1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51
52 unsigned int pci_pm_d3hot_delay;
53
54 static void pci_pme_list_scan(struct work_struct *work);
55
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63 };
64
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66
67 /*
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
71 */
72 #define PCI_RESET_WAIT 1000 /* msec */
73
74 /*
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
78 * responsive.
79 */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81
pci_dev_d3_sleep(struct pci_dev * dev)82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 unsigned int upper;
86
87 if (delay_ms) {
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
92 }
93 }
94
pci_reset_supported(struct pci_dev * dev)95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 return dev->reset_methods[0] != 0;
98 }
99
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103
104 #define DEFAULT_CARDBUS_IO_SIZE (256)
105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109
110 #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
119 */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122
123 #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125
126
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139
140 /*
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
145 */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148
149 /*
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
152 */
153 unsigned int pcibios_max_latency = 255;
154
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163
pci_ats_disabled(void)164 bool pci_ats_disabled(void)
165 {
166 return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174
pcie_port_pm_setup(char * str)175 static int __init pcie_port_pm_setup(char *str)
176 {
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
181 return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184
185 /**
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
188 *
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
191 */
pci_bus_max_busnr(struct pci_bus * bus)192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 struct pci_bus *tmp;
195 unsigned char max, n;
196
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
200 if (n > max)
201 max = n;
202 }
203 return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206
207 /**
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
210 *
211 * Returns error bits set in PCI_STATUS and clears them.
212 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 u16 status;
216 int ret;
217
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
220 return -EIO;
221
222 status &= PCI_STATUS_ERROR_BITS;
223 if (status)
224 pci_write_config_word(pdev, PCI_STATUS, status);
225
226 return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229
230 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 bool write_combine)
233 {
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
237
238 /*
239 * Make sure the BAR is actually a memory resource, not an IO resource
240 */
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 return NULL;
244 }
245
246 if (write_combine)
247 return ioremap_wc(start, size);
248
249 return ioremap(start, size);
250 }
251
pci_ioremap_bar(struct pci_dev * pdev,int bar)252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264
265 /**
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
270 *
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
273 * be of the form:
274 *
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 *
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
280 *
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
283 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 const char **endptr)
286 {
287 int ret;
288 unsigned int seg, bus, slot, func;
289 char *wpath, *p;
290 char end;
291
292 *endptr = strchrnul(path, ';');
293
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 if (!wpath)
296 return -ENOMEM;
297
298 while (1) {
299 p = strrchr(wpath, '/');
300 if (!p)
301 break;
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 if (ret != 2) {
304 ret = -EINVAL;
305 goto free_and_exit;
306 }
307
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 /*
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
317 * and so on.
318 */
319 dev = pci_upstream_bridge(dev);
320 if (!dev) {
321 ret = 0;
322 goto free_and_exit;
323 }
324
325 *p = 0;
326 }
327
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 &func, &end);
330 if (ret != 4) {
331 seg = 0;
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 if (ret != 3) {
334 ret = -EINVAL;
335 goto free_and_exit;
336 }
337 }
338
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
342
343 free_and_exit:
344 kfree(wpath);
345 return ret;
346 }
347
348 /**
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
353 *
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
356 *
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 *
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
367 *
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
374 *
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
377 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 const char **endptr)
380 {
381 int ret;
382 int count;
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
384
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 p += 4;
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
390 if (ret != 4) {
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 if (ret != 2)
393 return -EINVAL;
394
395 subsystem_vendor = 0;
396 subsystem_device = 0;
397 }
398
399 p += count;
400
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
407 goto found;
408 } else {
409 /*
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
412 */
413 ret = pci_dev_str_match_path(dev, p, &p);
414 if (ret < 0)
415 return ret;
416 else if (ret)
417 goto found;
418 }
419
420 *endptr = p;
421 return 0;
422
423 found:
424 *endptr = p;
425 return 1;
426 }
427
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
430 {
431 u8 id;
432 u16 ent;
433
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
435
436 while ((*ttl)--) {
437 if (pos < 0x40)
438 break;
439 pos &= ~3;
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
441
442 id = ent & 0xff;
443 if (id == 0xff)
444 break;
445 if (id == cap)
446 return pos;
447 pos = (ent >> 8);
448 }
449 return 0;
450 }
451
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 u8 pos, int cap)
454 {
455 int ttl = PCI_FIND_CAP_TTL;
456
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
469 {
470 u16 status;
471
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
474 return 0;
475
476 switch (hdr_type) {
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
482 }
483
484 return 0;
485 }
486
487 /**
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
491 *
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
496 *
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
505 */
pci_find_capability(struct pci_dev * dev,int cap)506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 u8 pos;
509
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 if (pos)
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513
514 return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517
518 /**
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
523 *
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
526 *
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
529 * support it.
530 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 u8 hdr_type, pos;
534
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 if (pos)
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
540
541 return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544
545 /**
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
550 *
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
555 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 u32 header;
559 int ttl;
560 u16 pos = PCI_CFG_SPACE_SIZE;
561
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 return 0;
567
568 if (start)
569 pos = start;
570
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 return 0;
573
574 /*
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
577 */
578 if (header == 0)
579 return 0;
580
581 while (ttl-- > 0) {
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 return pos;
584
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
587 break;
588
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 break;
591 }
592
593 return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596
597 /**
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
601 *
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
605 *
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 */
pci_find_ext_capability(struct pci_dev * dev,int cap)611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616
617 /**
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
620 *
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 * Number.
623 *
624 * Returns the DSN, or zero if the capability does not exist.
625 */
pci_get_dsn(struct pci_dev * dev)626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 u32 dword;
629 u64 dsn;
630 int pos;
631
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 if (!pos)
634 return 0;
635
636 /*
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
640 */
641 pos += 4;
642 pci_read_config_dword(dev, pos, &dword);
643 dsn = (u64)dword;
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
646
647 return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 int rc, ttl = PCI_FIND_CAP_TTL;
654 u8 cap, mask;
655
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
658 else
659 mask = HT_5BIT_CAP_MASK;
660
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
663 while (pos) {
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
666 return 0;
667
668 if ((cap & mask) == ht_cap)
669 return pos;
670
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
674 }
675
676 return 0;
677 }
678
679 /**
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
684 *
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
688 *
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
691 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697
698 /**
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
702 *
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
708 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 u8 pos;
712
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 if (pos)
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716
717 return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720
721 /**
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
726 *
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
730 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 u16 vsec = 0;
734 u32 header;
735 int ret;
736
737 if (vendor != dev->vendor)
738 return 0;
739
740 while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 PCI_EXT_CAP_ID_VNDR))) {
742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 if (ret != PCIBIOS_SUCCESSFUL)
744 continue;
745
746 if (PCI_VNDR_HEADER_ID(header) == cap)
747 return vsec;
748 }
749
750 return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753
754 /**
755 * pci_find_dvsec_capability - Find DVSEC for vendor
756 * @dev: PCI device to query
757 * @vendor: Vendor ID to match for the DVSEC
758 * @dvsec: Designated Vendor-specific capability ID
759 *
760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761 * offset in config space; otherwise return 0.
762 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 int pos;
766
767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 if (!pos)
769 return 0;
770
771 while (pos) {
772 u16 v, id;
773
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 if (vendor == v && dvsec == id)
777 return pos;
778
779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 }
781
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785
786 /**
787 * pci_find_parent_resource - return resource region of parent bus of given
788 * region
789 * @dev: PCI device structure contains resources to be searched
790 * @res: child resource record for which parent is sought
791 *
792 * For given resource region of given device, return the resource region of
793 * parent bus the given region is contained in.
794 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 struct resource *res)
797 {
798 const struct pci_bus *bus = dev->bus;
799 struct resource *r;
800
801 pci_bus_for_each_resource(bus, r) {
802 if (!r)
803 continue;
804 if (resource_contains(r, res)) {
805
806 /*
807 * If the window is prefetchable but the BAR is
808 * not, the allocator made a mistake.
809 */
810 if (r->flags & IORESOURCE_PREFETCH &&
811 !(res->flags & IORESOURCE_PREFETCH))
812 return NULL;
813
814 /*
815 * If we're below a transparent bridge, there may
816 * be both a positively-decoded aperture and a
817 * subtractively-decoded region that contain the BAR.
818 * We want the positively-decoded one, so this depends
819 * on pci_bus_for_each_resource() giving us those
820 * first.
821 */
822 return r;
823 }
824 }
825 return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828
829 /**
830 * pci_find_resource - Return matching PCI device resource
831 * @dev: PCI device to query
832 * @res: Resource to look for
833 *
834 * Goes over standard PCI resources (BARs) and checks if the given resource
835 * is partially or fully contained in any of them. In that case the
836 * matching resource is returned, %NULL otherwise.
837 */
pci_find_resource(struct pci_dev * dev,struct resource * res)838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 int i;
841
842 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 struct resource *r = &dev->resource[i];
844
845 if (r->start && resource_contains(r, res))
846 return r;
847 }
848
849 return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852
853 /**
854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855 * @dev: the PCI device to operate on
856 * @pos: config space offset of status word
857 * @mask: mask of bit(s) to care about in status word
858 *
859 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 int i;
864
865 /* Wait for Transaction Pending bit clean */
866 for (i = 0; i < 4; i++) {
867 u16 status;
868 if (i)
869 msleep((1 << (i - 1)) * 100);
870
871 pci_read_config_word(dev, pos, &status);
872 if (!(status & mask))
873 return 1;
874 }
875
876 return 0;
877 }
878
879 static int pci_acs_enable;
880
881 /**
882 * pci_request_acs - ask for ACS to be enabled if supported
883 */
pci_request_acs(void)884 void pci_request_acs(void)
885 {
886 pci_acs_enable = 1;
887 }
888
889 static const char *disable_acs_redir_param;
890
891 /**
892 * pci_disable_acs_redir - disable ACS redirect capabilities
893 * @dev: the PCI device
894 *
895 * For only devices specified in the disable_acs_redir parameter.
896 */
pci_disable_acs_redir(struct pci_dev * dev)897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 int ret = 0;
900 const char *p;
901 int pos;
902 u16 ctrl;
903
904 if (!disable_acs_redir_param)
905 return;
906
907 p = disable_acs_redir_param;
908 while (*p) {
909 ret = pci_dev_str_match(dev, p, &p);
910 if (ret < 0) {
911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 disable_acs_redir_param);
913
914 break;
915 } else if (ret == 1) {
916 /* Found a match */
917 break;
918 }
919
920 if (*p != ';' && *p != ',') {
921 /* End of param or invalid format */
922 break;
923 }
924 p++;
925 }
926
927 if (ret != 1)
928 return;
929
930 if (!pci_dev_specific_disable_acs_redir(dev))
931 return;
932
933 pos = dev->acs_cap;
934 if (!pos) {
935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 return;
937 }
938
939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940
941 /* P2P Request & Completion Redirect */
942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943
944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945
946 pci_info(dev, "disabled ACS redirect\n");
947 }
948
949 /**
950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951 * @dev: the PCI device
952 */
pci_std_enable_acs(struct pci_dev * dev)953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 int pos;
956 u16 cap;
957 u16 ctrl;
958
959 pos = dev->acs_cap;
960 if (!pos)
961 return;
962
963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965
966 /* Source Validation */
967 ctrl |= (cap & PCI_ACS_SV);
968
969 /* P2P Request Redirect */
970 ctrl |= (cap & PCI_ACS_RR);
971
972 /* P2P Completion Redirect */
973 ctrl |= (cap & PCI_ACS_CR);
974
975 /* Upstream Forwarding */
976 ctrl |= (cap & PCI_ACS_UF);
977
978 /* Enable Translation Blocking for external devices and noats */
979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 ctrl |= (cap & PCI_ACS_TB);
981
982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984
985 /**
986 * pci_enable_acs - enable ACS if hardware support it
987 * @dev: the PCI device
988 */
pci_enable_acs(struct pci_dev * dev)989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 if (!pci_acs_enable)
992 goto disable_acs_redir;
993
994 if (!pci_dev_specific_enable_acs(dev))
995 goto disable_acs_redir;
996
997 pci_std_enable_acs(dev);
998
999 disable_acs_redir:
1000 /*
1001 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 * enabled by the kernel because it may have been enabled by
1003 * platform firmware. So if we are told to disable it, we should
1004 * always disable it after setting the kernel's default
1005 * preferences.
1006 */
1007 pci_disable_acs_redir(dev);
1008 }
1009
1010 /**
1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012 * @dev: PCI device to have its BARs restored
1013 *
1014 * Restore the BAR values for a given device, so as to make it
1015 * accessible by its driver.
1016 */
pci_restore_bars(struct pci_dev * dev)1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 int i;
1020
1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 pci_update_resource(dev, i);
1023 }
1024
platform_pci_power_manageable(struct pci_dev * dev)1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 if (pci_use_mid_pm())
1028 return true;
1029
1030 return acpi_pci_power_manageable(dev);
1031 }
1032
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 pci_power_t t)
1035 {
1036 if (pci_use_mid_pm())
1037 return mid_pci_set_power_state(dev, t);
1038
1039 return acpi_pci_set_power_state(dev, t);
1040 }
1041
platform_pci_get_power_state(struct pci_dev * dev)1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 if (pci_use_mid_pm())
1045 return mid_pci_get_power_state(dev);
1046
1047 return acpi_pci_get_power_state(dev);
1048 }
1049
platform_pci_refresh_power_state(struct pci_dev * dev)1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 if (!pci_use_mid_pm())
1053 acpi_pci_refresh_power_state(dev);
1054 }
1055
platform_pci_choose_state(struct pci_dev * dev)1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 if (pci_use_mid_pm())
1059 return PCI_POWER_ERROR;
1060
1061 return acpi_pci_choose_state(dev);
1062 }
1063
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 if (pci_use_mid_pm())
1067 return PCI_POWER_ERROR;
1068
1069 return acpi_pci_wakeup(dev, enable);
1070 }
1071
platform_pci_need_resume(struct pci_dev * dev)1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 if (pci_use_mid_pm())
1075 return false;
1076
1077 return acpi_pci_need_resume(dev);
1078 }
1079
platform_pci_bridge_d3(struct pci_dev * dev)1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 if (pci_use_mid_pm())
1083 return false;
1084
1085 return acpi_pci_bridge_d3(dev);
1086 }
1087
1088 /**
1089 * pci_update_current_state - Read power state of given device and cache it
1090 * @dev: PCI device to handle.
1091 * @state: State to cache in case the device doesn't have the PM capability
1092 *
1093 * The power state is read from the PMCSR register, which however is
1094 * inaccessible in D3cold. The platform firmware is therefore queried first
1095 * to detect accessibility of the register. In case the platform firmware
1096 * reports an incorrect state or the device isn't power manageable by the
1097 * platform at all, we try to detect D3cold by testing accessibility of the
1098 * vendor ID in config space.
1099 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 dev->current_state = PCI_D3cold;
1104 } else if (dev->pm_cap) {
1105 u16 pmcsr;
1106
1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 dev->current_state = PCI_D3cold;
1110 return;
1111 }
1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 } else {
1114 dev->current_state = state;
1115 }
1116 }
1117
1118 /**
1119 * pci_refresh_power_state - Refresh the given device's power state data
1120 * @dev: Target PCI device.
1121 *
1122 * Ask the platform to refresh the devices power state information and invoke
1123 * pci_update_current_state() to update its current PCI power state.
1124 */
pci_refresh_power_state(struct pci_dev * dev)1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 platform_pci_refresh_power_state(dev);
1128 pci_update_current_state(dev, dev->current_state);
1129 }
1130
1131 /**
1132 * pci_platform_power_transition - Use platform to change device power state
1133 * @dev: PCI device to handle.
1134 * @state: State to put the device into.
1135 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 int error;
1139
1140 error = platform_pci_set_power_state(dev, state);
1141 if (!error)
1142 pci_update_current_state(dev, state);
1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 dev->current_state = PCI_D0;
1145
1146 return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149
pci_resume_one(struct pci_dev * pci_dev,void * ign)1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 pm_request_resume(&pci_dev->dev);
1153 return 0;
1154 }
1155
1156 /**
1157 * pci_resume_bus - Walk given bus and runtime resume devices on it
1158 * @bus: Top bus of the subtree to walk.
1159 */
pci_resume_bus(struct pci_bus * bus)1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 if (bus)
1163 pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 int delay = 1;
1169 bool retrain = false;
1170 struct pci_dev *bridge;
1171
1172 if (pci_is_pcie(dev)) {
1173 bridge = pci_upstream_bridge(dev);
1174 if (bridge)
1175 retrain = true;
1176 }
1177
1178 /*
1179 * After reset, the device should not silently discard config
1180 * requests, but it may still indicate that it needs more time by
1181 * responding to them with CRS completions. The Root Port will
1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 * the read (except when CRS SV is enabled and the read was for the
1184 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 *
1186 * Wait for the device to return a non-CRS completion. Read the
1187 * Command register instead of Vendor ID so we don't have to
1188 * contend with the CRS SV value.
1189 */
1190 for (;;) {
1191 u32 id;
1192
1193 pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 if (!PCI_POSSIBLE_ERROR(id))
1195 break;
1196
1197 if (delay > timeout) {
1198 pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 delay - 1, reset_type);
1200 return -ENOTTY;
1201 }
1202
1203 if (delay > PCI_RESET_WAIT) {
1204 if (retrain) {
1205 retrain = false;
1206 if (pcie_failed_link_retrain(bridge)) {
1207 delay = 1;
1208 continue;
1209 }
1210 }
1211 pci_info(dev, "not ready %dms after %s; waiting\n",
1212 delay - 1, reset_type);
1213 }
1214
1215 msleep(delay);
1216 delay *= 2;
1217 }
1218
1219 if (delay > PCI_RESET_WAIT)
1220 pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 reset_type);
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * pci_power_up - Put the given device into D0
1228 * @dev: PCI device to power up
1229 *
1230 * On success, return 0 or 1, depending on whether or not it is necessary to
1231 * restore the device's BARs subsequently (1 is returned in that case).
1232 *
1233 * On failure, return a negative error code. Always return failure if @dev
1234 * lacks a Power Management Capability, even if the platform was able to
1235 * put the device in D0 via non-PCI means.
1236 */
pci_power_up(struct pci_dev * dev)1237 int pci_power_up(struct pci_dev *dev)
1238 {
1239 bool need_restore;
1240 pci_power_t state;
1241 u16 pmcsr;
1242
1243 platform_pci_set_power_state(dev, PCI_D0);
1244
1245 if (!dev->pm_cap) {
1246 state = platform_pci_get_power_state(dev);
1247 if (state == PCI_UNKNOWN)
1248 dev->current_state = PCI_D0;
1249 else
1250 dev->current_state = state;
1251
1252 return -EIO;
1253 }
1254
1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 pci_power_name(dev->current_state));
1259 dev->current_state = PCI_D3cold;
1260 return -EIO;
1261 }
1262
1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264
1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267
1268 if (state == PCI_D0)
1269 goto end;
1270
1271 /*
1272 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 * PME_En, and sets PowerState to 0.
1274 */
1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276
1277 /* Mandatory transition delays; see PCI PM 1.2. */
1278 if (state == PCI_D3hot)
1279 pci_dev_d3_sleep(dev);
1280 else if (state == PCI_D2)
1281 udelay(PCI_PM_D2_DELAY);
1282
1283 end:
1284 dev->current_state = PCI_D0;
1285 if (need_restore)
1286 return 1;
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293 * @dev: PCI device to power up
1294 *
1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296 * to confirm the state change, restore its BARs if they might be lost and
1297 * reconfigure ASPM in accordance with the new power state.
1298 *
1299 * If pci_restore_state() is going to be called right after a power state change
1300 * to D0, it is more efficient to use pci_power_up() directly instead of this
1301 * function.
1302 */
pci_set_full_power_state(struct pci_dev * dev)1303 static int pci_set_full_power_state(struct pci_dev *dev)
1304 {
1305 u16 pmcsr;
1306 int ret;
1307
1308 ret = pci_power_up(dev);
1309 if (ret < 0) {
1310 if (dev->current_state == PCI_D0)
1311 return 0;
1312
1313 return ret;
1314 }
1315
1316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318 if (dev->current_state != PCI_D0) {
1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320 pci_power_name(dev->current_state));
1321 } else if (ret > 0) {
1322 /*
1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325 * from D3hot to D0 _may_ perform an internal reset, thereby
1326 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327 * For example, at least some versions of the 3c905B and the
1328 * 3c556B exhibit this behaviour.
1329 *
1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331 * devices in a D3hot state at boot. Consequently, we need to
1332 * restore at least the BARs so that the device will be
1333 * accessible to its driver.
1334 */
1335 pci_restore_bars(dev);
1336 }
1337
1338 if (dev->bus->self)
1339 pcie_aspm_pm_state_change(dev->bus->self);
1340
1341 return 0;
1342 }
1343
1344 /**
1345 * __pci_dev_set_current_state - Set current state of a PCI device
1346 * @dev: Device to handle
1347 * @data: pointer to state to be set
1348 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1350 {
1351 pci_power_t state = *(pci_power_t *)data;
1352
1353 dev->current_state = state;
1354 return 0;
1355 }
1356
1357 /**
1358 * pci_bus_set_current_state - Walk given bus and set current state of devices
1359 * @bus: Top bus of the subtree to walk.
1360 * @state: state to be set
1361 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1363 {
1364 if (bus)
1365 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1366 }
1367
1368 /**
1369 * pci_set_low_power_state - Put a PCI device into a low-power state.
1370 * @dev: PCI device to handle.
1371 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1372 *
1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1374 *
1375 * RETURN VALUE:
1376 * -EINVAL if the requested state is invalid.
1377 * -EIO if device does not support PCI PM or its PM capabilities register has a
1378 * wrong version, or device doesn't support the requested state.
1379 * 0 if device already is in the requested state.
1380 * 0 if device's power state has been successfully changed.
1381 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state)1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1383 {
1384 u16 pmcsr;
1385
1386 if (!dev->pm_cap)
1387 return -EIO;
1388
1389 /*
1390 * Validate transition: We can enter D0 from any state, but if
1391 * we're already in a low-power state, we can only go deeper. E.g.,
1392 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1393 * we'd have to go from D3 to D0, then to D1.
1394 */
1395 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1396 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1397 pci_power_name(dev->current_state),
1398 pci_power_name(state));
1399 return -EINVAL;
1400 }
1401
1402 /* Check if this device supports the desired state */
1403 if ((state == PCI_D1 && !dev->d1_support)
1404 || (state == PCI_D2 && !dev->d2_support))
1405 return -EIO;
1406
1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1409 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1410 pci_power_name(dev->current_state),
1411 pci_power_name(state));
1412 dev->current_state = PCI_D3cold;
1413 return -EIO;
1414 }
1415
1416 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1417 pmcsr |= state;
1418
1419 /* Enter specified state */
1420 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1421
1422 /* Mandatory power management transition delays; see PCI PM 1.2. */
1423 if (state == PCI_D3hot)
1424 pci_dev_d3_sleep(dev);
1425 else if (state == PCI_D2)
1426 udelay(PCI_PM_D2_DELAY);
1427
1428 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1429 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1430 if (dev->current_state != state)
1431 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1432 pci_power_name(dev->current_state),
1433 pci_power_name(state));
1434
1435 if (dev->bus->self)
1436 pcie_aspm_pm_state_change(dev->bus->self);
1437
1438 return 0;
1439 }
1440
1441 /**
1442 * pci_set_power_state - Set the power state of a PCI device
1443 * @dev: PCI device to handle.
1444 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1445 *
1446 * Transition a device to a new power state, using the platform firmware and/or
1447 * the device's PCI PM registers.
1448 *
1449 * RETURN VALUE:
1450 * -EINVAL if the requested state is invalid.
1451 * -EIO if device does not support PCI PM or its PM capabilities register has a
1452 * wrong version, or device doesn't support the requested state.
1453 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1454 * 0 if device already is in the requested state.
1455 * 0 if the transition is to D3 but D3 is not supported.
1456 * 0 if device's power state has been successfully changed.
1457 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1458 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1459 {
1460 int error;
1461
1462 /* Bound the state we're entering */
1463 if (state > PCI_D3cold)
1464 state = PCI_D3cold;
1465 else if (state < PCI_D0)
1466 state = PCI_D0;
1467 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1468
1469 /*
1470 * If the device or the parent bridge do not support PCI
1471 * PM, ignore the request if we're doing anything other
1472 * than putting it into D0 (which would only happen on
1473 * boot).
1474 */
1475 return 0;
1476
1477 /* Check if we're already there */
1478 if (dev->current_state == state)
1479 return 0;
1480
1481 if (state == PCI_D0)
1482 return pci_set_full_power_state(dev);
1483
1484 /*
1485 * This device is quirked not to be put into D3, so don't put it in
1486 * D3
1487 */
1488 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1489 return 0;
1490
1491 if (state == PCI_D3cold) {
1492 /*
1493 * To put the device in D3cold, put it into D3hot in the native
1494 * way, then put it into D3cold using platform ops.
1495 */
1496 error = pci_set_low_power_state(dev, PCI_D3hot);
1497
1498 if (pci_platform_power_transition(dev, PCI_D3cold))
1499 return error;
1500
1501 /* Powering off a bridge may power off the whole hierarchy */
1502 if (dev->current_state == PCI_D3cold)
1503 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1504 } else {
1505 error = pci_set_low_power_state(dev, state);
1506
1507 if (pci_platform_power_transition(dev, state))
1508 return error;
1509 }
1510
1511 return 0;
1512 }
1513 EXPORT_SYMBOL(pci_set_power_state);
1514
1515 #define PCI_EXP_SAVE_REGS 7
1516
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1517 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1518 u16 cap, bool extended)
1519 {
1520 struct pci_cap_saved_state *tmp;
1521
1522 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1523 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1524 return tmp;
1525 }
1526 return NULL;
1527 }
1528
pci_find_saved_cap(struct pci_dev * dev,char cap)1529 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1530 {
1531 return _pci_find_saved_cap(dev, cap, false);
1532 }
1533
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1534 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1535 {
1536 return _pci_find_saved_cap(dev, cap, true);
1537 }
1538
pci_save_pcie_state(struct pci_dev * dev)1539 static int pci_save_pcie_state(struct pci_dev *dev)
1540 {
1541 int i = 0;
1542 struct pci_cap_saved_state *save_state;
1543 u16 *cap;
1544
1545 if (!pci_is_pcie(dev))
1546 return 0;
1547
1548 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1549 if (!save_state) {
1550 pci_err(dev, "buffer not found in %s\n", __func__);
1551 return -ENOMEM;
1552 }
1553
1554 cap = (u16 *)&save_state->cap.data[0];
1555 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1556 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1557 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1558 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1559 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1560 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1561 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1562
1563 return 0;
1564 }
1565
pci_bridge_reconfigure_ltr(struct pci_dev * dev)1566 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1567 {
1568 #ifdef CONFIG_PCIEASPM
1569 struct pci_dev *bridge;
1570 u32 ctl;
1571
1572 bridge = pci_upstream_bridge(dev);
1573 if (bridge && bridge->ltr_path) {
1574 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1575 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1576 pci_dbg(bridge, "re-enabling LTR\n");
1577 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1578 PCI_EXP_DEVCTL2_LTR_EN);
1579 }
1580 }
1581 #endif
1582 }
1583
pci_restore_pcie_state(struct pci_dev * dev)1584 static void pci_restore_pcie_state(struct pci_dev *dev)
1585 {
1586 int i = 0;
1587 struct pci_cap_saved_state *save_state;
1588 u16 *cap;
1589
1590 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1591 if (!save_state)
1592 return;
1593
1594 /*
1595 * Downstream ports reset the LTR enable bit when link goes down.
1596 * Check and re-configure the bit here before restoring device.
1597 * PCIe r5.0, sec 7.5.3.16.
1598 */
1599 pci_bridge_reconfigure_ltr(dev);
1600
1601 cap = (u16 *)&save_state->cap.data[0];
1602 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1603 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1604 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1605 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1606 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1607 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1608 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1609 }
1610
pci_save_pcix_state(struct pci_dev * dev)1611 static int pci_save_pcix_state(struct pci_dev *dev)
1612 {
1613 int pos;
1614 struct pci_cap_saved_state *save_state;
1615
1616 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1617 if (!pos)
1618 return 0;
1619
1620 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1621 if (!save_state) {
1622 pci_err(dev, "buffer not found in %s\n", __func__);
1623 return -ENOMEM;
1624 }
1625
1626 pci_read_config_word(dev, pos + PCI_X_CMD,
1627 (u16 *)save_state->cap.data);
1628
1629 return 0;
1630 }
1631
pci_restore_pcix_state(struct pci_dev * dev)1632 static void pci_restore_pcix_state(struct pci_dev *dev)
1633 {
1634 int i = 0, pos;
1635 struct pci_cap_saved_state *save_state;
1636 u16 *cap;
1637
1638 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1639 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1640 if (!save_state || !pos)
1641 return;
1642 cap = (u16 *)&save_state->cap.data[0];
1643
1644 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1645 }
1646
pci_save_ltr_state(struct pci_dev * dev)1647 static void pci_save_ltr_state(struct pci_dev *dev)
1648 {
1649 int ltr;
1650 struct pci_cap_saved_state *save_state;
1651 u32 *cap;
1652
1653 if (!pci_is_pcie(dev))
1654 return;
1655
1656 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1657 if (!ltr)
1658 return;
1659
1660 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1661 if (!save_state) {
1662 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1663 return;
1664 }
1665
1666 /* Some broken devices only support dword access to LTR */
1667 cap = &save_state->cap.data[0];
1668 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1669 }
1670
pci_restore_ltr_state(struct pci_dev * dev)1671 static void pci_restore_ltr_state(struct pci_dev *dev)
1672 {
1673 struct pci_cap_saved_state *save_state;
1674 int ltr;
1675 u32 *cap;
1676
1677 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1678 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1679 if (!save_state || !ltr)
1680 return;
1681
1682 /* Some broken devices only support dword access to LTR */
1683 cap = &save_state->cap.data[0];
1684 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1685 }
1686
1687 /**
1688 * pci_save_state - save the PCI configuration space of a device before
1689 * suspending
1690 * @dev: PCI device that we're dealing with
1691 */
pci_save_state(struct pci_dev * dev)1692 int pci_save_state(struct pci_dev *dev)
1693 {
1694 int i;
1695 /* XXX: 100% dword access ok here? */
1696 for (i = 0; i < 16; i++) {
1697 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1698 pci_dbg(dev, "save config %#04x: %#010x\n",
1699 i * 4, dev->saved_config_space[i]);
1700 }
1701 dev->state_saved = true;
1702
1703 i = pci_save_pcie_state(dev);
1704 if (i != 0)
1705 return i;
1706
1707 i = pci_save_pcix_state(dev);
1708 if (i != 0)
1709 return i;
1710
1711 pci_save_ltr_state(dev);
1712 pci_save_dpc_state(dev);
1713 pci_save_aer_state(dev);
1714 pci_save_ptm_state(dev);
1715 return pci_save_vc_state(dev);
1716 }
1717 EXPORT_SYMBOL(pci_save_state);
1718
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1719 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1720 u32 saved_val, int retry, bool force)
1721 {
1722 u32 val;
1723
1724 pci_read_config_dword(pdev, offset, &val);
1725 if (!force && val == saved_val)
1726 return;
1727
1728 for (;;) {
1729 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1730 offset, val, saved_val);
1731 pci_write_config_dword(pdev, offset, saved_val);
1732 if (retry-- <= 0)
1733 return;
1734
1735 pci_read_config_dword(pdev, offset, &val);
1736 if (val == saved_val)
1737 return;
1738
1739 mdelay(1);
1740 }
1741 }
1742
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1743 static void pci_restore_config_space_range(struct pci_dev *pdev,
1744 int start, int end, int retry,
1745 bool force)
1746 {
1747 int index;
1748
1749 for (index = end; index >= start; index--)
1750 pci_restore_config_dword(pdev, 4 * index,
1751 pdev->saved_config_space[index],
1752 retry, force);
1753 }
1754
pci_restore_config_space(struct pci_dev * pdev)1755 static void pci_restore_config_space(struct pci_dev *pdev)
1756 {
1757 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1758 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1759 /* Restore BARs before the command register. */
1760 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1761 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1762 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1763 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1764
1765 /*
1766 * Force rewriting of prefetch registers to avoid S3 resume
1767 * issues on Intel PCI bridges that occur when these
1768 * registers are not explicitly written.
1769 */
1770 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1771 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1772 } else {
1773 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1774 }
1775 }
1776
pci_restore_rebar_state(struct pci_dev * pdev)1777 static void pci_restore_rebar_state(struct pci_dev *pdev)
1778 {
1779 unsigned int pos, nbars, i;
1780 u32 ctrl;
1781
1782 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1783 if (!pos)
1784 return;
1785
1786 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1787 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1788 PCI_REBAR_CTRL_NBAR_SHIFT;
1789
1790 for (i = 0; i < nbars; i++, pos += 8) {
1791 struct resource *res;
1792 int bar_idx, size;
1793
1794 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1795 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1796 res = pdev->resource + bar_idx;
1797 size = pci_rebar_bytes_to_size(resource_size(res));
1798 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1799 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1800 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1801 }
1802 }
1803
1804 /**
1805 * pci_restore_state - Restore the saved state of a PCI device
1806 * @dev: PCI device that we're dealing with
1807 */
pci_restore_state(struct pci_dev * dev)1808 void pci_restore_state(struct pci_dev *dev)
1809 {
1810 if (!dev->state_saved)
1811 return;
1812
1813 /*
1814 * Restore max latencies (in the LTR capability) before enabling
1815 * LTR itself (in the PCIe capability).
1816 */
1817 pci_restore_ltr_state(dev);
1818
1819 pci_restore_pcie_state(dev);
1820 pci_restore_pasid_state(dev);
1821 pci_restore_pri_state(dev);
1822 pci_restore_ats_state(dev);
1823 pci_restore_vc_state(dev);
1824 pci_restore_rebar_state(dev);
1825 pci_restore_dpc_state(dev);
1826 pci_restore_ptm_state(dev);
1827
1828 pci_aer_clear_status(dev);
1829 pci_restore_aer_state(dev);
1830
1831 pci_restore_config_space(dev);
1832
1833 pci_restore_pcix_state(dev);
1834 pci_restore_msi_state(dev);
1835
1836 /* Restore ACS and IOV configuration state */
1837 pci_enable_acs(dev);
1838 pci_restore_iov_state(dev);
1839
1840 dev->state_saved = false;
1841 }
1842 EXPORT_SYMBOL(pci_restore_state);
1843
1844 struct pci_saved_state {
1845 u32 config_space[16];
1846 struct pci_cap_saved_data cap[];
1847 };
1848
1849 /**
1850 * pci_store_saved_state - Allocate and return an opaque struct containing
1851 * the device saved state.
1852 * @dev: PCI device that we're dealing with
1853 *
1854 * Return NULL if no state or error.
1855 */
pci_store_saved_state(struct pci_dev * dev)1856 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1857 {
1858 struct pci_saved_state *state;
1859 struct pci_cap_saved_state *tmp;
1860 struct pci_cap_saved_data *cap;
1861 size_t size;
1862
1863 if (!dev->state_saved)
1864 return NULL;
1865
1866 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1867
1868 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1869 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1870
1871 state = kzalloc(size, GFP_KERNEL);
1872 if (!state)
1873 return NULL;
1874
1875 memcpy(state->config_space, dev->saved_config_space,
1876 sizeof(state->config_space));
1877
1878 cap = state->cap;
1879 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1880 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1881 memcpy(cap, &tmp->cap, len);
1882 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1883 }
1884 /* Empty cap_save terminates list */
1885
1886 return state;
1887 }
1888 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1889
1890 /**
1891 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1892 * @dev: PCI device that we're dealing with
1893 * @state: Saved state returned from pci_store_saved_state()
1894 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1895 int pci_load_saved_state(struct pci_dev *dev,
1896 struct pci_saved_state *state)
1897 {
1898 struct pci_cap_saved_data *cap;
1899
1900 dev->state_saved = false;
1901
1902 if (!state)
1903 return 0;
1904
1905 memcpy(dev->saved_config_space, state->config_space,
1906 sizeof(state->config_space));
1907
1908 cap = state->cap;
1909 while (cap->size) {
1910 struct pci_cap_saved_state *tmp;
1911
1912 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1913 if (!tmp || tmp->cap.size != cap->size)
1914 return -EINVAL;
1915
1916 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1917 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1918 sizeof(struct pci_cap_saved_data) + cap->size);
1919 }
1920
1921 dev->state_saved = true;
1922 return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1925
1926 /**
1927 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1928 * and free the memory allocated for it.
1929 * @dev: PCI device that we're dealing with
1930 * @state: Pointer to saved state returned from pci_store_saved_state()
1931 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1932 int pci_load_and_free_saved_state(struct pci_dev *dev,
1933 struct pci_saved_state **state)
1934 {
1935 int ret = pci_load_saved_state(dev, *state);
1936 kfree(*state);
1937 *state = NULL;
1938 return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1941
pcibios_enable_device(struct pci_dev * dev,int bars)1942 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1943 {
1944 return pci_enable_resources(dev, bars);
1945 }
1946
do_pci_enable_device(struct pci_dev * dev,int bars)1947 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1948 {
1949 int err;
1950 struct pci_dev *bridge;
1951 u16 cmd;
1952 u8 pin;
1953
1954 err = pci_set_power_state(dev, PCI_D0);
1955 if (err < 0 && err != -EIO)
1956 return err;
1957
1958 bridge = pci_upstream_bridge(dev);
1959 if (bridge)
1960 pcie_aspm_powersave_config_link(bridge);
1961
1962 err = pcibios_enable_device(dev, bars);
1963 if (err < 0)
1964 return err;
1965 pci_fixup_device(pci_fixup_enable, dev);
1966
1967 if (dev->msi_enabled || dev->msix_enabled)
1968 return 0;
1969
1970 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1971 if (pin) {
1972 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1973 if (cmd & PCI_COMMAND_INTX_DISABLE)
1974 pci_write_config_word(dev, PCI_COMMAND,
1975 cmd & ~PCI_COMMAND_INTX_DISABLE);
1976 }
1977
1978 return 0;
1979 }
1980
1981 /**
1982 * pci_reenable_device - Resume abandoned device
1983 * @dev: PCI device to be resumed
1984 *
1985 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1986 * to be called by normal code, write proper resume handler and use it instead.
1987 */
pci_reenable_device(struct pci_dev * dev)1988 int pci_reenable_device(struct pci_dev *dev)
1989 {
1990 if (pci_is_enabled(dev))
1991 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1992 return 0;
1993 }
1994 EXPORT_SYMBOL(pci_reenable_device);
1995
pci_enable_bridge(struct pci_dev * dev)1996 static void pci_enable_bridge(struct pci_dev *dev)
1997 {
1998 struct pci_dev *bridge;
1999 int retval;
2000
2001 bridge = pci_upstream_bridge(dev);
2002 if (bridge)
2003 pci_enable_bridge(bridge);
2004
2005 if (pci_is_enabled(dev)) {
2006 if (!dev->is_busmaster)
2007 pci_set_master(dev);
2008 return;
2009 }
2010
2011 retval = pci_enable_device(dev);
2012 if (retval)
2013 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2014 retval);
2015 pci_set_master(dev);
2016 }
2017
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2018 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2019 {
2020 struct pci_dev *bridge;
2021 int err;
2022 int i, bars = 0;
2023
2024 /*
2025 * Power state could be unknown at this point, either due to a fresh
2026 * boot or a device removal call. So get the current power state
2027 * so that things like MSI message writing will behave as expected
2028 * (e.g. if the device really is in D0 at enable time).
2029 */
2030 pci_update_current_state(dev, dev->current_state);
2031
2032 if (atomic_inc_return(&dev->enable_cnt) > 1)
2033 return 0; /* already enabled */
2034
2035 bridge = pci_upstream_bridge(dev);
2036 if (bridge)
2037 pci_enable_bridge(bridge);
2038
2039 /* only skip sriov related */
2040 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2041 if (dev->resource[i].flags & flags)
2042 bars |= (1 << i);
2043 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2044 if (dev->resource[i].flags & flags)
2045 bars |= (1 << i);
2046
2047 err = do_pci_enable_device(dev, bars);
2048 if (err < 0)
2049 atomic_dec(&dev->enable_cnt);
2050 return err;
2051 }
2052
2053 /**
2054 * pci_enable_device_io - Initialize a device for use with IO space
2055 * @dev: PCI device to be initialized
2056 *
2057 * Initialize device before it's used by a driver. Ask low-level code
2058 * to enable I/O resources. Wake up the device if it was suspended.
2059 * Beware, this function can fail.
2060 */
pci_enable_device_io(struct pci_dev * dev)2061 int pci_enable_device_io(struct pci_dev *dev)
2062 {
2063 return pci_enable_device_flags(dev, IORESOURCE_IO);
2064 }
2065 EXPORT_SYMBOL(pci_enable_device_io);
2066
2067 /**
2068 * pci_enable_device_mem - Initialize a device for use with Memory space
2069 * @dev: PCI device to be initialized
2070 *
2071 * Initialize device before it's used by a driver. Ask low-level code
2072 * to enable Memory resources. Wake up the device if it was suspended.
2073 * Beware, this function can fail.
2074 */
pci_enable_device_mem(struct pci_dev * dev)2075 int pci_enable_device_mem(struct pci_dev *dev)
2076 {
2077 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2078 }
2079 EXPORT_SYMBOL(pci_enable_device_mem);
2080
2081 /**
2082 * pci_enable_device - Initialize device before it's used by a driver.
2083 * @dev: PCI device to be initialized
2084 *
2085 * Initialize device before it's used by a driver. Ask low-level code
2086 * to enable I/O and memory. Wake up the device if it was suspended.
2087 * Beware, this function can fail.
2088 *
2089 * Note we don't actually enable the device many times if we call
2090 * this function repeatedly (we just increment the count).
2091 */
pci_enable_device(struct pci_dev * dev)2092 int pci_enable_device(struct pci_dev *dev)
2093 {
2094 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2095 }
2096 EXPORT_SYMBOL(pci_enable_device);
2097
2098 /*
2099 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2100 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2101 * there's no need to track it separately. pci_devres is initialized
2102 * when a device is enabled using managed PCI device enable interface.
2103 */
2104 struct pci_devres {
2105 unsigned int enabled:1;
2106 unsigned int pinned:1;
2107 unsigned int orig_intx:1;
2108 unsigned int restore_intx:1;
2109 unsigned int mwi:1;
2110 u32 region_mask;
2111 };
2112
pcim_release(struct device * gendev,void * res)2113 static void pcim_release(struct device *gendev, void *res)
2114 {
2115 struct pci_dev *dev = to_pci_dev(gendev);
2116 struct pci_devres *this = res;
2117 int i;
2118
2119 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2120 if (this->region_mask & (1 << i))
2121 pci_release_region(dev, i);
2122
2123 if (this->mwi)
2124 pci_clear_mwi(dev);
2125
2126 if (this->restore_intx)
2127 pci_intx(dev, this->orig_intx);
2128
2129 if (this->enabled && !this->pinned)
2130 pci_disable_device(dev);
2131 }
2132
get_pci_dr(struct pci_dev * pdev)2133 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2134 {
2135 struct pci_devres *dr, *new_dr;
2136
2137 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2138 if (dr)
2139 return dr;
2140
2141 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2142 if (!new_dr)
2143 return NULL;
2144 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2145 }
2146
find_pci_dr(struct pci_dev * pdev)2147 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2148 {
2149 if (pci_is_managed(pdev))
2150 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2151 return NULL;
2152 }
2153
2154 /**
2155 * pcim_enable_device - Managed pci_enable_device()
2156 * @pdev: PCI device to be initialized
2157 *
2158 * Managed pci_enable_device().
2159 */
pcim_enable_device(struct pci_dev * pdev)2160 int pcim_enable_device(struct pci_dev *pdev)
2161 {
2162 struct pci_devres *dr;
2163 int rc;
2164
2165 dr = get_pci_dr(pdev);
2166 if (unlikely(!dr))
2167 return -ENOMEM;
2168 if (dr->enabled)
2169 return 0;
2170
2171 rc = pci_enable_device(pdev);
2172 if (!rc) {
2173 pdev->is_managed = 1;
2174 dr->enabled = 1;
2175 }
2176 return rc;
2177 }
2178 EXPORT_SYMBOL(pcim_enable_device);
2179
2180 /**
2181 * pcim_pin_device - Pin managed PCI device
2182 * @pdev: PCI device to pin
2183 *
2184 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2185 * driver detach. @pdev must have been enabled with
2186 * pcim_enable_device().
2187 */
pcim_pin_device(struct pci_dev * pdev)2188 void pcim_pin_device(struct pci_dev *pdev)
2189 {
2190 struct pci_devres *dr;
2191
2192 dr = find_pci_dr(pdev);
2193 WARN_ON(!dr || !dr->enabled);
2194 if (dr)
2195 dr->pinned = 1;
2196 }
2197 EXPORT_SYMBOL(pcim_pin_device);
2198
2199 /*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
pcibios_device_add(struct pci_dev * dev)2207 int __weak pcibios_device_add(struct pci_dev *dev)
2208 {
2209 return 0;
2210 }
2211
2212 /**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 * device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
pcibios_release_device(struct pci_dev * dev)2221 void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223 /**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
pcibios_disable_device(struct pci_dev * dev)2231 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
2233 /**
2234 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2235 * @irq: ISA IRQ to penalize
2236 * @active: IRQ active or not
2237 *
2238 * Permits the platform to provide architecture-specific functionality when
2239 * penalizing ISA IRQs. This is the default implementation. Architecture
2240 * implementations can override this.
2241 */
pcibios_penalize_isa_irq(int irq,int active)2242 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2243
do_pci_disable_device(struct pci_dev * dev)2244 static void do_pci_disable_device(struct pci_dev *dev)
2245 {
2246 u16 pci_command;
2247
2248 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2249 if (pci_command & PCI_COMMAND_MASTER) {
2250 pci_command &= ~PCI_COMMAND_MASTER;
2251 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2252 }
2253
2254 pcibios_disable_device(dev);
2255 }
2256
2257 /**
2258 * pci_disable_enabled_device - Disable device without updating enable_cnt
2259 * @dev: PCI device to disable
2260 *
2261 * NOTE: This function is a backend of PCI power management routines and is
2262 * not supposed to be called drivers.
2263 */
pci_disable_enabled_device(struct pci_dev * dev)2264 void pci_disable_enabled_device(struct pci_dev *dev)
2265 {
2266 if (pci_is_enabled(dev))
2267 do_pci_disable_device(dev);
2268 }
2269
2270 /**
2271 * pci_disable_device - Disable PCI device after use
2272 * @dev: PCI device to be disabled
2273 *
2274 * Signal to the system that the PCI device is not in use by the system
2275 * anymore. This only involves disabling PCI bus-mastering, if active.
2276 *
2277 * Note we don't actually disable the device until all callers of
2278 * pci_enable_device() have called pci_disable_device().
2279 */
pci_disable_device(struct pci_dev * dev)2280 void pci_disable_device(struct pci_dev *dev)
2281 {
2282 struct pci_devres *dr;
2283
2284 dr = find_pci_dr(dev);
2285 if (dr)
2286 dr->enabled = 0;
2287
2288 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2289 "disabling already-disabled device");
2290
2291 if (atomic_dec_return(&dev->enable_cnt) != 0)
2292 return;
2293
2294 do_pci_disable_device(dev);
2295
2296 dev->is_busmaster = 0;
2297 }
2298 EXPORT_SYMBOL(pci_disable_device);
2299
2300 /**
2301 * pcibios_set_pcie_reset_state - set reset state for device dev
2302 * @dev: the PCIe device reset
2303 * @state: Reset state to enter into
2304 *
2305 * Set the PCIe reset state for the device. This is the default
2306 * implementation. Architecture implementations can override this.
2307 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2308 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2309 enum pcie_reset_state state)
2310 {
2311 return -EINVAL;
2312 }
2313
2314 /**
2315 * pci_set_pcie_reset_state - set reset state for device dev
2316 * @dev: the PCIe device reset
2317 * @state: Reset state to enter into
2318 *
2319 * Sets the PCI reset state for the device.
2320 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2321 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2322 {
2323 return pcibios_set_pcie_reset_state(dev, state);
2324 }
2325 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2326
2327 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2328 void pcie_clear_device_status(struct pci_dev *dev)
2329 {
2330 u16 sta;
2331
2332 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2333 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2334 }
2335 #endif
2336
2337 /**
2338 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2339 * @dev: PCIe root port or event collector.
2340 */
pcie_clear_root_pme_status(struct pci_dev * dev)2341 void pcie_clear_root_pme_status(struct pci_dev *dev)
2342 {
2343 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2344 }
2345
2346 /**
2347 * pci_check_pme_status - Check if given device has generated PME.
2348 * @dev: Device to check.
2349 *
2350 * Check the PME status of the device and if set, clear it and clear PME enable
2351 * (if set). Return 'true' if PME status and PME enable were both set or
2352 * 'false' otherwise.
2353 */
pci_check_pme_status(struct pci_dev * dev)2354 bool pci_check_pme_status(struct pci_dev *dev)
2355 {
2356 int pmcsr_pos;
2357 u16 pmcsr;
2358 bool ret = false;
2359
2360 if (!dev->pm_cap)
2361 return false;
2362
2363 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2364 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2365 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2366 return false;
2367
2368 /* Clear PME status. */
2369 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2370 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2371 /* Disable PME to avoid interrupt flood. */
2372 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2373 ret = true;
2374 }
2375
2376 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2377
2378 return ret;
2379 }
2380
2381 /**
2382 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2383 * @dev: Device to handle.
2384 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2385 *
2386 * Check if @dev has generated PME and queue a resume request for it in that
2387 * case.
2388 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2389 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2390 {
2391 if (pme_poll_reset && dev->pme_poll)
2392 dev->pme_poll = false;
2393
2394 if (pci_check_pme_status(dev)) {
2395 pci_wakeup_event(dev);
2396 pm_request_resume(&dev->dev);
2397 }
2398 return 0;
2399 }
2400
2401 /**
2402 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2403 * @bus: Top bus of the subtree to walk.
2404 */
pci_pme_wakeup_bus(struct pci_bus * bus)2405 void pci_pme_wakeup_bus(struct pci_bus *bus)
2406 {
2407 if (bus)
2408 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2409 }
2410
2411
2412 /**
2413 * pci_pme_capable - check the capability of PCI device to generate PME#
2414 * @dev: PCI device to handle.
2415 * @state: PCI state from which device will issue PME#.
2416 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2417 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2418 {
2419 if (!dev->pm_cap)
2420 return false;
2421
2422 return !!(dev->pme_support & (1 << state));
2423 }
2424 EXPORT_SYMBOL(pci_pme_capable);
2425
pci_pme_list_scan(struct work_struct * work)2426 static void pci_pme_list_scan(struct work_struct *work)
2427 {
2428 struct pci_pme_device *pme_dev, *n;
2429
2430 mutex_lock(&pci_pme_list_mutex);
2431 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2432 struct pci_dev *pdev = pme_dev->dev;
2433
2434 if (pdev->pme_poll) {
2435 struct pci_dev *bridge = pdev->bus->self;
2436 struct device *dev = &pdev->dev;
2437 struct device *bdev = bridge ? &bridge->dev : NULL;
2438 int bref = 0;
2439
2440 /*
2441 * If we have a bridge, it should be in an active/D0
2442 * state or the configuration space of subordinate
2443 * devices may not be accessible or stable over the
2444 * course of the call.
2445 */
2446 if (bdev) {
2447 bref = pm_runtime_get_if_active(bdev, true);
2448 if (!bref)
2449 continue;
2450
2451 if (bridge->current_state != PCI_D0)
2452 goto put_bridge;
2453 }
2454
2455 /*
2456 * The device itself should be suspended but config
2457 * space must be accessible, therefore it cannot be in
2458 * D3cold.
2459 */
2460 if (pm_runtime_suspended(dev) &&
2461 pdev->current_state != PCI_D3cold)
2462 pci_pme_wakeup(pdev, NULL);
2463
2464 put_bridge:
2465 if (bref > 0)
2466 pm_runtime_put(bdev);
2467 } else {
2468 list_del(&pme_dev->list);
2469 kfree(pme_dev);
2470 }
2471 }
2472 if (!list_empty(&pci_pme_list))
2473 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2474 msecs_to_jiffies(PME_TIMEOUT));
2475 mutex_unlock(&pci_pme_list_mutex);
2476 }
2477
__pci_pme_active(struct pci_dev * dev,bool enable)2478 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2479 {
2480 u16 pmcsr;
2481
2482 if (!dev->pme_support)
2483 return;
2484
2485 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2486 /* Clear PME_Status by writing 1 to it and enable PME# */
2487 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2488 if (!enable)
2489 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2490
2491 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2492 }
2493
2494 /**
2495 * pci_pme_restore - Restore PME configuration after config space restore.
2496 * @dev: PCI device to update.
2497 */
pci_pme_restore(struct pci_dev * dev)2498 void pci_pme_restore(struct pci_dev *dev)
2499 {
2500 u16 pmcsr;
2501
2502 if (!dev->pme_support)
2503 return;
2504
2505 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2506 if (dev->wakeup_prepared) {
2507 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2508 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2509 } else {
2510 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2511 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2512 }
2513 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2514 }
2515
2516 /**
2517 * pci_pme_active - enable or disable PCI device's PME# function
2518 * @dev: PCI device to handle.
2519 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2520 *
2521 * The caller must verify that the device is capable of generating PME# before
2522 * calling this function with @enable equal to 'true'.
2523 */
pci_pme_active(struct pci_dev * dev,bool enable)2524 void pci_pme_active(struct pci_dev *dev, bool enable)
2525 {
2526 __pci_pme_active(dev, enable);
2527
2528 /*
2529 * PCI (as opposed to PCIe) PME requires that the device have
2530 * its PME# line hooked up correctly. Not all hardware vendors
2531 * do this, so the PME never gets delivered and the device
2532 * remains asleep. The easiest way around this is to
2533 * periodically walk the list of suspended devices and check
2534 * whether any have their PME flag set. The assumption is that
2535 * we'll wake up often enough anyway that this won't be a huge
2536 * hit, and the power savings from the devices will still be a
2537 * win.
2538 *
2539 * Although PCIe uses in-band PME message instead of PME# line
2540 * to report PME, PME does not work for some PCIe devices in
2541 * reality. For example, there are devices that set their PME
2542 * status bits, but don't really bother to send a PME message;
2543 * there are PCI Express Root Ports that don't bother to
2544 * trigger interrupts when they receive PME messages from the
2545 * devices below. So PME poll is used for PCIe devices too.
2546 */
2547
2548 if (dev->pme_poll) {
2549 struct pci_pme_device *pme_dev;
2550 if (enable) {
2551 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2552 GFP_KERNEL);
2553 if (!pme_dev) {
2554 pci_warn(dev, "can't enable PME#\n");
2555 return;
2556 }
2557 pme_dev->dev = dev;
2558 mutex_lock(&pci_pme_list_mutex);
2559 list_add(&pme_dev->list, &pci_pme_list);
2560 if (list_is_singular(&pci_pme_list))
2561 queue_delayed_work(system_freezable_wq,
2562 &pci_pme_work,
2563 msecs_to_jiffies(PME_TIMEOUT));
2564 mutex_unlock(&pci_pme_list_mutex);
2565 } else {
2566 mutex_lock(&pci_pme_list_mutex);
2567 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2568 if (pme_dev->dev == dev) {
2569 list_del(&pme_dev->list);
2570 kfree(pme_dev);
2571 break;
2572 }
2573 }
2574 mutex_unlock(&pci_pme_list_mutex);
2575 }
2576 }
2577
2578 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2579 }
2580 EXPORT_SYMBOL(pci_pme_active);
2581
2582 /**
2583 * __pci_enable_wake - enable PCI device as wakeup event source
2584 * @dev: PCI device affected
2585 * @state: PCI state from which device will issue wakeup events
2586 * @enable: True to enable event generation; false to disable
2587 *
2588 * This enables the device as a wakeup event source, or disables it.
2589 * When such events involves platform-specific hooks, those hooks are
2590 * called automatically by this routine.
2591 *
2592 * Devices with legacy power management (no standard PCI PM capabilities)
2593 * always require such platform hooks.
2594 *
2595 * RETURN VALUE:
2596 * 0 is returned on success
2597 * -EINVAL is returned if device is not supposed to wake up the system
2598 * Error code depending on the platform is returned if both the platform and
2599 * the native mechanism fail to enable the generation of wake-up events
2600 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2601 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2602 {
2603 int ret = 0;
2604
2605 /*
2606 * Bridges that are not power-manageable directly only signal
2607 * wakeup on behalf of subordinate devices which is set up
2608 * elsewhere, so skip them. However, bridges that are
2609 * power-manageable may signal wakeup for themselves (for example,
2610 * on a hotplug event) and they need to be covered here.
2611 */
2612 if (!pci_power_manageable(dev))
2613 return 0;
2614
2615 /* Don't do the same thing twice in a row for one device. */
2616 if (!!enable == !!dev->wakeup_prepared)
2617 return 0;
2618
2619 /*
2620 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2621 * Anderson we should be doing PME# wake enable followed by ACPI wake
2622 * enable. To disable wake-up we call the platform first, for symmetry.
2623 */
2624
2625 if (enable) {
2626 int error;
2627
2628 /*
2629 * Enable PME signaling if the device can signal PME from
2630 * D3cold regardless of whether or not it can signal PME from
2631 * the current target state, because that will allow it to
2632 * signal PME when the hierarchy above it goes into D3cold and
2633 * the device itself ends up in D3cold as a result of that.
2634 */
2635 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2636 pci_pme_active(dev, true);
2637 else
2638 ret = 1;
2639 error = platform_pci_set_wakeup(dev, true);
2640 if (ret)
2641 ret = error;
2642 if (!ret)
2643 dev->wakeup_prepared = true;
2644 } else {
2645 platform_pci_set_wakeup(dev, false);
2646 pci_pme_active(dev, false);
2647 dev->wakeup_prepared = false;
2648 }
2649
2650 return ret;
2651 }
2652
2653 /**
2654 * pci_enable_wake - change wakeup settings for a PCI device
2655 * @pci_dev: Target device
2656 * @state: PCI state from which device will issue wakeup events
2657 * @enable: Whether or not to enable event generation
2658 *
2659 * If @enable is set, check device_may_wakeup() for the device before calling
2660 * __pci_enable_wake() for it.
2661 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2662 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2663 {
2664 if (enable && !device_may_wakeup(&pci_dev->dev))
2665 return -EINVAL;
2666
2667 return __pci_enable_wake(pci_dev, state, enable);
2668 }
2669 EXPORT_SYMBOL(pci_enable_wake);
2670
2671 /**
2672 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2673 * @dev: PCI device to prepare
2674 * @enable: True to enable wake-up event generation; false to disable
2675 *
2676 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2677 * and this function allows them to set that up cleanly - pci_enable_wake()
2678 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2679 * ordering constraints.
2680 *
2681 * This function only returns error code if the device is not allowed to wake
2682 * up the system from sleep or it is not capable of generating PME# from both
2683 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2684 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2685 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2686 {
2687 return pci_pme_capable(dev, PCI_D3cold) ?
2688 pci_enable_wake(dev, PCI_D3cold, enable) :
2689 pci_enable_wake(dev, PCI_D3hot, enable);
2690 }
2691 EXPORT_SYMBOL(pci_wake_from_d3);
2692
2693 /**
2694 * pci_target_state - find an appropriate low power state for a given PCI dev
2695 * @dev: PCI device
2696 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2697 *
2698 * Use underlying platform code to find a supported low power state for @dev.
2699 * If the platform can't manage @dev, return the deepest state from which it
2700 * can generate wake events, based on any available PME info.
2701 */
pci_target_state(struct pci_dev * dev,bool wakeup)2702 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2703 {
2704 if (platform_pci_power_manageable(dev)) {
2705 /*
2706 * Call the platform to find the target state for the device.
2707 */
2708 pci_power_t state = platform_pci_choose_state(dev);
2709
2710 switch (state) {
2711 case PCI_POWER_ERROR:
2712 case PCI_UNKNOWN:
2713 return PCI_D3hot;
2714
2715 case PCI_D1:
2716 case PCI_D2:
2717 if (pci_no_d1d2(dev))
2718 return PCI_D3hot;
2719 }
2720
2721 return state;
2722 }
2723
2724 /*
2725 * If the device is in D3cold even though it's not power-manageable by
2726 * the platform, it may have been powered down by non-standard means.
2727 * Best to let it slumber.
2728 */
2729 if (dev->current_state == PCI_D3cold)
2730 return PCI_D3cold;
2731 else if (!dev->pm_cap)
2732 return PCI_D0;
2733
2734 if (wakeup && dev->pme_support) {
2735 pci_power_t state = PCI_D3hot;
2736
2737 /*
2738 * Find the deepest state from which the device can generate
2739 * PME#.
2740 */
2741 while (state && !(dev->pme_support & (1 << state)))
2742 state--;
2743
2744 if (state)
2745 return state;
2746 else if (dev->pme_support & 1)
2747 return PCI_D0;
2748 }
2749
2750 return PCI_D3hot;
2751 }
2752
2753 /**
2754 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2755 * into a sleep state
2756 * @dev: Device to handle.
2757 *
2758 * Choose the power state appropriate for the device depending on whether
2759 * it can wake up the system and/or is power manageable by the platform
2760 * (PCI_D3hot is the default) and put the device into that state.
2761 */
pci_prepare_to_sleep(struct pci_dev * dev)2762 int pci_prepare_to_sleep(struct pci_dev *dev)
2763 {
2764 bool wakeup = device_may_wakeup(&dev->dev);
2765 pci_power_t target_state = pci_target_state(dev, wakeup);
2766 int error;
2767
2768 if (target_state == PCI_POWER_ERROR)
2769 return -EIO;
2770
2771 pci_enable_wake(dev, target_state, wakeup);
2772
2773 error = pci_set_power_state(dev, target_state);
2774
2775 if (error)
2776 pci_enable_wake(dev, target_state, false);
2777
2778 return error;
2779 }
2780 EXPORT_SYMBOL(pci_prepare_to_sleep);
2781
2782 /**
2783 * pci_back_from_sleep - turn PCI device on during system-wide transition
2784 * into working state
2785 * @dev: Device to handle.
2786 *
2787 * Disable device's system wake-up capability and put it into D0.
2788 */
pci_back_from_sleep(struct pci_dev * dev)2789 int pci_back_from_sleep(struct pci_dev *dev)
2790 {
2791 int ret = pci_set_power_state(dev, PCI_D0);
2792
2793 if (ret)
2794 return ret;
2795
2796 pci_enable_wake(dev, PCI_D0, false);
2797 return 0;
2798 }
2799 EXPORT_SYMBOL(pci_back_from_sleep);
2800
2801 /**
2802 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2803 * @dev: PCI device being suspended.
2804 *
2805 * Prepare @dev to generate wake-up events at run time and put it into a low
2806 * power state.
2807 */
pci_finish_runtime_suspend(struct pci_dev * dev)2808 int pci_finish_runtime_suspend(struct pci_dev *dev)
2809 {
2810 pci_power_t target_state;
2811 int error;
2812
2813 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2814 if (target_state == PCI_POWER_ERROR)
2815 return -EIO;
2816
2817 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2818
2819 error = pci_set_power_state(dev, target_state);
2820
2821 if (error)
2822 pci_enable_wake(dev, target_state, false);
2823
2824 return error;
2825 }
2826
2827 /**
2828 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2829 * @dev: Device to check.
2830 *
2831 * Return true if the device itself is capable of generating wake-up events
2832 * (through the platform or using the native PCIe PME) or if the device supports
2833 * PME and one of its upstream bridges can generate wake-up events.
2834 */
pci_dev_run_wake(struct pci_dev * dev)2835 bool pci_dev_run_wake(struct pci_dev *dev)
2836 {
2837 struct pci_bus *bus = dev->bus;
2838
2839 if (!dev->pme_support)
2840 return false;
2841
2842 /* PME-capable in principle, but not from the target power state */
2843 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2844 return false;
2845
2846 if (device_can_wakeup(&dev->dev))
2847 return true;
2848
2849 while (bus->parent) {
2850 struct pci_dev *bridge = bus->self;
2851
2852 if (device_can_wakeup(&bridge->dev))
2853 return true;
2854
2855 bus = bus->parent;
2856 }
2857
2858 /* We have reached the root bus. */
2859 if (bus->bridge)
2860 return device_can_wakeup(bus->bridge);
2861
2862 return false;
2863 }
2864 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2865
2866 /**
2867 * pci_dev_need_resume - Check if it is necessary to resume the device.
2868 * @pci_dev: Device to check.
2869 *
2870 * Return 'true' if the device is not runtime-suspended or it has to be
2871 * reconfigured due to wakeup settings difference between system and runtime
2872 * suspend, or the current power state of it is not suitable for the upcoming
2873 * (system-wide) transition.
2874 */
pci_dev_need_resume(struct pci_dev * pci_dev)2875 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2876 {
2877 struct device *dev = &pci_dev->dev;
2878 pci_power_t target_state;
2879
2880 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2881 return true;
2882
2883 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2884
2885 /*
2886 * If the earlier platform check has not triggered, D3cold is just power
2887 * removal on top of D3hot, so no need to resume the device in that
2888 * case.
2889 */
2890 return target_state != pci_dev->current_state &&
2891 target_state != PCI_D3cold &&
2892 pci_dev->current_state != PCI_D3hot;
2893 }
2894
2895 /**
2896 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2897 * @pci_dev: Device to check.
2898 *
2899 * If the device is suspended and it is not configured for system wakeup,
2900 * disable PME for it to prevent it from waking up the system unnecessarily.
2901 *
2902 * Note that if the device's power state is D3cold and the platform check in
2903 * pci_dev_need_resume() has not triggered, the device's configuration need not
2904 * be changed.
2905 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2906 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2907 {
2908 struct device *dev = &pci_dev->dev;
2909
2910 spin_lock_irq(&dev->power.lock);
2911
2912 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2913 pci_dev->current_state < PCI_D3cold)
2914 __pci_pme_active(pci_dev, false);
2915
2916 spin_unlock_irq(&dev->power.lock);
2917 }
2918
2919 /**
2920 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2921 * @pci_dev: Device to handle.
2922 *
2923 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2924 * it might have been disabled during the prepare phase of system suspend if
2925 * the device was not configured for system wakeup.
2926 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2927 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2928 {
2929 struct device *dev = &pci_dev->dev;
2930
2931 if (!pci_dev_run_wake(pci_dev))
2932 return;
2933
2934 spin_lock_irq(&dev->power.lock);
2935
2936 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2937 __pci_pme_active(pci_dev, true);
2938
2939 spin_unlock_irq(&dev->power.lock);
2940 }
2941
2942 /**
2943 * pci_choose_state - Choose the power state of a PCI device.
2944 * @dev: Target PCI device.
2945 * @state: Target state for the whole system.
2946 *
2947 * Returns PCI power state suitable for @dev and @state.
2948 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2949 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2950 {
2951 if (state.event == PM_EVENT_ON)
2952 return PCI_D0;
2953
2954 return pci_target_state(dev, false);
2955 }
2956 EXPORT_SYMBOL(pci_choose_state);
2957
pci_config_pm_runtime_get(struct pci_dev * pdev)2958 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2959 {
2960 struct device *dev = &pdev->dev;
2961 struct device *parent = dev->parent;
2962
2963 if (parent)
2964 pm_runtime_get_sync(parent);
2965 pm_runtime_get_noresume(dev);
2966 /*
2967 * pdev->current_state is set to PCI_D3cold during suspending,
2968 * so wait until suspending completes
2969 */
2970 pm_runtime_barrier(dev);
2971 /*
2972 * Only need to resume devices in D3cold, because config
2973 * registers are still accessible for devices suspended but
2974 * not in D3cold.
2975 */
2976 if (pdev->current_state == PCI_D3cold)
2977 pm_runtime_resume(dev);
2978 }
2979
pci_config_pm_runtime_put(struct pci_dev * pdev)2980 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2981 {
2982 struct device *dev = &pdev->dev;
2983 struct device *parent = dev->parent;
2984
2985 pm_runtime_put(dev);
2986 if (parent)
2987 pm_runtime_put_sync(parent);
2988 }
2989
2990 static const struct dmi_system_id bridge_d3_blacklist[] = {
2991 #ifdef CONFIG_X86
2992 {
2993 /*
2994 * Gigabyte X299 root port is not marked as hotplug capable
2995 * which allows Linux to power manage it. However, this
2996 * confuses the BIOS SMI handler so don't power manage root
2997 * ports on that system.
2998 */
2999 .ident = "X299 DESIGNARE EX-CF",
3000 .matches = {
3001 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3002 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3003 },
3004 },
3005 {
3006 /*
3007 * Downstream device is not accessible after putting a root port
3008 * into D3cold and back into D0 on Elo Continental Z2 board
3009 */
3010 .ident = "Elo Continental Z2",
3011 .matches = {
3012 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3013 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3014 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3015 },
3016 },
3017 #endif
3018 { }
3019 };
3020
3021 /**
3022 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3023 * @bridge: Bridge to check
3024 *
3025 * This function checks if it is possible to move the bridge to D3.
3026 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3027 */
pci_bridge_d3_possible(struct pci_dev * bridge)3028 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3029 {
3030 if (!pci_is_pcie(bridge))
3031 return false;
3032
3033 switch (pci_pcie_type(bridge)) {
3034 case PCI_EXP_TYPE_ROOT_PORT:
3035 case PCI_EXP_TYPE_UPSTREAM:
3036 case PCI_EXP_TYPE_DOWNSTREAM:
3037 if (pci_bridge_d3_disable)
3038 return false;
3039
3040 /*
3041 * Hotplug ports handled by firmware in System Management Mode
3042 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3043 */
3044 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3045 return false;
3046
3047 if (pci_bridge_d3_force)
3048 return true;
3049
3050 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3051 if (bridge->is_thunderbolt)
3052 return true;
3053
3054 /* Platform might know better if the bridge supports D3 */
3055 if (platform_pci_bridge_d3(bridge))
3056 return true;
3057
3058 /*
3059 * Hotplug ports handled natively by the OS were not validated
3060 * by vendors for runtime D3 at least until 2018 because there
3061 * was no OS support.
3062 */
3063 if (bridge->is_hotplug_bridge)
3064 return false;
3065
3066 if (dmi_check_system(bridge_d3_blacklist))
3067 return false;
3068
3069 /*
3070 * It should be safe to put PCIe ports from 2015 or newer
3071 * to D3.
3072 */
3073 if (dmi_get_bios_year() >= 2015)
3074 return true;
3075 break;
3076 }
3077
3078 return false;
3079 }
3080
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3081 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3082 {
3083 bool *d3cold_ok = data;
3084
3085 if (/* The device needs to be allowed to go D3cold ... */
3086 dev->no_d3cold || !dev->d3cold_allowed ||
3087
3088 /* ... and if it is wakeup capable to do so from D3cold. */
3089 (device_may_wakeup(&dev->dev) &&
3090 !pci_pme_capable(dev, PCI_D3cold)) ||
3091
3092 /* If it is a bridge it must be allowed to go to D3. */
3093 !pci_power_manageable(dev))
3094
3095 *d3cold_ok = false;
3096
3097 return !*d3cold_ok;
3098 }
3099
3100 /*
3101 * pci_bridge_d3_update - Update bridge D3 capabilities
3102 * @dev: PCI device which is changed
3103 *
3104 * Update upstream bridge PM capabilities accordingly depending on if the
3105 * device PM configuration was changed or the device is being removed. The
3106 * change is also propagated upstream.
3107 */
pci_bridge_d3_update(struct pci_dev * dev)3108 void pci_bridge_d3_update(struct pci_dev *dev)
3109 {
3110 bool remove = !device_is_registered(&dev->dev);
3111 struct pci_dev *bridge;
3112 bool d3cold_ok = true;
3113
3114 bridge = pci_upstream_bridge(dev);
3115 if (!bridge || !pci_bridge_d3_possible(bridge))
3116 return;
3117
3118 /*
3119 * If D3 is currently allowed for the bridge, removing one of its
3120 * children won't change that.
3121 */
3122 if (remove && bridge->bridge_d3)
3123 return;
3124
3125 /*
3126 * If D3 is currently allowed for the bridge and a child is added or
3127 * changed, disallowance of D3 can only be caused by that child, so
3128 * we only need to check that single device, not any of its siblings.
3129 *
3130 * If D3 is currently not allowed for the bridge, checking the device
3131 * first may allow us to skip checking its siblings.
3132 */
3133 if (!remove)
3134 pci_dev_check_d3cold(dev, &d3cold_ok);
3135
3136 /*
3137 * If D3 is currently not allowed for the bridge, this may be caused
3138 * either by the device being changed/removed or any of its siblings,
3139 * so we need to go through all children to find out if one of them
3140 * continues to block D3.
3141 */
3142 if (d3cold_ok && !bridge->bridge_d3)
3143 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3144 &d3cold_ok);
3145
3146 if (bridge->bridge_d3 != d3cold_ok) {
3147 bridge->bridge_d3 = d3cold_ok;
3148 /* Propagate change to upstream bridges */
3149 pci_bridge_d3_update(bridge);
3150 }
3151 }
3152
3153 /**
3154 * pci_d3cold_enable - Enable D3cold for device
3155 * @dev: PCI device to handle
3156 *
3157 * This function can be used in drivers to enable D3cold from the device
3158 * they handle. It also updates upstream PCI bridge PM capabilities
3159 * accordingly.
3160 */
pci_d3cold_enable(struct pci_dev * dev)3161 void pci_d3cold_enable(struct pci_dev *dev)
3162 {
3163 if (dev->no_d3cold) {
3164 dev->no_d3cold = false;
3165 pci_bridge_d3_update(dev);
3166 }
3167 }
3168 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3169
3170 /**
3171 * pci_d3cold_disable - Disable D3cold for device
3172 * @dev: PCI device to handle
3173 *
3174 * This function can be used in drivers to disable D3cold from the device
3175 * they handle. It also updates upstream PCI bridge PM capabilities
3176 * accordingly.
3177 */
pci_d3cold_disable(struct pci_dev * dev)3178 void pci_d3cold_disable(struct pci_dev *dev)
3179 {
3180 if (!dev->no_d3cold) {
3181 dev->no_d3cold = true;
3182 pci_bridge_d3_update(dev);
3183 }
3184 }
3185 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3186
3187 /**
3188 * pci_pm_init - Initialize PM functions of given PCI device
3189 * @dev: PCI device to handle.
3190 */
pci_pm_init(struct pci_dev * dev)3191 void pci_pm_init(struct pci_dev *dev)
3192 {
3193 int pm;
3194 u16 status;
3195 u16 pmc;
3196
3197 pm_runtime_forbid(&dev->dev);
3198 pm_runtime_set_active(&dev->dev);
3199 pm_runtime_enable(&dev->dev);
3200 device_enable_async_suspend(&dev->dev);
3201 dev->wakeup_prepared = false;
3202
3203 dev->pm_cap = 0;
3204 dev->pme_support = 0;
3205
3206 /* find PCI PM capability in list */
3207 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3208 if (!pm)
3209 return;
3210 /* Check device's ability to generate PME# */
3211 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3212
3213 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3214 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3215 pmc & PCI_PM_CAP_VER_MASK);
3216 return;
3217 }
3218
3219 dev->pm_cap = pm;
3220 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3221 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3222 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3223 dev->d3cold_allowed = true;
3224
3225 dev->d1_support = false;
3226 dev->d2_support = false;
3227 if (!pci_no_d1d2(dev)) {
3228 if (pmc & PCI_PM_CAP_D1)
3229 dev->d1_support = true;
3230 if (pmc & PCI_PM_CAP_D2)
3231 dev->d2_support = true;
3232
3233 if (dev->d1_support || dev->d2_support)
3234 pci_info(dev, "supports%s%s\n",
3235 dev->d1_support ? " D1" : "",
3236 dev->d2_support ? " D2" : "");
3237 }
3238
3239 pmc &= PCI_PM_CAP_PME_MASK;
3240 if (pmc) {
3241 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3242 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3243 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3244 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3245 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3246 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3247 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3248 dev->pme_poll = true;
3249 /*
3250 * Make device's PM flags reflect the wake-up capability, but
3251 * let the user space enable it to wake up the system as needed.
3252 */
3253 device_set_wakeup_capable(&dev->dev, true);
3254 /* Disable the PME# generation functionality */
3255 pci_pme_active(dev, false);
3256 }
3257
3258 pci_read_config_word(dev, PCI_STATUS, &status);
3259 if (status & PCI_STATUS_IMM_READY)
3260 dev->imm_ready = 1;
3261 }
3262
pci_ea_flags(struct pci_dev * dev,u8 prop)3263 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3264 {
3265 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3266
3267 switch (prop) {
3268 case PCI_EA_P_MEM:
3269 case PCI_EA_P_VF_MEM:
3270 flags |= IORESOURCE_MEM;
3271 break;
3272 case PCI_EA_P_MEM_PREFETCH:
3273 case PCI_EA_P_VF_MEM_PREFETCH:
3274 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3275 break;
3276 case PCI_EA_P_IO:
3277 flags |= IORESOURCE_IO;
3278 break;
3279 default:
3280 return 0;
3281 }
3282
3283 return flags;
3284 }
3285
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3286 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3287 u8 prop)
3288 {
3289 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3290 return &dev->resource[bei];
3291 #ifdef CONFIG_PCI_IOV
3292 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3293 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3294 return &dev->resource[PCI_IOV_RESOURCES +
3295 bei - PCI_EA_BEI_VF_BAR0];
3296 #endif
3297 else if (bei == PCI_EA_BEI_ROM)
3298 return &dev->resource[PCI_ROM_RESOURCE];
3299 else
3300 return NULL;
3301 }
3302
3303 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3304 static int pci_ea_read(struct pci_dev *dev, int offset)
3305 {
3306 struct resource *res;
3307 int ent_size, ent_offset = offset;
3308 resource_size_t start, end;
3309 unsigned long flags;
3310 u32 dw0, bei, base, max_offset;
3311 u8 prop;
3312 bool support_64 = (sizeof(resource_size_t) >= 8);
3313
3314 pci_read_config_dword(dev, ent_offset, &dw0);
3315 ent_offset += 4;
3316
3317 /* Entry size field indicates DWORDs after 1st */
3318 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3319
3320 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3321 goto out;
3322
3323 bei = (dw0 & PCI_EA_BEI) >> 4;
3324 prop = (dw0 & PCI_EA_PP) >> 8;
3325
3326 /*
3327 * If the Property is in the reserved range, try the Secondary
3328 * Property instead.
3329 */
3330 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3331 prop = (dw0 & PCI_EA_SP) >> 16;
3332 if (prop > PCI_EA_P_BRIDGE_IO)
3333 goto out;
3334
3335 res = pci_ea_get_resource(dev, bei, prop);
3336 if (!res) {
3337 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3338 goto out;
3339 }
3340
3341 flags = pci_ea_flags(dev, prop);
3342 if (!flags) {
3343 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3344 goto out;
3345 }
3346
3347 /* Read Base */
3348 pci_read_config_dword(dev, ent_offset, &base);
3349 start = (base & PCI_EA_FIELD_MASK);
3350 ent_offset += 4;
3351
3352 /* Read MaxOffset */
3353 pci_read_config_dword(dev, ent_offset, &max_offset);
3354 ent_offset += 4;
3355
3356 /* Read Base MSBs (if 64-bit entry) */
3357 if (base & PCI_EA_IS_64) {
3358 u32 base_upper;
3359
3360 pci_read_config_dword(dev, ent_offset, &base_upper);
3361 ent_offset += 4;
3362
3363 flags |= IORESOURCE_MEM_64;
3364
3365 /* entry starts above 32-bit boundary, can't use */
3366 if (!support_64 && base_upper)
3367 goto out;
3368
3369 if (support_64)
3370 start |= ((u64)base_upper << 32);
3371 }
3372
3373 end = start + (max_offset | 0x03);
3374
3375 /* Read MaxOffset MSBs (if 64-bit entry) */
3376 if (max_offset & PCI_EA_IS_64) {
3377 u32 max_offset_upper;
3378
3379 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3380 ent_offset += 4;
3381
3382 flags |= IORESOURCE_MEM_64;
3383
3384 /* entry too big, can't use */
3385 if (!support_64 && max_offset_upper)
3386 goto out;
3387
3388 if (support_64)
3389 end += ((u64)max_offset_upper << 32);
3390 }
3391
3392 if (end < start) {
3393 pci_err(dev, "EA Entry crosses address boundary\n");
3394 goto out;
3395 }
3396
3397 if (ent_size != ent_offset - offset) {
3398 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3399 ent_size, ent_offset - offset);
3400 goto out;
3401 }
3402
3403 res->name = pci_name(dev);
3404 res->start = start;
3405 res->end = end;
3406 res->flags = flags;
3407
3408 if (bei <= PCI_EA_BEI_BAR5)
3409 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3410 bei, res, prop);
3411 else if (bei == PCI_EA_BEI_ROM)
3412 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3413 res, prop);
3414 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3415 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3416 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3417 else
3418 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3419 bei, res, prop);
3420
3421 out:
3422 return offset + ent_size;
3423 }
3424
3425 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3426 void pci_ea_init(struct pci_dev *dev)
3427 {
3428 int ea;
3429 u8 num_ent;
3430 int offset;
3431 int i;
3432
3433 /* find PCI EA capability in list */
3434 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3435 if (!ea)
3436 return;
3437
3438 /* determine the number of entries */
3439 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3440 &num_ent);
3441 num_ent &= PCI_EA_NUM_ENT_MASK;
3442
3443 offset = ea + PCI_EA_FIRST_ENT;
3444
3445 /* Skip DWORD 2 for type 1 functions */
3446 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3447 offset += 4;
3448
3449 /* parse each EA entry */
3450 for (i = 0; i < num_ent; ++i)
3451 offset = pci_ea_read(dev, offset);
3452 }
3453
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3454 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3455 struct pci_cap_saved_state *new_cap)
3456 {
3457 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3458 }
3459
3460 /**
3461 * _pci_add_cap_save_buffer - allocate buffer for saving given
3462 * capability registers
3463 * @dev: the PCI device
3464 * @cap: the capability to allocate the buffer for
3465 * @extended: Standard or Extended capability ID
3466 * @size: requested size of the buffer
3467 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3468 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3469 bool extended, unsigned int size)
3470 {
3471 int pos;
3472 struct pci_cap_saved_state *save_state;
3473
3474 if (extended)
3475 pos = pci_find_ext_capability(dev, cap);
3476 else
3477 pos = pci_find_capability(dev, cap);
3478
3479 if (!pos)
3480 return 0;
3481
3482 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3483 if (!save_state)
3484 return -ENOMEM;
3485
3486 save_state->cap.cap_nr = cap;
3487 save_state->cap.cap_extended = extended;
3488 save_state->cap.size = size;
3489 pci_add_saved_cap(dev, save_state);
3490
3491 return 0;
3492 }
3493
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3494 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3495 {
3496 return _pci_add_cap_save_buffer(dev, cap, false, size);
3497 }
3498
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3499 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3500 {
3501 return _pci_add_cap_save_buffer(dev, cap, true, size);
3502 }
3503
3504 /**
3505 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3506 * @dev: the PCI device
3507 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3508 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3509 {
3510 int error;
3511
3512 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3513 PCI_EXP_SAVE_REGS * sizeof(u16));
3514 if (error)
3515 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3516
3517 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3518 if (error)
3519 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3520
3521 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3522 2 * sizeof(u16));
3523 if (error)
3524 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3525
3526 pci_allocate_vc_save_buffers(dev);
3527 }
3528
pci_free_cap_save_buffers(struct pci_dev * dev)3529 void pci_free_cap_save_buffers(struct pci_dev *dev)
3530 {
3531 struct pci_cap_saved_state *tmp;
3532 struct hlist_node *n;
3533
3534 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3535 kfree(tmp);
3536 }
3537
3538 /**
3539 * pci_configure_ari - enable or disable ARI forwarding
3540 * @dev: the PCI device
3541 *
3542 * If @dev and its upstream bridge both support ARI, enable ARI in the
3543 * bridge. Otherwise, disable ARI in the bridge.
3544 */
pci_configure_ari(struct pci_dev * dev)3545 void pci_configure_ari(struct pci_dev *dev)
3546 {
3547 u32 cap;
3548 struct pci_dev *bridge;
3549
3550 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3551 return;
3552
3553 bridge = dev->bus->self;
3554 if (!bridge)
3555 return;
3556
3557 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3558 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3559 return;
3560
3561 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3562 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3563 PCI_EXP_DEVCTL2_ARI);
3564 bridge->ari_enabled = 1;
3565 } else {
3566 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3567 PCI_EXP_DEVCTL2_ARI);
3568 bridge->ari_enabled = 0;
3569 }
3570 }
3571
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3572 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3573 {
3574 int pos;
3575 u16 cap, ctrl;
3576
3577 pos = pdev->acs_cap;
3578 if (!pos)
3579 return false;
3580
3581 /*
3582 * Except for egress control, capabilities are either required
3583 * or only required if controllable. Features missing from the
3584 * capability field can therefore be assumed as hard-wired enabled.
3585 */
3586 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3587 acs_flags &= (cap | PCI_ACS_EC);
3588
3589 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3590 return (ctrl & acs_flags) == acs_flags;
3591 }
3592
3593 /**
3594 * pci_acs_enabled - test ACS against required flags for a given device
3595 * @pdev: device to test
3596 * @acs_flags: required PCI ACS flags
3597 *
3598 * Return true if the device supports the provided flags. Automatically
3599 * filters out flags that are not implemented on multifunction devices.
3600 *
3601 * Note that this interface checks the effective ACS capabilities of the
3602 * device rather than the actual capabilities. For instance, most single
3603 * function endpoints are not required to support ACS because they have no
3604 * opportunity for peer-to-peer access. We therefore return 'true'
3605 * regardless of whether the device exposes an ACS capability. This makes
3606 * it much easier for callers of this function to ignore the actual type
3607 * or topology of the device when testing ACS support.
3608 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3609 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3610 {
3611 int ret;
3612
3613 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3614 if (ret >= 0)
3615 return ret > 0;
3616
3617 /*
3618 * Conventional PCI and PCI-X devices never support ACS, either
3619 * effectively or actually. The shared bus topology implies that
3620 * any device on the bus can receive or snoop DMA.
3621 */
3622 if (!pci_is_pcie(pdev))
3623 return false;
3624
3625 switch (pci_pcie_type(pdev)) {
3626 /*
3627 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3628 * but since their primary interface is PCI/X, we conservatively
3629 * handle them as we would a non-PCIe device.
3630 */
3631 case PCI_EXP_TYPE_PCIE_BRIDGE:
3632 /*
3633 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3634 * applicable... must never implement an ACS Extended Capability...".
3635 * This seems arbitrary, but we take a conservative interpretation
3636 * of this statement.
3637 */
3638 case PCI_EXP_TYPE_PCI_BRIDGE:
3639 case PCI_EXP_TYPE_RC_EC:
3640 return false;
3641 /*
3642 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3643 * implement ACS in order to indicate their peer-to-peer capabilities,
3644 * regardless of whether they are single- or multi-function devices.
3645 */
3646 case PCI_EXP_TYPE_DOWNSTREAM:
3647 case PCI_EXP_TYPE_ROOT_PORT:
3648 return pci_acs_flags_enabled(pdev, acs_flags);
3649 /*
3650 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3651 * implemented by the remaining PCIe types to indicate peer-to-peer
3652 * capabilities, but only when they are part of a multifunction
3653 * device. The footnote for section 6.12 indicates the specific
3654 * PCIe types included here.
3655 */
3656 case PCI_EXP_TYPE_ENDPOINT:
3657 case PCI_EXP_TYPE_UPSTREAM:
3658 case PCI_EXP_TYPE_LEG_END:
3659 case PCI_EXP_TYPE_RC_END:
3660 if (!pdev->multifunction)
3661 break;
3662
3663 return pci_acs_flags_enabled(pdev, acs_flags);
3664 }
3665
3666 /*
3667 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3668 * to single function devices with the exception of downstream ports.
3669 */
3670 return true;
3671 }
3672
3673 /**
3674 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3675 * @start: starting downstream device
3676 * @end: ending upstream device or NULL to search to the root bus
3677 * @acs_flags: required flags
3678 *
3679 * Walk up a device tree from start to end testing PCI ACS support. If
3680 * any step along the way does not support the required flags, return false.
3681 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3682 bool pci_acs_path_enabled(struct pci_dev *start,
3683 struct pci_dev *end, u16 acs_flags)
3684 {
3685 struct pci_dev *pdev, *parent = start;
3686
3687 do {
3688 pdev = parent;
3689
3690 if (!pci_acs_enabled(pdev, acs_flags))
3691 return false;
3692
3693 if (pci_is_root_bus(pdev->bus))
3694 return (end == NULL);
3695
3696 parent = pdev->bus->self;
3697 } while (pdev != end);
3698
3699 return true;
3700 }
3701
3702 /**
3703 * pci_acs_init - Initialize ACS if hardware supports it
3704 * @dev: the PCI device
3705 */
pci_acs_init(struct pci_dev * dev)3706 void pci_acs_init(struct pci_dev *dev)
3707 {
3708 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3709
3710 /*
3711 * Attempt to enable ACS regardless of capability because some Root
3712 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3713 * the standard ACS capability but still support ACS via those
3714 * quirks.
3715 */
3716 pci_enable_acs(dev);
3717 }
3718
3719 /**
3720 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3721 * @pdev: PCI device
3722 * @bar: BAR to find
3723 *
3724 * Helper to find the position of the ctrl register for a BAR.
3725 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3726 * Returns -ENOENT if no ctrl register for the BAR could be found.
3727 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3728 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3729 {
3730 unsigned int pos, nbars, i;
3731 u32 ctrl;
3732
3733 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3734 if (!pos)
3735 return -ENOTSUPP;
3736
3737 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3738 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3739 PCI_REBAR_CTRL_NBAR_SHIFT;
3740
3741 for (i = 0; i < nbars; i++, pos += 8) {
3742 int bar_idx;
3743
3744 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3745 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3746 if (bar_idx == bar)
3747 return pos;
3748 }
3749
3750 return -ENOENT;
3751 }
3752
3753 /**
3754 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3755 * @pdev: PCI device
3756 * @bar: BAR to query
3757 *
3758 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3759 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3760 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3761 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3762 {
3763 int pos;
3764 u32 cap;
3765
3766 pos = pci_rebar_find_pos(pdev, bar);
3767 if (pos < 0)
3768 return 0;
3769
3770 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3771 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3772
3773 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3774 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3775 bar == 0 && cap == 0x700)
3776 return 0x3f00;
3777
3778 return cap;
3779 }
3780 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3781
3782 /**
3783 * pci_rebar_get_current_size - get the current size of a BAR
3784 * @pdev: PCI device
3785 * @bar: BAR to set size to
3786 *
3787 * Read the size of a BAR from the resizable BAR config.
3788 * Returns size if found or negative error code.
3789 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3790 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3791 {
3792 int pos;
3793 u32 ctrl;
3794
3795 pos = pci_rebar_find_pos(pdev, bar);
3796 if (pos < 0)
3797 return pos;
3798
3799 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3800 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3801 }
3802
3803 /**
3804 * pci_rebar_set_size - set a new size for a BAR
3805 * @pdev: PCI device
3806 * @bar: BAR to set size to
3807 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3808 *
3809 * Set the new size of a BAR as defined in the spec.
3810 * Returns zero if resizing was successful, error code otherwise.
3811 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3812 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3813 {
3814 int pos;
3815 u32 ctrl;
3816
3817 pos = pci_rebar_find_pos(pdev, bar);
3818 if (pos < 0)
3819 return pos;
3820
3821 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3822 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3823 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3824 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3825 return 0;
3826 }
3827
3828 /**
3829 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3830 * @dev: the PCI device
3831 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3832 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3833 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3834 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3835 *
3836 * Return 0 if all upstream bridges support AtomicOp routing, egress
3837 * blocking is disabled on all upstream ports, and the root port supports
3838 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3839 * AtomicOp completion), or negative otherwise.
3840 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3841 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3842 {
3843 struct pci_bus *bus = dev->bus;
3844 struct pci_dev *bridge;
3845 u32 cap, ctl2;
3846
3847 /*
3848 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3849 * in Device Control 2 is reserved in VFs and the PF value applies
3850 * to all associated VFs.
3851 */
3852 if (dev->is_virtfn)
3853 return -EINVAL;
3854
3855 if (!pci_is_pcie(dev))
3856 return -EINVAL;
3857
3858 /*
3859 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3860 * AtomicOp requesters. For now, we only support endpoints as
3861 * requesters and root ports as completers. No endpoints as
3862 * completers, and no peer-to-peer.
3863 */
3864
3865 switch (pci_pcie_type(dev)) {
3866 case PCI_EXP_TYPE_ENDPOINT:
3867 case PCI_EXP_TYPE_LEG_END:
3868 case PCI_EXP_TYPE_RC_END:
3869 break;
3870 default:
3871 return -EINVAL;
3872 }
3873
3874 while (bus->parent) {
3875 bridge = bus->self;
3876
3877 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3878
3879 switch (pci_pcie_type(bridge)) {
3880 /* Ensure switch ports support AtomicOp routing */
3881 case PCI_EXP_TYPE_UPSTREAM:
3882 case PCI_EXP_TYPE_DOWNSTREAM:
3883 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3884 return -EINVAL;
3885 break;
3886
3887 /* Ensure root port supports all the sizes we care about */
3888 case PCI_EXP_TYPE_ROOT_PORT:
3889 if ((cap & cap_mask) != cap_mask)
3890 return -EINVAL;
3891 break;
3892 }
3893
3894 /* Ensure upstream ports don't block AtomicOps on egress */
3895 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3896 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3897 &ctl2);
3898 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3899 return -EINVAL;
3900 }
3901
3902 bus = bus->parent;
3903 }
3904
3905 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3906 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3907 return 0;
3908 }
3909 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3910
3911 /**
3912 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3913 * @dev: the PCI device
3914 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3915 *
3916 * Perform INTx swizzling for a device behind one level of bridge. This is
3917 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3918 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3919 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3920 * the PCI Express Base Specification, Revision 2.1)
3921 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3922 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3923 {
3924 int slot;
3925
3926 if (pci_ari_enabled(dev->bus))
3927 slot = 0;
3928 else
3929 slot = PCI_SLOT(dev->devfn);
3930
3931 return (((pin - 1) + slot) % 4) + 1;
3932 }
3933
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3934 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3935 {
3936 u8 pin;
3937
3938 pin = dev->pin;
3939 if (!pin)
3940 return -1;
3941
3942 while (!pci_is_root_bus(dev->bus)) {
3943 pin = pci_swizzle_interrupt_pin(dev, pin);
3944 dev = dev->bus->self;
3945 }
3946 *bridge = dev;
3947 return pin;
3948 }
3949
3950 /**
3951 * pci_common_swizzle - swizzle INTx all the way to root bridge
3952 * @dev: the PCI device
3953 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3954 *
3955 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3956 * bridges all the way up to a PCI root bus.
3957 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3958 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3959 {
3960 u8 pin = *pinp;
3961
3962 while (!pci_is_root_bus(dev->bus)) {
3963 pin = pci_swizzle_interrupt_pin(dev, pin);
3964 dev = dev->bus->self;
3965 }
3966 *pinp = pin;
3967 return PCI_SLOT(dev->devfn);
3968 }
3969 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3970
3971 /**
3972 * pci_release_region - Release a PCI bar
3973 * @pdev: PCI device whose resources were previously reserved by
3974 * pci_request_region()
3975 * @bar: BAR to release
3976 *
3977 * Releases the PCI I/O and memory resources previously reserved by a
3978 * successful call to pci_request_region(). Call this function only
3979 * after all use of the PCI regions has ceased.
3980 */
pci_release_region(struct pci_dev * pdev,int bar)3981 void pci_release_region(struct pci_dev *pdev, int bar)
3982 {
3983 struct pci_devres *dr;
3984
3985 if (pci_resource_len(pdev, bar) == 0)
3986 return;
3987 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3988 release_region(pci_resource_start(pdev, bar),
3989 pci_resource_len(pdev, bar));
3990 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3991 release_mem_region(pci_resource_start(pdev, bar),
3992 pci_resource_len(pdev, bar));
3993
3994 dr = find_pci_dr(pdev);
3995 if (dr)
3996 dr->region_mask &= ~(1 << bar);
3997 }
3998 EXPORT_SYMBOL(pci_release_region);
3999
4000 /**
4001 * __pci_request_region - Reserved PCI I/O and memory resource
4002 * @pdev: PCI device whose resources are to be reserved
4003 * @bar: BAR to be reserved
4004 * @res_name: Name to be associated with resource.
4005 * @exclusive: whether the region access is exclusive or not
4006 *
4007 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4008 * being reserved by owner @res_name. Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * If @exclusive is set, then the region is marked so that userspace
4013 * is explicitly not allowed to map the resource via /dev/mem or
4014 * sysfs MMIO access.
4015 *
4016 * Returns 0 on success, or %EBUSY on error. A warning
4017 * message is also printed on failure.
4018 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)4019 static int __pci_request_region(struct pci_dev *pdev, int bar,
4020 const char *res_name, int exclusive)
4021 {
4022 struct pci_devres *dr;
4023
4024 if (pci_resource_len(pdev, bar) == 0)
4025 return 0;
4026
4027 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4028 if (!request_region(pci_resource_start(pdev, bar),
4029 pci_resource_len(pdev, bar), res_name))
4030 goto err_out;
4031 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4032 if (!__request_mem_region(pci_resource_start(pdev, bar),
4033 pci_resource_len(pdev, bar), res_name,
4034 exclusive))
4035 goto err_out;
4036 }
4037
4038 dr = find_pci_dr(pdev);
4039 if (dr)
4040 dr->region_mask |= 1 << bar;
4041
4042 return 0;
4043
4044 err_out:
4045 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4046 &pdev->resource[bar]);
4047 return -EBUSY;
4048 }
4049
4050 /**
4051 * pci_request_region - Reserve PCI I/O and memory resource
4052 * @pdev: PCI device whose resources are to be reserved
4053 * @bar: BAR to be reserved
4054 * @res_name: Name to be associated with resource
4055 *
4056 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4057 * being reserved by owner @res_name. Do not access any
4058 * address inside the PCI regions unless this call returns
4059 * successfully.
4060 *
4061 * Returns 0 on success, or %EBUSY on error. A warning
4062 * message is also printed on failure.
4063 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4064 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4065 {
4066 return __pci_request_region(pdev, bar, res_name, 0);
4067 }
4068 EXPORT_SYMBOL(pci_request_region);
4069
4070 /**
4071 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4072 * @pdev: PCI device whose resources were previously reserved
4073 * @bars: Bitmask of BARs to be released
4074 *
4075 * Release selected PCI I/O and memory resources previously reserved.
4076 * Call this function only after all use of the PCI regions has ceased.
4077 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4078 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4079 {
4080 int i;
4081
4082 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4083 if (bars & (1 << i))
4084 pci_release_region(pdev, i);
4085 }
4086 EXPORT_SYMBOL(pci_release_selected_regions);
4087
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4088 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4089 const char *res_name, int excl)
4090 {
4091 int i;
4092
4093 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4094 if (bars & (1 << i))
4095 if (__pci_request_region(pdev, i, res_name, excl))
4096 goto err_out;
4097 return 0;
4098
4099 err_out:
4100 while (--i >= 0)
4101 if (bars & (1 << i))
4102 pci_release_region(pdev, i);
4103
4104 return -EBUSY;
4105 }
4106
4107
4108 /**
4109 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4110 * @pdev: PCI device whose resources are to be reserved
4111 * @bars: Bitmask of BARs to be requested
4112 * @res_name: Name to be associated with resource
4113 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4114 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4115 const char *res_name)
4116 {
4117 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4118 }
4119 EXPORT_SYMBOL(pci_request_selected_regions);
4120
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4121 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4122 const char *res_name)
4123 {
4124 return __pci_request_selected_regions(pdev, bars, res_name,
4125 IORESOURCE_EXCLUSIVE);
4126 }
4127 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4128
4129 /**
4130 * pci_release_regions - Release reserved PCI I/O and memory resources
4131 * @pdev: PCI device whose resources were previously reserved by
4132 * pci_request_regions()
4133 *
4134 * Releases all PCI I/O and memory resources previously reserved by a
4135 * successful call to pci_request_regions(). Call this function only
4136 * after all use of the PCI regions has ceased.
4137 */
4138
pci_release_regions(struct pci_dev * pdev)4139 void pci_release_regions(struct pci_dev *pdev)
4140 {
4141 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4142 }
4143 EXPORT_SYMBOL(pci_release_regions);
4144
4145 /**
4146 * pci_request_regions - Reserve PCI I/O and memory resources
4147 * @pdev: PCI device whose resources are to be reserved
4148 * @res_name: Name to be associated with resource.
4149 *
4150 * Mark all PCI regions associated with PCI device @pdev as
4151 * being reserved by owner @res_name. Do not access any
4152 * address inside the PCI regions unless this call returns
4153 * successfully.
4154 *
4155 * Returns 0 on success, or %EBUSY on error. A warning
4156 * message is also printed on failure.
4157 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4158 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4159 {
4160 return pci_request_selected_regions(pdev,
4161 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4162 }
4163 EXPORT_SYMBOL(pci_request_regions);
4164
4165 /**
4166 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4167 * @pdev: PCI device whose resources are to be reserved
4168 * @res_name: Name to be associated with resource.
4169 *
4170 * Mark all PCI regions associated with PCI device @pdev as being reserved
4171 * by owner @res_name. Do not access any address inside the PCI regions
4172 * unless this call returns successfully.
4173 *
4174 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4175 * and the sysfs MMIO access will not be allowed.
4176 *
4177 * Returns 0 on success, or %EBUSY on error. A warning message is also
4178 * printed on failure.
4179 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4180 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4181 {
4182 return pci_request_selected_regions_exclusive(pdev,
4183 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4184 }
4185 EXPORT_SYMBOL(pci_request_regions_exclusive);
4186
4187 /*
4188 * Record the PCI IO range (expressed as CPU physical address + size).
4189 * Return a negative value if an error has occurred, zero otherwise
4190 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4191 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4192 resource_size_t size)
4193 {
4194 int ret = 0;
4195 #ifdef PCI_IOBASE
4196 struct logic_pio_hwaddr *range;
4197
4198 if (!size || addr + size < addr)
4199 return -EINVAL;
4200
4201 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4202 if (!range)
4203 return -ENOMEM;
4204
4205 range->fwnode = fwnode;
4206 range->size = size;
4207 range->hw_start = addr;
4208 range->flags = LOGIC_PIO_CPU_MMIO;
4209
4210 ret = logic_pio_register_range(range);
4211 if (ret)
4212 kfree(range);
4213
4214 /* Ignore duplicates due to deferred probing */
4215 if (ret == -EEXIST)
4216 ret = 0;
4217 #endif
4218
4219 return ret;
4220 }
4221
pci_pio_to_address(unsigned long pio)4222 phys_addr_t pci_pio_to_address(unsigned long pio)
4223 {
4224 #ifdef PCI_IOBASE
4225 if (pio < MMIO_UPPER_LIMIT)
4226 return logic_pio_to_hwaddr(pio);
4227 #endif
4228
4229 return (phys_addr_t) OF_BAD_ADDR;
4230 }
4231 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4232
pci_address_to_pio(phys_addr_t address)4233 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4234 {
4235 #ifdef PCI_IOBASE
4236 return logic_pio_trans_cpuaddr(address);
4237 #else
4238 if (address > IO_SPACE_LIMIT)
4239 return (unsigned long)-1;
4240
4241 return (unsigned long) address;
4242 #endif
4243 }
4244
4245 /**
4246 * pci_remap_iospace - Remap the memory mapped I/O space
4247 * @res: Resource describing the I/O space
4248 * @phys_addr: physical address of range to be mapped
4249 *
4250 * Remap the memory mapped I/O space described by the @res and the CPU
4251 * physical address @phys_addr into virtual address space. Only
4252 * architectures that have memory mapped IO functions defined (and the
4253 * PCI_IOBASE value defined) should call this function.
4254 */
4255 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4256 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4257 {
4258 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4259 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4260
4261 if (!(res->flags & IORESOURCE_IO))
4262 return -EINVAL;
4263
4264 if (res->end > IO_SPACE_LIMIT)
4265 return -EINVAL;
4266
4267 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4268 pgprot_device(PAGE_KERNEL));
4269 #else
4270 /*
4271 * This architecture does not have memory mapped I/O space,
4272 * so this function should never be called
4273 */
4274 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4275 return -ENODEV;
4276 #endif
4277 }
4278 EXPORT_SYMBOL(pci_remap_iospace);
4279 #endif
4280
4281 /**
4282 * pci_unmap_iospace - Unmap the memory mapped I/O space
4283 * @res: resource to be unmapped
4284 *
4285 * Unmap the CPU virtual address @res from virtual address space. Only
4286 * architectures that have memory mapped IO functions defined (and the
4287 * PCI_IOBASE value defined) should call this function.
4288 */
pci_unmap_iospace(struct resource * res)4289 void pci_unmap_iospace(struct resource *res)
4290 {
4291 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4292 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4293
4294 vunmap_range(vaddr, vaddr + resource_size(res));
4295 #endif
4296 }
4297 EXPORT_SYMBOL(pci_unmap_iospace);
4298
devm_pci_unmap_iospace(struct device * dev,void * ptr)4299 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4300 {
4301 struct resource **res = ptr;
4302
4303 pci_unmap_iospace(*res);
4304 }
4305
4306 /**
4307 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4308 * @dev: Generic device to remap IO address for
4309 * @res: Resource describing the I/O space
4310 * @phys_addr: physical address of range to be mapped
4311 *
4312 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4313 * detach.
4314 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4315 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4316 phys_addr_t phys_addr)
4317 {
4318 const struct resource **ptr;
4319 int error;
4320
4321 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4322 if (!ptr)
4323 return -ENOMEM;
4324
4325 error = pci_remap_iospace(res, phys_addr);
4326 if (error) {
4327 devres_free(ptr);
4328 } else {
4329 *ptr = res;
4330 devres_add(dev, ptr);
4331 }
4332
4333 return error;
4334 }
4335 EXPORT_SYMBOL(devm_pci_remap_iospace);
4336
4337 /**
4338 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4339 * @dev: Generic device to remap IO address for
4340 * @offset: Resource address to map
4341 * @size: Size of map
4342 *
4343 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4344 * detach.
4345 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4346 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4347 resource_size_t offset,
4348 resource_size_t size)
4349 {
4350 void __iomem **ptr, *addr;
4351
4352 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4353 if (!ptr)
4354 return NULL;
4355
4356 addr = pci_remap_cfgspace(offset, size);
4357 if (addr) {
4358 *ptr = addr;
4359 devres_add(dev, ptr);
4360 } else
4361 devres_free(ptr);
4362
4363 return addr;
4364 }
4365 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4366
4367 /**
4368 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4369 * @dev: generic device to handle the resource for
4370 * @res: configuration space resource to be handled
4371 *
4372 * Checks that a resource is a valid memory region, requests the memory
4373 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4374 * proper PCI configuration space memory attributes are guaranteed.
4375 *
4376 * All operations are managed and will be undone on driver detach.
4377 *
4378 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4379 * on failure. Usage example::
4380 *
4381 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4382 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4383 * if (IS_ERR(base))
4384 * return PTR_ERR(base);
4385 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4386 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4387 struct resource *res)
4388 {
4389 resource_size_t size;
4390 const char *name;
4391 void __iomem *dest_ptr;
4392
4393 BUG_ON(!dev);
4394
4395 if (!res || resource_type(res) != IORESOURCE_MEM) {
4396 dev_err(dev, "invalid resource\n");
4397 return IOMEM_ERR_PTR(-EINVAL);
4398 }
4399
4400 size = resource_size(res);
4401
4402 if (res->name)
4403 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4404 res->name);
4405 else
4406 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4407 if (!name)
4408 return IOMEM_ERR_PTR(-ENOMEM);
4409
4410 if (!devm_request_mem_region(dev, res->start, size, name)) {
4411 dev_err(dev, "can't request region for resource %pR\n", res);
4412 return IOMEM_ERR_PTR(-EBUSY);
4413 }
4414
4415 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4416 if (!dest_ptr) {
4417 dev_err(dev, "ioremap failed for resource %pR\n", res);
4418 devm_release_mem_region(dev, res->start, size);
4419 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4420 }
4421
4422 return dest_ptr;
4423 }
4424 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4425
__pci_set_master(struct pci_dev * dev,bool enable)4426 static void __pci_set_master(struct pci_dev *dev, bool enable)
4427 {
4428 u16 old_cmd, cmd;
4429
4430 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4431 if (enable)
4432 cmd = old_cmd | PCI_COMMAND_MASTER;
4433 else
4434 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4435 if (cmd != old_cmd) {
4436 pci_dbg(dev, "%s bus mastering\n",
4437 enable ? "enabling" : "disabling");
4438 pci_write_config_word(dev, PCI_COMMAND, cmd);
4439 }
4440 dev->is_busmaster = enable;
4441 }
4442
4443 /**
4444 * pcibios_setup - process "pci=" kernel boot arguments
4445 * @str: string used to pass in "pci=" kernel boot arguments
4446 *
4447 * Process kernel boot arguments. This is the default implementation.
4448 * Architecture specific implementations can override this as necessary.
4449 */
pcibios_setup(char * str)4450 char * __weak __init pcibios_setup(char *str)
4451 {
4452 return str;
4453 }
4454
4455 /**
4456 * pcibios_set_master - enable PCI bus-mastering for device dev
4457 * @dev: the PCI device to enable
4458 *
4459 * Enables PCI bus-mastering for the device. This is the default
4460 * implementation. Architecture specific implementations can override
4461 * this if necessary.
4462 */
pcibios_set_master(struct pci_dev * dev)4463 void __weak pcibios_set_master(struct pci_dev *dev)
4464 {
4465 u8 lat;
4466
4467 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4468 if (pci_is_pcie(dev))
4469 return;
4470
4471 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4472 if (lat < 16)
4473 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4474 else if (lat > pcibios_max_latency)
4475 lat = pcibios_max_latency;
4476 else
4477 return;
4478
4479 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4480 }
4481
4482 /**
4483 * pci_set_master - enables bus-mastering for device dev
4484 * @dev: the PCI device to enable
4485 *
4486 * Enables bus-mastering on the device and calls pcibios_set_master()
4487 * to do the needed arch specific settings.
4488 */
pci_set_master(struct pci_dev * dev)4489 void pci_set_master(struct pci_dev *dev)
4490 {
4491 __pci_set_master(dev, true);
4492 pcibios_set_master(dev);
4493 }
4494 EXPORT_SYMBOL(pci_set_master);
4495
4496 /**
4497 * pci_clear_master - disables bus-mastering for device dev
4498 * @dev: the PCI device to disable
4499 */
pci_clear_master(struct pci_dev * dev)4500 void pci_clear_master(struct pci_dev *dev)
4501 {
4502 __pci_set_master(dev, false);
4503 }
4504 EXPORT_SYMBOL(pci_clear_master);
4505
4506 /**
4507 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4508 * @dev: the PCI device for which MWI is to be enabled
4509 *
4510 * Helper function for pci_set_mwi.
4511 * Originally copied from drivers/net/acenic.c.
4512 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4513 *
4514 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4515 */
pci_set_cacheline_size(struct pci_dev * dev)4516 int pci_set_cacheline_size(struct pci_dev *dev)
4517 {
4518 u8 cacheline_size;
4519
4520 if (!pci_cache_line_size)
4521 return -EINVAL;
4522
4523 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4524 equal to or multiple of the right value. */
4525 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4526 if (cacheline_size >= pci_cache_line_size &&
4527 (cacheline_size % pci_cache_line_size) == 0)
4528 return 0;
4529
4530 /* Write the correct value. */
4531 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4532 /* Read it back. */
4533 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4534 if (cacheline_size == pci_cache_line_size)
4535 return 0;
4536
4537 pci_dbg(dev, "cache line size of %d is not supported\n",
4538 pci_cache_line_size << 2);
4539
4540 return -EINVAL;
4541 }
4542 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4543
4544 /**
4545 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4546 * @dev: the PCI device for which MWI is enabled
4547 *
4548 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4549 *
4550 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4551 */
pci_set_mwi(struct pci_dev * dev)4552 int pci_set_mwi(struct pci_dev *dev)
4553 {
4554 #ifdef PCI_DISABLE_MWI
4555 return 0;
4556 #else
4557 int rc;
4558 u16 cmd;
4559
4560 rc = pci_set_cacheline_size(dev);
4561 if (rc)
4562 return rc;
4563
4564 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4565 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4566 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4567 cmd |= PCI_COMMAND_INVALIDATE;
4568 pci_write_config_word(dev, PCI_COMMAND, cmd);
4569 }
4570 return 0;
4571 #endif
4572 }
4573 EXPORT_SYMBOL(pci_set_mwi);
4574
4575 /**
4576 * pcim_set_mwi - a device-managed pci_set_mwi()
4577 * @dev: the PCI device for which MWI is enabled
4578 *
4579 * Managed pci_set_mwi().
4580 *
4581 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4582 */
pcim_set_mwi(struct pci_dev * dev)4583 int pcim_set_mwi(struct pci_dev *dev)
4584 {
4585 struct pci_devres *dr;
4586
4587 dr = find_pci_dr(dev);
4588 if (!dr)
4589 return -ENOMEM;
4590
4591 dr->mwi = 1;
4592 return pci_set_mwi(dev);
4593 }
4594 EXPORT_SYMBOL(pcim_set_mwi);
4595
4596 /**
4597 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4598 * @dev: the PCI device for which MWI is enabled
4599 *
4600 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4601 * Callers are not required to check the return value.
4602 *
4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604 */
pci_try_set_mwi(struct pci_dev * dev)4605 int pci_try_set_mwi(struct pci_dev *dev)
4606 {
4607 #ifdef PCI_DISABLE_MWI
4608 return 0;
4609 #else
4610 return pci_set_mwi(dev);
4611 #endif
4612 }
4613 EXPORT_SYMBOL(pci_try_set_mwi);
4614
4615 /**
4616 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4617 * @dev: the PCI device to disable
4618 *
4619 * Disables PCI Memory-Write-Invalidate transaction on the device
4620 */
pci_clear_mwi(struct pci_dev * dev)4621 void pci_clear_mwi(struct pci_dev *dev)
4622 {
4623 #ifndef PCI_DISABLE_MWI
4624 u16 cmd;
4625
4626 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4627 if (cmd & PCI_COMMAND_INVALIDATE) {
4628 cmd &= ~PCI_COMMAND_INVALIDATE;
4629 pci_write_config_word(dev, PCI_COMMAND, cmd);
4630 }
4631 #endif
4632 }
4633 EXPORT_SYMBOL(pci_clear_mwi);
4634
4635 /**
4636 * pci_disable_parity - disable parity checking for device
4637 * @dev: the PCI device to operate on
4638 *
4639 * Disable parity checking for device @dev
4640 */
pci_disable_parity(struct pci_dev * dev)4641 void pci_disable_parity(struct pci_dev *dev)
4642 {
4643 u16 cmd;
4644
4645 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4646 if (cmd & PCI_COMMAND_PARITY) {
4647 cmd &= ~PCI_COMMAND_PARITY;
4648 pci_write_config_word(dev, PCI_COMMAND, cmd);
4649 }
4650 }
4651
4652 /**
4653 * pci_intx - enables/disables PCI INTx for device dev
4654 * @pdev: the PCI device to operate on
4655 * @enable: boolean: whether to enable or disable PCI INTx
4656 *
4657 * Enables/disables PCI INTx for device @pdev
4658 */
pci_intx(struct pci_dev * pdev,int enable)4659 void pci_intx(struct pci_dev *pdev, int enable)
4660 {
4661 u16 pci_command, new;
4662
4663 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4664
4665 if (enable)
4666 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4667 else
4668 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4669
4670 if (new != pci_command) {
4671 struct pci_devres *dr;
4672
4673 pci_write_config_word(pdev, PCI_COMMAND, new);
4674
4675 dr = find_pci_dr(pdev);
4676 if (dr && !dr->restore_intx) {
4677 dr->restore_intx = 1;
4678 dr->orig_intx = !enable;
4679 }
4680 }
4681 }
4682 EXPORT_SYMBOL_GPL(pci_intx);
4683
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4684 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4685 {
4686 struct pci_bus *bus = dev->bus;
4687 bool mask_updated = true;
4688 u32 cmd_status_dword;
4689 u16 origcmd, newcmd;
4690 unsigned long flags;
4691 bool irq_pending;
4692
4693 /*
4694 * We do a single dword read to retrieve both command and status.
4695 * Document assumptions that make this possible.
4696 */
4697 BUILD_BUG_ON(PCI_COMMAND % 4);
4698 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4699
4700 raw_spin_lock_irqsave(&pci_lock, flags);
4701
4702 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4703
4704 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4705
4706 /*
4707 * Check interrupt status register to see whether our device
4708 * triggered the interrupt (when masking) or the next IRQ is
4709 * already pending (when unmasking).
4710 */
4711 if (mask != irq_pending) {
4712 mask_updated = false;
4713 goto done;
4714 }
4715
4716 origcmd = cmd_status_dword;
4717 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4718 if (mask)
4719 newcmd |= PCI_COMMAND_INTX_DISABLE;
4720 if (newcmd != origcmd)
4721 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4722
4723 done:
4724 raw_spin_unlock_irqrestore(&pci_lock, flags);
4725
4726 return mask_updated;
4727 }
4728
4729 /**
4730 * pci_check_and_mask_intx - mask INTx on pending interrupt
4731 * @dev: the PCI device to operate on
4732 *
4733 * Check if the device dev has its INTx line asserted, mask it and return
4734 * true in that case. False is returned if no interrupt was pending.
4735 */
pci_check_and_mask_intx(struct pci_dev * dev)4736 bool pci_check_and_mask_intx(struct pci_dev *dev)
4737 {
4738 return pci_check_and_set_intx_mask(dev, true);
4739 }
4740 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4741
4742 /**
4743 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4744 * @dev: the PCI device to operate on
4745 *
4746 * Check if the device dev has its INTx line asserted, unmask it if not and
4747 * return true. False is returned and the mask remains active if there was
4748 * still an interrupt pending.
4749 */
pci_check_and_unmask_intx(struct pci_dev * dev)4750 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4751 {
4752 return pci_check_and_set_intx_mask(dev, false);
4753 }
4754 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4755
4756 /**
4757 * pci_wait_for_pending_transaction - wait for pending transaction
4758 * @dev: the PCI device to operate on
4759 *
4760 * Return 0 if transaction is pending 1 otherwise.
4761 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4762 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4763 {
4764 if (!pci_is_pcie(dev))
4765 return 1;
4766
4767 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4768 PCI_EXP_DEVSTA_TRPND);
4769 }
4770 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4771
4772 /**
4773 * pcie_flr - initiate a PCIe function level reset
4774 * @dev: device to reset
4775 *
4776 * Initiate a function level reset unconditionally on @dev without
4777 * checking any flags and DEVCAP
4778 */
pcie_flr(struct pci_dev * dev)4779 int pcie_flr(struct pci_dev *dev)
4780 {
4781 if (!pci_wait_for_pending_transaction(dev))
4782 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4783
4784 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4785
4786 if (dev->imm_ready)
4787 return 0;
4788
4789 /*
4790 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4791 * 100ms, but may silently discard requests while the FLR is in
4792 * progress. Wait 100ms before trying to access the device.
4793 */
4794 msleep(100);
4795
4796 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4797 }
4798 EXPORT_SYMBOL_GPL(pcie_flr);
4799
4800 /**
4801 * pcie_reset_flr - initiate a PCIe function level reset
4802 * @dev: device to reset
4803 * @probe: if true, return 0 if device can be reset this way
4804 *
4805 * Initiate a function level reset on @dev.
4806 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4807 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4808 {
4809 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4810 return -ENOTTY;
4811
4812 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4813 return -ENOTTY;
4814
4815 if (probe)
4816 return 0;
4817
4818 return pcie_flr(dev);
4819 }
4820 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4821
pci_af_flr(struct pci_dev * dev,bool probe)4822 static int pci_af_flr(struct pci_dev *dev, bool probe)
4823 {
4824 int pos;
4825 u8 cap;
4826
4827 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4828 if (!pos)
4829 return -ENOTTY;
4830
4831 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4832 return -ENOTTY;
4833
4834 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4835 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4836 return -ENOTTY;
4837
4838 if (probe)
4839 return 0;
4840
4841 /*
4842 * Wait for Transaction Pending bit to clear. A word-aligned test
4843 * is used, so we use the control offset rather than status and shift
4844 * the test bit to match.
4845 */
4846 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4847 PCI_AF_STATUS_TP << 8))
4848 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4849
4850 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4851
4852 if (dev->imm_ready)
4853 return 0;
4854
4855 /*
4856 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4857 * updated 27 July 2006; a device must complete an FLR within
4858 * 100ms, but may silently discard requests while the FLR is in
4859 * progress. Wait 100ms before trying to access the device.
4860 */
4861 msleep(100);
4862
4863 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4864 }
4865
4866 /**
4867 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4868 * @dev: Device to reset.
4869 * @probe: if true, return 0 if the device can be reset this way.
4870 *
4871 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4872 * unset, it will be reinitialized internally when going from PCI_D3hot to
4873 * PCI_D0. If that's the case and the device is not in a low-power state
4874 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4875 *
4876 * NOTE: This causes the caller to sleep for twice the device power transition
4877 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4878 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4879 * Moreover, only devices in D0 can be reset by this function.
4880 */
pci_pm_reset(struct pci_dev * dev,bool probe)4881 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4882 {
4883 u16 csr;
4884
4885 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4886 return -ENOTTY;
4887
4888 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4889 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4890 return -ENOTTY;
4891
4892 if (probe)
4893 return 0;
4894
4895 if (dev->current_state != PCI_D0)
4896 return -EINVAL;
4897
4898 csr &= ~PCI_PM_CTRL_STATE_MASK;
4899 csr |= PCI_D3hot;
4900 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4901 pci_dev_d3_sleep(dev);
4902
4903 csr &= ~PCI_PM_CTRL_STATE_MASK;
4904 csr |= PCI_D0;
4905 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4906 pci_dev_d3_sleep(dev);
4907
4908 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4909 }
4910
4911 /**
4912 * pcie_wait_for_link_status - Wait for link status change
4913 * @pdev: Device whose link to wait for.
4914 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4915 * @active: Waiting for active or inactive?
4916 *
4917 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4918 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4919 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4920 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4921 bool use_lt, bool active)
4922 {
4923 u16 lnksta_mask, lnksta_match;
4924 unsigned long end_jiffies;
4925 u16 lnksta;
4926
4927 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4928 lnksta_match = active ? lnksta_mask : 0;
4929
4930 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4931 do {
4932 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4933 if ((lnksta & lnksta_mask) == lnksta_match)
4934 return 0;
4935 msleep(1);
4936 } while (time_before(jiffies, end_jiffies));
4937
4938 return -ETIMEDOUT;
4939 }
4940
4941 /**
4942 * pcie_retrain_link - Request a link retrain and wait for it to complete
4943 * @pdev: Device whose link to retrain.
4944 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4945 *
4946 * Retrain completion status is retrieved from the Link Status Register
4947 * according to @use_lt. It is not verified whether the use of the DLLLA
4948 * bit is valid.
4949 *
4950 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4951 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4952 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4953 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4954 {
4955 int rc;
4956
4957 /*
4958 * Ensure the updated LNKCTL parameters are used during link
4959 * training by checking that there is no ongoing link training to
4960 * avoid LTSSM race as recommended in Implementation Note at the
4961 * end of PCIe r6.0.1 sec 7.5.3.7.
4962 */
4963 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4964 if (rc)
4965 return rc;
4966
4967 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4968 if (pdev->clear_retrain_link) {
4969 /*
4970 * Due to an erratum in some devices the Retrain Link bit
4971 * needs to be cleared again manually to allow the link
4972 * training to succeed.
4973 */
4974 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4975 }
4976
4977 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4978 }
4979
4980 /**
4981 * pcie_wait_for_link_delay - Wait until link is active or inactive
4982 * @pdev: Bridge device
4983 * @active: waiting for active or inactive?
4984 * @delay: Delay to wait after link has become active (in ms)
4985 *
4986 * Use this to wait till link becomes active or inactive.
4987 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4988 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4989 int delay)
4990 {
4991 int rc;
4992
4993 /*
4994 * Some controllers might not implement link active reporting. In this
4995 * case, we wait for 1000 ms + any delay requested by the caller.
4996 */
4997 if (!pdev->link_active_reporting) {
4998 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4999 return true;
5000 }
5001
5002 /*
5003 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5004 * after which we should expect an link active if the reset was
5005 * successful. If so, software must wait a minimum 100ms before sending
5006 * configuration requests to devices downstream this port.
5007 *
5008 * If the link fails to activate, either the device was physically
5009 * removed or the link is permanently failed.
5010 */
5011 if (active)
5012 msleep(20);
5013 rc = pcie_wait_for_link_status(pdev, false, active);
5014 if (active) {
5015 if (rc)
5016 rc = pcie_failed_link_retrain(pdev);
5017 if (rc)
5018 return false;
5019
5020 msleep(delay);
5021 return true;
5022 }
5023
5024 if (rc)
5025 return false;
5026
5027 return true;
5028 }
5029
5030 /**
5031 * pcie_wait_for_link - Wait until link is active or inactive
5032 * @pdev: Bridge device
5033 * @active: waiting for active or inactive?
5034 *
5035 * Use this to wait till link becomes active or inactive.
5036 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)5037 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5038 {
5039 return pcie_wait_for_link_delay(pdev, active, 100);
5040 }
5041
5042 /*
5043 * Find maximum D3cold delay required by all the devices on the bus. The
5044 * spec says 100 ms, but firmware can lower it and we allow drivers to
5045 * increase it as well.
5046 *
5047 * Called with @pci_bus_sem locked for reading.
5048 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)5049 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5050 {
5051 const struct pci_dev *pdev;
5052 int min_delay = 100;
5053 int max_delay = 0;
5054
5055 list_for_each_entry(pdev, &bus->devices, bus_list) {
5056 if (pdev->d3cold_delay < min_delay)
5057 min_delay = pdev->d3cold_delay;
5058 if (pdev->d3cold_delay > max_delay)
5059 max_delay = pdev->d3cold_delay;
5060 }
5061
5062 return max(min_delay, max_delay);
5063 }
5064
5065 /**
5066 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5067 * @dev: PCI bridge
5068 * @reset_type: reset type in human-readable form
5069 *
5070 * Handle necessary delays before access to the devices on the secondary
5071 * side of the bridge are permitted after D3cold to D0 transition
5072 * or Conventional Reset.
5073 *
5074 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5075 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5076 * 4.3.2.
5077 *
5078 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5079 * failed to become accessible.
5080 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)5081 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5082 {
5083 struct pci_dev *child;
5084 int delay;
5085
5086 if (pci_dev_is_disconnected(dev))
5087 return 0;
5088
5089 if (!pci_is_bridge(dev))
5090 return 0;
5091
5092 down_read(&pci_bus_sem);
5093
5094 /*
5095 * We only deal with devices that are present currently on the bus.
5096 * For any hot-added devices the access delay is handled in pciehp
5097 * board_added(). In case of ACPI hotplug the firmware is expected
5098 * to configure the devices before OS is notified.
5099 */
5100 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5101 up_read(&pci_bus_sem);
5102 return 0;
5103 }
5104
5105 /* Take d3cold_delay requirements into account */
5106 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5107 if (!delay) {
5108 up_read(&pci_bus_sem);
5109 return 0;
5110 }
5111
5112 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5113 bus_list);
5114 up_read(&pci_bus_sem);
5115
5116 /*
5117 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5118 * accessing the device after reset (that is 1000 ms + 100 ms).
5119 */
5120 if (!pci_is_pcie(dev)) {
5121 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5122 msleep(1000 + delay);
5123 return 0;
5124 }
5125
5126 /*
5127 * For PCIe downstream and root ports that do not support speeds
5128 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5129 * speeds (gen3) we need to wait first for the data link layer to
5130 * become active.
5131 *
5132 * However, 100 ms is the minimum and the PCIe spec says the
5133 * software must allow at least 1s before it can determine that the
5134 * device that did not respond is a broken device. Also device can
5135 * take longer than that to respond if it indicates so through Request
5136 * Retry Status completions.
5137 *
5138 * Therefore we wait for 100 ms and check for the device presence
5139 * until the timeout expires.
5140 */
5141 if (!pcie_downstream_port(dev))
5142 return 0;
5143
5144 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5145 u16 status;
5146
5147 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5148 msleep(delay);
5149
5150 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5151 return 0;
5152
5153 /*
5154 * If the port supports active link reporting we now check
5155 * whether the link is active and if not bail out early with
5156 * the assumption that the device is not present anymore.
5157 */
5158 if (!dev->link_active_reporting)
5159 return -ENOTTY;
5160
5161 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5162 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5163 return -ENOTTY;
5164
5165 return pci_dev_wait(child, reset_type,
5166 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5167 }
5168
5169 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5170 delay);
5171 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5172 /* Did not train, no need to wait any further */
5173 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5174 return -ENOTTY;
5175 }
5176
5177 return pci_dev_wait(child, reset_type,
5178 PCIE_RESET_READY_POLL_MS - delay);
5179 }
5180
pci_reset_secondary_bus(struct pci_dev * dev)5181 void pci_reset_secondary_bus(struct pci_dev *dev)
5182 {
5183 u16 ctrl;
5184
5185 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5186 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5187 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5188
5189 /*
5190 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5191 * this to 2ms to ensure that we meet the minimum requirement.
5192 */
5193 msleep(2);
5194
5195 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5196 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5197 }
5198
pcibios_reset_secondary_bus(struct pci_dev * dev)5199 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5200 {
5201 pci_reset_secondary_bus(dev);
5202 }
5203
5204 /**
5205 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5206 * @dev: Bridge device
5207 *
5208 * Use the bridge control register to assert reset on the secondary bus.
5209 * Devices on the secondary bus are left in power-on state.
5210 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5211 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5212 {
5213 pcibios_reset_secondary_bus(dev);
5214
5215 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5216 }
5217 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5218
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5219 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5220 {
5221 struct pci_dev *pdev;
5222
5223 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5224 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5225 return -ENOTTY;
5226
5227 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5228 if (pdev != dev)
5229 return -ENOTTY;
5230
5231 if (probe)
5232 return 0;
5233
5234 return pci_bridge_secondary_bus_reset(dev->bus->self);
5235 }
5236
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5237 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5238 {
5239 int rc = -ENOTTY;
5240
5241 if (!hotplug || !try_module_get(hotplug->owner))
5242 return rc;
5243
5244 if (hotplug->ops->reset_slot)
5245 rc = hotplug->ops->reset_slot(hotplug, probe);
5246
5247 module_put(hotplug->owner);
5248
5249 return rc;
5250 }
5251
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5252 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5253 {
5254 if (dev->multifunction || dev->subordinate || !dev->slot ||
5255 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5256 return -ENOTTY;
5257
5258 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5259 }
5260
pci_reset_bus_function(struct pci_dev * dev,bool probe)5261 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5262 {
5263 int rc;
5264
5265 rc = pci_dev_reset_slot_function(dev, probe);
5266 if (rc != -ENOTTY)
5267 return rc;
5268 return pci_parent_bus_reset(dev, probe);
5269 }
5270
pci_dev_lock(struct pci_dev * dev)5271 void pci_dev_lock(struct pci_dev *dev)
5272 {
5273 /* block PM suspend, driver probe, etc. */
5274 device_lock(&dev->dev);
5275 pci_cfg_access_lock(dev);
5276 }
5277 EXPORT_SYMBOL_GPL(pci_dev_lock);
5278
5279 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5280 int pci_dev_trylock(struct pci_dev *dev)
5281 {
5282 if (device_trylock(&dev->dev)) {
5283 if (pci_cfg_access_trylock(dev))
5284 return 1;
5285 device_unlock(&dev->dev);
5286 }
5287
5288 return 0;
5289 }
5290 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5291
pci_dev_unlock(struct pci_dev * dev)5292 void pci_dev_unlock(struct pci_dev *dev)
5293 {
5294 pci_cfg_access_unlock(dev);
5295 device_unlock(&dev->dev);
5296 }
5297 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5298
pci_dev_save_and_disable(struct pci_dev * dev)5299 static void pci_dev_save_and_disable(struct pci_dev *dev)
5300 {
5301 const struct pci_error_handlers *err_handler =
5302 dev->driver ? dev->driver->err_handler : NULL;
5303
5304 /*
5305 * dev->driver->err_handler->reset_prepare() is protected against
5306 * races with ->remove() by the device lock, which must be held by
5307 * the caller.
5308 */
5309 if (err_handler && err_handler->reset_prepare)
5310 err_handler->reset_prepare(dev);
5311
5312 /*
5313 * Wake-up device prior to save. PM registers default to D0 after
5314 * reset and a simple register restore doesn't reliably return
5315 * to a non-D0 state anyway.
5316 */
5317 pci_set_power_state(dev, PCI_D0);
5318
5319 pci_save_state(dev);
5320 /*
5321 * Disable the device by clearing the Command register, except for
5322 * INTx-disable which is set. This not only disables MMIO and I/O port
5323 * BARs, but also prevents the device from being Bus Master, preventing
5324 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5325 * compliant devices, INTx-disable prevents legacy interrupts.
5326 */
5327 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5328 }
5329
pci_dev_restore(struct pci_dev * dev)5330 static void pci_dev_restore(struct pci_dev *dev)
5331 {
5332 const struct pci_error_handlers *err_handler =
5333 dev->driver ? dev->driver->err_handler : NULL;
5334
5335 pci_restore_state(dev);
5336
5337 /*
5338 * dev->driver->err_handler->reset_done() is protected against
5339 * races with ->remove() by the device lock, which must be held by
5340 * the caller.
5341 */
5342 if (err_handler && err_handler->reset_done)
5343 err_handler->reset_done(dev);
5344 }
5345
5346 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5347 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5348 { },
5349 { pci_dev_specific_reset, .name = "device_specific" },
5350 { pci_dev_acpi_reset, .name = "acpi" },
5351 { pcie_reset_flr, .name = "flr" },
5352 { pci_af_flr, .name = "af_flr" },
5353 { pci_pm_reset, .name = "pm" },
5354 { pci_reset_bus_function, .name = "bus" },
5355 };
5356
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5357 static ssize_t reset_method_show(struct device *dev,
5358 struct device_attribute *attr, char *buf)
5359 {
5360 struct pci_dev *pdev = to_pci_dev(dev);
5361 ssize_t len = 0;
5362 int i, m;
5363
5364 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5365 m = pdev->reset_methods[i];
5366 if (!m)
5367 break;
5368
5369 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5370 pci_reset_fn_methods[m].name);
5371 }
5372
5373 if (len)
5374 len += sysfs_emit_at(buf, len, "\n");
5375
5376 return len;
5377 }
5378
reset_method_lookup(const char * name)5379 static int reset_method_lookup(const char *name)
5380 {
5381 int m;
5382
5383 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5384 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5385 return m;
5386 }
5387
5388 return 0; /* not found */
5389 }
5390
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5391 static ssize_t reset_method_store(struct device *dev,
5392 struct device_attribute *attr,
5393 const char *buf, size_t count)
5394 {
5395 struct pci_dev *pdev = to_pci_dev(dev);
5396 char *options, *name;
5397 int m, n;
5398 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5399
5400 if (sysfs_streq(buf, "")) {
5401 pdev->reset_methods[0] = 0;
5402 pci_warn(pdev, "All device reset methods disabled by user");
5403 return count;
5404 }
5405
5406 if (sysfs_streq(buf, "default")) {
5407 pci_init_reset_methods(pdev);
5408 return count;
5409 }
5410
5411 options = kstrndup(buf, count, GFP_KERNEL);
5412 if (!options)
5413 return -ENOMEM;
5414
5415 n = 0;
5416 while ((name = strsep(&options, " ")) != NULL) {
5417 if (sysfs_streq(name, ""))
5418 continue;
5419
5420 name = strim(name);
5421
5422 m = reset_method_lookup(name);
5423 if (!m) {
5424 pci_err(pdev, "Invalid reset method '%s'", name);
5425 goto error;
5426 }
5427
5428 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5429 pci_err(pdev, "Unsupported reset method '%s'", name);
5430 goto error;
5431 }
5432
5433 if (n == PCI_NUM_RESET_METHODS - 1) {
5434 pci_err(pdev, "Too many reset methods\n");
5435 goto error;
5436 }
5437
5438 reset_methods[n++] = m;
5439 }
5440
5441 reset_methods[n] = 0;
5442
5443 /* Warn if dev-specific supported but not highest priority */
5444 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5445 reset_methods[0] != 1)
5446 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5447 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5448 kfree(options);
5449 return count;
5450
5451 error:
5452 /* Leave previous methods unchanged */
5453 kfree(options);
5454 return -EINVAL;
5455 }
5456 static DEVICE_ATTR_RW(reset_method);
5457
5458 static struct attribute *pci_dev_reset_method_attrs[] = {
5459 &dev_attr_reset_method.attr,
5460 NULL,
5461 };
5462
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5463 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5464 struct attribute *a, int n)
5465 {
5466 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5467
5468 if (!pci_reset_supported(pdev))
5469 return 0;
5470
5471 return a->mode;
5472 }
5473
5474 const struct attribute_group pci_dev_reset_method_attr_group = {
5475 .attrs = pci_dev_reset_method_attrs,
5476 .is_visible = pci_dev_reset_method_attr_is_visible,
5477 };
5478
5479 /**
5480 * __pci_reset_function_locked - reset a PCI device function while holding
5481 * the @dev mutex lock.
5482 * @dev: PCI device to reset
5483 *
5484 * Some devices allow an individual function to be reset without affecting
5485 * other functions in the same device. The PCI device must be responsive
5486 * to PCI config space in order to use this function.
5487 *
5488 * The device function is presumed to be unused and the caller is holding
5489 * the device mutex lock when this function is called.
5490 *
5491 * Resetting the device will make the contents of PCI configuration space
5492 * random, so any caller of this must be prepared to reinitialise the
5493 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5494 * etc.
5495 *
5496 * Returns 0 if the device function was successfully reset or negative if the
5497 * device doesn't support resetting a single function.
5498 */
__pci_reset_function_locked(struct pci_dev * dev)5499 int __pci_reset_function_locked(struct pci_dev *dev)
5500 {
5501 int i, m, rc;
5502
5503 might_sleep();
5504
5505 /*
5506 * A reset method returns -ENOTTY if it doesn't support this device and
5507 * we should try the next method.
5508 *
5509 * If it returns 0 (success), we're finished. If it returns any other
5510 * error, we're also finished: this indicates that further reset
5511 * mechanisms might be broken on the device.
5512 */
5513 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5514 m = dev->reset_methods[i];
5515 if (!m)
5516 return -ENOTTY;
5517
5518 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5519 if (!rc)
5520 return 0;
5521 if (rc != -ENOTTY)
5522 return rc;
5523 }
5524
5525 return -ENOTTY;
5526 }
5527 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5528
5529 /**
5530 * pci_init_reset_methods - check whether device can be safely reset
5531 * and store supported reset mechanisms.
5532 * @dev: PCI device to check for reset mechanisms
5533 *
5534 * Some devices allow an individual function to be reset without affecting
5535 * other functions in the same device. The PCI device must be in D0-D3hot
5536 * state.
5537 *
5538 * Stores reset mechanisms supported by device in reset_methods byte array
5539 * which is a member of struct pci_dev.
5540 */
pci_init_reset_methods(struct pci_dev * dev)5541 void pci_init_reset_methods(struct pci_dev *dev)
5542 {
5543 int m, i, rc;
5544
5545 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5546
5547 might_sleep();
5548
5549 i = 0;
5550 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5551 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5552 if (!rc)
5553 dev->reset_methods[i++] = m;
5554 else if (rc != -ENOTTY)
5555 break;
5556 }
5557
5558 dev->reset_methods[i] = 0;
5559 }
5560
5561 /**
5562 * pci_reset_function - quiesce and reset a PCI device function
5563 * @dev: PCI device to reset
5564 *
5565 * Some devices allow an individual function to be reset without affecting
5566 * other functions in the same device. The PCI device must be responsive
5567 * to PCI config space in order to use this function.
5568 *
5569 * This function does not just reset the PCI portion of a device, but
5570 * clears all the state associated with the device. This function differs
5571 * from __pci_reset_function_locked() in that it saves and restores device state
5572 * over the reset and takes the PCI device lock.
5573 *
5574 * Returns 0 if the device function was successfully reset or negative if the
5575 * device doesn't support resetting a single function.
5576 */
pci_reset_function(struct pci_dev * dev)5577 int pci_reset_function(struct pci_dev *dev)
5578 {
5579 int rc;
5580
5581 if (!pci_reset_supported(dev))
5582 return -ENOTTY;
5583
5584 pci_dev_lock(dev);
5585 pci_dev_save_and_disable(dev);
5586
5587 rc = __pci_reset_function_locked(dev);
5588
5589 pci_dev_restore(dev);
5590 pci_dev_unlock(dev);
5591
5592 return rc;
5593 }
5594 EXPORT_SYMBOL_GPL(pci_reset_function);
5595
5596 /**
5597 * pci_reset_function_locked - quiesce and reset a PCI device function
5598 * @dev: PCI device to reset
5599 *
5600 * Some devices allow an individual function to be reset without affecting
5601 * other functions in the same device. The PCI device must be responsive
5602 * to PCI config space in order to use this function.
5603 *
5604 * This function does not just reset the PCI portion of a device, but
5605 * clears all the state associated with the device. This function differs
5606 * from __pci_reset_function_locked() in that it saves and restores device state
5607 * over the reset. It also differs from pci_reset_function() in that it
5608 * requires the PCI device lock to be held.
5609 *
5610 * Returns 0 if the device function was successfully reset or negative if the
5611 * device doesn't support resetting a single function.
5612 */
pci_reset_function_locked(struct pci_dev * dev)5613 int pci_reset_function_locked(struct pci_dev *dev)
5614 {
5615 int rc;
5616
5617 if (!pci_reset_supported(dev))
5618 return -ENOTTY;
5619
5620 pci_dev_save_and_disable(dev);
5621
5622 rc = __pci_reset_function_locked(dev);
5623
5624 pci_dev_restore(dev);
5625
5626 return rc;
5627 }
5628 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5629
5630 /**
5631 * pci_try_reset_function - quiesce and reset a PCI device function
5632 * @dev: PCI device to reset
5633 *
5634 * Same as above, except return -EAGAIN if unable to lock device.
5635 */
pci_try_reset_function(struct pci_dev * dev)5636 int pci_try_reset_function(struct pci_dev *dev)
5637 {
5638 int rc;
5639
5640 if (!pci_reset_supported(dev))
5641 return -ENOTTY;
5642
5643 if (!pci_dev_trylock(dev))
5644 return -EAGAIN;
5645
5646 pci_dev_save_and_disable(dev);
5647 rc = __pci_reset_function_locked(dev);
5648 pci_dev_restore(dev);
5649 pci_dev_unlock(dev);
5650
5651 return rc;
5652 }
5653 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5654
5655 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5656 static bool pci_bus_resettable(struct pci_bus *bus)
5657 {
5658 struct pci_dev *dev;
5659
5660
5661 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5662 return false;
5663
5664 list_for_each_entry(dev, &bus->devices, bus_list) {
5665 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5666 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5667 return false;
5668 }
5669
5670 return true;
5671 }
5672
5673 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5674 static void pci_bus_lock(struct pci_bus *bus)
5675 {
5676 struct pci_dev *dev;
5677
5678 list_for_each_entry(dev, &bus->devices, bus_list) {
5679 pci_dev_lock(dev);
5680 if (dev->subordinate)
5681 pci_bus_lock(dev->subordinate);
5682 }
5683 }
5684
5685 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5686 static void pci_bus_unlock(struct pci_bus *bus)
5687 {
5688 struct pci_dev *dev;
5689
5690 list_for_each_entry(dev, &bus->devices, bus_list) {
5691 if (dev->subordinate)
5692 pci_bus_unlock(dev->subordinate);
5693 pci_dev_unlock(dev);
5694 }
5695 }
5696
5697 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5698 static int pci_bus_trylock(struct pci_bus *bus)
5699 {
5700 struct pci_dev *dev;
5701
5702 list_for_each_entry(dev, &bus->devices, bus_list) {
5703 if (!pci_dev_trylock(dev))
5704 goto unlock;
5705 if (dev->subordinate) {
5706 if (!pci_bus_trylock(dev->subordinate)) {
5707 pci_dev_unlock(dev);
5708 goto unlock;
5709 }
5710 }
5711 }
5712 return 1;
5713
5714 unlock:
5715 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5716 if (dev->subordinate)
5717 pci_bus_unlock(dev->subordinate);
5718 pci_dev_unlock(dev);
5719 }
5720 return 0;
5721 }
5722
5723 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5724 static bool pci_slot_resettable(struct pci_slot *slot)
5725 {
5726 struct pci_dev *dev;
5727
5728 if (slot->bus->self &&
5729 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5730 return false;
5731
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5734 continue;
5735 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5736 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5737 return false;
5738 }
5739
5740 return true;
5741 }
5742
5743 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5744 static void pci_slot_lock(struct pci_slot *slot)
5745 {
5746 struct pci_dev *dev;
5747
5748 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5749 if (!dev->slot || dev->slot != slot)
5750 continue;
5751 pci_dev_lock(dev);
5752 if (dev->subordinate)
5753 pci_bus_lock(dev->subordinate);
5754 }
5755 }
5756
5757 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5758 static void pci_slot_unlock(struct pci_slot *slot)
5759 {
5760 struct pci_dev *dev;
5761
5762 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5763 if (!dev->slot || dev->slot != slot)
5764 continue;
5765 if (dev->subordinate)
5766 pci_bus_unlock(dev->subordinate);
5767 pci_dev_unlock(dev);
5768 }
5769 }
5770
5771 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5772 static int pci_slot_trylock(struct pci_slot *slot)
5773 {
5774 struct pci_dev *dev;
5775
5776 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5777 if (!dev->slot || dev->slot != slot)
5778 continue;
5779 if (!pci_dev_trylock(dev))
5780 goto unlock;
5781 if (dev->subordinate) {
5782 if (!pci_bus_trylock(dev->subordinate)) {
5783 pci_dev_unlock(dev);
5784 goto unlock;
5785 }
5786 }
5787 }
5788 return 1;
5789
5790 unlock:
5791 list_for_each_entry_continue_reverse(dev,
5792 &slot->bus->devices, bus_list) {
5793 if (!dev->slot || dev->slot != slot)
5794 continue;
5795 if (dev->subordinate)
5796 pci_bus_unlock(dev->subordinate);
5797 pci_dev_unlock(dev);
5798 }
5799 return 0;
5800 }
5801
5802 /*
5803 * Save and disable devices from the top of the tree down while holding
5804 * the @dev mutex lock for the entire tree.
5805 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5806 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5807 {
5808 struct pci_dev *dev;
5809
5810 list_for_each_entry(dev, &bus->devices, bus_list) {
5811 pci_dev_save_and_disable(dev);
5812 if (dev->subordinate)
5813 pci_bus_save_and_disable_locked(dev->subordinate);
5814 }
5815 }
5816
5817 /*
5818 * Restore devices from top of the tree down while holding @dev mutex lock
5819 * for the entire tree. Parent bridges need to be restored before we can
5820 * get to subordinate devices.
5821 */
pci_bus_restore_locked(struct pci_bus * bus)5822 static void pci_bus_restore_locked(struct pci_bus *bus)
5823 {
5824 struct pci_dev *dev;
5825
5826 list_for_each_entry(dev, &bus->devices, bus_list) {
5827 pci_dev_restore(dev);
5828 if (dev->subordinate)
5829 pci_bus_restore_locked(dev->subordinate);
5830 }
5831 }
5832
5833 /*
5834 * Save and disable devices from the top of the tree down while holding
5835 * the @dev mutex lock for the entire tree.
5836 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5837 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5838 {
5839 struct pci_dev *dev;
5840
5841 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5842 if (!dev->slot || dev->slot != slot)
5843 continue;
5844 pci_dev_save_and_disable(dev);
5845 if (dev->subordinate)
5846 pci_bus_save_and_disable_locked(dev->subordinate);
5847 }
5848 }
5849
5850 /*
5851 * Restore devices from top of the tree down while holding @dev mutex lock
5852 * for the entire tree. Parent bridges need to be restored before we can
5853 * get to subordinate devices.
5854 */
pci_slot_restore_locked(struct pci_slot * slot)5855 static void pci_slot_restore_locked(struct pci_slot *slot)
5856 {
5857 struct pci_dev *dev;
5858
5859 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5860 if (!dev->slot || dev->slot != slot)
5861 continue;
5862 pci_dev_restore(dev);
5863 if (dev->subordinate)
5864 pci_bus_restore_locked(dev->subordinate);
5865 }
5866 }
5867
pci_slot_reset(struct pci_slot * slot,bool probe)5868 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5869 {
5870 int rc;
5871
5872 if (!slot || !pci_slot_resettable(slot))
5873 return -ENOTTY;
5874
5875 if (!probe)
5876 pci_slot_lock(slot);
5877
5878 might_sleep();
5879
5880 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5881
5882 if (!probe)
5883 pci_slot_unlock(slot);
5884
5885 return rc;
5886 }
5887
5888 /**
5889 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5890 * @slot: PCI slot to probe
5891 *
5892 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5893 */
pci_probe_reset_slot(struct pci_slot * slot)5894 int pci_probe_reset_slot(struct pci_slot *slot)
5895 {
5896 return pci_slot_reset(slot, PCI_RESET_PROBE);
5897 }
5898 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5899
5900 /**
5901 * __pci_reset_slot - Try to reset a PCI slot
5902 * @slot: PCI slot to reset
5903 *
5904 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5905 * independent of other slots. For instance, some slots may support slot power
5906 * control. In the case of a 1:1 bus to slot architecture, this function may
5907 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5908 * Generally a slot reset should be attempted before a bus reset. All of the
5909 * function of the slot and any subordinate buses behind the slot are reset
5910 * through this function. PCI config space of all devices in the slot and
5911 * behind the slot is saved before and restored after reset.
5912 *
5913 * Same as above except return -EAGAIN if the slot cannot be locked
5914 */
__pci_reset_slot(struct pci_slot * slot)5915 static int __pci_reset_slot(struct pci_slot *slot)
5916 {
5917 int rc;
5918
5919 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5920 if (rc)
5921 return rc;
5922
5923 if (pci_slot_trylock(slot)) {
5924 pci_slot_save_and_disable_locked(slot);
5925 might_sleep();
5926 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5927 pci_slot_restore_locked(slot);
5928 pci_slot_unlock(slot);
5929 } else
5930 rc = -EAGAIN;
5931
5932 return rc;
5933 }
5934
pci_bus_reset(struct pci_bus * bus,bool probe)5935 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5936 {
5937 int ret;
5938
5939 if (!bus->self || !pci_bus_resettable(bus))
5940 return -ENOTTY;
5941
5942 if (probe)
5943 return 0;
5944
5945 pci_bus_lock(bus);
5946
5947 might_sleep();
5948
5949 ret = pci_bridge_secondary_bus_reset(bus->self);
5950
5951 pci_bus_unlock(bus);
5952
5953 return ret;
5954 }
5955
5956 /**
5957 * pci_bus_error_reset - reset the bridge's subordinate bus
5958 * @bridge: The parent device that connects to the bus to reset
5959 *
5960 * This function will first try to reset the slots on this bus if the method is
5961 * available. If slot reset fails or is not available, this will fall back to a
5962 * secondary bus reset.
5963 */
pci_bus_error_reset(struct pci_dev * bridge)5964 int pci_bus_error_reset(struct pci_dev *bridge)
5965 {
5966 struct pci_bus *bus = bridge->subordinate;
5967 struct pci_slot *slot;
5968
5969 if (!bus)
5970 return -ENOTTY;
5971
5972 mutex_lock(&pci_slot_mutex);
5973 if (list_empty(&bus->slots))
5974 goto bus_reset;
5975
5976 list_for_each_entry(slot, &bus->slots, list)
5977 if (pci_probe_reset_slot(slot))
5978 goto bus_reset;
5979
5980 list_for_each_entry(slot, &bus->slots, list)
5981 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5982 goto bus_reset;
5983
5984 mutex_unlock(&pci_slot_mutex);
5985 return 0;
5986 bus_reset:
5987 mutex_unlock(&pci_slot_mutex);
5988 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5989 }
5990
5991 /**
5992 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5993 * @bus: PCI bus to probe
5994 *
5995 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5996 */
pci_probe_reset_bus(struct pci_bus * bus)5997 int pci_probe_reset_bus(struct pci_bus *bus)
5998 {
5999 return pci_bus_reset(bus, PCI_RESET_PROBE);
6000 }
6001 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6002
6003 /**
6004 * __pci_reset_bus - Try to reset a PCI bus
6005 * @bus: top level PCI bus to reset
6006 *
6007 * Same as above except return -EAGAIN if the bus cannot be locked
6008 */
__pci_reset_bus(struct pci_bus * bus)6009 static int __pci_reset_bus(struct pci_bus *bus)
6010 {
6011 int rc;
6012
6013 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6014 if (rc)
6015 return rc;
6016
6017 if (pci_bus_trylock(bus)) {
6018 pci_bus_save_and_disable_locked(bus);
6019 might_sleep();
6020 rc = pci_bridge_secondary_bus_reset(bus->self);
6021 pci_bus_restore_locked(bus);
6022 pci_bus_unlock(bus);
6023 } else
6024 rc = -EAGAIN;
6025
6026 return rc;
6027 }
6028
6029 /**
6030 * pci_reset_bus - Try to reset a PCI bus
6031 * @pdev: top level PCI device to reset via slot/bus
6032 *
6033 * Same as above except return -EAGAIN if the bus cannot be locked
6034 */
pci_reset_bus(struct pci_dev * pdev)6035 int pci_reset_bus(struct pci_dev *pdev)
6036 {
6037 return (!pci_probe_reset_slot(pdev->slot)) ?
6038 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6039 }
6040 EXPORT_SYMBOL_GPL(pci_reset_bus);
6041
6042 /**
6043 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6044 * @dev: PCI device to query
6045 *
6046 * Returns mmrbc: maximum designed memory read count in bytes or
6047 * appropriate error value.
6048 */
pcix_get_max_mmrbc(struct pci_dev * dev)6049 int pcix_get_max_mmrbc(struct pci_dev *dev)
6050 {
6051 int cap;
6052 u32 stat;
6053
6054 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6055 if (!cap)
6056 return -EINVAL;
6057
6058 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6059 return -EINVAL;
6060
6061 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6062 }
6063 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6064
6065 /**
6066 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6067 * @dev: PCI device to query
6068 *
6069 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6070 * value.
6071 */
pcix_get_mmrbc(struct pci_dev * dev)6072 int pcix_get_mmrbc(struct pci_dev *dev)
6073 {
6074 int cap;
6075 u16 cmd;
6076
6077 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6078 if (!cap)
6079 return -EINVAL;
6080
6081 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6082 return -EINVAL;
6083
6084 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6085 }
6086 EXPORT_SYMBOL(pcix_get_mmrbc);
6087
6088 /**
6089 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6090 * @dev: PCI device to query
6091 * @mmrbc: maximum memory read count in bytes
6092 * valid values are 512, 1024, 2048, 4096
6093 *
6094 * If possible sets maximum memory read byte count, some bridges have errata
6095 * that prevent this.
6096 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)6097 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6098 {
6099 int cap;
6100 u32 stat, v, o;
6101 u16 cmd;
6102
6103 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6104 return -EINVAL;
6105
6106 v = ffs(mmrbc) - 10;
6107
6108 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6109 if (!cap)
6110 return -EINVAL;
6111
6112 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6113 return -EINVAL;
6114
6115 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6116 return -E2BIG;
6117
6118 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6119 return -EINVAL;
6120
6121 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6122 if (o != v) {
6123 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6124 return -EIO;
6125
6126 cmd &= ~PCI_X_CMD_MAX_READ;
6127 cmd |= v << 2;
6128 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6129 return -EIO;
6130 }
6131 return 0;
6132 }
6133 EXPORT_SYMBOL(pcix_set_mmrbc);
6134
6135 /**
6136 * pcie_get_readrq - get PCI Express read request size
6137 * @dev: PCI device to query
6138 *
6139 * Returns maximum memory read request in bytes or appropriate error value.
6140 */
pcie_get_readrq(struct pci_dev * dev)6141 int pcie_get_readrq(struct pci_dev *dev)
6142 {
6143 u16 ctl;
6144
6145 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6146
6147 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6148 }
6149 EXPORT_SYMBOL(pcie_get_readrq);
6150
6151 /**
6152 * pcie_set_readrq - set PCI Express maximum memory read request
6153 * @dev: PCI device to query
6154 * @rq: maximum memory read count in bytes
6155 * valid values are 128, 256, 512, 1024, 2048, 4096
6156 *
6157 * If possible sets maximum memory read request in bytes
6158 */
pcie_set_readrq(struct pci_dev * dev,int rq)6159 int pcie_set_readrq(struct pci_dev *dev, int rq)
6160 {
6161 u16 v;
6162 int ret;
6163 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6164
6165 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6166 return -EINVAL;
6167
6168 /*
6169 * If using the "performance" PCIe config, we clamp the read rq
6170 * size to the max packet size to keep the host bridge from
6171 * generating requests larger than we can cope with.
6172 */
6173 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6174 int mps = pcie_get_mps(dev);
6175
6176 if (mps < rq)
6177 rq = mps;
6178 }
6179
6180 v = (ffs(rq) - 8) << 12;
6181
6182 if (bridge->no_inc_mrrs) {
6183 int max_mrrs = pcie_get_readrq(dev);
6184
6185 if (rq > max_mrrs) {
6186 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6187 return -EINVAL;
6188 }
6189 }
6190
6191 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6192 PCI_EXP_DEVCTL_READRQ, v);
6193
6194 return pcibios_err_to_errno(ret);
6195 }
6196 EXPORT_SYMBOL(pcie_set_readrq);
6197
6198 /**
6199 * pcie_get_mps - get PCI Express maximum payload size
6200 * @dev: PCI device to query
6201 *
6202 * Returns maximum payload size in bytes
6203 */
pcie_get_mps(struct pci_dev * dev)6204 int pcie_get_mps(struct pci_dev *dev)
6205 {
6206 u16 ctl;
6207
6208 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6209
6210 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6211 }
6212 EXPORT_SYMBOL(pcie_get_mps);
6213
6214 /**
6215 * pcie_set_mps - set PCI Express maximum payload size
6216 * @dev: PCI device to query
6217 * @mps: maximum payload size in bytes
6218 * valid values are 128, 256, 512, 1024, 2048, 4096
6219 *
6220 * If possible sets maximum payload size
6221 */
pcie_set_mps(struct pci_dev * dev,int mps)6222 int pcie_set_mps(struct pci_dev *dev, int mps)
6223 {
6224 u16 v;
6225 int ret;
6226
6227 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6228 return -EINVAL;
6229
6230 v = ffs(mps) - 8;
6231 if (v > dev->pcie_mpss)
6232 return -EINVAL;
6233 v <<= 5;
6234
6235 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6236 PCI_EXP_DEVCTL_PAYLOAD, v);
6237
6238 return pcibios_err_to_errno(ret);
6239 }
6240 EXPORT_SYMBOL(pcie_set_mps);
6241
6242 /**
6243 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6244 * device and its bandwidth limitation
6245 * @dev: PCI device to query
6246 * @limiting_dev: storage for device causing the bandwidth limitation
6247 * @speed: storage for speed of limiting device
6248 * @width: storage for width of limiting device
6249 *
6250 * Walk up the PCI device chain and find the point where the minimum
6251 * bandwidth is available. Return the bandwidth available there and (if
6252 * limiting_dev, speed, and width pointers are supplied) information about
6253 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6254 * raw bandwidth.
6255 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6256 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6257 enum pci_bus_speed *speed,
6258 enum pcie_link_width *width)
6259 {
6260 u16 lnksta;
6261 enum pci_bus_speed next_speed;
6262 enum pcie_link_width next_width;
6263 u32 bw, next_bw;
6264
6265 if (speed)
6266 *speed = PCI_SPEED_UNKNOWN;
6267 if (width)
6268 *width = PCIE_LNK_WIDTH_UNKNOWN;
6269
6270 bw = 0;
6271
6272 while (dev) {
6273 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6274
6275 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6276 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6277
6278 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6279
6280 /* Check if current device limits the total bandwidth */
6281 if (!bw || next_bw <= bw) {
6282 bw = next_bw;
6283
6284 if (limiting_dev)
6285 *limiting_dev = dev;
6286 if (speed)
6287 *speed = next_speed;
6288 if (width)
6289 *width = next_width;
6290 }
6291
6292 dev = pci_upstream_bridge(dev);
6293 }
6294
6295 return bw;
6296 }
6297 EXPORT_SYMBOL(pcie_bandwidth_available);
6298
6299 /**
6300 * pcie_get_speed_cap - query for the PCI device's link speed capability
6301 * @dev: PCI device to query
6302 *
6303 * Query the PCI device speed capability. Return the maximum link speed
6304 * supported by the device.
6305 */
pcie_get_speed_cap(struct pci_dev * dev)6306 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6307 {
6308 u32 lnkcap2, lnkcap;
6309
6310 /*
6311 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6312 * implementation note there recommends using the Supported Link
6313 * Speeds Vector in Link Capabilities 2 when supported.
6314 *
6315 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6316 * should use the Supported Link Speeds field in Link Capabilities,
6317 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6318 */
6319 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6320
6321 /* PCIe r3.0-compliant */
6322 if (lnkcap2)
6323 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6324
6325 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6326 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6327 return PCIE_SPEED_5_0GT;
6328 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6329 return PCIE_SPEED_2_5GT;
6330
6331 return PCI_SPEED_UNKNOWN;
6332 }
6333 EXPORT_SYMBOL(pcie_get_speed_cap);
6334
6335 /**
6336 * pcie_get_width_cap - query for the PCI device's link width capability
6337 * @dev: PCI device to query
6338 *
6339 * Query the PCI device width capability. Return the maximum link width
6340 * supported by the device.
6341 */
pcie_get_width_cap(struct pci_dev * dev)6342 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6343 {
6344 u32 lnkcap;
6345
6346 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6347 if (lnkcap)
6348 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6349
6350 return PCIE_LNK_WIDTH_UNKNOWN;
6351 }
6352 EXPORT_SYMBOL(pcie_get_width_cap);
6353
6354 /**
6355 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6356 * @dev: PCI device
6357 * @speed: storage for link speed
6358 * @width: storage for link width
6359 *
6360 * Calculate a PCI device's link bandwidth by querying for its link speed
6361 * and width, multiplying them, and applying encoding overhead. The result
6362 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6363 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6364 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6365 enum pcie_link_width *width)
6366 {
6367 *speed = pcie_get_speed_cap(dev);
6368 *width = pcie_get_width_cap(dev);
6369
6370 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6371 return 0;
6372
6373 return *width * PCIE_SPEED2MBS_ENC(*speed);
6374 }
6375
6376 /**
6377 * __pcie_print_link_status - Report the PCI device's link speed and width
6378 * @dev: PCI device to query
6379 * @verbose: Print info even when enough bandwidth is available
6380 *
6381 * If the available bandwidth at the device is less than the device is
6382 * capable of, report the device's maximum possible bandwidth and the
6383 * upstream link that limits its performance. If @verbose, always print
6384 * the available bandwidth, even if the device isn't constrained.
6385 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6386 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6387 {
6388 enum pcie_link_width width, width_cap;
6389 enum pci_bus_speed speed, speed_cap;
6390 struct pci_dev *limiting_dev = NULL;
6391 u32 bw_avail, bw_cap;
6392
6393 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6394 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6395
6396 if (bw_avail >= bw_cap && verbose)
6397 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6398 bw_cap / 1000, bw_cap % 1000,
6399 pci_speed_string(speed_cap), width_cap);
6400 else if (bw_avail < bw_cap)
6401 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6402 bw_avail / 1000, bw_avail % 1000,
6403 pci_speed_string(speed), width,
6404 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6405 bw_cap / 1000, bw_cap % 1000,
6406 pci_speed_string(speed_cap), width_cap);
6407 }
6408
6409 /**
6410 * pcie_print_link_status - Report the PCI device's link speed and width
6411 * @dev: PCI device to query
6412 *
6413 * Report the available bandwidth at the device.
6414 */
pcie_print_link_status(struct pci_dev * dev)6415 void pcie_print_link_status(struct pci_dev *dev)
6416 {
6417 __pcie_print_link_status(dev, true);
6418 }
6419 EXPORT_SYMBOL(pcie_print_link_status);
6420
6421 /**
6422 * pci_select_bars - Make BAR mask from the type of resource
6423 * @dev: the PCI device for which BAR mask is made
6424 * @flags: resource type mask to be selected
6425 *
6426 * This helper routine makes bar mask from the type of resource.
6427 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6428 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6429 {
6430 int i, bars = 0;
6431 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6432 if (pci_resource_flags(dev, i) & flags)
6433 bars |= (1 << i);
6434 return bars;
6435 }
6436 EXPORT_SYMBOL(pci_select_bars);
6437
6438 /* Some architectures require additional programming to enable VGA */
6439 static arch_set_vga_state_t arch_set_vga_state;
6440
pci_register_set_vga_state(arch_set_vga_state_t func)6441 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6442 {
6443 arch_set_vga_state = func; /* NULL disables */
6444 }
6445
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6446 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6447 unsigned int command_bits, u32 flags)
6448 {
6449 if (arch_set_vga_state)
6450 return arch_set_vga_state(dev, decode, command_bits,
6451 flags);
6452 return 0;
6453 }
6454
6455 /**
6456 * pci_set_vga_state - set VGA decode state on device and parents if requested
6457 * @dev: the PCI device
6458 * @decode: true = enable decoding, false = disable decoding
6459 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6460 * @flags: traverse ancestors and change bridges
6461 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6462 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6463 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6464 unsigned int command_bits, u32 flags)
6465 {
6466 struct pci_bus *bus;
6467 struct pci_dev *bridge;
6468 u16 cmd;
6469 int rc;
6470
6471 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6472
6473 /* ARCH specific VGA enables */
6474 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6475 if (rc)
6476 return rc;
6477
6478 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6479 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6480 if (decode)
6481 cmd |= command_bits;
6482 else
6483 cmd &= ~command_bits;
6484 pci_write_config_word(dev, PCI_COMMAND, cmd);
6485 }
6486
6487 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6488 return 0;
6489
6490 bus = dev->bus;
6491 while (bus) {
6492 bridge = bus->self;
6493 if (bridge) {
6494 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6495 &cmd);
6496 if (decode)
6497 cmd |= PCI_BRIDGE_CTL_VGA;
6498 else
6499 cmd &= ~PCI_BRIDGE_CTL_VGA;
6500 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6501 cmd);
6502 }
6503 bus = bus->parent;
6504 }
6505 return 0;
6506 }
6507
6508 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6509 bool pci_pr3_present(struct pci_dev *pdev)
6510 {
6511 struct acpi_device *adev;
6512
6513 if (acpi_disabled)
6514 return false;
6515
6516 adev = ACPI_COMPANION(&pdev->dev);
6517 if (!adev)
6518 return false;
6519
6520 return adev->power.flags.power_resources &&
6521 acpi_has_method(adev->handle, "_PR3");
6522 }
6523 EXPORT_SYMBOL_GPL(pci_pr3_present);
6524 #endif
6525
6526 /**
6527 * pci_add_dma_alias - Add a DMA devfn alias for a device
6528 * @dev: the PCI device for which alias is added
6529 * @devfn_from: alias slot and function
6530 * @nr_devfns: number of subsequent devfns to alias
6531 *
6532 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6533 * which is used to program permissible bus-devfn source addresses for DMA
6534 * requests in an IOMMU. These aliases factor into IOMMU group creation
6535 * and are useful for devices generating DMA requests beyond or different
6536 * from their logical bus-devfn. Examples include device quirks where the
6537 * device simply uses the wrong devfn, as well as non-transparent bridges
6538 * where the alias may be a proxy for devices in another domain.
6539 *
6540 * IOMMU group creation is performed during device discovery or addition,
6541 * prior to any potential DMA mapping and therefore prior to driver probing
6542 * (especially for userspace assigned devices where IOMMU group definition
6543 * cannot be left as a userspace activity). DMA aliases should therefore
6544 * be configured via quirks, such as the PCI fixup header quirk.
6545 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6546 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6547 unsigned int nr_devfns)
6548 {
6549 int devfn_to;
6550
6551 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6552 devfn_to = devfn_from + nr_devfns - 1;
6553
6554 if (!dev->dma_alias_mask)
6555 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6556 if (!dev->dma_alias_mask) {
6557 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6558 return;
6559 }
6560
6561 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6562
6563 if (nr_devfns == 1)
6564 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6565 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6566 else if (nr_devfns > 1)
6567 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6568 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6569 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6570 }
6571
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6572 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6573 {
6574 return (dev1->dma_alias_mask &&
6575 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6576 (dev2->dma_alias_mask &&
6577 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6578 pci_real_dma_dev(dev1) == dev2 ||
6579 pci_real_dma_dev(dev2) == dev1;
6580 }
6581
pci_device_is_present(struct pci_dev * pdev)6582 bool pci_device_is_present(struct pci_dev *pdev)
6583 {
6584 u32 v;
6585
6586 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6587 pdev = pci_physfn(pdev);
6588 if (pci_dev_is_disconnected(pdev))
6589 return false;
6590 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6591 }
6592 EXPORT_SYMBOL_GPL(pci_device_is_present);
6593
pci_ignore_hotplug(struct pci_dev * dev)6594 void pci_ignore_hotplug(struct pci_dev *dev)
6595 {
6596 struct pci_dev *bridge = dev->bus->self;
6597
6598 dev->ignore_hotplug = 1;
6599 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6600 if (bridge)
6601 bridge->ignore_hotplug = 1;
6602 }
6603 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6604
6605 /**
6606 * pci_real_dma_dev - Get PCI DMA device for PCI device
6607 * @dev: the PCI device that may have a PCI DMA alias
6608 *
6609 * Permits the platform to provide architecture-specific functionality to
6610 * devices needing to alias DMA to another PCI device on another PCI bus. If
6611 * the PCI device is on the same bus, it is recommended to use
6612 * pci_add_dma_alias(). This is the default implementation. Architecture
6613 * implementations can override this.
6614 */
pci_real_dma_dev(struct pci_dev * dev)6615 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6616 {
6617 return dev;
6618 }
6619
pcibios_default_alignment(void)6620 resource_size_t __weak pcibios_default_alignment(void)
6621 {
6622 return 0;
6623 }
6624
6625 /*
6626 * Arches that don't want to expose struct resource to userland as-is in
6627 * sysfs and /proc can implement their own pci_resource_to_user().
6628 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6629 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6630 const struct resource *rsrc,
6631 resource_size_t *start, resource_size_t *end)
6632 {
6633 *start = rsrc->start;
6634 *end = rsrc->end;
6635 }
6636
6637 static char *resource_alignment_param;
6638 static DEFINE_SPINLOCK(resource_alignment_lock);
6639
6640 /**
6641 * pci_specified_resource_alignment - get resource alignment specified by user.
6642 * @dev: the PCI device to get
6643 * @resize: whether or not to change resources' size when reassigning alignment
6644 *
6645 * RETURNS: Resource alignment if it is specified.
6646 * Zero if it is not specified.
6647 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6648 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6649 bool *resize)
6650 {
6651 int align_order, count;
6652 resource_size_t align = pcibios_default_alignment();
6653 const char *p;
6654 int ret;
6655
6656 spin_lock(&resource_alignment_lock);
6657 p = resource_alignment_param;
6658 if (!p || !*p)
6659 goto out;
6660 if (pci_has_flag(PCI_PROBE_ONLY)) {
6661 align = 0;
6662 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6663 goto out;
6664 }
6665
6666 while (*p) {
6667 count = 0;
6668 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6669 p[count] == '@') {
6670 p += count + 1;
6671 if (align_order > 63) {
6672 pr_err("PCI: Invalid requested alignment (order %d)\n",
6673 align_order);
6674 align_order = PAGE_SHIFT;
6675 }
6676 } else {
6677 align_order = PAGE_SHIFT;
6678 }
6679
6680 ret = pci_dev_str_match(dev, p, &p);
6681 if (ret == 1) {
6682 *resize = true;
6683 align = 1ULL << align_order;
6684 break;
6685 } else if (ret < 0) {
6686 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6687 p);
6688 break;
6689 }
6690
6691 if (*p != ';' && *p != ',') {
6692 /* End of param or invalid format */
6693 break;
6694 }
6695 p++;
6696 }
6697 out:
6698 spin_unlock(&resource_alignment_lock);
6699 return align;
6700 }
6701
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6702 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6703 resource_size_t align, bool resize)
6704 {
6705 struct resource *r = &dev->resource[bar];
6706 resource_size_t size;
6707
6708 if (!(r->flags & IORESOURCE_MEM))
6709 return;
6710
6711 if (r->flags & IORESOURCE_PCI_FIXED) {
6712 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6713 bar, r, (unsigned long long)align);
6714 return;
6715 }
6716
6717 size = resource_size(r);
6718 if (size >= align)
6719 return;
6720
6721 /*
6722 * Increase the alignment of the resource. There are two ways we
6723 * can do this:
6724 *
6725 * 1) Increase the size of the resource. BARs are aligned on their
6726 * size, so when we reallocate space for this resource, we'll
6727 * allocate it with the larger alignment. This also prevents
6728 * assignment of any other BARs inside the alignment region, so
6729 * if we're requesting page alignment, this means no other BARs
6730 * will share the page.
6731 *
6732 * The disadvantage is that this makes the resource larger than
6733 * the hardware BAR, which may break drivers that compute things
6734 * based on the resource size, e.g., to find registers at a
6735 * fixed offset before the end of the BAR.
6736 *
6737 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6738 * set r->start to the desired alignment. By itself this
6739 * doesn't prevent other BARs being put inside the alignment
6740 * region, but if we realign *every* resource of every device in
6741 * the system, none of them will share an alignment region.
6742 *
6743 * When the user has requested alignment for only some devices via
6744 * the "pci=resource_alignment" argument, "resize" is true and we
6745 * use the first method. Otherwise we assume we're aligning all
6746 * devices and we use the second.
6747 */
6748
6749 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6750 bar, r, (unsigned long long)align);
6751
6752 if (resize) {
6753 r->start = 0;
6754 r->end = align - 1;
6755 } else {
6756 r->flags &= ~IORESOURCE_SIZEALIGN;
6757 r->flags |= IORESOURCE_STARTALIGN;
6758 r->start = align;
6759 r->end = r->start + size - 1;
6760 }
6761 r->flags |= IORESOURCE_UNSET;
6762 }
6763
6764 /*
6765 * This function disables memory decoding and releases memory resources
6766 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6767 * It also rounds up size to specified alignment.
6768 * Later on, the kernel will assign page-aligned memory resource back
6769 * to the device.
6770 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6771 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6772 {
6773 int i;
6774 struct resource *r;
6775 resource_size_t align;
6776 u16 command;
6777 bool resize = false;
6778
6779 /*
6780 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6781 * 3.4.1.11. Their resources are allocated from the space
6782 * described by the VF BARx register in the PF's SR-IOV capability.
6783 * We can't influence their alignment here.
6784 */
6785 if (dev->is_virtfn)
6786 return;
6787
6788 /* check if specified PCI is target device to reassign */
6789 align = pci_specified_resource_alignment(dev, &resize);
6790 if (!align)
6791 return;
6792
6793 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6794 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6795 pci_warn(dev, "Can't reassign resources to host bridge\n");
6796 return;
6797 }
6798
6799 pci_read_config_word(dev, PCI_COMMAND, &command);
6800 command &= ~PCI_COMMAND_MEMORY;
6801 pci_write_config_word(dev, PCI_COMMAND, command);
6802
6803 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6804 pci_request_resource_alignment(dev, i, align, resize);
6805
6806 /*
6807 * Need to disable bridge's resource window,
6808 * to enable the kernel to reassign new resource
6809 * window later on.
6810 */
6811 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6812 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6813 r = &dev->resource[i];
6814 if (!(r->flags & IORESOURCE_MEM))
6815 continue;
6816 r->flags |= IORESOURCE_UNSET;
6817 r->end = resource_size(r) - 1;
6818 r->start = 0;
6819 }
6820 pci_disable_bridge_window(dev);
6821 }
6822 }
6823
resource_alignment_show(const struct bus_type * bus,char * buf)6824 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6825 {
6826 size_t count = 0;
6827
6828 spin_lock(&resource_alignment_lock);
6829 if (resource_alignment_param)
6830 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6831 spin_unlock(&resource_alignment_lock);
6832
6833 return count;
6834 }
6835
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6836 static ssize_t resource_alignment_store(const struct bus_type *bus,
6837 const char *buf, size_t count)
6838 {
6839 char *param, *old, *end;
6840
6841 if (count >= (PAGE_SIZE - 1))
6842 return -EINVAL;
6843
6844 param = kstrndup(buf, count, GFP_KERNEL);
6845 if (!param)
6846 return -ENOMEM;
6847
6848 end = strchr(param, '\n');
6849 if (end)
6850 *end = '\0';
6851
6852 spin_lock(&resource_alignment_lock);
6853 old = resource_alignment_param;
6854 if (strlen(param)) {
6855 resource_alignment_param = param;
6856 } else {
6857 kfree(param);
6858 resource_alignment_param = NULL;
6859 }
6860 spin_unlock(&resource_alignment_lock);
6861
6862 kfree(old);
6863
6864 return count;
6865 }
6866
6867 static BUS_ATTR_RW(resource_alignment);
6868
pci_resource_alignment_sysfs_init(void)6869 static int __init pci_resource_alignment_sysfs_init(void)
6870 {
6871 return bus_create_file(&pci_bus_type,
6872 &bus_attr_resource_alignment);
6873 }
6874 late_initcall(pci_resource_alignment_sysfs_init);
6875
pci_no_domains(void)6876 static void pci_no_domains(void)
6877 {
6878 #ifdef CONFIG_PCI_DOMAINS
6879 pci_domains_supported = 0;
6880 #endif
6881 }
6882
6883 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6884 static DEFINE_IDA(pci_domain_nr_static_ida);
6885 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6886
of_pci_reserve_static_domain_nr(void)6887 static void of_pci_reserve_static_domain_nr(void)
6888 {
6889 struct device_node *np;
6890 int domain_nr;
6891
6892 for_each_node_by_type(np, "pci") {
6893 domain_nr = of_get_pci_domain_nr(np);
6894 if (domain_nr < 0)
6895 continue;
6896 /*
6897 * Permanently allocate domain_nr in dynamic_ida
6898 * to prevent it from dynamic allocation.
6899 */
6900 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6901 domain_nr, domain_nr, GFP_KERNEL);
6902 }
6903 }
6904
of_pci_bus_find_domain_nr(struct device * parent)6905 static int of_pci_bus_find_domain_nr(struct device *parent)
6906 {
6907 static bool static_domains_reserved = false;
6908 int domain_nr;
6909
6910 /* On the first call scan device tree for static allocations. */
6911 if (!static_domains_reserved) {
6912 of_pci_reserve_static_domain_nr();
6913 static_domains_reserved = true;
6914 }
6915
6916 if (parent) {
6917 /*
6918 * If domain is in DT, allocate it in static IDA. This
6919 * prevents duplicate static allocations in case of errors
6920 * in DT.
6921 */
6922 domain_nr = of_get_pci_domain_nr(parent->of_node);
6923 if (domain_nr >= 0)
6924 return ida_alloc_range(&pci_domain_nr_static_ida,
6925 domain_nr, domain_nr,
6926 GFP_KERNEL);
6927 }
6928
6929 /*
6930 * If domain was not specified in DT, choose a free ID from dynamic
6931 * allocations. All domain numbers from DT are permanently in
6932 * dynamic allocations to prevent assigning them to other DT nodes
6933 * without static domain.
6934 */
6935 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6936 }
6937
of_pci_bus_release_domain_nr(struct pci_bus * bus,struct device * parent)6938 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6939 {
6940 if (bus->domain_nr < 0)
6941 return;
6942
6943 /* Release domain from IDA where it was allocated. */
6944 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6945 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6946 else
6947 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6948 }
6949
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6950 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6951 {
6952 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6953 acpi_pci_bus_find_domain_nr(bus);
6954 }
6955
pci_bus_release_domain_nr(struct pci_bus * bus,struct device * parent)6956 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6957 {
6958 if (!acpi_disabled)
6959 return;
6960 of_pci_bus_release_domain_nr(bus, parent);
6961 }
6962 #endif
6963
6964 /**
6965 * pci_ext_cfg_avail - can we access extended PCI config space?
6966 *
6967 * Returns 1 if we can access PCI extended config space (offsets
6968 * greater than 0xff). This is the default implementation. Architecture
6969 * implementations can override this.
6970 */
pci_ext_cfg_avail(void)6971 int __weak pci_ext_cfg_avail(void)
6972 {
6973 return 1;
6974 }
6975
pci_fixup_cardbus(struct pci_bus * bus)6976 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6977 {
6978 }
6979 EXPORT_SYMBOL(pci_fixup_cardbus);
6980
pci_setup(char * str)6981 static int __init pci_setup(char *str)
6982 {
6983 while (str) {
6984 char *k = strchr(str, ',');
6985 if (k)
6986 *k++ = 0;
6987 if (*str && (str = pcibios_setup(str)) && *str) {
6988 if (!strcmp(str, "nomsi")) {
6989 pci_no_msi();
6990 } else if (!strncmp(str, "noats", 5)) {
6991 pr_info("PCIe: ATS is disabled\n");
6992 pcie_ats_disabled = true;
6993 } else if (!strcmp(str, "noaer")) {
6994 pci_no_aer();
6995 } else if (!strcmp(str, "earlydump")) {
6996 pci_early_dump = true;
6997 } else if (!strncmp(str, "realloc=", 8)) {
6998 pci_realloc_get_opt(str + 8);
6999 } else if (!strncmp(str, "realloc", 7)) {
7000 pci_realloc_get_opt("on");
7001 } else if (!strcmp(str, "nodomains")) {
7002 pci_no_domains();
7003 } else if (!strncmp(str, "noari", 5)) {
7004 pcie_ari_disabled = true;
7005 } else if (!strncmp(str, "cbiosize=", 9)) {
7006 pci_cardbus_io_size = memparse(str + 9, &str);
7007 } else if (!strncmp(str, "cbmemsize=", 10)) {
7008 pci_cardbus_mem_size = memparse(str + 10, &str);
7009 } else if (!strncmp(str, "resource_alignment=", 19)) {
7010 resource_alignment_param = str + 19;
7011 } else if (!strncmp(str, "ecrc=", 5)) {
7012 pcie_ecrc_get_policy(str + 5);
7013 } else if (!strncmp(str, "hpiosize=", 9)) {
7014 pci_hotplug_io_size = memparse(str + 9, &str);
7015 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7016 pci_hotplug_mmio_size = memparse(str + 11, &str);
7017 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7018 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7019 } else if (!strncmp(str, "hpmemsize=", 10)) {
7020 pci_hotplug_mmio_size = memparse(str + 10, &str);
7021 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7022 } else if (!strncmp(str, "hpbussize=", 10)) {
7023 pci_hotplug_bus_size =
7024 simple_strtoul(str + 10, &str, 0);
7025 if (pci_hotplug_bus_size > 0xff)
7026 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7027 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7028 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7029 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7030 pcie_bus_config = PCIE_BUS_SAFE;
7031 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7032 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7033 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7034 pcie_bus_config = PCIE_BUS_PEER2PEER;
7035 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7036 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7037 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7038 disable_acs_redir_param = str + 18;
7039 } else {
7040 pr_err("PCI: Unknown option `%s'\n", str);
7041 }
7042 }
7043 str = k;
7044 }
7045 return 0;
7046 }
7047 early_param("pci", pci_setup);
7048
7049 /*
7050 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7051 * in pci_setup(), above, to point to data in the __initdata section which
7052 * will be freed after the init sequence is complete. We can't allocate memory
7053 * in pci_setup() because some architectures do not have any memory allocation
7054 * service available during an early_param() call. So we allocate memory and
7055 * copy the variable here before the init section is freed.
7056 *
7057 */
pci_realloc_setup_params(void)7058 static int __init pci_realloc_setup_params(void)
7059 {
7060 resource_alignment_param = kstrdup(resource_alignment_param,
7061 GFP_KERNEL);
7062 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7063
7064 return 0;
7065 }
7066 pure_initcall(pci_realloc_setup_params);
7067