1 /*
2  * PCI address cache; allows the lookup of PCI devices based on I/O address
3  *
4  * Copyright IBM Corporation 2004
5  * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/rbtree.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/ppc-pci.h>
30 
31 
32 /**
33  * The pci address cache subsystem.  This subsystem places
34  * PCI device address resources into a red-black tree, sorted
35  * according to the address range, so that given only an i/o
36  * address, the corresponding PCI device can be **quickly**
37  * found. It is safe to perform an address lookup in an interrupt
38  * context; this ability is an important feature.
39  *
40  * Currently, the only customer of this code is the EEH subsystem;
41  * thus, this code has been somewhat tailored to suit EEH better.
42  * In particular, the cache does *not* hold the addresses of devices
43  * for which EEH is not enabled.
44  *
45  * (Implementation Note: The RB tree seems to be better/faster
46  * than any hash algo I could think of for this problem, even
47  * with the penalty of slow pointer chases for d-cache misses).
48  */
49 struct pci_io_addr_range {
50 	struct rb_node rb_node;
51 	unsigned long addr_lo;
52 	unsigned long addr_hi;
53 	struct pci_dev *pcidev;
54 	unsigned int flags;
55 };
56 
57 static struct pci_io_addr_cache {
58 	struct rb_root rb_root;
59 	spinlock_t piar_lock;
60 } pci_io_addr_cache_root;
61 
__pci_addr_cache_get_device(unsigned long addr)62 static inline struct pci_dev *__pci_addr_cache_get_device(unsigned long addr)
63 {
64 	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
65 
66 	while (n) {
67 		struct pci_io_addr_range *piar;
68 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
69 
70 		if (addr < piar->addr_lo) {
71 			n = n->rb_left;
72 		} else {
73 			if (addr > piar->addr_hi) {
74 				n = n->rb_right;
75 			} else {
76 				pci_dev_get(piar->pcidev);
77 				return piar->pcidev;
78 			}
79 		}
80 	}
81 
82 	return NULL;
83 }
84 
85 /**
86  * pci_addr_cache_get_device - Get device, given only address
87  * @addr: mmio (PIO) phys address or i/o port number
88  *
89  * Given an mmio phys address, or a port number, find a pci device
90  * that implements this address.  Be sure to pci_dev_put the device
91  * when finished.  I/O port numbers are assumed to be offset
92  * from zero (that is, they do *not* have pci_io_addr added in).
93  * It is safe to call this function within an interrupt.
94  */
pci_addr_cache_get_device(unsigned long addr)95 struct pci_dev *pci_addr_cache_get_device(unsigned long addr)
96 {
97 	struct pci_dev *dev;
98 	unsigned long flags;
99 
100 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
101 	dev = __pci_addr_cache_get_device(addr);
102 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
103 	return dev;
104 }
105 
106 #ifdef DEBUG
107 /*
108  * Handy-dandy debug print routine, does nothing more
109  * than print out the contents of our addr cache.
110  */
pci_addr_cache_print(struct pci_io_addr_cache * cache)111 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
112 {
113 	struct rb_node *n;
114 	int cnt = 0;
115 
116 	n = rb_first(&cache->rb_root);
117 	while (n) {
118 		struct pci_io_addr_range *piar;
119 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
120 		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
121 		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
122 		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
123 		cnt++;
124 		n = rb_next(n);
125 	}
126 }
127 #endif
128 
129 /* Insert address range into the rb tree. */
130 static struct pci_io_addr_range *
pci_addr_cache_insert(struct pci_dev * dev,unsigned long alo,unsigned long ahi,unsigned int flags)131 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
132 		      unsigned long ahi, unsigned int flags)
133 {
134 	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
135 	struct rb_node *parent = NULL;
136 	struct pci_io_addr_range *piar;
137 
138 	/* Walk tree, find a place to insert into tree */
139 	while (*p) {
140 		parent = *p;
141 		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
142 		if (ahi < piar->addr_lo) {
143 			p = &parent->rb_left;
144 		} else if (alo > piar->addr_hi) {
145 			p = &parent->rb_right;
146 		} else {
147 			if (dev != piar->pcidev ||
148 			    alo != piar->addr_lo || ahi != piar->addr_hi) {
149 				printk(KERN_WARNING "PIAR: overlapping address range\n");
150 			}
151 			return piar;
152 		}
153 	}
154 	piar = kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
155 	if (!piar)
156 		return NULL;
157 
158 	pci_dev_get(dev);
159 	piar->addr_lo = alo;
160 	piar->addr_hi = ahi;
161 	piar->pcidev = dev;
162 	piar->flags = flags;
163 
164 #ifdef DEBUG
165 	printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
166 	                  alo, ahi, pci_name(dev));
167 #endif
168 
169 	rb_link_node(&piar->rb_node, parent, p);
170 	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
171 
172 	return piar;
173 }
174 
__pci_addr_cache_insert_device(struct pci_dev * dev)175 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
176 {
177 	struct device_node *dn;
178 	struct eeh_dev *edev;
179 	int i;
180 
181 	dn = pci_device_to_OF_node(dev);
182 	if (!dn) {
183 		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
184 		return;
185 	}
186 
187 	edev = of_node_to_eeh_dev(dn);
188 	if (!edev) {
189 		pr_warning("PCI: no EEH dev found for dn=%s\n",
190 			dn->full_name);
191 		return;
192 	}
193 
194 	/* Skip any devices for which EEH is not enabled. */
195 	if (!(edev->mode & EEH_MODE_SUPPORTED) ||
196 	    edev->mode & EEH_MODE_NOCHECK) {
197 #ifdef DEBUG
198 		pr_info("PCI: skip building address cache for=%s - %s\n",
199 			pci_name(dev), dn->full_name);
200 #endif
201 		return;
202 	}
203 
204 	/* Walk resources on this device, poke them into the tree */
205 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
206 		unsigned long start = pci_resource_start(dev,i);
207 		unsigned long end = pci_resource_end(dev,i);
208 		unsigned int flags = pci_resource_flags(dev,i);
209 
210 		/* We are interested only bus addresses, not dma or other stuff */
211 		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
212 			continue;
213 		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
214 			 continue;
215 		pci_addr_cache_insert(dev, start, end, flags);
216 	}
217 }
218 
219 /**
220  * pci_addr_cache_insert_device - Add a device to the address cache
221  * @dev: PCI device whose I/O addresses we are interested in.
222  *
223  * In order to support the fast lookup of devices based on addresses,
224  * we maintain a cache of devices that can be quickly searched.
225  * This routine adds a device to that cache.
226  */
pci_addr_cache_insert_device(struct pci_dev * dev)227 void pci_addr_cache_insert_device(struct pci_dev *dev)
228 {
229 	unsigned long flags;
230 
231 	/* Ignore PCI bridges */
232 	if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
233 		return;
234 
235 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
236 	__pci_addr_cache_insert_device(dev);
237 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
238 }
239 
__pci_addr_cache_remove_device(struct pci_dev * dev)240 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
241 {
242 	struct rb_node *n;
243 
244 restart:
245 	n = rb_first(&pci_io_addr_cache_root.rb_root);
246 	while (n) {
247 		struct pci_io_addr_range *piar;
248 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
249 
250 		if (piar->pcidev == dev) {
251 			rb_erase(n, &pci_io_addr_cache_root.rb_root);
252 			pci_dev_put(piar->pcidev);
253 			kfree(piar);
254 			goto restart;
255 		}
256 		n = rb_next(n);
257 	}
258 }
259 
260 /**
261  * pci_addr_cache_remove_device - remove pci device from addr cache
262  * @dev: device to remove
263  *
264  * Remove a device from the addr-cache tree.
265  * This is potentially expensive, since it will walk
266  * the tree multiple times (once per resource).
267  * But so what; device removal doesn't need to be that fast.
268  */
pci_addr_cache_remove_device(struct pci_dev * dev)269 void pci_addr_cache_remove_device(struct pci_dev *dev)
270 {
271 	unsigned long flags;
272 
273 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
274 	__pci_addr_cache_remove_device(dev);
275 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
276 }
277 
278 /**
279  * pci_addr_cache_build - Build a cache of I/O addresses
280  *
281  * Build a cache of pci i/o addresses.  This cache will be used to
282  * find the pci device that corresponds to a given address.
283  * This routine scans all pci busses to build the cache.
284  * Must be run late in boot process, after the pci controllers
285  * have been scanned for devices (after all device resources are known).
286  */
pci_addr_cache_build(void)287 void __init pci_addr_cache_build(void)
288 {
289 	struct device_node *dn;
290 	struct eeh_dev *edev;
291 	struct pci_dev *dev = NULL;
292 
293 	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
294 
295 	for_each_pci_dev(dev) {
296 		pci_addr_cache_insert_device(dev);
297 
298 		dn = pci_device_to_OF_node(dev);
299 		if (!dn)
300 			continue;
301 
302 		edev = of_node_to_eeh_dev(dn);
303 		if (!edev)
304 			continue;
305 
306 		pci_dev_get(dev);  /* matching put is in eeh_remove_device() */
307 		dev->dev.archdata.edev = edev;
308 		edev->pdev = dev;
309 
310 		eeh_sysfs_add_device(dev);
311 	}
312 
313 #ifdef DEBUG
314 	/* Verify tree built up above, echo back the list of addrs. */
315 	pci_addr_cache_print(&pci_io_addr_cache_root);
316 #endif
317 }
318 
319