1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 *
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of hardware exceptions
12 */
13
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h> /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/debugfs.h>
41
42 #include <asm/emulated_ops.h>
43 #include <linux/uaccess.h>
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
69 #include <asm/nmi.h>
70 #include <asm/disassemble.h>
71
72 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
73 int (*__debugger)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
80
81 EXPORT_SYMBOL(__debugger);
82 EXPORT_SYMBOL(__debugger_ipi);
83 EXPORT_SYMBOL(__debugger_bpt);
84 EXPORT_SYMBOL(__debugger_sstep);
85 EXPORT_SYMBOL(__debugger_iabr_match);
86 EXPORT_SYMBOL(__debugger_break_match);
87 EXPORT_SYMBOL(__debugger_fault_handler);
88 #endif
89
90 /* Transactional Memory trap debug */
91 #ifdef TM_DEBUG_SW
92 #define TM_DEBUG(x...) printk(KERN_INFO x)
93 #else
94 #define TM_DEBUG(x...) do { } while(0)
95 #endif
96
signame(int signr)97 static const char *signame(int signr)
98 {
99 switch (signr) {
100 case SIGBUS: return "bus error";
101 case SIGFPE: return "floating point exception";
102 case SIGILL: return "illegal instruction";
103 case SIGSEGV: return "segfault";
104 case SIGTRAP: return "unhandled trap";
105 }
106
107 return "unknown signal";
108 }
109
110 /*
111 * Trap & Exception support
112 */
113
114 #ifdef CONFIG_PMAC_BACKLIGHT
pmac_backlight_unblank(void)115 static void pmac_backlight_unblank(void)
116 {
117 mutex_lock(&pmac_backlight_mutex);
118 if (pmac_backlight) {
119 struct backlight_properties *props;
120
121 props = &pmac_backlight->props;
122 props->brightness = props->max_brightness;
123 props->power = FB_BLANK_UNBLANK;
124 backlight_update_status(pmac_backlight);
125 }
126 mutex_unlock(&pmac_backlight_mutex);
127 }
128 #else
pmac_backlight_unblank(void)129 static inline void pmac_backlight_unblank(void) { }
130 #endif
131
132 /*
133 * If oops/die is expected to crash the machine, return true here.
134 *
135 * This should not be expected to be 100% accurate, there may be
136 * notifiers registered or other unexpected conditions that may bring
137 * down the kernel. Or if the current process in the kernel is holding
138 * locks or has other critical state, the kernel may become effectively
139 * unusable anyway.
140 */
die_will_crash(void)141 bool die_will_crash(void)
142 {
143 if (should_fadump_crash())
144 return true;
145 if (kexec_should_crash(current))
146 return true;
147 if (in_interrupt() || panic_on_oops ||
148 !current->pid || is_global_init(current))
149 return true;
150
151 return false;
152 }
153
154 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
155 static int die_owner = -1;
156 static unsigned int die_nest_count;
157 static int die_counter;
158
panic_flush_kmsg_start(void)159 extern void panic_flush_kmsg_start(void)
160 {
161 /*
162 * These are mostly taken from kernel/panic.c, but tries to do
163 * relatively minimal work. Don't use delay functions (TB may
164 * be broken), don't crash dump (need to set a firmware log),
165 * don't run notifiers. We do want to get some information to
166 * Linux console.
167 */
168 console_verbose();
169 bust_spinlocks(1);
170 }
171
panic_flush_kmsg_end(void)172 extern void panic_flush_kmsg_end(void)
173 {
174 kmsg_dump(KMSG_DUMP_PANIC);
175 bust_spinlocks(0);
176 debug_locks_off();
177 console_flush_on_panic(CONSOLE_FLUSH_PENDING);
178 }
179
oops_begin(struct pt_regs * regs)180 static unsigned long oops_begin(struct pt_regs *regs)
181 {
182 int cpu;
183 unsigned long flags;
184
185 oops_enter();
186
187 /* racy, but better than risking deadlock. */
188 raw_local_irq_save(flags);
189 cpu = smp_processor_id();
190 if (!arch_spin_trylock(&die_lock)) {
191 if (cpu == die_owner)
192 /* nested oops. should stop eventually */;
193 else
194 arch_spin_lock(&die_lock);
195 }
196 die_nest_count++;
197 die_owner = cpu;
198 console_verbose();
199 bust_spinlocks(1);
200 if (machine_is(powermac))
201 pmac_backlight_unblank();
202 return flags;
203 }
204 NOKPROBE_SYMBOL(oops_begin);
205
oops_end(unsigned long flags,struct pt_regs * regs,int signr)206 static void oops_end(unsigned long flags, struct pt_regs *regs,
207 int signr)
208 {
209 bust_spinlocks(0);
210 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
211 die_nest_count--;
212 oops_exit();
213 printk("\n");
214 if (!die_nest_count) {
215 /* Nest count reaches zero, release the lock. */
216 die_owner = -1;
217 arch_spin_unlock(&die_lock);
218 }
219 raw_local_irq_restore(flags);
220
221 /*
222 * system_reset_excption handles debugger, crash dump, panic, for 0x100
223 */
224 if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
225 return;
226
227 crash_fadump(regs, "die oops");
228
229 if (kexec_should_crash(current))
230 crash_kexec(regs);
231
232 if (!signr)
233 return;
234
235 /*
236 * While our oops output is serialised by a spinlock, output
237 * from panic() called below can race and corrupt it. If we
238 * know we are going to panic, delay for 1 second so we have a
239 * chance to get clean backtraces from all CPUs that are oopsing.
240 */
241 if (in_interrupt() || panic_on_oops || !current->pid ||
242 is_global_init(current)) {
243 mdelay(MSEC_PER_SEC);
244 }
245
246 if (panic_on_oops)
247 panic("Fatal exception");
248 make_task_dead(signr);
249 }
250 NOKPROBE_SYMBOL(oops_end);
251
get_mmu_str(void)252 static char *get_mmu_str(void)
253 {
254 if (early_radix_enabled())
255 return " MMU=Radix";
256 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
257 return " MMU=Hash";
258 return "";
259 }
260
__die(const char * str,struct pt_regs * regs,long err)261 static int __die(const char *str, struct pt_regs *regs, long err)
262 {
263 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
264
265 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
266 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
267 PAGE_SIZE / 1024, get_mmu_str(),
268 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
269 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
270 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
271 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
272 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
273 ppc_md.name ? ppc_md.name : "");
274
275 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
276 return 1;
277
278 print_modules();
279 show_regs(regs);
280
281 return 0;
282 }
283 NOKPROBE_SYMBOL(__die);
284
die(const char * str,struct pt_regs * regs,long err)285 void die(const char *str, struct pt_regs *regs, long err)
286 {
287 unsigned long flags;
288
289 /*
290 * system_reset_excption handles debugger, crash dump, panic, for 0x100
291 */
292 if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
293 if (debugger(regs))
294 return;
295 }
296
297 flags = oops_begin(regs);
298 if (__die(str, regs, err))
299 err = 0;
300 oops_end(flags, regs, err);
301 }
302 NOKPROBE_SYMBOL(die);
303
user_single_step_report(struct pt_regs * regs)304 void user_single_step_report(struct pt_regs *regs)
305 {
306 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
307 }
308
show_signal_msg(int signr,struct pt_regs * regs,int code,unsigned long addr)309 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
310 unsigned long addr)
311 {
312 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
313 DEFAULT_RATELIMIT_BURST);
314
315 if (!show_unhandled_signals)
316 return;
317
318 if (!unhandled_signal(current, signr))
319 return;
320
321 if (!__ratelimit(&rs))
322 return;
323
324 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
325 current->comm, current->pid, signame(signr), signr,
326 addr, regs->nip, regs->link, code);
327
328 print_vma_addr(KERN_CONT " in ", regs->nip);
329
330 pr_cont("\n");
331
332 show_user_instructions(regs);
333 }
334
exception_common(int signr,struct pt_regs * regs,int code,unsigned long addr)335 static bool exception_common(int signr, struct pt_regs *regs, int code,
336 unsigned long addr)
337 {
338 if (!user_mode(regs)) {
339 die("Exception in kernel mode", regs, signr);
340 return false;
341 }
342
343 /*
344 * Must not enable interrupts even for user-mode exception, because
345 * this can be called from machine check, which may be a NMI or IRQ
346 * which don't like interrupts being enabled. Could check for
347 * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
348 * reason why _exception() should enable irqs for an exception handler,
349 * the handlers themselves do that directly.
350 */
351
352 show_signal_msg(signr, regs, code, addr);
353
354 current->thread.trap_nr = code;
355
356 return true;
357 }
358
_exception_pkey(struct pt_regs * regs,unsigned long addr,int key)359 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
360 {
361 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
362 return;
363
364 force_sig_pkuerr((void __user *) addr, key);
365 }
366
_exception(int signr,struct pt_regs * regs,int code,unsigned long addr)367 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
368 {
369 if (!exception_common(signr, regs, code, addr))
370 return;
371
372 force_sig_fault(signr, code, (void __user *)addr);
373 }
374
375 /*
376 * The interrupt architecture has a quirk in that the HV interrupts excluding
377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
378 * that an interrupt handler must do is save off a GPR into a scratch register,
379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
381 * that it is non-reentrant, which leads to random data corruption.
382 *
383 * The solution is for NMI interrupts in HV mode to check if they originated
384 * from these critical HV interrupt regions. If so, then mark them not
385 * recoverable.
386 *
387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
390 * that would work. However any other guest OS that may have the SPRG live
391 * and MSR[RI]=1 could encounter silent corruption.
392 *
393 * Builds that do not support KVM could take this second option to increase
394 * the recoverability of NMIs.
395 */
hv_nmi_check_nonrecoverable(struct pt_regs * regs)396 noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
397 {
398 #ifdef CONFIG_PPC_POWERNV
399 unsigned long kbase = (unsigned long)_stext;
400 unsigned long nip = regs->nip;
401
402 if (!(regs->msr & MSR_RI))
403 return;
404 if (!(regs->msr & MSR_HV))
405 return;
406 if (regs->msr & MSR_PR)
407 return;
408
409 /*
410 * Now test if the interrupt has hit a range that may be using
411 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
412 * problem ranges all run un-relocated. Test real and virt modes
413 * at the same time by dropping the high bit of the nip (virt mode
414 * entry points still have the +0x4000 offset).
415 */
416 nip &= ~0xc000000000000000ULL;
417 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
418 goto nonrecoverable;
419 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
420 goto nonrecoverable;
421 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
422 goto nonrecoverable;
423 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
424 goto nonrecoverable;
425
426 /* Trampoline code runs un-relocated so subtract kbase. */
427 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
428 nip < (unsigned long)(end_real_trampolines - kbase))
429 goto nonrecoverable;
430 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
431 nip < (unsigned long)(end_virt_trampolines - kbase))
432 goto nonrecoverable;
433 return;
434
435 nonrecoverable:
436 regs->msr &= ~MSR_RI;
437 local_paca->hsrr_valid = 0;
438 local_paca->srr_valid = 0;
439 #endif
440 }
DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)441 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
442 {
443 unsigned long hsrr0, hsrr1;
444 bool saved_hsrrs = false;
445
446 /*
447 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
448 * The system reset interrupt itself may clobber HSRRs (e.g., to call
449 * OPAL), so save them here and restore them before returning.
450 *
451 * Machine checks don't need to save HSRRs, as the real mode handler
452 * is careful to avoid them, and the regular handler is not delivered
453 * as an NMI.
454 */
455 if (cpu_has_feature(CPU_FTR_HVMODE)) {
456 hsrr0 = mfspr(SPRN_HSRR0);
457 hsrr1 = mfspr(SPRN_HSRR1);
458 saved_hsrrs = true;
459 }
460
461 hv_nmi_check_nonrecoverable(regs);
462
463 __this_cpu_inc(irq_stat.sreset_irqs);
464
465 /* See if any machine dependent calls */
466 if (ppc_md.system_reset_exception) {
467 if (ppc_md.system_reset_exception(regs))
468 goto out;
469 }
470
471 if (debugger(regs))
472 goto out;
473
474 kmsg_dump(KMSG_DUMP_OOPS);
475 /*
476 * A system reset is a request to dump, so we always send
477 * it through the crashdump code (if fadump or kdump are
478 * registered).
479 */
480 crash_fadump(regs, "System Reset");
481
482 crash_kexec(regs);
483
484 /*
485 * We aren't the primary crash CPU. We need to send it
486 * to a holding pattern to avoid it ending up in the panic
487 * code.
488 */
489 crash_kexec_secondary(regs);
490
491 /*
492 * No debugger or crash dump registered, print logs then
493 * panic.
494 */
495 die("System Reset", regs, SIGABRT);
496
497 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
498 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
499 nmi_panic(regs, "System Reset");
500
501 out:
502 #ifdef CONFIG_PPC_BOOK3S_64
503 BUG_ON(get_paca()->in_nmi == 0);
504 if (get_paca()->in_nmi > 1)
505 die("Unrecoverable nested System Reset", regs, SIGABRT);
506 #endif
507 /* Must die if the interrupt is not recoverable */
508 if (regs_is_unrecoverable(regs)) {
509 /* For the reason explained in die_mce, nmi_exit before die */
510 nmi_exit();
511 die("Unrecoverable System Reset", regs, SIGABRT);
512 }
513
514 if (saved_hsrrs) {
515 mtspr(SPRN_HSRR0, hsrr0);
516 mtspr(SPRN_HSRR1, hsrr1);
517 }
518
519 /* What should we do here? We could issue a shutdown or hard reset. */
520
521 return 0;
522 }
523
524 /*
525 * I/O accesses can cause machine checks on powermacs.
526 * Check if the NIP corresponds to the address of a sync
527 * instruction for which there is an entry in the exception
528 * table.
529 * -- paulus.
530 */
check_io_access(struct pt_regs * regs)531 static inline int check_io_access(struct pt_regs *regs)
532 {
533 #ifdef CONFIG_PPC32
534 unsigned long msr = regs->msr;
535 const struct exception_table_entry *entry;
536 unsigned int *nip = (unsigned int *)regs->nip;
537
538 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
539 && (entry = search_exception_tables(regs->nip)) != NULL) {
540 /*
541 * Check that it's a sync instruction, or somewhere
542 * in the twi; isync; nop sequence that inb/inw/inl uses.
543 * As the address is in the exception table
544 * we should be able to read the instr there.
545 * For the debug message, we look at the preceding
546 * load or store.
547 */
548 if (*nip == PPC_RAW_NOP())
549 nip -= 2;
550 else if (*nip == PPC_RAW_ISYNC())
551 --nip;
552 if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
553 unsigned int rb;
554
555 --nip;
556 rb = (*nip >> 11) & 0x1f;
557 printk(KERN_DEBUG "%s bad port %lx at %p\n",
558 (*nip & 0x100)? "OUT to": "IN from",
559 regs->gpr[rb] - _IO_BASE, nip);
560 regs_set_recoverable(regs);
561 regs_set_return_ip(regs, extable_fixup(entry));
562 return 1;
563 }
564 }
565 #endif /* CONFIG_PPC32 */
566 return 0;
567 }
568
569 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
570 /* On 4xx, the reason for the machine check or program exception
571 is in the ESR. */
572 #define get_reason(regs) ((regs)->esr)
573 #define REASON_FP ESR_FP
574 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
575 #define REASON_PRIVILEGED ESR_PPR
576 #define REASON_TRAP ESR_PTR
577 #define REASON_PREFIXED 0
578 #define REASON_BOUNDARY 0
579
580 /* single-step stuff */
581 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
582 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
583 #define clear_br_trace(regs) do {} while(0)
584 #else
585 /* On non-4xx, the reason for the machine check or program
586 exception is in the MSR. */
587 #define get_reason(regs) ((regs)->msr)
588 #define REASON_TM SRR1_PROGTM
589 #define REASON_FP SRR1_PROGFPE
590 #define REASON_ILLEGAL SRR1_PROGILL
591 #define REASON_PRIVILEGED SRR1_PROGPRIV
592 #define REASON_TRAP SRR1_PROGTRAP
593 #define REASON_PREFIXED SRR1_PREFIXED
594 #define REASON_BOUNDARY SRR1_BOUNDARY
595
596 #define single_stepping(regs) ((regs)->msr & MSR_SE)
597 #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
598 #define clear_br_trace(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
599 #endif
600
601 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4)
602
603 #if defined(CONFIG_E500)
machine_check_e500mc(struct pt_regs * regs)604 int machine_check_e500mc(struct pt_regs *regs)
605 {
606 unsigned long mcsr = mfspr(SPRN_MCSR);
607 unsigned long pvr = mfspr(SPRN_PVR);
608 unsigned long reason = mcsr;
609 int recoverable = 1;
610
611 if (reason & MCSR_LD) {
612 recoverable = fsl_rio_mcheck_exception(regs);
613 if (recoverable == 1)
614 goto silent_out;
615 }
616
617 printk("Machine check in kernel mode.\n");
618 printk("Caused by (from MCSR=%lx): ", reason);
619
620 if (reason & MCSR_MCP)
621 pr_cont("Machine Check Signal\n");
622
623 if (reason & MCSR_ICPERR) {
624 pr_cont("Instruction Cache Parity Error\n");
625
626 /*
627 * This is recoverable by invalidating the i-cache.
628 */
629 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
630 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
631 ;
632
633 /*
634 * This will generally be accompanied by an instruction
635 * fetch error report -- only treat MCSR_IF as fatal
636 * if it wasn't due to an L1 parity error.
637 */
638 reason &= ~MCSR_IF;
639 }
640
641 if (reason & MCSR_DCPERR_MC) {
642 pr_cont("Data Cache Parity Error\n");
643
644 /*
645 * In write shadow mode we auto-recover from the error, but it
646 * may still get logged and cause a machine check. We should
647 * only treat the non-write shadow case as non-recoverable.
648 */
649 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
650 * is not implemented but L1 data cache always runs in write
651 * shadow mode. Hence on data cache parity errors HW will
652 * automatically invalidate the L1 Data Cache.
653 */
654 if (PVR_VER(pvr) != PVR_VER_E6500) {
655 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
656 recoverable = 0;
657 }
658 }
659
660 if (reason & MCSR_L2MMU_MHIT) {
661 pr_cont("Hit on multiple TLB entries\n");
662 recoverable = 0;
663 }
664
665 if (reason & MCSR_NMI)
666 pr_cont("Non-maskable interrupt\n");
667
668 if (reason & MCSR_IF) {
669 pr_cont("Instruction Fetch Error Report\n");
670 recoverable = 0;
671 }
672
673 if (reason & MCSR_LD) {
674 pr_cont("Load Error Report\n");
675 recoverable = 0;
676 }
677
678 if (reason & MCSR_ST) {
679 pr_cont("Store Error Report\n");
680 recoverable = 0;
681 }
682
683 if (reason & MCSR_LDG) {
684 pr_cont("Guarded Load Error Report\n");
685 recoverable = 0;
686 }
687
688 if (reason & MCSR_TLBSYNC)
689 pr_cont("Simultaneous tlbsync operations\n");
690
691 if (reason & MCSR_BSL2_ERR) {
692 pr_cont("Level 2 Cache Error\n");
693 recoverable = 0;
694 }
695
696 if (reason & MCSR_MAV) {
697 u64 addr;
698
699 addr = mfspr(SPRN_MCAR);
700 addr |= (u64)mfspr(SPRN_MCARU) << 32;
701
702 pr_cont("Machine Check %s Address: %#llx\n",
703 reason & MCSR_MEA ? "Effective" : "Physical", addr);
704 }
705
706 silent_out:
707 mtspr(SPRN_MCSR, mcsr);
708 return mfspr(SPRN_MCSR) == 0 && recoverable;
709 }
710
machine_check_e500(struct pt_regs * regs)711 int machine_check_e500(struct pt_regs *regs)
712 {
713 unsigned long reason = mfspr(SPRN_MCSR);
714
715 if (reason & MCSR_BUS_RBERR) {
716 if (fsl_rio_mcheck_exception(regs))
717 return 1;
718 if (fsl_pci_mcheck_exception(regs))
719 return 1;
720 }
721
722 printk("Machine check in kernel mode.\n");
723 printk("Caused by (from MCSR=%lx): ", reason);
724
725 if (reason & MCSR_MCP)
726 pr_cont("Machine Check Signal\n");
727 if (reason & MCSR_ICPERR)
728 pr_cont("Instruction Cache Parity Error\n");
729 if (reason & MCSR_DCP_PERR)
730 pr_cont("Data Cache Push Parity Error\n");
731 if (reason & MCSR_DCPERR)
732 pr_cont("Data Cache Parity Error\n");
733 if (reason & MCSR_BUS_IAERR)
734 pr_cont("Bus - Instruction Address Error\n");
735 if (reason & MCSR_BUS_RAERR)
736 pr_cont("Bus - Read Address Error\n");
737 if (reason & MCSR_BUS_WAERR)
738 pr_cont("Bus - Write Address Error\n");
739 if (reason & MCSR_BUS_IBERR)
740 pr_cont("Bus - Instruction Data Error\n");
741 if (reason & MCSR_BUS_RBERR)
742 pr_cont("Bus - Read Data Bus Error\n");
743 if (reason & MCSR_BUS_WBERR)
744 pr_cont("Bus - Write Data Bus Error\n");
745 if (reason & MCSR_BUS_IPERR)
746 pr_cont("Bus - Instruction Parity Error\n");
747 if (reason & MCSR_BUS_RPERR)
748 pr_cont("Bus - Read Parity Error\n");
749
750 return 0;
751 }
752
machine_check_generic(struct pt_regs * regs)753 int machine_check_generic(struct pt_regs *regs)
754 {
755 return 0;
756 }
757 #elif defined(CONFIG_PPC32)
machine_check_generic(struct pt_regs * regs)758 int machine_check_generic(struct pt_regs *regs)
759 {
760 unsigned long reason = regs->msr;
761
762 printk("Machine check in kernel mode.\n");
763 printk("Caused by (from SRR1=%lx): ", reason);
764 switch (reason & 0x601F0000) {
765 case 0x80000:
766 pr_cont("Machine check signal\n");
767 break;
768 case 0x40000:
769 case 0x140000: /* 7450 MSS error and TEA */
770 pr_cont("Transfer error ack signal\n");
771 break;
772 case 0x20000:
773 pr_cont("Data parity error signal\n");
774 break;
775 case 0x10000:
776 pr_cont("Address parity error signal\n");
777 break;
778 case 0x20000000:
779 pr_cont("L1 Data Cache error\n");
780 break;
781 case 0x40000000:
782 pr_cont("L1 Instruction Cache error\n");
783 break;
784 case 0x00100000:
785 pr_cont("L2 data cache parity error\n");
786 break;
787 default:
788 pr_cont("Unknown values in msr\n");
789 }
790 return 0;
791 }
792 #endif /* everything else */
793
die_mce(const char * str,struct pt_regs * regs,long err)794 void die_mce(const char *str, struct pt_regs *regs, long err)
795 {
796 /*
797 * The machine check wants to kill the interrupted context,
798 * but make_task_dead() checks for in_interrupt() and panics
799 * in that case, so exit the irq/nmi before calling die.
800 */
801 if (in_nmi())
802 nmi_exit();
803 else
804 irq_exit();
805 die(str, regs, err);
806 }
807
808 /*
809 * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
810 * (it uses its own early real-mode handler to handle the MCE proper
811 * and then raises irq_work to call this handler when interrupts are
812 * enabled). The only time when this is not true is if the early handler
813 * is unrecoverable, then it does call this directly to try to get a
814 * message out.
815 */
__machine_check_exception(struct pt_regs * regs)816 static void __machine_check_exception(struct pt_regs *regs)
817 {
818 int recover = 0;
819
820 __this_cpu_inc(irq_stat.mce_exceptions);
821
822 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
823
824 /* See if any machine dependent calls. In theory, we would want
825 * to call the CPU first, and call the ppc_md. one if the CPU
826 * one returns a positive number. However there is existing code
827 * that assumes the board gets a first chance, so let's keep it
828 * that way for now and fix things later. --BenH.
829 */
830 if (ppc_md.machine_check_exception)
831 recover = ppc_md.machine_check_exception(regs);
832 else if (cur_cpu_spec->machine_check)
833 recover = cur_cpu_spec->machine_check(regs);
834
835 if (recover > 0)
836 goto bail;
837
838 if (debugger_fault_handler(regs))
839 goto bail;
840
841 if (check_io_access(regs))
842 goto bail;
843
844 die_mce("Machine check", regs, SIGBUS);
845
846 bail:
847 /* Must die if the interrupt is not recoverable */
848 if (regs_is_unrecoverable(regs))
849 die_mce("Unrecoverable Machine check", regs, SIGBUS);
850 }
851
852 #ifdef CONFIG_PPC_BOOK3S_64
DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)853 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)
854 {
855 __machine_check_exception(regs);
856 }
857 #endif
DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)858 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
859 {
860 __machine_check_exception(regs);
861
862 return 0;
863 }
864
DEFINE_INTERRUPT_HANDLER(SMIException)865 DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
866 {
867 die("System Management Interrupt", regs, SIGABRT);
868 }
869
870 #ifdef CONFIG_VSX
p9_hmi_special_emu(struct pt_regs * regs)871 static void p9_hmi_special_emu(struct pt_regs *regs)
872 {
873 unsigned int ra, rb, t, i, sel, instr, rc;
874 const void __user *addr;
875 u8 vbuf[16] __aligned(16), *vdst;
876 unsigned long ea, msr, msr_mask;
877 bool swap;
878
879 if (__get_user(instr, (unsigned int __user *)regs->nip))
880 return;
881
882 /*
883 * lxvb16x opcode: 0x7c0006d8
884 * lxvd2x opcode: 0x7c000698
885 * lxvh8x opcode: 0x7c000658
886 * lxvw4x opcode: 0x7c000618
887 */
888 if ((instr & 0xfc00073e) != 0x7c000618) {
889 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
890 " instr=%08x\n",
891 smp_processor_id(), current->comm, current->pid,
892 regs->nip, instr);
893 return;
894 }
895
896 /* Grab vector registers into the task struct */
897 msr = regs->msr; /* Grab msr before we flush the bits */
898 flush_vsx_to_thread(current);
899 enable_kernel_altivec();
900
901 /*
902 * Is userspace running with a different endian (this is rare but
903 * not impossible)
904 */
905 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
906
907 /* Decode the instruction */
908 ra = (instr >> 16) & 0x1f;
909 rb = (instr >> 11) & 0x1f;
910 t = (instr >> 21) & 0x1f;
911 if (instr & 1)
912 vdst = (u8 *)¤t->thread.vr_state.vr[t];
913 else
914 vdst = (u8 *)¤t->thread.fp_state.fpr[t][0];
915
916 /* Grab the vector address */
917 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
918 if (is_32bit_task())
919 ea &= 0xfffffffful;
920 addr = (__force const void __user *)ea;
921
922 /* Check it */
923 if (!access_ok(addr, 16)) {
924 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
925 " instr=%08x addr=%016lx\n",
926 smp_processor_id(), current->comm, current->pid,
927 regs->nip, instr, (unsigned long)addr);
928 return;
929 }
930
931 /* Read the vector */
932 rc = 0;
933 if ((unsigned long)addr & 0xfUL)
934 /* unaligned case */
935 rc = __copy_from_user_inatomic(vbuf, addr, 16);
936 else
937 __get_user_atomic_128_aligned(vbuf, addr, rc);
938 if (rc) {
939 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
940 " instr=%08x addr=%016lx\n",
941 smp_processor_id(), current->comm, current->pid,
942 regs->nip, instr, (unsigned long)addr);
943 return;
944 }
945
946 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
947 " instr=%08x addr=%016lx\n",
948 smp_processor_id(), current->comm, current->pid, regs->nip,
949 instr, (unsigned long) addr);
950
951 /* Grab instruction "selector" */
952 sel = (instr >> 6) & 3;
953
954 /*
955 * Check to make sure the facility is actually enabled. This
956 * could happen if we get a false positive hit.
957 *
958 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
959 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
960 */
961 msr_mask = MSR_VSX;
962 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
963 msr_mask = MSR_VEC;
964 if (!(msr & msr_mask)) {
965 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
966 " instr=%08x msr:%016lx\n",
967 smp_processor_id(), current->comm, current->pid,
968 regs->nip, instr, msr);
969 return;
970 }
971
972 /* Do logging here before we modify sel based on endian */
973 switch (sel) {
974 case 0: /* lxvw4x */
975 PPC_WARN_EMULATED(lxvw4x, regs);
976 break;
977 case 1: /* lxvh8x */
978 PPC_WARN_EMULATED(lxvh8x, regs);
979 break;
980 case 2: /* lxvd2x */
981 PPC_WARN_EMULATED(lxvd2x, regs);
982 break;
983 case 3: /* lxvb16x */
984 PPC_WARN_EMULATED(lxvb16x, regs);
985 break;
986 }
987
988 #ifdef __LITTLE_ENDIAN__
989 /*
990 * An LE kernel stores the vector in the task struct as an LE
991 * byte array (effectively swapping both the components and
992 * the content of the components). Those instructions expect
993 * the components to remain in ascending address order, so we
994 * swap them back.
995 *
996 * If we are running a BE user space, the expectation is that
997 * of a simple memcpy, so forcing the emulation to look like
998 * a lxvb16x should do the trick.
999 */
1000 if (swap)
1001 sel = 3;
1002
1003 switch (sel) {
1004 case 0: /* lxvw4x */
1005 for (i = 0; i < 4; i++)
1006 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1007 break;
1008 case 1: /* lxvh8x */
1009 for (i = 0; i < 8; i++)
1010 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1011 break;
1012 case 2: /* lxvd2x */
1013 for (i = 0; i < 2; i++)
1014 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1015 break;
1016 case 3: /* lxvb16x */
1017 for (i = 0; i < 16; i++)
1018 vdst[i] = vbuf[15-i];
1019 break;
1020 }
1021 #else /* __LITTLE_ENDIAN__ */
1022 /* On a big endian kernel, a BE userspace only needs a memcpy */
1023 if (!swap)
1024 sel = 3;
1025
1026 /* Otherwise, we need to swap the content of the components */
1027 switch (sel) {
1028 case 0: /* lxvw4x */
1029 for (i = 0; i < 4; i++)
1030 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1031 break;
1032 case 1: /* lxvh8x */
1033 for (i = 0; i < 8; i++)
1034 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1035 break;
1036 case 2: /* lxvd2x */
1037 for (i = 0; i < 2; i++)
1038 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1039 break;
1040 case 3: /* lxvb16x */
1041 memcpy(vdst, vbuf, 16);
1042 break;
1043 }
1044 #endif /* !__LITTLE_ENDIAN__ */
1045
1046 /* Go to next instruction */
1047 regs_add_return_ip(regs, 4);
1048 }
1049 #endif /* CONFIG_VSX */
1050
DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)1051 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
1052 {
1053 struct pt_regs *old_regs;
1054
1055 old_regs = set_irq_regs(regs);
1056
1057 #ifdef CONFIG_VSX
1058 /* Real mode flagged P9 special emu is needed */
1059 if (local_paca->hmi_p9_special_emu) {
1060 local_paca->hmi_p9_special_emu = 0;
1061
1062 /*
1063 * We don't want to take page faults while doing the
1064 * emulation, we just replay the instruction if necessary.
1065 */
1066 pagefault_disable();
1067 p9_hmi_special_emu(regs);
1068 pagefault_enable();
1069 }
1070 #endif /* CONFIG_VSX */
1071
1072 if (ppc_md.handle_hmi_exception)
1073 ppc_md.handle_hmi_exception(regs);
1074
1075 set_irq_regs(old_regs);
1076 }
1077
DEFINE_INTERRUPT_HANDLER(unknown_exception)1078 DEFINE_INTERRUPT_HANDLER(unknown_exception)
1079 {
1080 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1081 regs->nip, regs->msr, regs->trap);
1082
1083 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1084 }
1085
DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)1086 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
1087 {
1088 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1089 regs->nip, regs->msr, regs->trap);
1090
1091 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1092 }
1093
DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)1094 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
1095 {
1096 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1097 regs->nip, regs->msr, regs->trap);
1098
1099 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1100
1101 return 0;
1102 }
1103
DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)1104 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
1105 {
1106 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1107 5, SIGTRAP) == NOTIFY_STOP)
1108 return;
1109 if (debugger_iabr_match(regs))
1110 return;
1111 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1112 }
1113
DEFINE_INTERRUPT_HANDLER(RunModeException)1114 DEFINE_INTERRUPT_HANDLER(RunModeException)
1115 {
1116 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1117 }
1118
__single_step_exception(struct pt_regs * regs)1119 static void __single_step_exception(struct pt_regs *regs)
1120 {
1121 clear_single_step(regs);
1122 clear_br_trace(regs);
1123
1124 if (kprobe_post_handler(regs))
1125 return;
1126
1127 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1128 5, SIGTRAP) == NOTIFY_STOP)
1129 return;
1130 if (debugger_sstep(regs))
1131 return;
1132
1133 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1134 }
1135
DEFINE_INTERRUPT_HANDLER(single_step_exception)1136 DEFINE_INTERRUPT_HANDLER(single_step_exception)
1137 {
1138 __single_step_exception(regs);
1139 }
1140
1141 /*
1142 * After we have successfully emulated an instruction, we have to
1143 * check if the instruction was being single-stepped, and if so,
1144 * pretend we got a single-step exception. This was pointed out
1145 * by Kumar Gala. -- paulus
1146 */
emulate_single_step(struct pt_regs * regs)1147 static void emulate_single_step(struct pt_regs *regs)
1148 {
1149 if (single_stepping(regs))
1150 __single_step_exception(regs);
1151 }
1152
__parse_fpscr(unsigned long fpscr)1153 static inline int __parse_fpscr(unsigned long fpscr)
1154 {
1155 int ret = FPE_FLTUNK;
1156
1157 /* Invalid operation */
1158 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1159 ret = FPE_FLTINV;
1160
1161 /* Overflow */
1162 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1163 ret = FPE_FLTOVF;
1164
1165 /* Underflow */
1166 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1167 ret = FPE_FLTUND;
1168
1169 /* Divide by zero */
1170 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1171 ret = FPE_FLTDIV;
1172
1173 /* Inexact result */
1174 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1175 ret = FPE_FLTRES;
1176
1177 return ret;
1178 }
1179
parse_fpe(struct pt_regs * regs)1180 static void parse_fpe(struct pt_regs *regs)
1181 {
1182 int code = 0;
1183
1184 flush_fp_to_thread(current);
1185
1186 #ifdef CONFIG_PPC_FPU_REGS
1187 code = __parse_fpscr(current->thread.fp_state.fpscr);
1188 #endif
1189
1190 _exception(SIGFPE, regs, code, regs->nip);
1191 }
1192
1193 /*
1194 * Illegal instruction emulation support. Originally written to
1195 * provide the PVR to user applications using the mfspr rd, PVR.
1196 * Return non-zero if we can't emulate, or -EFAULT if the associated
1197 * memory access caused an access fault. Return zero on success.
1198 *
1199 * There are a couple of ways to do this, either "decode" the instruction
1200 * or directly match lots of bits. In this case, matching lots of
1201 * bits is faster and easier.
1202 *
1203 */
emulate_string_inst(struct pt_regs * regs,u32 instword)1204 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1205 {
1206 u8 rT = (instword >> 21) & 0x1f;
1207 u8 rA = (instword >> 16) & 0x1f;
1208 u8 NB_RB = (instword >> 11) & 0x1f;
1209 u32 num_bytes;
1210 unsigned long EA;
1211 int pos = 0;
1212
1213 /* Early out if we are an invalid form of lswx */
1214 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1215 if ((rT == rA) || (rT == NB_RB))
1216 return -EINVAL;
1217
1218 EA = (rA == 0) ? 0 : regs->gpr[rA];
1219
1220 switch (instword & PPC_INST_STRING_MASK) {
1221 case PPC_INST_LSWX:
1222 case PPC_INST_STSWX:
1223 EA += NB_RB;
1224 num_bytes = regs->xer & 0x7f;
1225 break;
1226 case PPC_INST_LSWI:
1227 case PPC_INST_STSWI:
1228 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1229 break;
1230 default:
1231 return -EINVAL;
1232 }
1233
1234 while (num_bytes != 0)
1235 {
1236 u8 val;
1237 u32 shift = 8 * (3 - (pos & 0x3));
1238
1239 /* if process is 32-bit, clear upper 32 bits of EA */
1240 if ((regs->msr & MSR_64BIT) == 0)
1241 EA &= 0xFFFFFFFF;
1242
1243 switch ((instword & PPC_INST_STRING_MASK)) {
1244 case PPC_INST_LSWX:
1245 case PPC_INST_LSWI:
1246 if (get_user(val, (u8 __user *)EA))
1247 return -EFAULT;
1248 /* first time updating this reg,
1249 * zero it out */
1250 if (pos == 0)
1251 regs->gpr[rT] = 0;
1252 regs->gpr[rT] |= val << shift;
1253 break;
1254 case PPC_INST_STSWI:
1255 case PPC_INST_STSWX:
1256 val = regs->gpr[rT] >> shift;
1257 if (put_user(val, (u8 __user *)EA))
1258 return -EFAULT;
1259 break;
1260 }
1261 /* move EA to next address */
1262 EA += 1;
1263 num_bytes--;
1264
1265 /* manage our position within the register */
1266 if (++pos == 4) {
1267 pos = 0;
1268 if (++rT == 32)
1269 rT = 0;
1270 }
1271 }
1272
1273 return 0;
1274 }
1275
emulate_popcntb_inst(struct pt_regs * regs,u32 instword)1276 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1277 {
1278 u32 ra,rs;
1279 unsigned long tmp;
1280
1281 ra = (instword >> 16) & 0x1f;
1282 rs = (instword >> 21) & 0x1f;
1283
1284 tmp = regs->gpr[rs];
1285 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1286 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1287 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1288 regs->gpr[ra] = tmp;
1289
1290 return 0;
1291 }
1292
emulate_isel(struct pt_regs * regs,u32 instword)1293 static int emulate_isel(struct pt_regs *regs, u32 instword)
1294 {
1295 u8 rT = (instword >> 21) & 0x1f;
1296 u8 rA = (instword >> 16) & 0x1f;
1297 u8 rB = (instword >> 11) & 0x1f;
1298 u8 BC = (instword >> 6) & 0x1f;
1299 u8 bit;
1300 unsigned long tmp;
1301
1302 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1303 bit = (regs->ccr >> (31 - BC)) & 0x1;
1304
1305 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1306
1307 return 0;
1308 }
1309
1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_abort_check(struct pt_regs * regs,int cause)1311 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1312 {
1313 /* If we're emulating a load/store in an active transaction, we cannot
1314 * emulate it as the kernel operates in transaction suspended context.
1315 * We need to abort the transaction. This creates a persistent TM
1316 * abort so tell the user what caused it with a new code.
1317 */
1318 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1319 tm_enable();
1320 tm_abort(cause);
1321 return true;
1322 }
1323 return false;
1324 }
1325 #else
tm_abort_check(struct pt_regs * regs,int reason)1326 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1327 {
1328 return false;
1329 }
1330 #endif
1331
emulate_instruction(struct pt_regs * regs)1332 static int emulate_instruction(struct pt_regs *regs)
1333 {
1334 u32 instword;
1335 u32 rd;
1336
1337 if (!user_mode(regs))
1338 return -EINVAL;
1339
1340 if (get_user(instword, (u32 __user *)(regs->nip)))
1341 return -EFAULT;
1342
1343 /* Emulate the mfspr rD, PVR. */
1344 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1345 PPC_WARN_EMULATED(mfpvr, regs);
1346 rd = (instword >> 21) & 0x1f;
1347 regs->gpr[rd] = mfspr(SPRN_PVR);
1348 return 0;
1349 }
1350
1351 /* Emulating the dcba insn is just a no-op. */
1352 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1353 PPC_WARN_EMULATED(dcba, regs);
1354 return 0;
1355 }
1356
1357 /* Emulate the mcrxr insn. */
1358 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1359 int shift = (instword >> 21) & 0x1c;
1360 unsigned long msk = 0xf0000000UL >> shift;
1361
1362 PPC_WARN_EMULATED(mcrxr, regs);
1363 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1364 regs->xer &= ~0xf0000000UL;
1365 return 0;
1366 }
1367
1368 /* Emulate load/store string insn. */
1369 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1370 if (tm_abort_check(regs,
1371 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1372 return -EINVAL;
1373 PPC_WARN_EMULATED(string, regs);
1374 return emulate_string_inst(regs, instword);
1375 }
1376
1377 /* Emulate the popcntb (Population Count Bytes) instruction. */
1378 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1379 PPC_WARN_EMULATED(popcntb, regs);
1380 return emulate_popcntb_inst(regs, instword);
1381 }
1382
1383 /* Emulate isel (Integer Select) instruction */
1384 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1385 PPC_WARN_EMULATED(isel, regs);
1386 return emulate_isel(regs, instword);
1387 }
1388
1389 /* Emulate sync instruction variants */
1390 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1391 PPC_WARN_EMULATED(sync, regs);
1392 asm volatile("sync");
1393 return 0;
1394 }
1395
1396 #ifdef CONFIG_PPC64
1397 /* Emulate the mfspr rD, DSCR. */
1398 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1399 PPC_INST_MFSPR_DSCR_USER) ||
1400 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1401 PPC_INST_MFSPR_DSCR)) &&
1402 cpu_has_feature(CPU_FTR_DSCR)) {
1403 PPC_WARN_EMULATED(mfdscr, regs);
1404 rd = (instword >> 21) & 0x1f;
1405 regs->gpr[rd] = mfspr(SPRN_DSCR);
1406 return 0;
1407 }
1408 /* Emulate the mtspr DSCR, rD. */
1409 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1410 PPC_INST_MTSPR_DSCR_USER) ||
1411 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1412 PPC_INST_MTSPR_DSCR)) &&
1413 cpu_has_feature(CPU_FTR_DSCR)) {
1414 PPC_WARN_EMULATED(mtdscr, regs);
1415 rd = (instword >> 21) & 0x1f;
1416 current->thread.dscr = regs->gpr[rd];
1417 current->thread.dscr_inherit = 1;
1418 mtspr(SPRN_DSCR, current->thread.dscr);
1419 return 0;
1420 }
1421 #endif
1422
1423 return -EINVAL;
1424 }
1425
is_valid_bugaddr(unsigned long addr)1426 int is_valid_bugaddr(unsigned long addr)
1427 {
1428 return is_kernel_addr(addr);
1429 }
1430
1431 #ifdef CONFIG_MATH_EMULATION
emulate_math(struct pt_regs * regs)1432 static int emulate_math(struct pt_regs *regs)
1433 {
1434 int ret;
1435
1436 ret = do_mathemu(regs);
1437 if (ret >= 0)
1438 PPC_WARN_EMULATED(math, regs);
1439
1440 switch (ret) {
1441 case 0:
1442 emulate_single_step(regs);
1443 return 0;
1444 case 1: {
1445 int code = 0;
1446 code = __parse_fpscr(current->thread.fp_state.fpscr);
1447 _exception(SIGFPE, regs, code, regs->nip);
1448 return 0;
1449 }
1450 case -EFAULT:
1451 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1452 return 0;
1453 }
1454
1455 return -1;
1456 }
1457 #else
emulate_math(struct pt_regs * regs)1458 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1459 #endif
1460
do_program_check(struct pt_regs * regs)1461 static void do_program_check(struct pt_regs *regs)
1462 {
1463 unsigned int reason = get_reason(regs);
1464
1465 /* We can now get here via a FP Unavailable exception if the core
1466 * has no FPU, in that case the reason flags will be 0 */
1467
1468 if (reason & REASON_FP) {
1469 /* IEEE FP exception */
1470 parse_fpe(regs);
1471 return;
1472 }
1473 if (reason & REASON_TRAP) {
1474 unsigned long bugaddr;
1475 /* Debugger is first in line to stop recursive faults in
1476 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1477 if (debugger_bpt(regs))
1478 return;
1479
1480 if (kprobe_handler(regs))
1481 return;
1482
1483 /* trap exception */
1484 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1485 == NOTIFY_STOP)
1486 return;
1487
1488 bugaddr = regs->nip;
1489 /*
1490 * Fixup bugaddr for BUG_ON() in real mode
1491 */
1492 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1493 bugaddr += PAGE_OFFSET;
1494
1495 if (!(regs->msr & MSR_PR) && /* not user-mode */
1496 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1497 const struct exception_table_entry *entry;
1498
1499 entry = search_exception_tables(bugaddr);
1500 if (entry) {
1501 regs_set_return_ip(regs, extable_fixup(entry) + regs->nip - bugaddr);
1502 return;
1503 }
1504 }
1505 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1506 return;
1507 }
1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1509 if (reason & REASON_TM) {
1510 /* This is a TM "Bad Thing Exception" program check.
1511 * This occurs when:
1512 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1513 * transition in TM states.
1514 * - A trechkpt is attempted when transactional.
1515 * - A treclaim is attempted when non transactional.
1516 * - A tend is illegally attempted.
1517 * - writing a TM SPR when transactional.
1518 *
1519 * If usermode caused this, it's done something illegal and
1520 * gets a SIGILL slap on the wrist. We call it an illegal
1521 * operand to distinguish from the instruction just being bad
1522 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1523 * illegal /placement/ of a valid instruction.
1524 */
1525 if (user_mode(regs)) {
1526 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1527 return;
1528 } else {
1529 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1530 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1531 regs->nip, regs->msr, get_paca()->tm_scratch);
1532 die("Unrecoverable exception", regs, SIGABRT);
1533 }
1534 }
1535 #endif
1536
1537 /*
1538 * If we took the program check in the kernel skip down to sending a
1539 * SIGILL. The subsequent cases all relate to emulating instructions
1540 * which we should only do for userspace. We also do not want to enable
1541 * interrupts for kernel faults because that might lead to further
1542 * faults, and loose the context of the original exception.
1543 */
1544 if (!user_mode(regs))
1545 goto sigill;
1546
1547 interrupt_cond_local_irq_enable(regs);
1548
1549 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1550 * but there seems to be a hardware bug on the 405GP (RevD)
1551 * that means ESR is sometimes set incorrectly - either to
1552 * ESR_DST (!?) or 0. In the process of chasing this with the
1553 * hardware people - not sure if it can happen on any illegal
1554 * instruction or only on FP instructions, whether there is a
1555 * pattern to occurrences etc. -dgibson 31/Mar/2003
1556 */
1557 if (!emulate_math(regs))
1558 return;
1559
1560 /* Try to emulate it if we should. */
1561 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1562 switch (emulate_instruction(regs)) {
1563 case 0:
1564 regs_add_return_ip(regs, 4);
1565 emulate_single_step(regs);
1566 return;
1567 case -EFAULT:
1568 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1569 return;
1570 }
1571 }
1572
1573 sigill:
1574 if (reason & REASON_PRIVILEGED)
1575 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1576 else
1577 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1578
1579 }
1580
DEFINE_INTERRUPT_HANDLER(program_check_exception)1581 DEFINE_INTERRUPT_HANDLER(program_check_exception)
1582 {
1583 do_program_check(regs);
1584 }
1585
1586 /*
1587 * This occurs when running in hypervisor mode on POWER6 or later
1588 * and an illegal instruction is encountered.
1589 */
DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)1590 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
1591 {
1592 regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
1593 do_program_check(regs);
1594 }
1595
DEFINE_INTERRUPT_HANDLER(alignment_exception)1596 DEFINE_INTERRUPT_HANDLER(alignment_exception)
1597 {
1598 int sig, code, fixed = 0;
1599 unsigned long reason;
1600
1601 interrupt_cond_local_irq_enable(regs);
1602
1603 reason = get_reason(regs);
1604 if (reason & REASON_BOUNDARY) {
1605 sig = SIGBUS;
1606 code = BUS_ADRALN;
1607 goto bad;
1608 }
1609
1610 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1611 return;
1612
1613 /* we don't implement logging of alignment exceptions */
1614 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1615 fixed = fix_alignment(regs);
1616
1617 if (fixed == 1) {
1618 /* skip over emulated instruction */
1619 regs_add_return_ip(regs, inst_length(reason));
1620 emulate_single_step(regs);
1621 return;
1622 }
1623
1624 /* Operand address was bad */
1625 if (fixed == -EFAULT) {
1626 sig = SIGSEGV;
1627 code = SEGV_ACCERR;
1628 } else {
1629 sig = SIGBUS;
1630 code = BUS_ADRALN;
1631 }
1632 bad:
1633 if (user_mode(regs))
1634 _exception(sig, regs, code, regs->dar);
1635 else
1636 bad_page_fault(regs, sig);
1637 }
1638
DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)1639 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
1640 {
1641 die("Kernel stack overflow", regs, SIGSEGV);
1642 }
1643
DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)1644 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
1645 {
1646 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1647 "%lx at %lx\n", regs->trap, regs->nip);
1648 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1649 }
1650
DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)1651 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
1652 {
1653 if (user_mode(regs)) {
1654 /* A user program has executed an altivec instruction,
1655 but this kernel doesn't support altivec. */
1656 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1657 return;
1658 }
1659
1660 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1661 "%lx at %lx\n", regs->trap, regs->nip);
1662 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1663 }
1664
DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)1665 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
1666 {
1667 if (user_mode(regs)) {
1668 /* A user program has executed an vsx instruction,
1669 but this kernel doesn't support vsx. */
1670 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1671 return;
1672 }
1673
1674 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1675 "%lx at %lx\n", regs->trap, regs->nip);
1676 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1677 }
1678
1679 #ifdef CONFIG_PPC64
tm_unavailable(struct pt_regs * regs)1680 static void tm_unavailable(struct pt_regs *regs)
1681 {
1682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1683 if (user_mode(regs)) {
1684 current->thread.load_tm++;
1685 regs_set_return_msr(regs, regs->msr | MSR_TM);
1686 tm_enable();
1687 tm_restore_sprs(¤t->thread);
1688 return;
1689 }
1690 #endif
1691 pr_emerg("Unrecoverable TM Unavailable Exception "
1692 "%lx at %lx\n", regs->trap, regs->nip);
1693 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1694 }
1695
DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)1696 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
1697 {
1698 static char *facility_strings[] = {
1699 [FSCR_FP_LG] = "FPU",
1700 [FSCR_VECVSX_LG] = "VMX/VSX",
1701 [FSCR_DSCR_LG] = "DSCR",
1702 [FSCR_PM_LG] = "PMU SPRs",
1703 [FSCR_BHRB_LG] = "BHRB",
1704 [FSCR_TM_LG] = "TM",
1705 [FSCR_EBB_LG] = "EBB",
1706 [FSCR_TAR_LG] = "TAR",
1707 [FSCR_MSGP_LG] = "MSGP",
1708 [FSCR_SCV_LG] = "SCV",
1709 [FSCR_PREFIX_LG] = "PREFIX",
1710 };
1711 char *facility = "unknown";
1712 u64 value;
1713 u32 instword, rd;
1714 u8 status;
1715 bool hv;
1716
1717 hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
1718 if (hv)
1719 value = mfspr(SPRN_HFSCR);
1720 else
1721 value = mfspr(SPRN_FSCR);
1722
1723 status = value >> 56;
1724 if ((hv || status >= 2) &&
1725 (status < ARRAY_SIZE(facility_strings)) &&
1726 facility_strings[status])
1727 facility = facility_strings[status];
1728
1729 /* We should not have taken this interrupt in kernel */
1730 if (!user_mode(regs)) {
1731 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1732 facility, status, regs->nip);
1733 die("Unexpected facility unavailable exception", regs, SIGABRT);
1734 }
1735
1736 interrupt_cond_local_irq_enable(regs);
1737
1738 if (status == FSCR_DSCR_LG) {
1739 /*
1740 * User is accessing the DSCR register using the problem
1741 * state only SPR number (0x03) either through a mfspr or
1742 * a mtspr instruction. If it is a write attempt through
1743 * a mtspr, then we set the inherit bit. This also allows
1744 * the user to write or read the register directly in the
1745 * future by setting via the FSCR DSCR bit. But in case it
1746 * is a read DSCR attempt through a mfspr instruction, we
1747 * just emulate the instruction instead. This code path will
1748 * always emulate all the mfspr instructions till the user
1749 * has attempted at least one mtspr instruction. This way it
1750 * preserves the same behaviour when the user is accessing
1751 * the DSCR through privilege level only SPR number (0x11)
1752 * which is emulated through illegal instruction exception.
1753 * We always leave HFSCR DSCR set.
1754 */
1755 if (get_user(instword, (u32 __user *)(regs->nip))) {
1756 pr_err("Failed to fetch the user instruction\n");
1757 return;
1758 }
1759
1760 /* Write into DSCR (mtspr 0x03, RS) */
1761 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1762 == PPC_INST_MTSPR_DSCR_USER) {
1763 rd = (instword >> 21) & 0x1f;
1764 current->thread.dscr = regs->gpr[rd];
1765 current->thread.dscr_inherit = 1;
1766 current->thread.fscr |= FSCR_DSCR;
1767 mtspr(SPRN_FSCR, current->thread.fscr);
1768 }
1769
1770 /* Read from DSCR (mfspr RT, 0x03) */
1771 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1772 == PPC_INST_MFSPR_DSCR_USER) {
1773 if (emulate_instruction(regs)) {
1774 pr_err("DSCR based mfspr emulation failed\n");
1775 return;
1776 }
1777 regs_add_return_ip(regs, 4);
1778 emulate_single_step(regs);
1779 }
1780 return;
1781 }
1782
1783 if (status == FSCR_TM_LG) {
1784 /*
1785 * If we're here then the hardware is TM aware because it
1786 * generated an exception with FSRM_TM set.
1787 *
1788 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1789 * told us not to do TM, or the kernel is not built with TM
1790 * support.
1791 *
1792 * If both of those things are true, then userspace can spam the
1793 * console by triggering the printk() below just by continually
1794 * doing tbegin (or any TM instruction). So in that case just
1795 * send the process a SIGILL immediately.
1796 */
1797 if (!cpu_has_feature(CPU_FTR_TM))
1798 goto out;
1799
1800 tm_unavailable(regs);
1801 return;
1802 }
1803
1804 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1805 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1806
1807 out:
1808 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1813
DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)1814 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
1815 {
1816 /* Note: This does not handle any kind of FP laziness. */
1817
1818 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1819 regs->nip, regs->msr);
1820
1821 /* We can only have got here if the task started using FP after
1822 * beginning the transaction. So, the transactional regs are just a
1823 * copy of the checkpointed ones. But, we still need to recheckpoint
1824 * as we're enabling FP for the process; it will return, abort the
1825 * transaction, and probably retry but now with FP enabled. So the
1826 * checkpointed FP registers need to be loaded.
1827 */
1828 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1829
1830 /*
1831 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1832 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1833 *
1834 * At this point, ck{fp,vr}_state contains the exact values we want to
1835 * recheckpoint.
1836 */
1837
1838 /* Enable FP for the task: */
1839 current->thread.load_fp = 1;
1840
1841 /*
1842 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1843 */
1844 tm_recheckpoint(¤t->thread);
1845 }
1846
DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)1847 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
1848 {
1849 /* See the comments in fp_unavailable_tm(). This function operates
1850 * the same way.
1851 */
1852
1853 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1854 "MSR=%lx\n",
1855 regs->nip, regs->msr);
1856 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1857 current->thread.load_vec = 1;
1858 tm_recheckpoint(¤t->thread);
1859 current->thread.used_vr = 1;
1860 }
1861
DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)1862 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
1863 {
1864 /* See the comments in fp_unavailable_tm(). This works similarly,
1865 * though we're loading both FP and VEC registers in here.
1866 *
1867 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1868 * regs. Either way, set MSR_VSX.
1869 */
1870
1871 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1872 "MSR=%lx\n",
1873 regs->nip, regs->msr);
1874
1875 current->thread.used_vsr = 1;
1876
1877 /* This reclaims FP and/or VR regs if they're already enabled */
1878 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1879
1880 current->thread.load_vec = 1;
1881 current->thread.load_fp = 1;
1882
1883 tm_recheckpoint(¤t->thread);
1884 }
1885 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1886
1887 #ifdef CONFIG_PPC64
1888 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)1889 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
1890 {
1891 __this_cpu_inc(irq_stat.pmu_irqs);
1892
1893 perf_irq(regs);
1894
1895 return 0;
1896 }
1897 #endif
1898
1899 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)1900 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
1901 {
1902 __this_cpu_inc(irq_stat.pmu_irqs);
1903
1904 perf_irq(regs);
1905 }
1906
DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)1907 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
1908 {
1909 /*
1910 * On 64-bit, if perf interrupts hit in a local_irq_disable
1911 * (soft-masked) region, we consider them as NMIs. This is required to
1912 * prevent hash faults on user addresses when reading callchains (and
1913 * looks better from an irq tracing perspective).
1914 */
1915 if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
1916 performance_monitor_exception_nmi(regs);
1917 else
1918 performance_monitor_exception_async(regs);
1919
1920 return 0;
1921 }
1922
1923 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
handle_debug(struct pt_regs * regs,unsigned long debug_status)1924 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1925 {
1926 int changed = 0;
1927 /*
1928 * Determine the cause of the debug event, clear the
1929 * event flags and send a trap to the handler. Torez
1930 */
1931 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1932 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1933 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1934 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1935 #endif
1936 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1937 5);
1938 changed |= 0x01;
1939 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1940 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1941 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1942 6);
1943 changed |= 0x01;
1944 } else if (debug_status & DBSR_IAC1) {
1945 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1946 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1947 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1948 1);
1949 changed |= 0x01;
1950 } else if (debug_status & DBSR_IAC2) {
1951 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1952 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1953 2);
1954 changed |= 0x01;
1955 } else if (debug_status & DBSR_IAC3) {
1956 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1957 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1958 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1959 3);
1960 changed |= 0x01;
1961 } else if (debug_status & DBSR_IAC4) {
1962 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1963 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1964 4);
1965 changed |= 0x01;
1966 }
1967 /*
1968 * At the point this routine was called, the MSR(DE) was turned off.
1969 * Check all other debug flags and see if that bit needs to be turned
1970 * back on or not.
1971 */
1972 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1973 current->thread.debug.dbcr1))
1974 regs_set_return_msr(regs, regs->msr | MSR_DE);
1975 else
1976 /* Make sure the IDM flag is off */
1977 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1978
1979 if (changed & 0x01)
1980 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1981 }
1982
DEFINE_INTERRUPT_HANDLER(DebugException)1983 DEFINE_INTERRUPT_HANDLER(DebugException)
1984 {
1985 unsigned long debug_status = regs->dsisr;
1986
1987 current->thread.debug.dbsr = debug_status;
1988
1989 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1990 * on server, it stops on the target of the branch. In order to simulate
1991 * the server behaviour, we thus restart right away with a single step
1992 * instead of stopping here when hitting a BT
1993 */
1994 if (debug_status & DBSR_BT) {
1995 regs_set_return_msr(regs, regs->msr & ~MSR_DE);
1996
1997 /* Disable BT */
1998 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1999 /* Clear the BT event */
2000 mtspr(SPRN_DBSR, DBSR_BT);
2001
2002 /* Do the single step trick only when coming from userspace */
2003 if (user_mode(regs)) {
2004 current->thread.debug.dbcr0 &= ~DBCR0_BT;
2005 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2006 regs_set_return_msr(regs, regs->msr | MSR_DE);
2007 return;
2008 }
2009
2010 if (kprobe_post_handler(regs))
2011 return;
2012
2013 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2014 5, SIGTRAP) == NOTIFY_STOP) {
2015 return;
2016 }
2017 if (debugger_sstep(regs))
2018 return;
2019 } else if (debug_status & DBSR_IC) { /* Instruction complete */
2020 regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2021
2022 /* Disable instruction completion */
2023 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2024 /* Clear the instruction completion event */
2025 mtspr(SPRN_DBSR, DBSR_IC);
2026
2027 if (kprobe_post_handler(regs))
2028 return;
2029
2030 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2031 5, SIGTRAP) == NOTIFY_STOP) {
2032 return;
2033 }
2034
2035 if (debugger_sstep(regs))
2036 return;
2037
2038 if (user_mode(regs)) {
2039 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2040 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2041 current->thread.debug.dbcr1))
2042 regs_set_return_msr(regs, regs->msr | MSR_DE);
2043 else
2044 /* Make sure the IDM bit is off */
2045 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2046 }
2047
2048 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2049 } else
2050 handle_debug(regs, debug_status);
2051 }
2052 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2053
2054 #ifdef CONFIG_ALTIVEC
DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)2055 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
2056 {
2057 int err;
2058
2059 if (!user_mode(regs)) {
2060 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2061 " at %lx\n", regs->nip);
2062 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2063 }
2064
2065 flush_altivec_to_thread(current);
2066
2067 PPC_WARN_EMULATED(altivec, regs);
2068 err = emulate_altivec(regs);
2069 if (err == 0) {
2070 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2071 emulate_single_step(regs);
2072 return;
2073 }
2074
2075 if (err == -EFAULT) {
2076 /* got an error reading the instruction */
2077 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2078 } else {
2079 /* didn't recognize the instruction */
2080 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2081 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2082 "in %s at %lx\n", current->comm, regs->nip);
2083 current->thread.vr_state.vscr.u[3] |= 0x10000;
2084 }
2085 }
2086 #endif /* CONFIG_ALTIVEC */
2087
2088 #ifdef CONFIG_FSL_BOOKE
DEFINE_INTERRUPT_HANDLER(CacheLockingException)2089 DEFINE_INTERRUPT_HANDLER(CacheLockingException)
2090 {
2091 unsigned long error_code = regs->dsisr;
2092
2093 /* We treat cache locking instructions from the user
2094 * as priv ops, in the future we could try to do
2095 * something smarter
2096 */
2097 if (error_code & (ESR_DLK|ESR_ILK))
2098 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2099 return;
2100 }
2101 #endif /* CONFIG_FSL_BOOKE */
2102
2103 #ifdef CONFIG_SPE
DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)2104 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
2105 {
2106 extern int do_spe_mathemu(struct pt_regs *regs);
2107 unsigned long spefscr;
2108 int fpexc_mode;
2109 int code = FPE_FLTUNK;
2110 int err;
2111
2112 interrupt_cond_local_irq_enable(regs);
2113
2114 flush_spe_to_thread(current);
2115
2116 spefscr = current->thread.spefscr;
2117 fpexc_mode = current->thread.fpexc_mode;
2118
2119 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2120 code = FPE_FLTOVF;
2121 }
2122 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2123 code = FPE_FLTUND;
2124 }
2125 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2126 code = FPE_FLTDIV;
2127 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2128 code = FPE_FLTINV;
2129 }
2130 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2131 code = FPE_FLTRES;
2132
2133 err = do_spe_mathemu(regs);
2134 if (err == 0) {
2135 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2136 emulate_single_step(regs);
2137 return;
2138 }
2139
2140 if (err == -EFAULT) {
2141 /* got an error reading the instruction */
2142 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2143 } else if (err == -EINVAL) {
2144 /* didn't recognize the instruction */
2145 printk(KERN_ERR "unrecognized spe instruction "
2146 "in %s at %lx\n", current->comm, regs->nip);
2147 } else {
2148 _exception(SIGFPE, regs, code, regs->nip);
2149 }
2150
2151 return;
2152 }
2153
DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)2154 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
2155 {
2156 extern int speround_handler(struct pt_regs *regs);
2157 int err;
2158
2159 interrupt_cond_local_irq_enable(regs);
2160
2161 preempt_disable();
2162 if (regs->msr & MSR_SPE)
2163 giveup_spe(current);
2164 preempt_enable();
2165
2166 regs_add_return_ip(regs, -4);
2167 err = speround_handler(regs);
2168 if (err == 0) {
2169 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2170 emulate_single_step(regs);
2171 return;
2172 }
2173
2174 if (err == -EFAULT) {
2175 /* got an error reading the instruction */
2176 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2177 } else if (err == -EINVAL) {
2178 /* didn't recognize the instruction */
2179 printk(KERN_ERR "unrecognized spe instruction "
2180 "in %s at %lx\n", current->comm, regs->nip);
2181 } else {
2182 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2183 return;
2184 }
2185 }
2186 #endif
2187
2188 /*
2189 * We enter here if we get an unrecoverable exception, that is, one
2190 * that happened at a point where the RI (recoverable interrupt) bit
2191 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2192 * we therefore lost state by taking this exception.
2193 */
unrecoverable_exception(struct pt_regs * regs)2194 void __noreturn unrecoverable_exception(struct pt_regs *regs)
2195 {
2196 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2197 regs->trap, regs->nip, regs->msr);
2198 die("Unrecoverable exception", regs, SIGABRT);
2199 /* die() should not return */
2200 for (;;)
2201 ;
2202 }
2203
2204 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2205 /*
2206 * Default handler for a Watchdog exception,
2207 * spins until a reboot occurs
2208 */
WatchdogHandler(struct pt_regs * regs)2209 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2210 {
2211 /* Generic WatchdogHandler, implement your own */
2212 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2213 return;
2214 }
2215
DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)2216 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
2217 {
2218 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2219 WatchdogHandler(regs);
2220 return 0;
2221 }
2222 #endif
2223
2224 /*
2225 * We enter here if we discover during exception entry that we are
2226 * running in supervisor mode with a userspace value in the stack pointer.
2227 */
DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)2228 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
2229 {
2230 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2231 regs->gpr[1], regs->nip);
2232 die("Bad kernel stack pointer", regs, SIGABRT);
2233 }
2234
2235 #ifdef CONFIG_PPC_EMULATED_STATS
2236
2237 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2238
2239 struct ppc_emulated ppc_emulated = {
2240 #ifdef CONFIG_ALTIVEC
2241 WARN_EMULATED_SETUP(altivec),
2242 #endif
2243 WARN_EMULATED_SETUP(dcba),
2244 WARN_EMULATED_SETUP(dcbz),
2245 WARN_EMULATED_SETUP(fp_pair),
2246 WARN_EMULATED_SETUP(isel),
2247 WARN_EMULATED_SETUP(mcrxr),
2248 WARN_EMULATED_SETUP(mfpvr),
2249 WARN_EMULATED_SETUP(multiple),
2250 WARN_EMULATED_SETUP(popcntb),
2251 WARN_EMULATED_SETUP(spe),
2252 WARN_EMULATED_SETUP(string),
2253 WARN_EMULATED_SETUP(sync),
2254 WARN_EMULATED_SETUP(unaligned),
2255 #ifdef CONFIG_MATH_EMULATION
2256 WARN_EMULATED_SETUP(math),
2257 #endif
2258 #ifdef CONFIG_VSX
2259 WARN_EMULATED_SETUP(vsx),
2260 #endif
2261 #ifdef CONFIG_PPC64
2262 WARN_EMULATED_SETUP(mfdscr),
2263 WARN_EMULATED_SETUP(mtdscr),
2264 WARN_EMULATED_SETUP(lq_stq),
2265 WARN_EMULATED_SETUP(lxvw4x),
2266 WARN_EMULATED_SETUP(lxvh8x),
2267 WARN_EMULATED_SETUP(lxvd2x),
2268 WARN_EMULATED_SETUP(lxvb16x),
2269 #endif
2270 };
2271
2272 u32 ppc_warn_emulated;
2273
ppc_warn_emulated_print(const char * type)2274 void ppc_warn_emulated_print(const char *type)
2275 {
2276 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2277 type);
2278 }
2279
ppc_warn_emulated_init(void)2280 static int __init ppc_warn_emulated_init(void)
2281 {
2282 struct dentry *dir;
2283 unsigned int i;
2284 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2285
2286 dir = debugfs_create_dir("emulated_instructions",
2287 arch_debugfs_dir);
2288
2289 debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2290
2291 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2292 debugfs_create_u32(entries[i].name, 0644, dir,
2293 (u32 *)&entries[i].val.counter);
2294
2295 return 0;
2296 }
2297
2298 device_initcall(ppc_warn_emulated_init);
2299
2300 #endif /* CONFIG_PPC_EMULATED_STATS */
2301