  * Use underlying platform code to find a supported low power state for @dev.
1527  * If the platform can't manage @dev, return the deepest state from which it
1528  * can generate wake events, based on any available PME info.
1529  */
pci_target_state(struct pci_dev * dev)1530 pci_power_t pci_target_state(struct pci_dev *dev)
1531 {
1532 	pci_power_t target_state = PCI_D3hot;
1533 
1534 	if (platform_pci_power_manageable(dev)) {
1535 		/*
1536 		 * Call the platform to choose the target state of the device
1537 		 * and enable wake-up from this state if supported.
1538 		 */
1539 		pci_power_t state = platform_pci_choose_state(dev);
1540 
1541 		switch (state) {
1542 		case PCI_POWER_ERROR:
1543 		case PCI_UNKNOWN:
1544 			break;
1545 		case PCI_D1:
1546 		case PCI_D2:
1547 			if (pci_no_d1d2(dev))
1548 				break;
1549 		default:
1550 			target_state = state;
1551 		}
1552 	} else if (!dev->pm_cap) {
1553 		target_state = PCI_D0;
1554 	} else if (device_may_wakeup(&dev->dev)) {
1555 		/*
1556 		 * Find the deepest state from which the device can generate
1557 		 * wake-up events, make it the target state and enable device
1558 		 * to generate PME#.
1559 		 */
1560 		if (dev->pme_support) {
1561 			while (target_state
1562 			      && !(dev->pme_support & (1 << target_state)))
1563 				target_state--;
1564 		}
1565 	}
1566 
1567 	return target_state;
1568 }
1569 
1570 /**
1571  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1572  * @dev: Device to handle.
1573  *
1574  * Choose the power state appropriate for the device depending on whether
1575  * it can wake up the system and/or is power manageable by the platform
1576  * (PCI_D3hot is the default) and put the device into that state.
1577  */
pci_prepare_to_sleep(struct pci_dev * dev)1578 int pci_prepare_to_sleep(struct pci_dev *dev)
1579 {
1580 	pci_power_t target_state = pci_target_state(dev);
1581 	int error;
1582 
1583 	if (target_state == PCI_POWER_ERROR)
1584 		return -EIO;
1585 
1586 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1587 
1588 	error = pci_set_power_state(dev, target_state);
1589 
1590 	if (error)
1591 		pci_enable_wake(dev, target_state, false);
1592 
1593 	return error;
1594 }
1595 
1596 /**
1597  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1598  * @dev: Device to handle.
1599  *
1600  * Disable device's system wake-up capability and put it into D0.
1601  */
pci_back_from_sleep(struct pci_dev * dev)1602 int pci_back_from_sleep(struct pci_dev *dev)
1603 {
1604 	pci_enable_wake(dev, PCI_D0, false);
1605 	return pci_set_power_state(dev, PCI_D0);
1606 }
1607 
1608 /**
1609  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1610  * @dev: PCI device being suspended.
1611  *
1612  * Prepare @dev to generate wake-up events at run time and put it into a low
1613  * power state.
1614  */
pci_finish_runtime_suspend(struct pci_dev * dev)1615 int pci_finish_runtime_suspend(struct pci_dev *dev)
1616 {
1617 	pci_power_t target_state = pci_target_state(dev);
1618 	int error;
1619 
1620 	if (target_state == PCI_POWER_ERROR)
1621 		return -EIO;
1622 
1623 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1624 
1625 	error = pci_set_power_state(dev, target_state);
1626 
1627 	if (error)
1628 		__pci_enable_wake(dev, target_state, true, false);
1629 
1630 	return error;
1631 }
1632 
1633 /**
1634  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1635  * @dev: Device to check.
1636  *
1637  * Return true if the device itself is cabable of generating wake-up events
1638  * (through the platform or using the native PCIe PME) or if the device supports
1639  * PME and one of its upstream bridges can generate wake-up events.
1640  */
pci_dev_run_wake(struct pci_dev * dev)1641 bool pci_dev_run_wake(struct pci_dev *dev)
1642 {
1643 	struct pci_bus *bus = dev->bus;
1644 
1645 	if (device_run_wake(&dev->dev))
1646 		return true;
1647 
1648 	if (!dev->pme_support)
1649 		return false;
1650 
1651 	while (bus->parent) {
1652 		struct pci_dev *bridge = bus->self;
1653 
1654 		if (device_run_wake(&bridge->dev))
1655 			return true;
1656 
1657 		bus = bus->parent;
1658 	}
1659 
1660 	/* We have reached the root bus. */
1661 	if (bus->bridge)
1662 		return device_run_wake(bus->bridge);
1663 
1664 	return false;
1665 }
1666 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1667 
1668 /**
1669  * pci_pm_init - Initialize PM functions of given PCI device
1670  * @dev: PCI device to handle.
1671  */
pci_pm_init(struct pci_dev * dev)1672 void pci_pm_init(struct pci_dev *dev)
1673 {
1674 	int pm;
1675 	u16 pmc;
1676 
1677 	pm_runtime_forbid(&dev->dev);
1678 	device_enable_async_suspend(&dev->dev);
1679 	dev->wakeup_prepared = false;
1680 
1681 	dev->pm_cap = 0;
1682 
1683 	/* find PCI PM capability in list */
1684 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1685 	if (!pm)
1686 		return;
1687 	/* Check device's ability to generate PME# */
1688 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1689 
1690 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1691 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1692 			pmc & PCI_PM_CAP_VER_MASK);
1693 		return;
1694 	}
1695 
1696 	dev->pm_cap = pm;
1697 	dev->d3_delay = PCI_PM_D3_WAIT;
1698 
1699 	dev->d1_support = false;
1700 	dev->d2_support = false;
1701 	if (!pci_no_d1d2(dev)) {
1702 		if (pmc & PCI_PM_CAP_D1)
1703 			dev->d1_support = true;
1704 		if (pmc & PCI_PM_CAP_D2)
1705 			dev->d2_support = true;
1706 
1707 		if (dev->d1_support || dev->d2_support)
1708 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1709 				   dev->d1_support ? " D1" : "",
1710 				   dev->d2_support ? " D2" : "");
1711 	}
1712 
1713 	pmc &= PCI_PM_CAP_PME_MASK;
1714 	if (pmc) {
1715 		dev_printk(KERN_DEBUG, &dev->dev,
1716 			 "PME# supported from%s%s%s%s%s\n",
1717 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1718 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1719 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1720 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1721 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1722 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1723 		/*
1724 		 * Make device's PM flags reflect the wake-up capability, but
1725 		 * let the user space enable it to wake up the system as needed.
1726 		 */
1727 		device_set_wakeup_capable(&dev->dev, true);
1728 		/* Disable the PME# generation functionality */
1729 		pci_pme_active(dev, false);
1730 	} else {
1731 		dev->pme_support = 0;
1732 	}
1733 }
1734 
1735 /**
1736  * platform_pci_wakeup_init - init platform wakeup if present
1737  * @dev: PCI device
1738  *
1739  * Some devices don't have PCI PM caps but can still generate wakeup
1740  * events through platform methods (like ACPI events).  If @dev supports
1741  * platform wakeup events, set the device flag to indicate as much.  This
1742  * may be redundant if the device also supports PCI PM caps, but double
1743  * initialization should be safe in that case.
1744  */
platform_pci_wakeup_init(struct pci_dev * dev)1745 void platform_pci_wakeup_init(struct pci_dev *dev)
1746 {
1747 	if (!platform_pci_can_wakeup(dev))
1748 		return;
1749 
1750 	device_set_wakeup_capable(&dev->dev, true);
1751 	platform_pci_sleep_wake(dev, false);
1752 }
1753 
1754 /**
1755  * pci_add_save_buffer - allocate buffer for saving given capability registers
1756  * @dev: the PCI device
1757  * @cap: the capability to allocate the buffer for
1758  * @size: requested size of the buffer
1759  */
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)1760 static int pci_add_cap_save_buffer(
1761 	struct pci_dev *dev, char cap, unsigned int size)
1762 {
1763 	int pos;
1764 	struct pci_cap_saved_state *save_state;
1765 
1766 	pos = pci_find_capability(dev, cap);
1767 	if (pos <= 0)
1768 		return 0;
1769 
1770 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1771 	if (!save_state)
1772 		return -ENOMEM;
1773 
1774 	save_state->cap_nr = cap;
1775 	pci_add_saved_cap(dev, save_state);
1776 
1777 	return 0;
1778 }
1779 
1780 /**
1781  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1782  * @dev: the PCI device
1783  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)1784 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1785 {
1786 	int error;
1787 
1788 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1789 					PCI_EXP_SAVE_REGS * sizeof(u16));
1790 	if (error)
1791 		dev_err(&dev->dev,
1792 			"unable to preallocate PCI Express save buffer\n");
1793 
1794 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1795 	if (error)
1796 		dev_err(&dev->dev,
1797 			"unable to preallocate PCI-X save buffer\n");
1798 }
1799 
1800 /**
1801  * pci_enable_ari - enable ARI forwarding if hardware support it
1802  * @dev: the PCI device
1803  */
pci_enable_ari(struct pci_dev * dev)1804 void pci_enable_ari(struct pci_dev *dev)
1805 {
1806 	int pos;
1807 	u32 cap;
1808 	u16 ctrl;
1809 	struct pci_dev *bridge;
1810 
1811 	if (!pci_is_pcie(dev) || dev->devfn)
1812 		return;
1813 
1814 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1815 	if (!pos)
1816 		return;
1817 
1818 	bridge = dev->bus->self;
1819 	if (!bridge || !pci_is_pcie(bridge))
1820 		return;
1821 
1822 	pos = pci_pcie_cap(bridge);
1823 	if (!pos)
1824 		return;
1825 
1826 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1827 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1828 		return;
1829 
1830 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1831 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1832 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1833 
1834 	bridge->ari_enabled = 1;
1835 }
1836 
1837 static int pci_acs_enable;
1838 
1839 /**
1840  * pci_request_acs - ask for ACS to be enabled if supported
1841  */
pci_request_acs(void)1842 void pci_request_acs(void)
1843 {
1844 	pci_acs_enable = 1;
1845 }
1846 
1847 /**
1848  * pci_enable_acs - enable ACS if hardware support it
1849  * @dev: the PCI device
1850  */
pci_enable_acs(struct pci_dev * dev)1851 void pci_enable_acs(struct pci_dev *dev)
1852 {
1853 	int pos;
1854 	u16 cap;
1855 	u16 ctrl;
1856 
1857 	if (!pci_acs_enable)
1858 		return;
1859 
1860 	if (!pci_is_pcie(dev))
1861 		return;
1862 
1863 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1864 	if (!pos)
1865 		return;
1866 
1867 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1868 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1869 
1870 	/* Source Validation */
1871 	ctrl |= (cap & PCI_ACS_SV);
1872 
1873 	/* P2P Request Redirect */
1874 	ctrl |= (cap & PCI_ACS_RR);
1875 
1876 	/* P2P Completion Redirect */
1877 	ctrl |= (cap & PCI_ACS_CR);
1878 
1879 	/* Upstream Forwarding */
1880 	ctrl |= (cap & PCI_ACS_UF);
1881 
1882 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1883 }
1884 
1885 /**
1886  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1887  * @dev: the PCI device
1888  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1889  *
1890  * Perform INTx swizzling for a device behind one level of bridge.  This is
1891  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1892  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
1893  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1894  * the PCI Express Base Specification, Revision 2.1)
1895  */
pci_swizzle_interrupt_pin(struct pci_dev * dev,u8 pin)1896 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1897 {
1898 	int slot;
1899 
1900 	if (pci_ari_enabled(dev->bus))
1901 		slot = 0;
1902 	else
1903 		slot = PCI_SLOT(dev->devfn);
1904 
1905 	return (((pin - 1) + slot) % 4) + 1;
1906 }
1907 
1908 int
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)1909 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1910 {
1911 	u8 pin;
1912 
1913 	pin = dev->pin;
1914 	if (!pin)
1915 		return -1;
1916 
1917 	while (!pci_is_root_bus(dev->bus)) {
1918 		pin = pci_swizzle_interrupt_pin(dev, pin);
1919 		dev = dev->bus->self;
1920 	}
1921 	*bridge = dev;
1922 	return pin;
1923 }
1924 
1925 /**
1926  * pci_common_swizzle - swizzle INTx all the way to root bridge
1927  * @dev: the PCI device
1928  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1929  *
1930  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1931  * bridges all the way up to a PCI root bus.
1932  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)1933 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1934 {
1935 	u8 pin = *pinp;
1936 
1937 	while (!pci_is_root_bus(dev->bus)) {
1938 		pin = pci_swizzle_interrupt_pin(dev, pin);
1939 		dev = dev->bus->self;
1940 	}
1941 	*pinp = pin;
1942 	return PCI_SLOT(dev->devfn);
1943 }
1944 
1945 /**
1946  *	pci_release_region - Release a PCI bar
1947  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1948  *	@bar: BAR to release
1949  *
1950  *	Releases the PCI I/O and memory resources previously reserved by a
1951  *	successful call to pci_request_region.  Call this function only
1952  *	after all use of the PCI regions has ceased.
1953  */
pci_release_region(struct pci_dev * pdev,int bar)1954 void pci_release_region(struct pci_dev *pdev, int bar)
1955 {
1956 	struct pci_devres *dr;
1957 
1958 	if (pci_resource_len(pdev, bar) == 0)
1959 		return;
1960 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1961 		release_region(pci_resource_start(pdev, bar),
1962 				pci_resource_len(pdev, bar));
1963 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1964 		release_mem_region(pci_resource_start(pdev, bar),
1965 				pci_resource_len(pdev, bar));
1966 
1967 	dr = find_pci_dr(pdev);
1968 	if (dr)
1969 		dr->region_mask &= ~(1 << bar);
1970 }
1971 
1972 /**
1973  *	__pci_request_region - Reserved PCI I/O and memory resource
1974  *	@pdev: PCI device whose resources are to be reserved
1975  *	@bar: BAR to be reserved
1976  *	@res_name: Name to be associated with resource.
1977  *	@exclusive: whether the region access is exclusive or not
1978  *
1979  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1980  *	being reserved by owner @res_name.  Do not access any
1981  *	address inside the PCI regions unless this call returns
1982  *	successfully.
1983  *
1984  *	If @exclusive is set, then the region is marked so that userspace
1985  *	is explicitly not allowed to map the resource via /dev/mem or
1986  * 	sysfs MMIO access.
1987  *
1988  *	Returns 0 on success, or %EBUSY on error.  A warning
1989  *	message is also printed on failure.
1990  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)1991 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1992 									int exclusive)
1993 {
1994 	struct pci_devres *dr;
1995 
1996 	if (pci_resource_len(pdev, bar) == 0)
1997 		return 0;
1998 
1999 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2000 		if (!request_region(pci_resource_start(pdev, bar),
2001 			    pci_resource_len(pdev, bar), res_name))
2002 			goto err_out;
2003 	}
2004 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2005 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2006 					pci_resource_len(pdev, bar), res_name,
2007 					exclusive))
2008 			goto err_out;
2009 	}
2010 
2011 	dr = find_pci_dr(pdev);
2012 	if (dr)
2013 		dr->region_mask |= 1 << bar;
2014 
2015 	return 0;
2016 
2017 err_out:
2018 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2019 		 &pdev->resource[bar]);
2020 	return -EBUSY;
2021 }
2022 
2023 /**
2024  *	pci_request_region - Reserve PCI I/O and memory resource
2025  *	@pdev: PCI device whose resources are to be reserved
2026  *	@bar: BAR to be reserved
2027  *	@res_name: Name to be associated with resource
2028  *
2029  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2030  *	being reserved by owner @res_name.  Do not access any
2031  *	address inside the PCI regions unless this call returns
2032  *	successfully.
2033  *
2034  *	Returns 0 on success, or %EBUSY on error.  A warning
2035  *	message is also printed on failure.
2036  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2037 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2038 {
2039 	return __pci_request_region(pdev, bar, res_name, 0);
2040 }
2041 
2042 /**
2043  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2044  *	@pdev: PCI device whose resources are to be reserved
2045  *	@bar: BAR to be reserved
2046  *	@res_name: Name to be associated with resource.
2047  *
2048  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2049  *	being reserved by owner @res_name.  Do not access any
2050  *	address inside the PCI regions unless this call returns
2051  *	successfully.
2052  *
2053  *	Returns 0 on success, or %EBUSY on error.  A warning
2054  *	message is also printed on failure.
2055  *
2056  *	The key difference that _exclusive makes it that userspace is
2057  *	explicitly not allowed to map the resource via /dev/mem or
2058  * 	sysfs.
2059  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2060 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2061 {
2062 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2063 }
2064 /**
2065  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2066  * @pdev: PCI device whose resources were previously reserved
2067  * @bars: Bitmask of BARs to be released
2068  *
2069  * Release selected PCI I/O and memory resources previously reserved.
2070  * Call this function only after all use of the PCI regions has ceased.
2071  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2072 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2073 {
2074 	int i;
2075 
2076 	for (i = 0; i < 6; i++)
2077 		if (bars & (1 << i))
2078 			pci_release_region(pdev, i);
2079 }
2080 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2081 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2082 				 const char *res_name, int excl)
2083 {
2084 	int i;
2085 
2086 	for (i = 0; i < 6; i++)
2087 		if (bars & (1 << i))
2088 			if (__pci_request_region(pdev, i, res_name, excl))
2089 				goto err_out;
2090 	return 0;
2091 
2092 err_out:
2093 	while(--i >= 0)
2094 		if (bars & (1 << i))
2095 			pci_release_region(pdev, i);
2096 
2097 	return -EBUSY;
2098 }
2099 
2100 
2101 /**
2102  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2103  * @pdev: PCI device whose resources are to be reserved
2104  * @bars: Bitmask of BARs to be requested
2105  * @res_name: Name to be associated with resource
2106  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2107 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2108 				 const char *res_name)
2109 {
2110 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2111 }
2112 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2113 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2114 				 int bars, const char *res_name)
2115 {
2116 	return __pci_request_selected_regions(pdev, bars, res_name,
2117 			IORESOURCE_EXCLUSIVE);
2118 }
2119 
2120 /**
2121  *	pci_release_regions - Release reserved PCI I/O and memory resources
2122  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2123  *
2124  *	Releases all PCI I/O and memory resources previously reserved by a
2125  *	successful call to pci_request_regions.  Call this function only
2126  *	after all use of the PCI regions has ceased.
2127  */
2128 
pci_release_regions(struct pci_dev * pdev)2129 void pci_release_regions(struct pci_dev *pdev)
2130 {
2131 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2132 }
2133 
2134 /**
2135  *	pci_request_regions - Reserved PCI I/O and memory resources
2136  *	@pdev: PCI device whose resources are to be reserved
2137  *	@res_name: Name to be associated with resource.
2138  *
2139  *	Mark all PCI regions associated with PCI device @pdev as
2140  *	being reserved by owner @res_name.  Do not access any
2141  *	address inside the PCI regions unless this call returns
2142  *	successfully.
2143  *
2144  *	Returns 0 on success, or %EBUSY on error.  A warning
2145  *	message is also printed on failure.
2146  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)2147 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2148 {
2149 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2150 }
2151 
2152 /**
2153  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2154  *	@pdev: PCI device whose resources are to be reserved
2155  *	@res_name: Name to be associated with resource.
2156  *
2157  *	Mark all PCI regions associated with PCI device @pdev as
2158  *	being reserved by owner @res_name.  Do not access any
2159  *	address inside the PCI regions unless this call returns
2160  *	successfully.
2161  *
2162  *	pci_request_regions_exclusive() will mark the region so that
2163  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2164  *
2165  *	Returns 0 on success, or %EBUSY on error.  A warning
2166  *	message is also printed on failure.
2167  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)2168 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2169 {
2170 	return pci_request_selected_regions_exclusive(pdev,
2171 					((1 << 6) - 1), res_name);
2172 }
2173 
__pci_set_master(struct pci_dev * dev,bool enable)2174 static void __pci_set_master(struct pci_dev *dev, bool enable)
2175 {
2176 	u16 old_cmd, cmd;
2177 
2178 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2179 	if (enable)
2180 		cmd = old_cmd | PCI_COMMAND_MASTER;
2181 	else
2182 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2183 	if (cmd != old_cmd) {
2184 		dev_dbg(&dev->dev, "%s bus mastering\n",
2185 			enable ? "enabling" : "disabling");
2186 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2187 	}
2188 	dev->is_busmaster = enable;
2189 }
2190 
2191 /**
2192  * pci_set_master - enables bus-mastering for device dev
2193  * @dev: the PCI device to enable
2194  *
2195  * Enables bus-mastering on the device and calls pcibios_set_master()
2196  * to do the needed arch specific settings.
2197  */
pci_set_master(struct pci_dev * dev)2198 void pci_set_master(struct pci_dev *dev)
2199 {
2200 	__pci_set_master(dev, true);
2201 	pcibios_set_master(dev);
2202 }
2203 
2204 /**
2205  * pci_clear_master - disables bus-mastering for device dev
2206  * @dev: the PCI device to disable
2207  */
pci_clear_master(struct pci_dev * dev)2208 void pci_clear_master(struct pci_dev *dev)
2209 {
2210 	__pci_set_master(dev, false);
2211 }
2212 
2213 /**
2214  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2215  * @dev: the PCI device for which MWI is to be enabled
2216  *
2217  * Helper function for pci_set_mwi.
2218  * Originally copied from drivers/net/acenic.c.
2219  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2220  *
2221  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2222  */
pci_set_cacheline_size(struct pci_dev * dev)2223 int pci_set_cacheline_size(struct pci_dev *dev)
2224 {
2225 	u8 cacheline_size;
2226 
2227 	if (!pci_cache_line_size)
2228 		return -EINVAL;
2229 
2230 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2231 	   equal to or multiple of the right value. */
2232 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2233 	if (cacheline_size >= pci_cache_line_size &&
2234 	    (cacheline_size % pci_cache_line_size) == 0)
2235 		return 0;
2236 
2237 	/* Write the correct value. */
2238 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2239 	/* Read it back. */
2240 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2241 	if (cacheline_size == pci_cache_line_size)
2242 		return 0;
2243 
2244 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2245 		   "supported\n", pci_cache_line_size << 2);
2246 
2247 	return -EINVAL;
2248 }
2249 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2250 
2251 #ifdef PCI_DISABLE_MWI
pci_set_mwi(struct pci_dev * dev)2252 int pci_set_mwi(struct pci_dev *dev)
2253 {
2254 	return 0;
2255 }
2256 
pci_try_set_mwi(struct pci_dev * dev)2257 int pci_try_set_mwi(struct pci_dev *dev)
2258 {
2259 	return 0;
2260 }
2261 
pci_clear_mwi(struct pci_dev * dev)2262 void pci_clear_mwi(struct pci_dev *dev)
2263 {
2264 }
2265 
2266 #else
2267 
2268 /**
2269  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2270  * @dev: the PCI device for which MWI is enabled
2271  *
2272  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2273  *
2274  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2275  */
2276 int
pci_set_mwi(struct pci_dev * dev)2277 pci_set_mwi(struct pci_dev *dev)
2278 {
2279 	int rc;
2280 	u16 cmd;
2281 
2282 	rc = pci_set_cacheline_size(dev);
2283 	if (rc)
2284 		return rc;
2285 
2286 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2287 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2288 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2289 		cmd |= PCI_COMMAND_INVALIDATE;
2290 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2298  * @dev: the PCI device for which MWI is enabled
2299  *
2300  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2301  * Callers are not required to check the return value.
2302  *
2303  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2304  */
pci_try_set_mwi(struct pci_dev * dev)2305 int pci_try_set_mwi(struct pci_dev *dev)
2306 {
2307 	int rc = pci_set_mwi(dev);
2308 	return rc;
2309 }
2310 
2311 /**
2312  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2313  * @dev: the PCI device to disable
2314  *
2315  * Disables PCI Memory-Write-Invalidate transaction on the device
2316  */
2317 void
pci_clear_mwi(struct pci_dev * dev)2318 pci_clear_mwi(struct pci_dev *dev)
2319 {
2320 	u16 cmd;
2321 
2322 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2323 	if (cmd & PCI_COMMAND_INVALIDATE) {
2324 		cmd &= ~PCI_COMMAND_INVALIDATE;
2325 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2326 	}
2327 }
2328 #endif /* ! PCI_DISABLE_MWI */
2329 
2330 /**
2331  * pci_intx - enables/disables PCI INTx for device dev
2332  * @pdev: the PCI device to operate on
2333  * @enable: boolean: whether to enable or disable PCI INTx
2334  *
2335  * Enables/disables PCI INTx for device dev
2336  */
2337 void
pci_intx(struct pci_dev * pdev,int enable)2338 pci_intx(struct pci_dev *pdev, int enable)
2339 {
2340 	u16 pci_command, new;
2341 
2342 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2343 
2344 	if (enable) {
2345 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2346 	} else {
2347 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2348 	}
2349 
2350 	if (new != pci_command) {
2351 		struct pci_devres *dr;
2352 
2353 		pci_write_config_word(pdev, PCI_COMMAND, new);
2354 
2355 		dr = find_pci_dr(pdev);
2356 		if (dr && !dr->restore_intx) {
2357 			dr->restore_intx = 1;
2358 			dr->orig_intx = !enable;
2359 		}
2360 	}
2361 }
2362 
2363 /**
2364  * pci_msi_off - disables any msi or msix capabilities
2365  * @dev: the PCI device to operate on
2366  *
2367  * If you want to use msi see pci_enable_msi and friends.
2368  * This is a lower level primitive that allows us to disable
2369  * msi operation at the device level.
2370  */
pci_msi_off(struct pci_dev * dev)2371 void pci_msi_off(struct pci_dev *dev)
2372 {
2373 	int pos;
2374 	u16 control;
2375 
2376 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2377 	if (pos) {
2378 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2379 		control &= ~PCI_MSI_FLAGS_ENABLE;
2380 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2381 	}
2382 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2383 	if (pos) {
2384 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2385 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2386 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2387 	}
2388 }
2389 EXPORT_SYMBOL_GPL(pci_msi_off);
2390 
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)2391 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2392 {
2393 	return dma_set_max_seg_size(&dev->dev, size);
2394 }
2395 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2396 
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)2397 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2398 {
2399 	return dma_set_seg_boundary(&dev->dev, mask);
2400 }
2401 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2402 
pcie_flr(struct pci_dev * dev,int probe)2403 static int pcie_flr(struct pci_dev *dev, int probe)
2404 {
2405 	int i;
2406 	int pos;
2407 	u32 cap;
2408 	u16 status, control;
2409 
2410 	pos = pci_pcie_cap(dev);
2411 	if (!pos)
2412 		return -ENOTTY;
2413 
2414 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2415 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2416 		return -ENOTTY;
2417 
2418 	if (probe)
2419 		return 0;
2420 
2421 	/* Wait for Transaction Pending bit clean */
2422 	for (i = 0; i < 4; i++) {
2423 		if (i)
2424 			msleep((1 << (i - 1)) * 100);
2425 
2426 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2427 		if (!(status & PCI_EXP_DEVSTA_TRPND))
2428 			goto clear;
2429 	}
2430 
2431 	dev_err(&dev->dev, "transaction is not cleared; "
2432 			"proceeding with reset anyway\n");
2433 
2434 clear:
2435 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2436 	control |= PCI_EXP_DEVCTL_BCR_FLR;
2437 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2438 
2439 	msleep(100);
2440 
2441 	return 0;
2442 }
2443 
pci_af_flr(struct pci_dev * dev,int probe)2444 static int pci_af_flr(struct pci_dev *dev, int probe)
2445 {
2446 	int i;
2447 	int pos;
2448 	u8 cap;
2449 	u8 status;
2450 
2451 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2452 	if (!pos)
2453 		return -ENOTTY;
2454 
2455 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2456 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2457 		return -ENOTTY;
2458 
2459 	if (probe)
2460 		return 0;
2461 
2462 	/* Wait for Transaction Pending bit clean */
2463 	for (i = 0; i < 4; i++) {
2464 		if (i)
2465 			msleep((1 << (i - 1)) * 100);
2466 
2467 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2468 		if (!(status & PCI_AF_STATUS_TP))
2469 			goto clear;
2470 	}
2471 
2472 	dev_err(&dev->dev, "transaction is not cleared; "
2473 			"proceeding with reset anyway\n");
2474 
2475 clear:
2476 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2477 	msleep(100);
2478 
2479 	return 0;
2480 }
2481 
pci_pm_reset(struct pci_dev * dev,int probe)2482 static int pci_pm_reset(struct pci_dev *dev, int probe)
2483 {
2484 	u16 csr;
2485 
2486 	if (!dev->pm_cap)
2487 		return -ENOTTY;
2488 
2489 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2490 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2491 		return -ENOTTY;
2492 
2493 	if (probe)
2494 		return 0;
2495 
2496 	if (dev->current_state != PCI_D0)
2497 		return -EINVAL;
2498 
2499 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2500 	csr |= PCI_D3hot;
2501 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2502 	pci_dev_d3_sleep(dev);
2503 
2504 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2505 	csr |= PCI_D0;
2506 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2507 	pci_dev_d3_sleep(dev);
2508 
2509 	return 0;
2510 }
2511 
pci_parent_bus_reset(struct pci_dev * dev,int probe)2512 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2513 {
2514 	u16 ctrl;
2515 	struct pci_dev *pdev;
2516 
2517 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2518 		return -ENOTTY;
2519 
2520 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2521 		if (pdev != dev)
2522 			return -ENOTTY;
2523 
2524 	if (probe)
2525 		return 0;
2526 
2527 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2528 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2529 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2530 	msleep(100);
2531 
2532 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2533 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2534 	msleep(100);
2535 
2536 	return 0;
2537 }
2538 
pci_dev_reset(struct pci_dev * dev,int probe)2539 static int pci_dev_reset(struct pci_dev *dev, int probe)
2540 {
2541 	int rc;
2542 
2543 	might_sleep();
2544 
2545 	if (!probe) {
2546 		pci_block_user_cfg_access(dev);
2547 		/* block PM suspend, driver probe, etc. */
2548 		device_lock(&dev->dev);
2549 	}
2550 
2551 	rc = pci_dev_specific_reset(dev, probe);
2552 	if (rc != -ENOTTY)
2553 		goto done;
2554 
2555 	rc = pcie_flr(dev, probe);
2556 	if (rc != -ENOTTY)
2557 		goto done;
2558 
2559 	rc = pci_af_flr(dev, probe);
2560 	if (rc != -ENOTTY)
2561 		goto done;
2562 
2563 	rc = pci_pm_reset(dev, probe);
2564 	if (rc != -ENOTTY)
2565 		goto done;
2566 
2567 	rc = pci_parent_bus_reset(dev, probe);
2568 done:
2569 	if (!probe) {
2570 		device_unlock(&dev->dev);
2571 		pci_unblock_user_cfg_access(dev);
2572 	}
2573 
2574 	return rc;
2575 }
2576 
2577 /**
2578  * __pci_reset_function - reset a PCI device function
2579  * @dev: PCI device to reset
2580  *
2581  * Some devices allow an individual function to be reset without affecting
2582  * other functions in the same device.  The PCI device must be responsive
2583  * to PCI config space in order to use this function.
2584  *
2585  * The device function is presumed to be unused when this function is called.
2586  * Resetting the device will make the contents of PCI configuration space
2587  * random, so any caller of this must be prepared to reinitialise the
2588  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2589  * etc.
2590  *
2591  * Returns 0 if the device function was successfully reset or negative if the
2592  * device doesn't support resetting a single function.
2593  */
__pci_reset_function(struct pci_dev * dev)2594 int __pci_reset_function(struct pci_dev *dev)
2595 {
2596 	return pci_dev_reset(dev, 0);
2597 }
2598 EXPORT_SYMBOL_GPL(__pci_reset_function);
2599 
2600 /**
2601  * pci_probe_reset_function - check whether the device can be safely reset
2602  * @dev: PCI device to reset
2603  *
2604  * Some devices allow an individual function to be reset without affecting
2605  * other functions in the same device.  The PCI device must be responsive
2606  * to PCI config space in order to use this function.
2607  *
2608  * Returns 0 if the device function can be reset or negative if the
2609  * device doesn't support resetting a single function.
2610  */
pci_probe_reset_function(struct pci_dev * dev)2611 int pci_probe_reset_function(struct pci_dev *dev)
2612 {
2613 	return pci_dev_reset(dev, 1);
2614 }
2615 
2616 /**
2617  * pci_reset_function - quiesce and reset a PCI device function
2618  * @dev: PCI device to reset
2619  *
2620  * Some devices allow an individual function to be reset without affecting
2621  * other functions in the same device.  The PCI device must be responsive
2622  * to PCI config space in order to use this function.
2623  *
2624  * This function does not just reset the PCI portion of a device, but
2625  * clears all the state associated with the device.  This function differs
2626  * from __pci_reset_function in that it saves and restores device state
2627  * over the reset.
2628  *
2629  * Returns 0 if the device function was successfully reset or negative if the
2630  * device doesn't support resetting a single function.
2631  */
pci_reset_function(struct pci_dev * dev)2632 int pci_reset_function(struct pci_dev *dev)
2633 {
2634 	int rc;
2635 
2636 	rc = pci_dev_reset(dev, 1);
2637 	if (rc)
2638 		return rc;
2639 
2640 	pci_save_state(dev);
2641 
2642 	/*
2643 	 * both INTx and MSI are disabled after the Interrupt Disable bit
2644 	 * is set and the Bus Master bit is cleared.
2645 	 */
2646 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2647 
2648 	rc = pci_dev_reset(dev, 0);
2649 
2650 	pci_restore_state(dev);
2651 
2652 	return rc;
2653 }
2654 EXPORT_SYMBOL_GPL(pci_reset_function);
2655 
2656 /**
2657  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2658  * @dev: PCI device to query
2659  *
2660  * Returns mmrbc: maximum designed memory read count in bytes
2661  *    or appropriate error value.
2662  */
pcix_get_max_mmrbc(struct pci_dev * dev)2663 int pcix_get_max_mmrbc(struct pci_dev *dev)
2664 {
2665 	int cap;
2666 	u32 stat;
2667 
2668 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2669 	if (!cap)
2670 		return -EINVAL;
2671 
2672 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2673 		return -EINVAL;
2674 
2675 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
2676 }
2677 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2678 
2679 /**
2680  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2681  * @dev: PCI device to query
2682  *
2683  * Returns mmrbc: maximum memory read count in bytes
2684  *    or appropriate error value.
2685  */
pcix_get_mmrbc(struct pci_dev * dev)2686 int pcix_get_mmrbc(struct pci_dev *dev)
2687 {
2688 	int cap;
2689 	u16 cmd;
2690 
2691 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2692 	if (!cap)
2693 		return -EINVAL;
2694 
2695 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2696 		return -EINVAL;
2697 
2698 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2699 }
2700 EXPORT_SYMBOL(pcix_get_mmrbc);
2701 
2702 /**
2703  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2704  * @dev: PCI device to query
2705  * @mmrbc: maximum memory read count in bytes
2706  *    valid values are 512, 1024, 2048, 4096
2707  *
2708  * If possible sets maximum memory read byte count, some bridges have erratas
2709  * that prevent this.
2710  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)2711 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2712 {
2713 	int cap;
2714 	u32 stat, v, o;
2715 	u16 cmd;
2716 
2717 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2718 		return -EINVAL;
2719 
2720 	v = ffs(mmrbc) - 10;
2721 
2722 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2723 	if (!cap)
2724 		return -EINVAL;
2725 
2726 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2727 		return -EINVAL;
2728 
2729 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2730 		return -E2BIG;
2731 
2732 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2733 		return -EINVAL;
2734 
2735 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2736 	if (o != v) {
2737 		if (v > o && dev->bus &&
2738 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2739 			return -EIO;
2740 
2741 		cmd &= ~PCI_X_CMD_MAX_READ;
2742 		cmd |= v << 2;
2743 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
2744 			return -EIO;
2745 	}
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL(pcix_set_mmrbc);
2749 
2750 /**
2751  * pcie_get_readrq - get PCI Express read request size
2752  * @dev: PCI device to query
2753  *
2754  * Returns maximum memory read request in bytes
2755  *    or appropriate error value.
2756  */
pcie_get_readrq(struct pci_dev * dev)2757 int pcie_get_readrq(struct pci_dev *dev)
2758 {
2759 	int ret, cap;
2760 	u16 ctl;
2761 
2762 	cap = pci_pcie_cap(dev);
2763 	if (!cap)
2764 		return -EINVAL;
2765 
2766 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2767 	if (!ret)
2768 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2769 
2770 	return ret;
2771 }
2772 EXPORT_SYMBOL(pcie_get_readrq);
2773 
2774 /**
2775  * pcie_set_readrq - set PCI Express maximum memory read request
2776  * @dev: PCI device to query
2777  * @rq: maximum memory read count in bytes
2778  *    valid values are 128, 256, 512, 1024, 2048, 4096
2779  *
2780  * If possible sets maximum read byte count
2781  */
pcie_set_readrq(struct pci_dev * dev,int rq)2782 int pcie_set_readrq(struct pci_dev *dev, int rq)
2783 {
2784 	int cap, err = -EINVAL;
2785 	u16 ctl, v;
2786 
2787 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2788 		goto out;
2789 
2790 	v = (ffs(rq) - 8) << 12;
2791 
2792 	cap = pci_pcie_cap(dev);
2793 	if (!cap)
2794 		goto out;
2795 
2796 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2797 	if (err)
2798 		goto out;
2799 
2800 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2801 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2802 		ctl |= v;
2803 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2804 	}
2805 
2806 out:
2807 	return err;
2808 }
2809 EXPORT_SYMBOL(pcie_set_readrq);
2810 
2811 /**
2812  * pci_select_bars - Make BAR mask from the type of resource
2813  * @dev: the PCI device for which BAR mask is made
2814  * @flags: resource type mask to be selected
2815  *
2816  * This helper routine makes bar mask from the type of resource.
2817  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)2818 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2819 {
2820 	int i, bars = 0;
2821 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2822 		if (pci_resource_flags(dev, i) & flags)
2823 			bars |= (1 << i);
2824 	return bars;
2825 }
2826 
2827 /**
2828  * pci_resource_bar - get position of the BAR associated with a resource
2829  * @dev: the PCI device
2830  * @resno: the resource number
2831  * @type: the BAR type to be filled in
2832  *
2833  * Returns BAR position in config space, or 0 if the BAR is invalid.
2834  */
pci_resource_bar(struct pci_dev * dev,int resno,enum pci_bar_type * type)2835 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2836 {
2837 	int reg;
2838 
2839 	if (resno < PCI_ROM_RESOURCE) {
2840 		*type = pci_bar_unknown;
2841 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2842 	} else if (resno == PCI_ROM_RESOURCE) {
2843 		*type = pci_bar_mem32;
2844 		return dev->rom_base_reg;
2845 	} else if (resno < PCI_BRIDGE_RESOURCES) {
2846 		/* device specific resource */
2847 		reg = pci_iov_resource_bar(dev, resno, type);
2848 		if (reg)
2849 			return reg;
2850 	}
2851 
2852 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2853 	return 0;
2854 }
2855 
2856 /* Some architectures require additional programming to enable VGA */
2857 static arch_set_vga_state_t arch_set_vga_state;
2858 
pci_register_set_vga_state(arch_set_vga_state_t func)2859 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2860 {
2861 	arch_set_vga_state = func;	/* NULL disables */
2862 }
2863 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,bool change_bridge)2864 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2865 		      unsigned int command_bits, bool change_bridge)
2866 {
2867 	if (arch_set_vga_state)
2868 		return arch_set_vga_state(dev, decode, command_bits,
2869 						change_bridge);
2870 	return 0;
2871 }
2872 
2873 /**
2874  * pci_set_vga_state - set VGA decode state on device and parents if requested
2875  * @dev: the PCI device
2876  * @decode: true = enable decoding, false = disable decoding
2877  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2878  * @change_bridge: traverse ancestors and change bridges
2879  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,bool change_bridge)2880 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2881 		      unsigned int command_bits, bool change_bridge)
2882 {
2883 	struct pci_bus *bus;
2884 	struct pci_dev *bridge;
2885 	u16 cmd;
2886 	int rc;
2887 
2888 	WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2889 
2890 	/* ARCH specific VGA enables */
2891 	rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2892 	if (rc)
2893 		return rc;
2894 
2895 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2896 	if (decode == true)
2897 		cmd |= command_bits;
2898 	else
2899 		cmd &= ~command_bits;
2900 	pci_write_config_word(dev, PCI_COMMAND, cmd);
2901 
2902 	if (change_bridge == false)
2903 		return 0;
2904 
2905 	bus = dev->bus;
2906 	while (bus) {
2907 		bridge = bus->self;
2908 		if (bridge) {
2909 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2910 					     &cmd);
2911 			if (decode == true)
2912 				cmd |= PCI_BRIDGE_CTL_VGA;
2913 			else
2914 				cmd &= ~PCI_BRIDGE_CTL_VGA;
2915 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2916 					      cmd);
2917 		}
2918 		bus = bus->parent;
2919 	}
2920 	return 0;
2921 }
2922 
2923 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2924 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2925 static DEFINE_SPINLOCK(resource_alignment_lock);
2926 
2927 /**
2928  * pci_specified_resource_alignment - get resource alignment specified by user.
2929  * @dev: the PCI device to get
2930  *
2931  * RETURNS: Resource alignment if it is specified.
2932  *          Zero if it is not specified.
2933  */
pci_specified_resource_alignment(struct pci_dev * dev)2934 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2935 {
2936 	int seg, bus, slot, func, align_order, count;
2937 	resource_size_t align = 0;
2938 	char *p;
2939 
2940 	spin_lock(&resource_alignment_lock);
2941 	p = resource_alignment_param;
2942 	while (*p) {
2943 		count = 0;
2944 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2945 							p[count] == '@') {
2946 			p += count + 1;
2947 		} else {
2948 			align_order = -1;
2949 		}
2950 		if (sscanf(p, "%x:%x:%x.%x%n",
2951 			&seg, &bus, &slot, &func, &count) != 4) {
2952 			seg = 0;
2953 			if (sscanf(p, "%x:%x.%x%n",
2954 					&bus, &slot, &func, &count) != 3) {
2955 				/* Invalid format */
2956 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2957 					p);
2958 				break;
2959 			}
2960 		}
2961 		p += count;
2962 		if (seg == pci_domain_nr(dev->bus) &&
2963 			bus == dev->bus->number &&
2964 			slot == PCI_SLOT(dev->devfn) &&
2965 			func == PCI_FUNC(dev->devfn)) {
2966 			if (align_order == -1) {
2967 				align = PAGE_SIZE;
2968 			} else {
2969 				align = 1 << align_order;
2970 			}
2971 			/* Found */
2972 			break;
2973 		}
2974 		if (*p != ';' && *p != ',') {
2975 			/* End of param or invalid format */
2976 			break;
2977 		}
2978 		p++;
2979 	}
2980 	spin_unlock(&resource_alignment_lock);
2981 	return align;
2982 }
2983 
2984 /**
2985  * pci_is_reassigndev - check if specified PCI is target device to reassign
2986  * @dev: the PCI device to check
2987  *
2988  * RETURNS: non-zero for PCI device is a target device to reassign,
2989  *          or zero is not.
2990  */
pci_is_reassigndev(struct pci_dev * dev)2991 int pci_is_reassigndev(struct pci_dev *dev)
2992 {
2993 	return (pci_specified_resource_alignment(dev) != 0);
2994 }
2995 
pci_set_resource_alignment_param(const char * buf,size_t count)2996 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2997 {
2998 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2999 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3000 	spin_lock(&resource_alignment_lock);
3001 	strncpy(resource_alignment_param, buf, count);
3002 	resource_alignment_param[count] = '\0';
3003 	spin_unlock(&resource_alignment_lock);
3004 	return count;
3005 }
3006 
pci_get_resource_alignment_param(char * buf,size_t size)3007 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3008 {
3009 	size_t count;
3010 	spin_lock(&resource_alignment_lock);
3011 	count = snprintf(buf, size, "%s", resource_alignment_param);
3012 	spin_unlock(&resource_alignment_lock);
3013 	return count;
3014 }
3015 
pci_resource_alignment_show(struct bus_type * bus,char * buf)3016 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3017 {
3018 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3019 }
3020 
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)3021 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3022 					const char *buf, size_t count)
3023 {
3024 	return pci_set_resource_alignment_param(buf, count);
3025 }
3026 
3027 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3028 					pci_resource_alignment_store);
3029 
pci_resource_alignment_sysfs_init(void)3030 static int __init pci_resource_alignment_sysfs_init(void)
3031 {
3032 	return bus_create_file(&pci_bus_type,
3033 					&bus_attr_resource_alignment);
3034 }
3035 
3036 late_initcall(pci_resource_alignment_sysfs_init);
3037 
pci_no_domains(void)3038 static void __devinit pci_no_domains(void)
3039 {
3040 #ifdef CONFIG_PCI_DOMAINS
3041 	pci_domains_supported = 0;
3042 #endif
3043 }
3044 
3045 /**
3046  * pci_ext_cfg_enabled - can we access extended PCI config space?
3047  * @dev: The PCI device of the root bridge.
3048  *
3049  * Returns 1 if we can access PCI extended config space (offsets
3050  * greater than 0xff). This is the default implementation. Architecture
3051  * implementations can override this.
3052  */
pci_ext_cfg_avail(struct pci_dev * dev)3053 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3054 {
3055 	return 1;
3056 }
3057 
pci_fixup_cardbus(struct pci_bus * bus)3058 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3059 {
3060 }
3061 EXPORT_SYMBOL(pci_fixup_cardbus);
3062 
pci_setup(char * str)3063 static int __init pci_setup(char *str)
3064 {
3065 	while (str) {
3066 		char *k = strchr(str, ',');
3067 		if (k)
3068 			*k++ = 0;
3069 		if (*str && (str = pcibios_setup(str)) && *str) {
3070 			if (!strcmp(str, "nomsi")) {
3071 				pci_no_msi();
3072 			} else if (!strcmp(str, "noaer")) {
3073 				pci_no_aer();
3074 			} else if (!strcmp(str, "nodomains")) {
3075 				pci_no_domains();
3076 			} else if (!strncmp(str, "cbiosize=", 9)) {
3077 				pci_cardbus_io_size = memparse(str + 9, &str);
3078 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3079 				pci_cardbus_mem_size = memparse(str + 10, &str);
3080 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3081 				pci_set_resource_alignment_param(str + 19,
3082 							strlen(str + 19));
3083 			} else if (!strncmp(str, "ecrc=", 5)) {
3084 				pcie_ecrc_get_policy(str + 5);
3085 			} else if (!strncmp(str, "hpiosize=", 9)) {
3086 				pci_hotplug_io_size = memparse(str + 9, &str);
3087 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3088 				pci_hotplug_mem_size = memparse(str + 10, &str);
3089 			} else {
3090 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3091 						str);
3092 			}
3093 		}
3094 		str = k;
3095 	}
3096 	return 0;
3097 }
3098 early_param("pci", pci_setup);
3099 
3100 EXPORT_SYMBOL(pci_reenable_device);
3101 EXPORT_SYMBOL(pci_enable_device_io);
3102 EXPORT_SYMBOL(pci_enable_device_mem);
3103 EXPORT_SYMBOL(pci_enable_device);
3104 EXPORT_SYMBOL(pcim_enable_device);
3105 EXPORT_SYMBOL(pcim_pin_device);
3106 EXPORT_SYMBOL(pci_disable_device);
3107 EXPORT_SYMBOL(pci_find_capability);
3108 EXPORT_SYMBOL(pci_bus_find_capability);
3109 EXPORT_SYMBOL(pci_release_regions);
3110 EXPORT_SYMBOL(pci_request_regions);
3111 EXPORT_SYMBOL(pci_request_regions_exclusive);
3112 EXPORT_SYMBOL(pci_release_region);
3113 EXPORT_SYMBOL(pci_request_region);
3114 EXPORT_SYMBOL(pci_request_region_exclusive);
3115 EXPORT_SYMBOL(pci_release_selected_regions);
3116 EXPORT_SYMBOL(pci_request_selected_regions);
3117 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3118 EXPORT_SYMBOL(pci_set_master);
3119 EXPORT_SYMBOL(pci_clear_master);
3120 EXPORT_SYMBOL(pci_set_mwi);
3121 EXPORT_SYMBOL(pci_try_set_mwi);
3122 EXPORT_SYMBOL(pci_clear_mwi);
3123 EXPORT_SYMBOL_GPL(pci_intx);
3124 EXPORT_SYMBOL(pci_assign_resource);
3125 EXPORT_SYMBOL(pci_find_parent_resource);
3126 EXPORT_SYMBOL(pci_select_bars);
3127 
3128 EXPORT_SYMBOL(pci_set_power_state);
3129 EXPORT_SYMBOL(pci_save_state);
3130 EXPORT_SYMBOL(pci_restore_state);
3131 EXPORT_SYMBOL(pci_pme_capable);
3132 EXPORT_SYMBOL(pci_pme_active);
3133 EXPORT_SYMBOL(pci_wake_from_d3);
3134 EXPORT_SYMBOL(pci_target_state);
3135 EXPORT_SYMBOL(pci_prepare_to_sleep);
3136 EXPORT_SYMBOL(pci_back_from_sleep);
3137 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3138