1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 
43 #include <acpi/cppc_acpi.h>
44 
45 struct cppc_pcc_data {
46 	struct pcc_mbox_chan *pcc_channel;
47 	void __iomem *pcc_comm_addr;
48 	bool pcc_channel_acquired;
49 	unsigned int deadline_us;
50 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51 
52 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
53 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
54 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
55 
56 	/*
57 	 * Lock to provide controlled access to the PCC channel.
58 	 *
59 	 * For performance critical usecases(currently cppc_set_perf)
60 	 *	We need to take read_lock and check if channel belongs to OSPM
61 	 * before reading or writing to PCC subspace
62 	 *	We need to take write_lock before transferring the channel
63 	 * ownership to the platform via a Doorbell
64 	 *	This allows us to batch a number of CPPC requests if they happen
65 	 * to originate in about the same time
66 	 *
67 	 * For non-performance critical usecases(init)
68 	 *	Take write_lock for all purposes which gives exclusive access
69 	 */
70 	struct rw_semaphore pcc_lock;
71 
72 	/* Wait queue for CPUs whose requests were batched */
73 	wait_queue_head_t pcc_write_wait_q;
74 	ktime_t last_cmd_cmpl_time;
75 	ktime_t last_mpar_reset;
76 	int mpar_count;
77 	int refcount;
78 };
79 
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84 
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93 
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 						0x8 + (offs))
97 
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
100 				(cpc)->cpc_entry.reg.space_id ==	\
101 				ACPI_ADR_SPACE_PLATFORM_COMM)
102 
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
105 				(cpc)->cpc_entry.reg.space_id ==	\
106 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
110 				(cpc)->cpc_entry.reg.space_id ==	\
111 				ACPI_ADR_SPACE_SYSTEM_IO)
112 
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 				(reg)->address == 0 &&			\
116 				(reg)->bit_width == 0 &&		\
117 				(reg)->bit_offset == 0 &&		\
118 				(reg)->access_width == 0)
119 
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
122 				!!(cpc)->cpc_entry.int_value :		\
123 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
124 /*
125  * Arbitrary Retries in case the remote processor is slow to respond
126  * to PCC commands. Keeping it high enough to cover emulators where
127  * the processors run painfully slow.
128  */
129 #define NUM_RETRIES 500ULL
130 
131 #define OVER_16BTS_MASK ~0xFFFFULL
132 
133 #define define_one_cppc_ro(_name)		\
134 static struct kobj_attribute _name =		\
135 __ATTR(_name, 0444, show_##_name, NULL)
136 
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138 
139 #define show_cppc_data(access_fn, struct_name, member_name)		\
140 	static ssize_t show_##member_name(struct kobject *kobj,		\
141 				struct kobj_attribute *attr, char *buf)	\
142 	{								\
143 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
144 		struct struct_name st_name = {0};			\
145 		int ret;						\
146 									\
147 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
148 		if (ret)						\
149 			return ret;					\
150 									\
151 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
152 				(u64)st_name.member_name);		\
153 	}								\
154 	define_one_cppc_ro(member_name)
155 
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162 
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165 
show_feedback_ctrs(struct kobject * kobj,struct kobj_attribute * attr,char * buf)166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 		struct kobj_attribute *attr, char *buf)
168 {
169 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 	int ret;
172 
173 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 	if (ret)
175 		return ret;
176 
177 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178 			fb_ctrs.reference, fb_ctrs.delivered);
179 }
180 define_one_cppc_ro(feedback_ctrs);
181 
182 static struct attribute *cppc_attrs[] = {
183 	&feedback_ctrs.attr,
184 	&reference_perf.attr,
185 	&wraparound_time.attr,
186 	&highest_perf.attr,
187 	&lowest_perf.attr,
188 	&lowest_nonlinear_perf.attr,
189 	&nominal_perf.attr,
190 	&nominal_freq.attr,
191 	&lowest_freq.attr,
192 	NULL
193 };
194 ATTRIBUTE_GROUPS(cppc);
195 
196 static struct kobj_type cppc_ktype = {
197 	.sysfs_ops = &kobj_sysfs_ops,
198 	.default_groups = cppc_groups,
199 };
200 
check_pcc_chan(int pcc_ss_id,bool chk_err_bit)201 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
202 {
203 	int ret, status;
204 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206 		pcc_ss_data->pcc_comm_addr;
207 
208 	if (!pcc_ss_data->platform_owns_pcc)
209 		return 0;
210 
211 	/*
212 	 * Poll PCC status register every 3us(delay_us) for maximum of
213 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214 	 */
215 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216 					status & PCC_CMD_COMPLETE_MASK, 3,
217 					pcc_ss_data->deadline_us);
218 
219 	if (likely(!ret)) {
220 		pcc_ss_data->platform_owns_pcc = false;
221 		if (chk_err_bit && (status & PCC_ERROR_MASK))
222 			ret = -EIO;
223 	}
224 
225 	if (unlikely(ret))
226 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
227 		       pcc_ss_id, ret);
228 
229 	return ret;
230 }
231 
232 /*
233  * This function transfers the ownership of the PCC to the platform
234  * So it must be called while holding write_lock(pcc_lock)
235  */
send_pcc_cmd(int pcc_ss_id,u16 cmd)236 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
237 {
238 	int ret = -EIO, i;
239 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241 		pcc_ss_data->pcc_comm_addr;
242 	unsigned int time_delta;
243 
244 	/*
245 	 * For CMD_WRITE we know for a fact the caller should have checked
246 	 * the channel before writing to PCC space
247 	 */
248 	if (cmd == CMD_READ) {
249 		/*
250 		 * If there are pending cpc_writes, then we stole the channel
251 		 * before write completion, so first send a WRITE command to
252 		 * platform
253 		 */
254 		if (pcc_ss_data->pending_pcc_write_cmd)
255 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
256 
257 		ret = check_pcc_chan(pcc_ss_id, false);
258 		if (ret)
259 			goto end;
260 	} else /* CMD_WRITE */
261 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
262 
263 	/*
264 	 * Handle the Minimum Request Turnaround Time(MRTT)
265 	 * "The minimum amount of time that OSPM must wait after the completion
266 	 * of a command before issuing the next command, in microseconds"
267 	 */
268 	if (pcc_ss_data->pcc_mrtt) {
269 		time_delta = ktime_us_delta(ktime_get(),
270 					    pcc_ss_data->last_cmd_cmpl_time);
271 		if (pcc_ss_data->pcc_mrtt > time_delta)
272 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
273 	}
274 
275 	/*
276 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277 	 * "The maximum number of periodic requests that the subspace channel can
278 	 * support, reported in commands per minute. 0 indicates no limitation."
279 	 *
280 	 * This parameter should be ideally zero or large enough so that it can
281 	 * handle maximum number of requests that all the cores in the system can
282 	 * collectively generate. If it is not, we will follow the spec and just
283 	 * not send the request to the platform after hitting the MPAR limit in
284 	 * any 60s window
285 	 */
286 	if (pcc_ss_data->pcc_mpar) {
287 		if (pcc_ss_data->mpar_count == 0) {
288 			time_delta = ktime_ms_delta(ktime_get(),
289 						    pcc_ss_data->last_mpar_reset);
290 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292 					 pcc_ss_id);
293 				ret = -EIO;
294 				goto end;
295 			}
296 			pcc_ss_data->last_mpar_reset = ktime_get();
297 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
298 		}
299 		pcc_ss_data->mpar_count--;
300 	}
301 
302 	/* Write to the shared comm region. */
303 	writew_relaxed(cmd, &generic_comm_base->command);
304 
305 	/* Flip CMD COMPLETE bit */
306 	writew_relaxed(0, &generic_comm_base->status);
307 
308 	pcc_ss_data->platform_owns_pcc = true;
309 
310 	/* Ring doorbell */
311 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
312 	if (ret < 0) {
313 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314 		       pcc_ss_id, cmd, ret);
315 		goto end;
316 	}
317 
318 	/* wait for completion and check for PCC error bit */
319 	ret = check_pcc_chan(pcc_ss_id, true);
320 
321 	if (pcc_ss_data->pcc_mrtt)
322 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
323 
324 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
326 	else
327 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
328 
329 end:
330 	if (cmd == CMD_WRITE) {
331 		if (unlikely(ret)) {
332 			for_each_possible_cpu(i) {
333 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
334 
335 				if (!desc)
336 					continue;
337 
338 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339 					desc->write_cmd_status = ret;
340 			}
341 		}
342 		pcc_ss_data->pcc_write_cnt++;
343 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
344 	}
345 
346 	return ret;
347 }
348 
cppc_chan_tx_done(struct mbox_client * cl,void * msg,int ret)349 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
350 {
351 	if (ret < 0)
352 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353 				*(u16 *)msg, ret);
354 	else
355 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
356 				*(u16 *)msg, ret);
357 }
358 
359 static struct mbox_client cppc_mbox_cl = {
360 	.tx_done = cppc_chan_tx_done,
361 	.knows_txdone = true,
362 };
363 
acpi_get_psd(struct cpc_desc * cpc_ptr,acpi_handle handle)364 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
365 {
366 	int result = -EFAULT;
367 	acpi_status status = AE_OK;
368 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370 	struct acpi_buffer state = {0, NULL};
371 	union acpi_object  *psd = NULL;
372 	struct acpi_psd_package *pdomain;
373 
374 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
375 					    &buffer, ACPI_TYPE_PACKAGE);
376 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
377 		return 0;
378 	if (ACPI_FAILURE(status))
379 		return -ENODEV;
380 
381 	psd = buffer.pointer;
382 	if (!psd || psd->package.count != 1) {
383 		pr_debug("Invalid _PSD data\n");
384 		goto end;
385 	}
386 
387 	pdomain = &(cpc_ptr->domain_info);
388 
389 	state.length = sizeof(struct acpi_psd_package);
390 	state.pointer = pdomain;
391 
392 	status = acpi_extract_package(&(psd->package.elements[0]),
393 		&format, &state);
394 	if (ACPI_FAILURE(status)) {
395 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
396 		goto end;
397 	}
398 
399 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
401 		goto end;
402 	}
403 
404 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
406 		goto end;
407 	}
408 
409 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
413 		goto end;
414 	}
415 
416 	result = 0;
417 end:
418 	kfree(buffer.pointer);
419 	return result;
420 }
421 
acpi_cpc_valid(void)422 bool acpi_cpc_valid(void)
423 {
424 	struct cpc_desc *cpc_ptr;
425 	int cpu;
426 
427 	if (acpi_disabled)
428 		return false;
429 
430 	for_each_present_cpu(cpu) {
431 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
432 		if (!cpc_ptr)
433 			return false;
434 	}
435 
436 	return true;
437 }
438 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
439 
cppc_allow_fast_switch(void)440 bool cppc_allow_fast_switch(void)
441 {
442 	struct cpc_register_resource *desired_reg;
443 	struct cpc_desc *cpc_ptr;
444 	int cpu;
445 
446 	for_each_possible_cpu(cpu) {
447 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
448 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
449 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
450 				!CPC_IN_SYSTEM_IO(desired_reg))
451 			return false;
452 	}
453 
454 	return true;
455 }
456 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
457 
458 /**
459  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
460  * @cpu: Find all CPUs that share a domain with cpu.
461  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
462  *
463  *	Return: 0 for success or negative value for err.
464  */
acpi_get_psd_map(unsigned int cpu,struct cppc_cpudata * cpu_data)465 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
466 {
467 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
468 	struct acpi_psd_package *match_pdomain;
469 	struct acpi_psd_package *pdomain;
470 	int count_target, i;
471 
472 	/*
473 	 * Now that we have _PSD data from all CPUs, let's setup P-state
474 	 * domain info.
475 	 */
476 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
477 	if (!cpc_ptr)
478 		return -EFAULT;
479 
480 	pdomain = &(cpc_ptr->domain_info);
481 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
482 	if (pdomain->num_processors <= 1)
483 		return 0;
484 
485 	/* Validate the Domain info */
486 	count_target = pdomain->num_processors;
487 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
488 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
489 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
490 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
491 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
492 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
493 
494 	for_each_possible_cpu(i) {
495 		if (i == cpu)
496 			continue;
497 
498 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
499 		if (!match_cpc_ptr)
500 			goto err_fault;
501 
502 		match_pdomain = &(match_cpc_ptr->domain_info);
503 		if (match_pdomain->domain != pdomain->domain)
504 			continue;
505 
506 		/* Here i and cpu are in the same domain */
507 		if (match_pdomain->num_processors != count_target)
508 			goto err_fault;
509 
510 		if (pdomain->coord_type != match_pdomain->coord_type)
511 			goto err_fault;
512 
513 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
514 	}
515 
516 	return 0;
517 
518 err_fault:
519 	/* Assume no coordination on any error parsing domain info */
520 	cpumask_clear(cpu_data->shared_cpu_map);
521 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
522 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
523 
524 	return -EFAULT;
525 }
526 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
527 
register_pcc_channel(int pcc_ss_idx)528 static int register_pcc_channel(int pcc_ss_idx)
529 {
530 	struct pcc_mbox_chan *pcc_chan;
531 	u64 usecs_lat;
532 
533 	if (pcc_ss_idx >= 0) {
534 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
535 
536 		if (IS_ERR(pcc_chan)) {
537 			pr_err("Failed to find PCC channel for subspace %d\n",
538 			       pcc_ss_idx);
539 			return -ENODEV;
540 		}
541 
542 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
543 		/*
544 		 * cppc_ss->latency is just a Nominal value. In reality
545 		 * the remote processor could be much slower to reply.
546 		 * So add an arbitrary amount of wait on top of Nominal.
547 		 */
548 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
549 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
551 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
552 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
553 
554 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
555 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
556 					pcc_chan->shmem_size);
557 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
558 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
559 			       pcc_ss_idx);
560 			return -ENOMEM;
561 		}
562 
563 		/* Set flag so that we don't come here for each CPU. */
564 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
565 	}
566 
567 	return 0;
568 }
569 
570 /**
571  * cpc_ffh_supported() - check if FFH reading supported
572  *
573  * Check if the architecture has support for functional fixed hardware
574  * read/write capability.
575  *
576  * Return: true for supported, false for not supported
577  */
cpc_ffh_supported(void)578 bool __weak cpc_ffh_supported(void)
579 {
580 	return false;
581 }
582 
583 /**
584  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
585  *
586  * Check if the architectural support for CPPC is present even
587  * if the _OSC hasn't prescribed it
588  *
589  * Return: true for supported, false for not supported
590  */
cpc_supported_by_cpu(void)591 bool __weak cpc_supported_by_cpu(void)
592 {
593 	return false;
594 }
595 
596 /**
597  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
598  *
599  * Check and allocate the cppc_pcc_data memory.
600  * In some processor configurations it is possible that same subspace
601  * is shared between multiple CPUs. This is seen especially in CPUs
602  * with hardware multi-threading support.
603  *
604  * Return: 0 for success, errno for failure
605  */
pcc_data_alloc(int pcc_ss_id)606 static int pcc_data_alloc(int pcc_ss_id)
607 {
608 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
609 		return -EINVAL;
610 
611 	if (pcc_data[pcc_ss_id]) {
612 		pcc_data[pcc_ss_id]->refcount++;
613 	} else {
614 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
615 					      GFP_KERNEL);
616 		if (!pcc_data[pcc_ss_id])
617 			return -ENOMEM;
618 		pcc_data[pcc_ss_id]->refcount++;
619 	}
620 
621 	return 0;
622 }
623 
624 /*
625  * An example CPC table looks like the following.
626  *
627  *  Name (_CPC, Package() {
628  *      17,							// NumEntries
629  *      1,							// Revision
630  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
631  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
632  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
633  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
634  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
635  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
636  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
637  *      ...
638  *      ...
639  *      ...
640  *  }
641  * Each Register() encodes how to access that specific register.
642  * e.g. a sample PCC entry has the following encoding:
643  *
644  *  Register (
645  *      PCC,	// AddressSpaceKeyword
646  *      8,	// RegisterBitWidth
647  *      8,	// RegisterBitOffset
648  *      0x30,	// RegisterAddress
649  *      9,	// AccessSize (subspace ID)
650  *  )
651  */
652 
653 #ifndef arch_init_invariance_cppc
arch_init_invariance_cppc(void)654 static inline void arch_init_invariance_cppc(void) { }
655 #endif
656 
657 /**
658  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
659  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
660  *
661  *	Return: 0 for success or negative value for err.
662  */
acpi_cppc_processor_probe(struct acpi_processor * pr)663 int acpi_cppc_processor_probe(struct acpi_processor *pr)
664 {
665 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
666 	union acpi_object *out_obj, *cpc_obj;
667 	struct cpc_desc *cpc_ptr;
668 	struct cpc_reg *gas_t;
669 	struct device *cpu_dev;
670 	acpi_handle handle = pr->handle;
671 	unsigned int num_ent, i, cpc_rev;
672 	int pcc_subspace_id = -1;
673 	acpi_status status;
674 	int ret = -ENODATA;
675 
676 	if (!osc_sb_cppc2_support_acked) {
677 		pr_debug("CPPC v2 _OSC not acked\n");
678 		if (!cpc_supported_by_cpu())
679 			return -ENODEV;
680 	}
681 
682 	/* Parse the ACPI _CPC table for this CPU. */
683 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
684 			ACPI_TYPE_PACKAGE);
685 	if (ACPI_FAILURE(status)) {
686 		ret = -ENODEV;
687 		goto out_buf_free;
688 	}
689 
690 	out_obj = (union acpi_object *) output.pointer;
691 
692 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
693 	if (!cpc_ptr) {
694 		ret = -ENOMEM;
695 		goto out_buf_free;
696 	}
697 
698 	/* First entry is NumEntries. */
699 	cpc_obj = &out_obj->package.elements[0];
700 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
701 		num_ent = cpc_obj->integer.value;
702 		if (num_ent <= 1) {
703 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
704 				 num_ent, pr->id);
705 			goto out_free;
706 		}
707 	} else {
708 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
709 			 cpc_obj->type, pr->id);
710 		goto out_free;
711 	}
712 
713 	/* Second entry should be revision. */
714 	cpc_obj = &out_obj->package.elements[1];
715 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
716 		cpc_rev = cpc_obj->integer.value;
717 	} else {
718 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
719 			 cpc_obj->type, pr->id);
720 		goto out_free;
721 	}
722 
723 	if (cpc_rev < CPPC_V2_REV) {
724 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
725 			 pr->id);
726 		goto out_free;
727 	}
728 
729 	/*
730 	 * Disregard _CPC if the number of entries in the return pachage is not
731 	 * as expected, but support future revisions being proper supersets of
732 	 * the v3 and only causing more entries to be returned by _CPC.
733 	 */
734 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
735 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
736 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
737 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
738 			 num_ent, pr->id);
739 		goto out_free;
740 	}
741 	if (cpc_rev > CPPC_V3_REV) {
742 		num_ent = CPPC_V3_NUM_ENT;
743 		cpc_rev = CPPC_V3_REV;
744 	}
745 
746 	cpc_ptr->num_entries = num_ent;
747 	cpc_ptr->version = cpc_rev;
748 
749 	/* Iterate through remaining entries in _CPC */
750 	for (i = 2; i < num_ent; i++) {
751 		cpc_obj = &out_obj->package.elements[i];
752 
753 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
754 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
755 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
756 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
757 			gas_t = (struct cpc_reg *)
758 				cpc_obj->buffer.pointer;
759 
760 			/*
761 			 * The PCC Subspace index is encoded inside
762 			 * the CPC table entries. The same PCC index
763 			 * will be used for all the PCC entries,
764 			 * so extract it only once.
765 			 */
766 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
767 				if (pcc_subspace_id < 0) {
768 					pcc_subspace_id = gas_t->access_width;
769 					if (pcc_data_alloc(pcc_subspace_id))
770 						goto out_free;
771 				} else if (pcc_subspace_id != gas_t->access_width) {
772 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
773 						 pr->id);
774 					goto out_free;
775 				}
776 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
777 				if (gas_t->address) {
778 					void __iomem *addr;
779 
780 					if (!osc_cpc_flexible_adr_space_confirmed) {
781 						pr_debug("Flexible address space capability not supported\n");
782 						if (!cpc_supported_by_cpu())
783 							goto out_free;
784 					}
785 
786 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
787 					if (!addr)
788 						goto out_free;
789 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
790 				}
791 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
792 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
793 					/*
794 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
795 					 * SystemIO doesn't implement 64-bit
796 					 * registers.
797 					 */
798 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
799 						 gas_t->access_width);
800 					goto out_free;
801 				}
802 				if (gas_t->address & OVER_16BTS_MASK) {
803 					/* SystemIO registers use 16-bit integer addresses */
804 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
805 						 gas_t->address);
806 					goto out_free;
807 				}
808 				if (!osc_cpc_flexible_adr_space_confirmed) {
809 					pr_debug("Flexible address space capability not supported\n");
810 					if (!cpc_supported_by_cpu())
811 						goto out_free;
812 				}
813 			} else {
814 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
815 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
816 					pr_debug("Unsupported register type (%d) in _CPC\n",
817 						 gas_t->space_id);
818 					goto out_free;
819 				}
820 			}
821 
822 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
823 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
824 		} else {
825 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
826 				 i, pr->id);
827 			goto out_free;
828 		}
829 	}
830 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
831 
832 	/*
833 	 * Initialize the remaining cpc_regs as unsupported.
834 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
835 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
836 	 */
837 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
838 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
839 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
840 	}
841 
842 
843 	/* Store CPU Logical ID */
844 	cpc_ptr->cpu_id = pr->id;
845 
846 	/* Parse PSD data for this CPU */
847 	ret = acpi_get_psd(cpc_ptr, handle);
848 	if (ret)
849 		goto out_free;
850 
851 	/* Register PCC channel once for all PCC subspace ID. */
852 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
853 		ret = register_pcc_channel(pcc_subspace_id);
854 		if (ret)
855 			goto out_free;
856 
857 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
858 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
859 	}
860 
861 	/* Everything looks okay */
862 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
863 
864 	/* Add per logical CPU nodes for reading its feedback counters. */
865 	cpu_dev = get_cpu_device(pr->id);
866 	if (!cpu_dev) {
867 		ret = -EINVAL;
868 		goto out_free;
869 	}
870 
871 	/* Plug PSD data into this CPU's CPC descriptor. */
872 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
873 
874 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
875 			"acpi_cppc");
876 	if (ret) {
877 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
878 		kobject_put(&cpc_ptr->kobj);
879 		goto out_free;
880 	}
881 
882 	arch_init_invariance_cppc();
883 
884 	kfree(output.pointer);
885 	return 0;
886 
887 out_free:
888 	/* Free all the mapped sys mem areas for this CPU */
889 	for (i = 2; i < cpc_ptr->num_entries; i++) {
890 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
891 
892 		if (addr)
893 			iounmap(addr);
894 	}
895 	kfree(cpc_ptr);
896 
897 out_buf_free:
898 	kfree(output.pointer);
899 	return ret;
900 }
901 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
902 
903 /**
904  * acpi_cppc_processor_exit - Cleanup CPC structs.
905  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
906  *
907  * Return: Void
908  */
acpi_cppc_processor_exit(struct acpi_processor * pr)909 void acpi_cppc_processor_exit(struct acpi_processor *pr)
910 {
911 	struct cpc_desc *cpc_ptr;
912 	unsigned int i;
913 	void __iomem *addr;
914 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
915 
916 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
917 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
918 			pcc_data[pcc_ss_id]->refcount--;
919 			if (!pcc_data[pcc_ss_id]->refcount) {
920 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
921 				kfree(pcc_data[pcc_ss_id]);
922 				pcc_data[pcc_ss_id] = NULL;
923 			}
924 		}
925 	}
926 
927 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
928 	if (!cpc_ptr)
929 		return;
930 
931 	/* Free all the mapped sys mem areas for this CPU */
932 	for (i = 2; i < cpc_ptr->num_entries; i++) {
933 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
934 		if (addr)
935 			iounmap(addr);
936 	}
937 
938 	kobject_put(&cpc_ptr->kobj);
939 	kfree(cpc_ptr);
940 }
941 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
942 
943 /**
944  * cpc_read_ffh() - Read FFH register
945  * @cpunum:	CPU number to read
946  * @reg:	cppc register information
947  * @val:	place holder for return value
948  *
949  * Read bit_width bits from a specified address and bit_offset
950  *
951  * Return: 0 for success and error code
952  */
cpc_read_ffh(int cpunum,struct cpc_reg * reg,u64 * val)953 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
954 {
955 	return -ENOTSUPP;
956 }
957 
958 /**
959  * cpc_write_ffh() - Write FFH register
960  * @cpunum:	CPU number to write
961  * @reg:	cppc register information
962  * @val:	value to write
963  *
964  * Write value of bit_width bits to a specified address and bit_offset
965  *
966  * Return: 0 for success and error code
967  */
cpc_write_ffh(int cpunum,struct cpc_reg * reg,u64 val)968 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
969 {
970 	return -ENOTSUPP;
971 }
972 
973 /*
974  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
975  * as fast as possible. We have already mapped the PCC subspace during init, so
976  * we can directly write to it.
977  */
978 
cpc_read(int cpu,struct cpc_register_resource * reg_res,u64 * val)979 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
980 {
981 	void __iomem *vaddr = NULL;
982 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
983 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
984 
985 	if (reg_res->type == ACPI_TYPE_INTEGER) {
986 		*val = reg_res->cpc_entry.int_value;
987 		return 0;
988 	}
989 
990 	*val = 0;
991 
992 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
993 		u32 width = 8 << (reg->access_width - 1);
994 		u32 val_u32;
995 		acpi_status status;
996 
997 		status = acpi_os_read_port((acpi_io_address)reg->address,
998 					   &val_u32, width);
999 		if (ACPI_FAILURE(status)) {
1000 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1001 				 reg->address);
1002 			return -EFAULT;
1003 		}
1004 
1005 		*val = val_u32;
1006 		return 0;
1007 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1008 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1009 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1010 		vaddr = reg_res->sys_mem_vaddr;
1011 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1012 		return cpc_read_ffh(cpu, reg, val);
1013 	else
1014 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1015 				val, reg->bit_width);
1016 
1017 	switch (reg->bit_width) {
1018 	case 8:
1019 		*val = readb_relaxed(vaddr);
1020 		break;
1021 	case 16:
1022 		*val = readw_relaxed(vaddr);
1023 		break;
1024 	case 32:
1025 		*val = readl_relaxed(vaddr);
1026 		break;
1027 	case 64:
1028 		*val = readq_relaxed(vaddr);
1029 		break;
1030 	default:
1031 		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1032 			 reg->bit_width, pcc_ss_id);
1033 		return -EFAULT;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
cpc_write(int cpu,struct cpc_register_resource * reg_res,u64 val)1039 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1040 {
1041 	int ret_val = 0;
1042 	void __iomem *vaddr = NULL;
1043 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1044 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1045 
1046 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1047 		u32 width = 8 << (reg->access_width - 1);
1048 		acpi_status status;
1049 
1050 		status = acpi_os_write_port((acpi_io_address)reg->address,
1051 					    (u32)val, width);
1052 		if (ACPI_FAILURE(status)) {
1053 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1054 				 reg->address);
1055 			return -EFAULT;
1056 		}
1057 
1058 		return 0;
1059 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1060 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1061 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1062 		vaddr = reg_res->sys_mem_vaddr;
1063 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1064 		return cpc_write_ffh(cpu, reg, val);
1065 	else
1066 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1067 				val, reg->bit_width);
1068 
1069 	switch (reg->bit_width) {
1070 	case 8:
1071 		writeb_relaxed(val, vaddr);
1072 		break;
1073 	case 16:
1074 		writew_relaxed(val, vaddr);
1075 		break;
1076 	case 32:
1077 		writel_relaxed(val, vaddr);
1078 		break;
1079 	case 64:
1080 		writeq_relaxed(val, vaddr);
1081 		break;
1082 	default:
1083 		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1084 			 reg->bit_width, pcc_ss_id);
1085 		ret_val = -EFAULT;
1086 		break;
1087 	}
1088 
1089 	return ret_val;
1090 }
1091 
cppc_get_perf(int cpunum,enum cppc_regs reg_idx,u64 * perf)1092 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1093 {
1094 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1095 	struct cpc_register_resource *reg;
1096 
1097 	if (!cpc_desc) {
1098 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1099 		return -ENODEV;
1100 	}
1101 
1102 	reg = &cpc_desc->cpc_regs[reg_idx];
1103 
1104 	if (CPC_IN_PCC(reg)) {
1105 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1106 		struct cppc_pcc_data *pcc_ss_data = NULL;
1107 		int ret = 0;
1108 
1109 		if (pcc_ss_id < 0)
1110 			return -EIO;
1111 
1112 		pcc_ss_data = pcc_data[pcc_ss_id];
1113 
1114 		down_write(&pcc_ss_data->pcc_lock);
1115 
1116 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1117 			cpc_read(cpunum, reg, perf);
1118 		else
1119 			ret = -EIO;
1120 
1121 		up_write(&pcc_ss_data->pcc_lock);
1122 
1123 		return ret;
1124 	}
1125 
1126 	cpc_read(cpunum, reg, perf);
1127 
1128 	return 0;
1129 }
1130 
1131 /**
1132  * cppc_get_desired_perf - Get the desired performance register value.
1133  * @cpunum: CPU from which to get desired performance.
1134  * @desired_perf: Return address.
1135  *
1136  * Return: 0 for success, -EIO otherwise.
1137  */
cppc_get_desired_perf(int cpunum,u64 * desired_perf)1138 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1139 {
1140 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1141 }
1142 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1143 
1144 /**
1145  * cppc_get_nominal_perf - Get the nominal performance register value.
1146  * @cpunum: CPU from which to get nominal performance.
1147  * @nominal_perf: Return address.
1148  *
1149  * Return: 0 for success, -EIO otherwise.
1150  */
cppc_get_nominal_perf(int cpunum,u64 * nominal_perf)1151 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1152 {
1153 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1154 }
1155 
1156 /**
1157  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1158  * @cpunum: CPU from which to get capabilities info.
1159  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1160  *
1161  * Return: 0 for success with perf_caps populated else -ERRNO.
1162  */
cppc_get_perf_caps(int cpunum,struct cppc_perf_caps * perf_caps)1163 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1164 {
1165 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1166 	struct cpc_register_resource *highest_reg, *lowest_reg,
1167 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1168 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1169 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1170 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1171 	struct cppc_pcc_data *pcc_ss_data = NULL;
1172 	int ret = 0, regs_in_pcc = 0;
1173 
1174 	if (!cpc_desc) {
1175 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1176 		return -ENODEV;
1177 	}
1178 
1179 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1180 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1181 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1182 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1183 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1184 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1185 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1186 
1187 	/* Are any of the regs PCC ?*/
1188 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1189 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1190 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1191 		if (pcc_ss_id < 0) {
1192 			pr_debug("Invalid pcc_ss_id\n");
1193 			return -ENODEV;
1194 		}
1195 		pcc_ss_data = pcc_data[pcc_ss_id];
1196 		regs_in_pcc = 1;
1197 		down_write(&pcc_ss_data->pcc_lock);
1198 		/* Ring doorbell once to update PCC subspace */
1199 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1200 			ret = -EIO;
1201 			goto out_err;
1202 		}
1203 	}
1204 
1205 	cpc_read(cpunum, highest_reg, &high);
1206 	perf_caps->highest_perf = high;
1207 
1208 	cpc_read(cpunum, lowest_reg, &low);
1209 	perf_caps->lowest_perf = low;
1210 
1211 	cpc_read(cpunum, nominal_reg, &nom);
1212 	perf_caps->nominal_perf = nom;
1213 
1214 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1215 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1216 		perf_caps->guaranteed_perf = 0;
1217 	} else {
1218 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1219 		perf_caps->guaranteed_perf = guaranteed;
1220 	}
1221 
1222 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1223 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1224 
1225 	if (!high || !low || !nom || !min_nonlinear)
1226 		ret = -EFAULT;
1227 
1228 	/* Read optional lowest and nominal frequencies if present */
1229 	if (CPC_SUPPORTED(low_freq_reg))
1230 		cpc_read(cpunum, low_freq_reg, &low_f);
1231 
1232 	if (CPC_SUPPORTED(nom_freq_reg))
1233 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1234 
1235 	perf_caps->lowest_freq = low_f;
1236 	perf_caps->nominal_freq = nom_f;
1237 
1238 
1239 out_err:
1240 	if (regs_in_pcc)
1241 		up_write(&pcc_ss_data->pcc_lock);
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1245 
1246 /**
1247  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1248  *
1249  * CPPC has flexibility about how CPU performance counters are accessed.
1250  * One of the choices is PCC regions, which can have a high access latency. This
1251  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1252  *
1253  * Return: true if any of the counters are in PCC regions, false otherwise
1254  */
cppc_perf_ctrs_in_pcc(void)1255 bool cppc_perf_ctrs_in_pcc(void)
1256 {
1257 	int cpu;
1258 
1259 	for_each_present_cpu(cpu) {
1260 		struct cpc_register_resource *ref_perf_reg;
1261 		struct cpc_desc *cpc_desc;
1262 
1263 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1264 
1265 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1266 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1267 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1268 			return true;
1269 
1270 
1271 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1272 
1273 		/*
1274 		 * If reference perf register is not supported then we should
1275 		 * use the nominal perf value
1276 		 */
1277 		if (!CPC_SUPPORTED(ref_perf_reg))
1278 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1279 
1280 		if (CPC_IN_PCC(ref_perf_reg))
1281 			return true;
1282 	}
1283 
1284 	return false;
1285 }
1286 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1287 
1288 /**
1289  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1290  * @cpunum: CPU from which to read counters.
1291  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1292  *
1293  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1294  */
cppc_get_perf_ctrs(int cpunum,struct cppc_perf_fb_ctrs * perf_fb_ctrs)1295 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1296 {
1297 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1298 	struct cpc_register_resource *delivered_reg, *reference_reg,
1299 		*ref_perf_reg, *ctr_wrap_reg;
1300 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1301 	struct cppc_pcc_data *pcc_ss_data = NULL;
1302 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1303 	int ret = 0, regs_in_pcc = 0;
1304 
1305 	if (!cpc_desc) {
1306 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1307 		return -ENODEV;
1308 	}
1309 
1310 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1311 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1312 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1313 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1314 
1315 	/*
1316 	 * If reference perf register is not supported then we should
1317 	 * use the nominal perf value
1318 	 */
1319 	if (!CPC_SUPPORTED(ref_perf_reg))
1320 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1321 
1322 	/* Are any of the regs PCC ?*/
1323 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1324 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1325 		if (pcc_ss_id < 0) {
1326 			pr_debug("Invalid pcc_ss_id\n");
1327 			return -ENODEV;
1328 		}
1329 		pcc_ss_data = pcc_data[pcc_ss_id];
1330 		down_write(&pcc_ss_data->pcc_lock);
1331 		regs_in_pcc = 1;
1332 		/* Ring doorbell once to update PCC subspace */
1333 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1334 			ret = -EIO;
1335 			goto out_err;
1336 		}
1337 	}
1338 
1339 	cpc_read(cpunum, delivered_reg, &delivered);
1340 	cpc_read(cpunum, reference_reg, &reference);
1341 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1342 
1343 	/*
1344 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1345 	 * performance counters are assumed to never wrap during the lifetime of
1346 	 * platform
1347 	 */
1348 	ctr_wrap_time = (u64)(~((u64)0));
1349 	if (CPC_SUPPORTED(ctr_wrap_reg))
1350 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1351 
1352 	if (!delivered || !reference ||	!ref_perf) {
1353 		ret = -EFAULT;
1354 		goto out_err;
1355 	}
1356 
1357 	perf_fb_ctrs->delivered = delivered;
1358 	perf_fb_ctrs->reference = reference;
1359 	perf_fb_ctrs->reference_perf = ref_perf;
1360 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1361 out_err:
1362 	if (regs_in_pcc)
1363 		up_write(&pcc_ss_data->pcc_lock);
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1367 
1368 /**
1369  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1370  * Continuous Performance Control package EnableRegister field.
1371  * @cpu: CPU for which to enable CPPC register.
1372  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1373  *
1374  * Return: 0 for success, -ERRNO or -EIO otherwise.
1375  */
cppc_set_enable(int cpu,bool enable)1376 int cppc_set_enable(int cpu, bool enable)
1377 {
1378 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1379 	struct cpc_register_resource *enable_reg;
1380 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1381 	struct cppc_pcc_data *pcc_ss_data = NULL;
1382 	int ret = -EINVAL;
1383 
1384 	if (!cpc_desc) {
1385 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1386 		return -EINVAL;
1387 	}
1388 
1389 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1390 
1391 	if (CPC_IN_PCC(enable_reg)) {
1392 
1393 		if (pcc_ss_id < 0)
1394 			return -EIO;
1395 
1396 		ret = cpc_write(cpu, enable_reg, enable);
1397 		if (ret)
1398 			return ret;
1399 
1400 		pcc_ss_data = pcc_data[pcc_ss_id];
1401 
1402 		down_write(&pcc_ss_data->pcc_lock);
1403 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1404 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1405 		up_write(&pcc_ss_data->pcc_lock);
1406 		return ret;
1407 	}
1408 
1409 	return cpc_write(cpu, enable_reg, enable);
1410 }
1411 EXPORT_SYMBOL_GPL(cppc_set_enable);
1412 
1413 /**
1414  * cppc_set_perf - Set a CPU's performance controls.
1415  * @cpu: CPU for which to set performance controls.
1416  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1417  *
1418  * Return: 0 for success, -ERRNO otherwise.
1419  */
cppc_set_perf(int cpu,struct cppc_perf_ctrls * perf_ctrls)1420 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1421 {
1422 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1423 	struct cpc_register_resource *desired_reg;
1424 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1425 	struct cppc_pcc_data *pcc_ss_data = NULL;
1426 	int ret = 0;
1427 
1428 	if (!cpc_desc) {
1429 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1430 		return -ENODEV;
1431 	}
1432 
1433 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1434 
1435 	/*
1436 	 * This is Phase-I where we want to write to CPC registers
1437 	 * -> We want all CPUs to be able to execute this phase in parallel
1438 	 *
1439 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1440 	 * achieve that goal here
1441 	 */
1442 	if (CPC_IN_PCC(desired_reg)) {
1443 		if (pcc_ss_id < 0) {
1444 			pr_debug("Invalid pcc_ss_id\n");
1445 			return -ENODEV;
1446 		}
1447 		pcc_ss_data = pcc_data[pcc_ss_id];
1448 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1449 		if (pcc_ss_data->platform_owns_pcc) {
1450 			ret = check_pcc_chan(pcc_ss_id, false);
1451 			if (ret) {
1452 				up_read(&pcc_ss_data->pcc_lock);
1453 				return ret;
1454 			}
1455 		}
1456 		/*
1457 		 * Update the pending_write to make sure a PCC CMD_READ will not
1458 		 * arrive and steal the channel during the switch to write lock
1459 		 */
1460 		pcc_ss_data->pending_pcc_write_cmd = true;
1461 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1462 		cpc_desc->write_cmd_status = 0;
1463 	}
1464 
1465 	/*
1466 	 * Skip writing MIN/MAX until Linux knows how to come up with
1467 	 * useful values.
1468 	 */
1469 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1470 
1471 	if (CPC_IN_PCC(desired_reg))
1472 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1473 	/*
1474 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1475 	 *
1476 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1477 	 * requests that happened in short overlapping interval. The last CPU to
1478 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1479 	 *
1480 	 * We have the following requirements for Phase-II:
1481 	 *     1. We want to execute Phase-II only when there are no CPUs
1482 	 * currently executing in Phase-I
1483 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1484 	 * entering Phase-I.
1485 	 *     3. We want only one CPU among all those who went through Phase-I
1486 	 * to run phase-II
1487 	 *
1488 	 * If write_trylock fails to get the lock and doesn't transfer the
1489 	 * PCC ownership to the platform, then one of the following will be TRUE
1490 	 *     1. There is at-least one CPU in Phase-I which will later execute
1491 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1492 	 * executing the Phase-II.
1493 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1494 	 * write_trylock and has already acquired the write_lock. We know for a
1495 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1496 	 * before this CPU's Phase-I as we held the read_lock.
1497 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1498 	 * down_write, in which case, send_pcc_cmd will check for pending
1499 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1500 	 * So this CPU can be certain that its request will be delivered
1501 	 *    So in all cases, this CPU knows that its request will be delivered
1502 	 * by another CPU and can return
1503 	 *
1504 	 * After getting the down_write we still need to check for
1505 	 * pending_pcc_write_cmd to take care of the following scenario
1506 	 *    The thread running this code could be scheduled out between
1507 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1508 	 * could have delivered the request to Platform by triggering the
1509 	 * doorbell and transferred the ownership of PCC to platform. So this
1510 	 * avoids triggering an unnecessary doorbell and more importantly before
1511 	 * triggering the doorbell it makes sure that the PCC channel ownership
1512 	 * is still with OSPM.
1513 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1514 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1515 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1516 	 * case during a CMD_READ and if there are pending writes it delivers
1517 	 * the write command before servicing the read command
1518 	 */
1519 	if (CPC_IN_PCC(desired_reg)) {
1520 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1521 			/* Update only if there are pending write commands */
1522 			if (pcc_ss_data->pending_pcc_write_cmd)
1523 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1524 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1525 		} else
1526 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1527 			wait_event(pcc_ss_data->pcc_write_wait_q,
1528 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1529 
1530 		/* send_pcc_cmd updates the status in case of failure */
1531 		ret = cpc_desc->write_cmd_status;
1532 	}
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(cppc_set_perf);
1536 
1537 /**
1538  * cppc_get_transition_latency - returns frequency transition latency in ns
1539  *
1540  * ACPI CPPC does not explicitly specify how a platform can specify the
1541  * transition latency for performance change requests. The closest we have
1542  * is the timing information from the PCCT tables which provides the info
1543  * on the number and frequency of PCC commands the platform can handle.
1544  *
1545  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1546  * then assume there is no latency.
1547  */
cppc_get_transition_latency(int cpu_num)1548 unsigned int cppc_get_transition_latency(int cpu_num)
1549 {
1550 	/*
1551 	 * Expected transition latency is based on the PCCT timing values
1552 	 * Below are definition from ACPI spec:
1553 	 * pcc_nominal- Expected latency to process a command, in microseconds
1554 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1555 	 *              channel can support, reported in commands per minute. 0
1556 	 *              indicates no limitation.
1557 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1558 	 *              completion of a command before issuing the next command,
1559 	 *              in microseconds.
1560 	 */
1561 	unsigned int latency_ns = 0;
1562 	struct cpc_desc *cpc_desc;
1563 	struct cpc_register_resource *desired_reg;
1564 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1565 	struct cppc_pcc_data *pcc_ss_data;
1566 
1567 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1568 	if (!cpc_desc)
1569 		return CPUFREQ_ETERNAL;
1570 
1571 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1572 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1573 		return 0;
1574 	else if (!CPC_IN_PCC(desired_reg))
1575 		return CPUFREQ_ETERNAL;
1576 
1577 	if (pcc_ss_id < 0)
1578 		return CPUFREQ_ETERNAL;
1579 
1580 	pcc_ss_data = pcc_data[pcc_ss_id];
1581 	if (pcc_ss_data->pcc_mpar)
1582 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1583 
1584 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1585 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1586 
1587 	return latency_ns;
1588 }
1589 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1590