1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_64_PGTABLE_H
4 /*
5 * This file contains the functions and defines necessary to modify and use
6 * the ppc64 non-hashed page table.
7 */
8
9 #include <linux/sizes.h>
10
11 #include <asm/nohash/64/pgtable-4k.h>
12 #include <asm/barrier.h>
13 #include <asm/asm-const.h>
14
15 /*
16 * Size of EA range mapped by our pagetables.
17 */
18 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
19 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
20 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
21
22 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
23 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
24
25 /*
26 * Define the address range of the kernel non-linear virtual area
27 */
28 #define KERN_VIRT_START ASM_CONST(0xc000100000000000)
29 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
30
31 /*
32 * The vmalloc space starts at the beginning of that region, and
33 * occupies a quarter of it on Book3E
34 * (we keep a quarter for the virtual memmap)
35 */
36 #define VMALLOC_START KERN_VIRT_START
37 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
38 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
39
40 /*
41 * The third quarter of the kernel virtual space is used for IO mappings,
42 * it's itself carved into the PIO region (ISA and PHB IO space) and
43 * the ioremap space
44 *
45 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
46 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
47 * IOREMAP_BASE = ISA_IO_BASE + 2G to KERN_IO_START + KERN_IO_SIZE
48 */
49 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
50 #define KERN_IO_SIZE (KERN_VIRT_SIZE >> 2)
51 #define FULL_IO_SIZE 0x80000000ul
52 #define ISA_IO_BASE (KERN_IO_START)
53 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
54 #define PHB_IO_BASE (ISA_IO_END)
55 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
56 #define IOREMAP_BASE (PHB_IO_END)
57 #define IOREMAP_START (ioremap_bot)
58 #define IOREMAP_END (KERN_IO_START + KERN_IO_SIZE - FIXADDR_SIZE)
59 #define FIXADDR_SIZE SZ_32M
60
61 /*
62 * Defines the address of the vmemap area, in its own region on
63 * after the vmalloc space on Book3E
64 */
65 #define VMEMMAP_BASE VMALLOC_END
66 #define VMEMMAP_END KERN_IO_START
67 #define vmemmap ((struct page *)VMEMMAP_BASE)
68
69
70 /*
71 * Include the PTE bits definitions
72 */
73 #include <asm/nohash/pte-e500.h>
74
75 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
76
77 /*
78 * _PAGE_CHG_MASK masks of bits that are to be preserved across
79 * pgprot changes.
80 */
81 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
82
83 #define H_PAGE_4K_PFN 0
84
85 #ifndef __ASSEMBLY__
86 /* pte_clear moved to later in this file */
87
pte_mkwrite(pte_t pte)88 static inline pte_t pte_mkwrite(pte_t pte)
89 {
90 return __pte(pte_val(pte) | _PAGE_RW);
91 }
92
pte_mkdirty(pte_t pte)93 static inline pte_t pte_mkdirty(pte_t pte)
94 {
95 return __pte(pte_val(pte) | _PAGE_DIRTY);
96 }
97
pte_mkyoung(pte_t pte)98 static inline pte_t pte_mkyoung(pte_t pte)
99 {
100 return __pte(pte_val(pte) | _PAGE_ACCESSED);
101 }
102
pte_wrprotect(pte_t pte)103 static inline pte_t pte_wrprotect(pte_t pte)
104 {
105 return __pte(pte_val(pte) & ~_PAGE_RW);
106 }
107
108 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
109 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
110
pmd_set(pmd_t * pmdp,unsigned long val)111 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
112 {
113 *pmdp = __pmd(val);
114 }
115
pmd_clear(pmd_t * pmdp)116 static inline void pmd_clear(pmd_t *pmdp)
117 {
118 *pmdp = __pmd(0);
119 }
120
pmd_pte(pmd_t pmd)121 static inline pte_t pmd_pte(pmd_t pmd)
122 {
123 return __pte(pmd_val(pmd));
124 }
125
126 #define pmd_none(pmd) (!pmd_val(pmd))
127 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
128 || (pmd_val(pmd) & PMD_BAD_BITS))
129 #define pmd_present(pmd) (!pmd_none(pmd))
130 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
131 extern struct page *pmd_page(pmd_t pmd);
132 #define pmd_pfn(pmd) (page_to_pfn(pmd_page(pmd)))
133
pud_set(pud_t * pudp,unsigned long val)134 static inline void pud_set(pud_t *pudp, unsigned long val)
135 {
136 *pudp = __pud(val);
137 }
138
pud_clear(pud_t * pudp)139 static inline void pud_clear(pud_t *pudp)
140 {
141 *pudp = __pud(0);
142 }
143
144 #define pud_none(pud) (!pud_val(pud))
145 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
146 || (pud_val(pud) & PUD_BAD_BITS))
147 #define pud_present(pud) (pud_val(pud) != 0)
148
pud_pgtable(pud_t pud)149 static inline pmd_t *pud_pgtable(pud_t pud)
150 {
151 return (pmd_t *)(pud_val(pud) & ~PUD_MASKED_BITS);
152 }
153
154 extern struct page *pud_page(pud_t pud);
155
pud_pte(pud_t pud)156 static inline pte_t pud_pte(pud_t pud)
157 {
158 return __pte(pud_val(pud));
159 }
160
pte_pud(pte_t pte)161 static inline pud_t pte_pud(pte_t pte)
162 {
163 return __pud(pte_val(pte));
164 }
165 #define pud_write(pud) pte_write(pud_pte(pud))
166 #define p4d_write(pgd) pte_write(p4d_pte(p4d))
167
p4d_set(p4d_t * p4dp,unsigned long val)168 static inline void p4d_set(p4d_t *p4dp, unsigned long val)
169 {
170 *p4dp = __p4d(val);
171 }
172
173 /* Atomic PTE updates */
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)174 static inline unsigned long pte_update(struct mm_struct *mm,
175 unsigned long addr,
176 pte_t *ptep, unsigned long clr,
177 unsigned long set,
178 int huge)
179 {
180 unsigned long old = pte_val(*ptep);
181 *ptep = __pte((old & ~clr) | set);
182
183 /* huge pages use the old page table lock */
184 if (!huge)
185 assert_pte_locked(mm, addr);
186
187 return old;
188 }
189
pte_young(pte_t pte)190 static inline int pte_young(pte_t pte)
191 {
192 return pte_val(pte) & _PAGE_ACCESSED;
193 }
194
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)195 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
196 unsigned long addr, pte_t *ptep)
197 {
198 unsigned long old;
199
200 if (pte_young(*ptep))
201 return 0;
202 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
203 return (old & _PAGE_ACCESSED) != 0;
204 }
205 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
206 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
207 ({ \
208 int __r; \
209 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
210 __r; \
211 })
212
213 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)214 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
215 pte_t *ptep)
216 {
217
218 if ((pte_val(*ptep) & _PAGE_RW) == 0)
219 return;
220
221 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
222 }
223
224 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)225 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
226 unsigned long addr, pte_t *ptep)
227 {
228 if ((pte_val(*ptep) & _PAGE_RW) == 0)
229 return;
230
231 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
232 }
233
234 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
235 #define ptep_clear_flush_young(__vma, __address, __ptep) \
236 ({ \
237 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
238 __ptep); \
239 __young; \
240 })
241
242 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)243 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
244 unsigned long addr, pte_t *ptep)
245 {
246 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
247 return __pte(old);
248 }
249
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)250 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
251 pte_t * ptep)
252 {
253 pte_update(mm, addr, ptep, ~0UL, 0, 0);
254 }
255
256
257 /* Set the dirty and/or accessed bits atomically in a linux PTE */
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)258 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
259 pte_t *ptep, pte_t entry,
260 unsigned long address,
261 int psize)
262 {
263 unsigned long bits = pte_val(entry) &
264 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
265
266 unsigned long old = pte_val(*ptep);
267 *ptep = __pte(old | bits);
268
269 flush_tlb_page(vma, address);
270 }
271
272 #define pte_ERROR(e) \
273 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
274 #define pmd_ERROR(e) \
275 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
276 #define pgd_ERROR(e) \
277 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
278
279 /* Encode and de-code a swap entry */
280 #define MAX_SWAPFILES_CHECK() do { \
281 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
282 } while (0)
283
284 #define SWP_TYPE_BITS 5
285 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
286 & ((1UL << SWP_TYPE_BITS) - 1))
287 #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT)
288 #define __swp_entry(type, offset) ((swp_entry_t) { \
289 ((type) << _PAGE_BIT_SWAP_TYPE) \
290 | ((offset) << PTE_RPN_SHIFT) })
291
292 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) })
293 #define __swp_entry_to_pte(x) __pte((x).val)
294
295 int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot);
296 void unmap_kernel_page(unsigned long va);
297 extern int __meminit vmemmap_create_mapping(unsigned long start,
298 unsigned long page_size,
299 unsigned long phys);
300 extern void vmemmap_remove_mapping(unsigned long start,
301 unsigned long page_size);
302 void __patch_exception(int exc, unsigned long addr);
303 #define patch_exception(exc, name) do { \
304 extern unsigned int name; \
305 __patch_exception((exc), (unsigned long)&name); \
306 } while (0)
307
308 #endif /* __ASSEMBLY__ */
309
310 #endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */
311