1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59 */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings.
64 * Space is allocated for this right after the trap table
65 * in arch/sparc64/kernel/head.S
66 */
67 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
68 #endif
69
70 #define MAX_BANKS 32
71
72 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
73 static int pavail_ents __devinitdata;
74
cmp_p64(const void * a,const void * b)75 static int cmp_p64(const void *a, const void *b)
76 {
77 const struct linux_prom64_registers *x = a, *y = b;
78
79 if (x->phys_addr > y->phys_addr)
80 return 1;
81 if (x->phys_addr < y->phys_addr)
82 return -1;
83 return 0;
84 }
85
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)86 static void __init read_obp_memory(const char *property,
87 struct linux_prom64_registers *regs,
88 int *num_ents)
89 {
90 phandle node = prom_finddevice("/memory");
91 int prop_size = prom_getproplen(node, property);
92 int ents, ret, i;
93
94 ents = prop_size / sizeof(struct linux_prom64_registers);
95 if (ents > MAX_BANKS) {
96 prom_printf("The machine has more %s property entries than "
97 "this kernel can support (%d).\n",
98 property, MAX_BANKS);
99 prom_halt();
100 }
101
102 ret = prom_getproperty(node, property, (char *) regs, prop_size);
103 if (ret == -1) {
104 prom_printf("Couldn't get %s property from /memory.\n");
105 prom_halt();
106 }
107
108 /* Sanitize what we got from the firmware, by page aligning
109 * everything.
110 */
111 for (i = 0; i < ents; i++) {
112 unsigned long base, size;
113
114 base = regs[i].phys_addr;
115 size = regs[i].reg_size;
116
117 size &= PAGE_MASK;
118 if (base & ~PAGE_MASK) {
119 unsigned long new_base = PAGE_ALIGN(base);
120
121 size -= new_base - base;
122 if ((long) size < 0L)
123 size = 0UL;
124 base = new_base;
125 }
126 if (size == 0UL) {
127 /* If it is empty, simply get rid of it.
128 * This simplifies the logic of the other
129 * functions that process these arrays.
130 */
131 memmove(®s[i], ®s[i + 1],
132 (ents - i - 1) * sizeof(regs[0]));
133 i--;
134 ents--;
135 continue;
136 }
137 regs[i].phys_addr = base;
138 regs[i].reg_size = size;
139 }
140
141 *num_ents = ents;
142
143 sort(regs, ents, sizeof(struct linux_prom64_registers),
144 cmp_p64, NULL);
145 }
146
147 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
148 sizeof(unsigned long)];
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150
151 /* Kernel physical address base and size in bytes. */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
159
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
flush_dcache_page_impl(struct page * page)178 inline void flush_dcache_page_impl(struct page *page)
179 {
180 BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page),
187 ((tlb_type == spitfire) &&
188 page_mapping(page) != NULL));
189 #else
190 if (page_mapping(page) != NULL &&
191 tlb_type == spitfire)
192 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
set_dcache_dirty(struct page * page,int this_cpu)204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206 unsigned long mask = this_cpu;
207 unsigned long non_cpu_bits;
208
209 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212 __asm__ __volatile__("1:\n\t"
213 "ldx [%2], %%g7\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
217 "cmp %%g7, %%g1\n\t"
218 "bne,pn %%xcc, 1b\n\t"
219 " nop"
220 : /* no outputs */
221 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 : "g1", "g7");
223 }
224
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227 unsigned long mask = (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 "1:\n\t"
231 "ldx [%2], %%g7\n\t"
232 "srlx %%g7, %4, %%g1\n\t"
233 "and %%g1, %3, %%g1\n\t"
234 "cmp %%g1, %0\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
240 " nop\n"
241 "2:"
242 : /* no outputs */
243 : "r" (cpu), "r" (mask), "r" (&page->flags),
244 "i" (PG_dcache_cpu_mask),
245 "i" (PG_dcache_cpu_shift)
246 : "g1", "g7");
247 }
248
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251 unsigned long tsb_addr = (unsigned long) ent;
252
253 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254 tsb_addr = __pa(tsb_addr);
255
256 __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
261
flush_dcache(unsigned long pfn)262 static void flush_dcache(unsigned long pfn)
263 {
264 struct page *page;
265
266 page = pfn_to_page(pfn);
267 if (page) {
268 unsigned long pg_flags;
269
270 pg_flags = page->flags;
271 if (pg_flags & (1UL << PG_dcache_dirty)) {
272 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273 PG_dcache_cpu_mask);
274 int this_cpu = get_cpu();
275
276 /* This is just to optimize away some function calls
277 * in the SMP case.
278 */
279 if (cpu == this_cpu)
280 flush_dcache_page_impl(page);
281 else
282 smp_flush_dcache_page_impl(page, cpu);
283
284 clear_dcache_dirty_cpu(page, cpu);
285
286 put_cpu();
287 }
288 }
289 }
290
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
292 {
293 struct mm_struct *mm;
294 struct tsb *tsb;
295 unsigned long tag, flags;
296 unsigned long tsb_index, tsb_hash_shift;
297 pte_t pte = *ptep;
298
299 if (tlb_type != hypervisor) {
300 unsigned long pfn = pte_pfn(pte);
301
302 if (pfn_valid(pfn))
303 flush_dcache(pfn);
304 }
305
306 mm = vma->vm_mm;
307
308 tsb_index = MM_TSB_BASE;
309 tsb_hash_shift = PAGE_SHIFT;
310
311 spin_lock_irqsave(&mm->context.lock, flags);
312
313 #ifdef CONFIG_HUGETLB_PAGE
314 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315 if ((tlb_type == hypervisor &&
316 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317 (tlb_type != hypervisor &&
318 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319 tsb_index = MM_TSB_HUGE;
320 tsb_hash_shift = HPAGE_SHIFT;
321 }
322 }
323 #endif
324
325 tsb = mm->context.tsb_block[tsb_index].tsb;
326 tsb += ((address >> tsb_hash_shift) &
327 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328 tag = (address >> 22UL);
329 tsb_insert(tsb, tag, pte_val(pte));
330
331 spin_unlock_irqrestore(&mm->context.lock, flags);
332 }
333
flush_dcache_page(struct page * page)334 void flush_dcache_page(struct page *page)
335 {
336 struct address_space *mapping;
337 int this_cpu;
338
339 if (tlb_type == hypervisor)
340 return;
341
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
345 */
346 if (page == ZERO_PAGE(0))
347 return;
348
349 this_cpu = get_cpu();
350
351 mapping = page_mapping(page);
352 if (mapping && !mapping_mapped(mapping)) {
353 int dirty = test_bit(PG_dcache_dirty, &page->flags);
354 if (dirty) {
355 int dirty_cpu = dcache_dirty_cpu(page);
356
357 if (dirty_cpu == this_cpu)
358 goto out;
359 smp_flush_dcache_page_impl(page, dirty_cpu);
360 }
361 set_dcache_dirty(page, this_cpu);
362 } else {
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
367 */
368 flush_dcache_page_impl(page);
369 }
370
371 out:
372 put_cpu();
373 }
374 EXPORT_SYMBOL(flush_dcache_page);
375
flush_icache_range(unsigned long start,unsigned long end)376 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377 {
378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 if (tlb_type == spitfire) {
380 unsigned long kaddr;
381
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
384 */
385 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386 unsigned long paddr, mask = _PAGE_PADDR_4U;
387
388 if (kaddr >= PAGE_OFFSET)
389 paddr = kaddr & mask;
390 else {
391 pgd_t *pgdp = pgd_offset_k(kaddr);
392 pud_t *pudp = pud_offset(pgdp, kaddr);
393 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395
396 paddr = pte_val(*ptep) & mask;
397 }
398 __flush_icache_page(paddr);
399 }
400 }
401 }
402 EXPORT_SYMBOL(flush_icache_range);
403
mmu_info(struct seq_file * m)404 void mmu_info(struct seq_file *m)
405 {
406 if (tlb_type == cheetah)
407 seq_printf(m, "MMU Type\t: Cheetah\n");
408 else if (tlb_type == cheetah_plus)
409 seq_printf(m, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type == spitfire)
411 seq_printf(m, "MMU Type\t: Spitfire\n");
412 else if (tlb_type == hypervisor)
413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414 else
415 seq_printf(m, "MMU Type\t: ???\n");
416
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421 seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
425 }
426
427 struct linux_prom_translation prom_trans[512] __read_mostly;
428 unsigned int prom_trans_ents __read_mostly;
429
430 unsigned long kern_locked_tte_data;
431
432 /* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
435 */
in_obp_range(unsigned long vaddr)436 static inline int in_obp_range(unsigned long vaddr)
437 {
438 return (vaddr >= LOW_OBP_ADDRESS &&
439 vaddr < HI_OBP_ADDRESS);
440 }
441
cmp_ptrans(const void * a,const void * b)442 static int cmp_ptrans(const void *a, const void *b)
443 {
444 const struct linux_prom_translation *x = a, *y = b;
445
446 if (x->virt > y->virt)
447 return 1;
448 if (x->virt < y->virt)
449 return -1;
450 return 0;
451 }
452
453 /* Read OBP translations property into 'prom_trans[]'. */
read_obp_translations(void)454 static void __init read_obp_translations(void)
455 {
456 int n, node, ents, first, last, i;
457
458 node = prom_finddevice("/virtual-memory");
459 n = prom_getproplen(node, "translations");
460 if (unlikely(n == 0 || n == -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
462 prom_halt();
463 }
464 if (unlikely(n > sizeof(prom_trans))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466 prom_halt();
467 }
468
469 if ((n = prom_getproperty(node, "translations",
470 (char *)&prom_trans[0],
471 sizeof(prom_trans))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
473 prom_halt();
474 }
475
476 n = n / sizeof(struct linux_prom_translation);
477
478 ents = n;
479
480 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481 cmp_ptrans, NULL);
482
483 /* Now kick out all the non-OBP entries. */
484 for (i = 0; i < ents; i++) {
485 if (in_obp_range(prom_trans[i].virt))
486 break;
487 }
488 first = i;
489 for (; i < ents; i++) {
490 if (!in_obp_range(prom_trans[i].virt))
491 break;
492 }
493 last = i;
494
495 for (i = 0; i < (last - first); i++) {
496 struct linux_prom_translation *src = &prom_trans[i + first];
497 struct linux_prom_translation *dest = &prom_trans[i];
498
499 *dest = *src;
500 }
501 for (; i < ents; i++) {
502 struct linux_prom_translation *dest = &prom_trans[i];
503 dest->virt = dest->size = dest->data = 0x0UL;
504 }
505
506 prom_trans_ents = last - first;
507
508 if (tlb_type == spitfire) {
509 /* Clear diag TTE bits. */
510 for (i = 0; i < prom_trans_ents; i++)
511 prom_trans[i].data &= ~0x0003fe0000000000UL;
512 }
513
514 /* Force execute bit on. */
515 for (i = 0; i < prom_trans_ents; i++)
516 prom_trans[i].data |= (tlb_type == hypervisor ?
517 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
518 }
519
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)520 static void __init hypervisor_tlb_lock(unsigned long vaddr,
521 unsigned long pte,
522 unsigned long mmu)
523 {
524 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
525
526 if (ret != 0) {
527 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
528 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
529 prom_halt();
530 }
531 }
532
533 static unsigned long kern_large_tte(unsigned long paddr);
534
remap_kernel(void)535 static void __init remap_kernel(void)
536 {
537 unsigned long phys_page, tte_vaddr, tte_data;
538 int i, tlb_ent = sparc64_highest_locked_tlbent();
539
540 tte_vaddr = (unsigned long) KERNBASE;
541 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
542 tte_data = kern_large_tte(phys_page);
543
544 kern_locked_tte_data = tte_data;
545
546 /* Now lock us into the TLBs via Hypervisor or OBP. */
547 if (tlb_type == hypervisor) {
548 for (i = 0; i < num_kernel_image_mappings; i++) {
549 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
551 tte_vaddr += 0x400000;
552 tte_data += 0x400000;
553 }
554 } else {
555 for (i = 0; i < num_kernel_image_mappings; i++) {
556 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
557 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 tte_vaddr += 0x400000;
559 tte_data += 0x400000;
560 }
561 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
562 }
563 if (tlb_type == cheetah_plus) {
564 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
565 CTX_CHEETAH_PLUS_NUC);
566 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
567 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
568 }
569 }
570
571
inherit_prom_mappings(void)572 static void __init inherit_prom_mappings(void)
573 {
574 /* Now fixup OBP's idea about where we really are mapped. */
575 printk("Remapping the kernel... ");
576 remap_kernel();
577 printk("done.\n");
578 }
579
prom_world(int enter)580 void prom_world(int enter)
581 {
582 if (!enter)
583 set_fs((mm_segment_t) { get_thread_current_ds() });
584
585 __asm__ __volatile__("flushw");
586 }
587
__flush_dcache_range(unsigned long start,unsigned long end)588 void __flush_dcache_range(unsigned long start, unsigned long end)
589 {
590 unsigned long va;
591
592 if (tlb_type == spitfire) {
593 int n = 0;
594
595 for (va = start; va < end; va += 32) {
596 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
597 if (++n >= 512)
598 break;
599 }
600 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
601 start = __pa(start);
602 end = __pa(end);
603 for (va = start; va < end; va += 32)
604 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
605 "membar #Sync"
606 : /* no outputs */
607 : "r" (va),
608 "i" (ASI_DCACHE_INVALIDATE));
609 }
610 }
611 EXPORT_SYMBOL(__flush_dcache_range);
612
613 /* get_new_mmu_context() uses "cache + 1". */
614 DEFINE_SPINLOCK(ctx_alloc_lock);
615 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
616 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
617 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
618 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
619
620 /* Caller does TLB context flushing on local CPU if necessary.
621 * The caller also ensures that CTX_VALID(mm->context) is false.
622 *
623 * We must be careful about boundary cases so that we never
624 * let the user have CTX 0 (nucleus) or we ever use a CTX
625 * version of zero (and thus NO_CONTEXT would not be caught
626 * by version mis-match tests in mmu_context.h).
627 *
628 * Always invoked with interrupts disabled.
629 */
get_new_mmu_context(struct mm_struct * mm)630 void get_new_mmu_context(struct mm_struct *mm)
631 {
632 unsigned long ctx, new_ctx;
633 unsigned long orig_pgsz_bits;
634 unsigned long flags;
635 int new_version;
636
637 spin_lock_irqsave(&ctx_alloc_lock, flags);
638 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
639 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
640 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
641 new_version = 0;
642 if (new_ctx >= (1 << CTX_NR_BITS)) {
643 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
644 if (new_ctx >= ctx) {
645 int i;
646 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
647 CTX_FIRST_VERSION;
648 if (new_ctx == 1)
649 new_ctx = CTX_FIRST_VERSION;
650
651 /* Don't call memset, for 16 entries that's just
652 * plain silly...
653 */
654 mmu_context_bmap[0] = 3;
655 mmu_context_bmap[1] = 0;
656 mmu_context_bmap[2] = 0;
657 mmu_context_bmap[3] = 0;
658 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
659 mmu_context_bmap[i + 0] = 0;
660 mmu_context_bmap[i + 1] = 0;
661 mmu_context_bmap[i + 2] = 0;
662 mmu_context_bmap[i + 3] = 0;
663 }
664 new_version = 1;
665 goto out;
666 }
667 }
668 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
669 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
670 out:
671 tlb_context_cache = new_ctx;
672 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
673 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
674
675 if (unlikely(new_version))
676 smp_new_mmu_context_version();
677 }
678
679 static int numa_enabled = 1;
680 static int numa_debug;
681
early_numa(char * p)682 static int __init early_numa(char *p)
683 {
684 if (!p)
685 return 0;
686
687 if (strstr(p, "off"))
688 numa_enabled = 0;
689
690 if (strstr(p, "debug"))
691 numa_debug = 1;
692
693 return 0;
694 }
695 early_param("numa", early_numa);
696
697 #define numadbg(f, a...) \
698 do { if (numa_debug) \
699 printk(KERN_INFO f, ## a); \
700 } while (0)
701
find_ramdisk(unsigned long phys_base)702 static void __init find_ramdisk(unsigned long phys_base)
703 {
704 #ifdef CONFIG_BLK_DEV_INITRD
705 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
706 unsigned long ramdisk_image;
707
708 /* Older versions of the bootloader only supported a
709 * 32-bit physical address for the ramdisk image
710 * location, stored at sparc_ramdisk_image. Newer
711 * SILO versions set sparc_ramdisk_image to zero and
712 * provide a full 64-bit physical address at
713 * sparc_ramdisk_image64.
714 */
715 ramdisk_image = sparc_ramdisk_image;
716 if (!ramdisk_image)
717 ramdisk_image = sparc_ramdisk_image64;
718
719 /* Another bootloader quirk. The bootloader normalizes
720 * the physical address to KERNBASE, so we have to
721 * factor that back out and add in the lowest valid
722 * physical page address to get the true physical address.
723 */
724 ramdisk_image -= KERNBASE;
725 ramdisk_image += phys_base;
726
727 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728 ramdisk_image, sparc_ramdisk_size);
729
730 initrd_start = ramdisk_image;
731 initrd_end = ramdisk_image + sparc_ramdisk_size;
732
733 memblock_reserve(initrd_start, sparc_ramdisk_size);
734
735 initrd_start += PAGE_OFFSET;
736 initrd_end += PAGE_OFFSET;
737 }
738 #endif
739 }
740
741 struct node_mem_mask {
742 unsigned long mask;
743 unsigned long val;
744 unsigned long bootmem_paddr;
745 };
746 static struct node_mem_mask node_masks[MAX_NUMNODES];
747 static int num_node_masks;
748
749 int numa_cpu_lookup_table[NR_CPUS];
750 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
751
752 #ifdef CONFIG_NEED_MULTIPLE_NODES
753
754 struct mdesc_mblock {
755 u64 base;
756 u64 size;
757 u64 offset; /* RA-to-PA */
758 };
759 static struct mdesc_mblock *mblocks;
760 static int num_mblocks;
761
ra_to_pa(unsigned long addr)762 static unsigned long ra_to_pa(unsigned long addr)
763 {
764 int i;
765
766 for (i = 0; i < num_mblocks; i++) {
767 struct mdesc_mblock *m = &mblocks[i];
768
769 if (addr >= m->base &&
770 addr < (m->base + m->size)) {
771 addr += m->offset;
772 break;
773 }
774 }
775 return addr;
776 }
777
find_node(unsigned long addr)778 static int find_node(unsigned long addr)
779 {
780 int i;
781
782 addr = ra_to_pa(addr);
783 for (i = 0; i < num_node_masks; i++) {
784 struct node_mem_mask *p = &node_masks[i];
785
786 if ((addr & p->mask) == p->val)
787 return i;
788 }
789 return -1;
790 }
791
memblock_nid_range(u64 start,u64 end,int * nid)792 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
793 {
794 *nid = find_node(start);
795 start += PAGE_SIZE;
796 while (start < end) {
797 int n = find_node(start);
798
799 if (n != *nid)
800 break;
801 start += PAGE_SIZE;
802 }
803
804 if (start > end)
805 start = end;
806
807 return start;
808 }
809 #else
memblock_nid_range(u64 start,u64 end,int * nid)810 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
811 {
812 *nid = 0;
813 return end;
814 }
815 #endif
816
817 /* This must be invoked after performing all of the necessary
818 * memblock_set_node() calls for 'nid'. We need to be able to get
819 * correct data from get_pfn_range_for_nid().
820 */
allocate_node_data(int nid)821 static void __init allocate_node_data(int nid)
822 {
823 unsigned long paddr, num_pages, start_pfn, end_pfn;
824 struct pglist_data *p;
825
826 #ifdef CONFIG_NEED_MULTIPLE_NODES
827 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
828 if (!paddr) {
829 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
830 prom_halt();
831 }
832 NODE_DATA(nid) = __va(paddr);
833 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
834
835 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
836 #endif
837
838 p = NODE_DATA(nid);
839
840 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
841 p->node_start_pfn = start_pfn;
842 p->node_spanned_pages = end_pfn - start_pfn;
843
844 if (p->node_spanned_pages) {
845 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
846
847 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
848 if (!paddr) {
849 prom_printf("Cannot allocate bootmap for nid[%d]\n",
850 nid);
851 prom_halt();
852 }
853 node_masks[nid].bootmem_paddr = paddr;
854 }
855 }
856
init_node_masks_nonnuma(void)857 static void init_node_masks_nonnuma(void)
858 {
859 int i;
860
861 numadbg("Initializing tables for non-numa.\n");
862
863 node_masks[0].mask = node_masks[0].val = 0;
864 num_node_masks = 1;
865
866 for (i = 0; i < NR_CPUS; i++)
867 numa_cpu_lookup_table[i] = 0;
868
869 cpumask_setall(&numa_cpumask_lookup_table[0]);
870 }
871
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873 struct pglist_data *node_data[MAX_NUMNODES];
874
875 EXPORT_SYMBOL(numa_cpu_lookup_table);
876 EXPORT_SYMBOL(numa_cpumask_lookup_table);
877 EXPORT_SYMBOL(node_data);
878
879 struct mdesc_mlgroup {
880 u64 node;
881 u64 latency;
882 u64 match;
883 u64 mask;
884 };
885 static struct mdesc_mlgroup *mlgroups;
886 static int num_mlgroups;
887
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)888 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
889 u32 cfg_handle)
890 {
891 u64 arc;
892
893 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
894 u64 target = mdesc_arc_target(md, arc);
895 const u64 *val;
896
897 val = mdesc_get_property(md, target,
898 "cfg-handle", NULL);
899 if (val && *val == cfg_handle)
900 return 0;
901 }
902 return -ENODEV;
903 }
904
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)905 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
906 u32 cfg_handle)
907 {
908 u64 arc, candidate, best_latency = ~(u64)0;
909
910 candidate = MDESC_NODE_NULL;
911 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
912 u64 target = mdesc_arc_target(md, arc);
913 const char *name = mdesc_node_name(md, target);
914 const u64 *val;
915
916 if (strcmp(name, "pio-latency-group"))
917 continue;
918
919 val = mdesc_get_property(md, target, "latency", NULL);
920 if (!val)
921 continue;
922
923 if (*val < best_latency) {
924 candidate = target;
925 best_latency = *val;
926 }
927 }
928
929 if (candidate == MDESC_NODE_NULL)
930 return -ENODEV;
931
932 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
933 }
934
of_node_to_nid(struct device_node * dp)935 int of_node_to_nid(struct device_node *dp)
936 {
937 const struct linux_prom64_registers *regs;
938 struct mdesc_handle *md;
939 u32 cfg_handle;
940 int count, nid;
941 u64 grp;
942
943 /* This is the right thing to do on currently supported
944 * SUN4U NUMA platforms as well, as the PCI controller does
945 * not sit behind any particular memory controller.
946 */
947 if (!mlgroups)
948 return -1;
949
950 regs = of_get_property(dp, "reg", NULL);
951 if (!regs)
952 return -1;
953
954 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
955
956 md = mdesc_grab();
957
958 count = 0;
959 nid = -1;
960 mdesc_for_each_node_by_name(md, grp, "group") {
961 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
962 nid = count;
963 break;
964 }
965 count++;
966 }
967
968 mdesc_release(md);
969
970 return nid;
971 }
972
add_node_ranges(void)973 static void __init add_node_ranges(void)
974 {
975 struct memblock_region *reg;
976
977 for_each_memblock(memory, reg) {
978 unsigned long size = reg->size;
979 unsigned long start, end;
980
981 start = reg->base;
982 end = start + size;
983 while (start < end) {
984 unsigned long this_end;
985 int nid;
986
987 this_end = memblock_nid_range(start, end, &nid);
988
989 numadbg("Setting memblock NUMA node nid[%d] "
990 "start[%lx] end[%lx]\n",
991 nid, start, this_end);
992
993 memblock_set_node(start, this_end - start, nid);
994 start = this_end;
995 }
996 }
997 }
998
grab_mlgroups(struct mdesc_handle * md)999 static int __init grab_mlgroups(struct mdesc_handle *md)
1000 {
1001 unsigned long paddr;
1002 int count = 0;
1003 u64 node;
1004
1005 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1006 count++;
1007 if (!count)
1008 return -ENOENT;
1009
1010 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1011 SMP_CACHE_BYTES);
1012 if (!paddr)
1013 return -ENOMEM;
1014
1015 mlgroups = __va(paddr);
1016 num_mlgroups = count;
1017
1018 count = 0;
1019 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1020 struct mdesc_mlgroup *m = &mlgroups[count++];
1021 const u64 *val;
1022
1023 m->node = node;
1024
1025 val = mdesc_get_property(md, node, "latency", NULL);
1026 m->latency = *val;
1027 val = mdesc_get_property(md, node, "address-match", NULL);
1028 m->match = *val;
1029 val = mdesc_get_property(md, node, "address-mask", NULL);
1030 m->mask = *val;
1031
1032 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1033 "match[%llx] mask[%llx]\n",
1034 count - 1, m->node, m->latency, m->match, m->mask);
1035 }
1036
1037 return 0;
1038 }
1039
grab_mblocks(struct mdesc_handle * md)1040 static int __init grab_mblocks(struct mdesc_handle *md)
1041 {
1042 unsigned long paddr;
1043 int count = 0;
1044 u64 node;
1045
1046 mdesc_for_each_node_by_name(md, node, "mblock")
1047 count++;
1048 if (!count)
1049 return -ENOENT;
1050
1051 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1052 SMP_CACHE_BYTES);
1053 if (!paddr)
1054 return -ENOMEM;
1055
1056 mblocks = __va(paddr);
1057 num_mblocks = count;
1058
1059 count = 0;
1060 mdesc_for_each_node_by_name(md, node, "mblock") {
1061 struct mdesc_mblock *m = &mblocks[count++];
1062 const u64 *val;
1063
1064 val = mdesc_get_property(md, node, "base", NULL);
1065 m->base = *val;
1066 val = mdesc_get_property(md, node, "size", NULL);
1067 m->size = *val;
1068 val = mdesc_get_property(md, node,
1069 "address-congruence-offset", NULL);
1070
1071 /* The address-congruence-offset property is optional.
1072 * Explicity zero it be identifty this.
1073 */
1074 if (val)
1075 m->offset = *val;
1076 else
1077 m->offset = 0UL;
1078
1079 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1080 count - 1, m->base, m->size, m->offset);
1081 }
1082
1083 return 0;
1084 }
1085
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1086 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1087 u64 grp, cpumask_t *mask)
1088 {
1089 u64 arc;
1090
1091 cpumask_clear(mask);
1092
1093 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1094 u64 target = mdesc_arc_target(md, arc);
1095 const char *name = mdesc_node_name(md, target);
1096 const u64 *id;
1097
1098 if (strcmp(name, "cpu"))
1099 continue;
1100 id = mdesc_get_property(md, target, "id", NULL);
1101 if (*id < nr_cpu_ids)
1102 cpumask_set_cpu(*id, mask);
1103 }
1104 }
1105
find_mlgroup(u64 node)1106 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1107 {
1108 int i;
1109
1110 for (i = 0; i < num_mlgroups; i++) {
1111 struct mdesc_mlgroup *m = &mlgroups[i];
1112 if (m->node == node)
1113 return m;
1114 }
1115 return NULL;
1116 }
1117
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1118 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1119 int index)
1120 {
1121 struct mdesc_mlgroup *candidate = NULL;
1122 u64 arc, best_latency = ~(u64)0;
1123 struct node_mem_mask *n;
1124
1125 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1126 u64 target = mdesc_arc_target(md, arc);
1127 struct mdesc_mlgroup *m = find_mlgroup(target);
1128 if (!m)
1129 continue;
1130 if (m->latency < best_latency) {
1131 candidate = m;
1132 best_latency = m->latency;
1133 }
1134 }
1135 if (!candidate)
1136 return -ENOENT;
1137
1138 if (num_node_masks != index) {
1139 printk(KERN_ERR "Inconsistent NUMA state, "
1140 "index[%d] != num_node_masks[%d]\n",
1141 index, num_node_masks);
1142 return -EINVAL;
1143 }
1144
1145 n = &node_masks[num_node_masks++];
1146
1147 n->mask = candidate->mask;
1148 n->val = candidate->match;
1149
1150 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1151 index, n->mask, n->val, candidate->latency);
1152
1153 return 0;
1154 }
1155
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1156 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1157 int index)
1158 {
1159 cpumask_t mask;
1160 int cpu;
1161
1162 numa_parse_mdesc_group_cpus(md, grp, &mask);
1163
1164 for_each_cpu(cpu, &mask)
1165 numa_cpu_lookup_table[cpu] = index;
1166 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1167
1168 if (numa_debug) {
1169 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1170 for_each_cpu(cpu, &mask)
1171 printk("%d ", cpu);
1172 printk("]\n");
1173 }
1174
1175 return numa_attach_mlgroup(md, grp, index);
1176 }
1177
numa_parse_mdesc(void)1178 static int __init numa_parse_mdesc(void)
1179 {
1180 struct mdesc_handle *md = mdesc_grab();
1181 int i, err, count;
1182 u64 node;
1183
1184 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1185 if (node == MDESC_NODE_NULL) {
1186 mdesc_release(md);
1187 return -ENOENT;
1188 }
1189
1190 err = grab_mblocks(md);
1191 if (err < 0)
1192 goto out;
1193
1194 err = grab_mlgroups(md);
1195 if (err < 0)
1196 goto out;
1197
1198 count = 0;
1199 mdesc_for_each_node_by_name(md, node, "group") {
1200 err = numa_parse_mdesc_group(md, node, count);
1201 if (err < 0)
1202 break;
1203 count++;
1204 }
1205
1206 add_node_ranges();
1207
1208 for (i = 0; i < num_node_masks; i++) {
1209 allocate_node_data(i);
1210 node_set_online(i);
1211 }
1212
1213 err = 0;
1214 out:
1215 mdesc_release(md);
1216 return err;
1217 }
1218
numa_parse_jbus(void)1219 static int __init numa_parse_jbus(void)
1220 {
1221 unsigned long cpu, index;
1222
1223 /* NUMA node id is encoded in bits 36 and higher, and there is
1224 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1225 */
1226 index = 0;
1227 for_each_present_cpu(cpu) {
1228 numa_cpu_lookup_table[cpu] = index;
1229 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1230 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1231 node_masks[index].val = cpu << 36UL;
1232
1233 index++;
1234 }
1235 num_node_masks = index;
1236
1237 add_node_ranges();
1238
1239 for (index = 0; index < num_node_masks; index++) {
1240 allocate_node_data(index);
1241 node_set_online(index);
1242 }
1243
1244 return 0;
1245 }
1246
numa_parse_sun4u(void)1247 static int __init numa_parse_sun4u(void)
1248 {
1249 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1250 unsigned long ver;
1251
1252 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1253 if ((ver >> 32UL) == __JALAPENO_ID ||
1254 (ver >> 32UL) == __SERRANO_ID)
1255 return numa_parse_jbus();
1256 }
1257 return -1;
1258 }
1259
bootmem_init_numa(void)1260 static int __init bootmem_init_numa(void)
1261 {
1262 int err = -1;
1263
1264 numadbg("bootmem_init_numa()\n");
1265
1266 if (numa_enabled) {
1267 if (tlb_type == hypervisor)
1268 err = numa_parse_mdesc();
1269 else
1270 err = numa_parse_sun4u();
1271 }
1272 return err;
1273 }
1274
1275 #else
1276
bootmem_init_numa(void)1277 static int bootmem_init_numa(void)
1278 {
1279 return -1;
1280 }
1281
1282 #endif
1283
bootmem_init_nonnuma(void)1284 static void __init bootmem_init_nonnuma(void)
1285 {
1286 unsigned long top_of_ram = memblock_end_of_DRAM();
1287 unsigned long total_ram = memblock_phys_mem_size();
1288
1289 numadbg("bootmem_init_nonnuma()\n");
1290
1291 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1292 top_of_ram, total_ram);
1293 printk(KERN_INFO "Memory hole size: %ldMB\n",
1294 (top_of_ram - total_ram) >> 20);
1295
1296 init_node_masks_nonnuma();
1297 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1298 allocate_node_data(0);
1299 node_set_online(0);
1300 }
1301
reserve_range_in_node(int nid,unsigned long start,unsigned long end)1302 static void __init reserve_range_in_node(int nid, unsigned long start,
1303 unsigned long end)
1304 {
1305 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1306 nid, start, end);
1307 while (start < end) {
1308 unsigned long this_end;
1309 int n;
1310
1311 this_end = memblock_nid_range(start, end, &n);
1312 if (n == nid) {
1313 numadbg(" MATCH reserving range [%lx:%lx]\n",
1314 start, this_end);
1315 reserve_bootmem_node(NODE_DATA(nid), start,
1316 (this_end - start), BOOTMEM_DEFAULT);
1317 } else
1318 numadbg(" NO MATCH, advancing start to %lx\n",
1319 this_end);
1320
1321 start = this_end;
1322 }
1323 }
1324
trim_reserved_in_node(int nid)1325 static void __init trim_reserved_in_node(int nid)
1326 {
1327 struct memblock_region *reg;
1328
1329 numadbg(" trim_reserved_in_node(%d)\n", nid);
1330
1331 for_each_memblock(reserved, reg)
1332 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1333 }
1334
bootmem_init_one_node(int nid)1335 static void __init bootmem_init_one_node(int nid)
1336 {
1337 struct pglist_data *p;
1338
1339 numadbg("bootmem_init_one_node(%d)\n", nid);
1340
1341 p = NODE_DATA(nid);
1342
1343 if (p->node_spanned_pages) {
1344 unsigned long paddr = node_masks[nid].bootmem_paddr;
1345 unsigned long end_pfn;
1346
1347 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1348
1349 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1350 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1351
1352 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1353 p->node_start_pfn, end_pfn);
1354
1355 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1356 nid, end_pfn);
1357 free_bootmem_with_active_regions(nid, end_pfn);
1358
1359 trim_reserved_in_node(nid);
1360
1361 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1362 nid);
1363 sparse_memory_present_with_active_regions(nid);
1364 }
1365 }
1366
bootmem_init(unsigned long phys_base)1367 static unsigned long __init bootmem_init(unsigned long phys_base)
1368 {
1369 unsigned long end_pfn;
1370 int nid;
1371
1372 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1373 max_pfn = max_low_pfn = end_pfn;
1374 min_low_pfn = (phys_base >> PAGE_SHIFT);
1375
1376 if (bootmem_init_numa() < 0)
1377 bootmem_init_nonnuma();
1378
1379 /* XXX cpu notifier XXX */
1380
1381 for_each_online_node(nid)
1382 bootmem_init_one_node(nid);
1383
1384 sparse_init();
1385
1386 return end_pfn;
1387 }
1388
1389 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1390 static int pall_ents __initdata;
1391
1392 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot)1393 static unsigned long __ref kernel_map_range(unsigned long pstart,
1394 unsigned long pend, pgprot_t prot)
1395 {
1396 unsigned long vstart = PAGE_OFFSET + pstart;
1397 unsigned long vend = PAGE_OFFSET + pend;
1398 unsigned long alloc_bytes = 0UL;
1399
1400 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1401 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1402 vstart, vend);
1403 prom_halt();
1404 }
1405
1406 while (vstart < vend) {
1407 unsigned long this_end, paddr = __pa(vstart);
1408 pgd_t *pgd = pgd_offset_k(vstart);
1409 pud_t *pud;
1410 pmd_t *pmd;
1411 pte_t *pte;
1412
1413 pud = pud_offset(pgd, vstart);
1414 if (pud_none(*pud)) {
1415 pmd_t *new;
1416
1417 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1418 alloc_bytes += PAGE_SIZE;
1419 pud_populate(&init_mm, pud, new);
1420 }
1421
1422 pmd = pmd_offset(pud, vstart);
1423 if (!pmd_present(*pmd)) {
1424 pte_t *new;
1425
1426 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1427 alloc_bytes += PAGE_SIZE;
1428 pmd_populate_kernel(&init_mm, pmd, new);
1429 }
1430
1431 pte = pte_offset_kernel(pmd, vstart);
1432 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1433 if (this_end > vend)
1434 this_end = vend;
1435
1436 while (vstart < this_end) {
1437 pte_val(*pte) = (paddr | pgprot_val(prot));
1438
1439 vstart += PAGE_SIZE;
1440 paddr += PAGE_SIZE;
1441 pte++;
1442 }
1443 }
1444
1445 return alloc_bytes;
1446 }
1447
1448 extern unsigned int kvmap_linear_patch[1];
1449 #endif /* CONFIG_DEBUG_PAGEALLOC */
1450
mark_kpte_bitmap(unsigned long start,unsigned long end)1451 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1452 {
1453 const unsigned long shift_256MB = 28;
1454 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1455 const unsigned long size_256MB = (1UL << shift_256MB);
1456
1457 while (start < end) {
1458 long remains;
1459
1460 remains = end - start;
1461 if (remains < size_256MB)
1462 break;
1463
1464 if (start & mask_256MB) {
1465 start = (start + size_256MB) & ~mask_256MB;
1466 continue;
1467 }
1468
1469 while (remains >= size_256MB) {
1470 unsigned long index = start >> shift_256MB;
1471
1472 __set_bit(index, kpte_linear_bitmap);
1473
1474 start += size_256MB;
1475 remains -= size_256MB;
1476 }
1477 }
1478 }
1479
init_kpte_bitmap(void)1480 static void __init init_kpte_bitmap(void)
1481 {
1482 unsigned long i;
1483
1484 for (i = 0; i < pall_ents; i++) {
1485 unsigned long phys_start, phys_end;
1486
1487 phys_start = pall[i].phys_addr;
1488 phys_end = phys_start + pall[i].reg_size;
1489
1490 mark_kpte_bitmap(phys_start, phys_end);
1491 }
1492 }
1493
kernel_physical_mapping_init(void)1494 static void __init kernel_physical_mapping_init(void)
1495 {
1496 #ifdef CONFIG_DEBUG_PAGEALLOC
1497 unsigned long i, mem_alloced = 0UL;
1498
1499 for (i = 0; i < pall_ents; i++) {
1500 unsigned long phys_start, phys_end;
1501
1502 phys_start = pall[i].phys_addr;
1503 phys_end = phys_start + pall[i].reg_size;
1504
1505 mem_alloced += kernel_map_range(phys_start, phys_end,
1506 PAGE_KERNEL);
1507 }
1508
1509 printk("Allocated %ld bytes for kernel page tables.\n",
1510 mem_alloced);
1511
1512 kvmap_linear_patch[0] = 0x01000000; /* nop */
1513 flushi(&kvmap_linear_patch[0]);
1514
1515 __flush_tlb_all();
1516 #endif
1517 }
1518
1519 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_pages(struct page * page,int numpages,int enable)1520 void kernel_map_pages(struct page *page, int numpages, int enable)
1521 {
1522 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1523 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1524
1525 kernel_map_range(phys_start, phys_end,
1526 (enable ? PAGE_KERNEL : __pgprot(0)));
1527
1528 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1529 PAGE_OFFSET + phys_end);
1530
1531 /* we should perform an IPI and flush all tlbs,
1532 * but that can deadlock->flush only current cpu.
1533 */
1534 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1535 PAGE_OFFSET + phys_end);
1536 }
1537 #endif
1538
find_ecache_flush_span(unsigned long size)1539 unsigned long __init find_ecache_flush_span(unsigned long size)
1540 {
1541 int i;
1542
1543 for (i = 0; i < pavail_ents; i++) {
1544 if (pavail[i].reg_size >= size)
1545 return pavail[i].phys_addr;
1546 }
1547
1548 return ~0UL;
1549 }
1550
tsb_phys_patch(void)1551 static void __init tsb_phys_patch(void)
1552 {
1553 struct tsb_ldquad_phys_patch_entry *pquad;
1554 struct tsb_phys_patch_entry *p;
1555
1556 pquad = &__tsb_ldquad_phys_patch;
1557 while (pquad < &__tsb_ldquad_phys_patch_end) {
1558 unsigned long addr = pquad->addr;
1559
1560 if (tlb_type == hypervisor)
1561 *(unsigned int *) addr = pquad->sun4v_insn;
1562 else
1563 *(unsigned int *) addr = pquad->sun4u_insn;
1564 wmb();
1565 __asm__ __volatile__("flush %0"
1566 : /* no outputs */
1567 : "r" (addr));
1568
1569 pquad++;
1570 }
1571
1572 p = &__tsb_phys_patch;
1573 while (p < &__tsb_phys_patch_end) {
1574 unsigned long addr = p->addr;
1575
1576 *(unsigned int *) addr = p->insn;
1577 wmb();
1578 __asm__ __volatile__("flush %0"
1579 : /* no outputs */
1580 : "r" (addr));
1581
1582 p++;
1583 }
1584 }
1585
1586 /* Don't mark as init, we give this to the Hypervisor. */
1587 #ifndef CONFIG_DEBUG_PAGEALLOC
1588 #define NUM_KTSB_DESCR 2
1589 #else
1590 #define NUM_KTSB_DESCR 1
1591 #endif
1592 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1593 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1594
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)1595 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1596 {
1597 pa >>= KTSB_PHYS_SHIFT;
1598
1599 while (start < end) {
1600 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1601
1602 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1603 __asm__ __volatile__("flush %0" : : "r" (ia));
1604
1605 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1606 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1607
1608 start++;
1609 }
1610 }
1611
ktsb_phys_patch(void)1612 static void ktsb_phys_patch(void)
1613 {
1614 extern unsigned int __swapper_tsb_phys_patch;
1615 extern unsigned int __swapper_tsb_phys_patch_end;
1616 unsigned long ktsb_pa;
1617
1618 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1619 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1620 &__swapper_tsb_phys_patch_end, ktsb_pa);
1621 #ifndef CONFIG_DEBUG_PAGEALLOC
1622 {
1623 extern unsigned int __swapper_4m_tsb_phys_patch;
1624 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1625 ktsb_pa = (kern_base +
1626 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1627 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1628 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1629 }
1630 #endif
1631 }
1632
sun4v_ktsb_init(void)1633 static void __init sun4v_ktsb_init(void)
1634 {
1635 unsigned long ktsb_pa;
1636
1637 /* First KTSB for PAGE_SIZE mappings. */
1638 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1639
1640 switch (PAGE_SIZE) {
1641 case 8 * 1024:
1642 default:
1643 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1644 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1645 break;
1646
1647 case 64 * 1024:
1648 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1649 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1650 break;
1651
1652 case 512 * 1024:
1653 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1654 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1655 break;
1656
1657 case 4 * 1024 * 1024:
1658 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1659 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1660 break;
1661 }
1662
1663 ktsb_descr[0].assoc = 1;
1664 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1665 ktsb_descr[0].ctx_idx = 0;
1666 ktsb_descr[0].tsb_base = ktsb_pa;
1667 ktsb_descr[0].resv = 0;
1668
1669 #ifndef CONFIG_DEBUG_PAGEALLOC
1670 /* Second KTSB for 4MB/256MB mappings. */
1671 ktsb_pa = (kern_base +
1672 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1673
1674 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1675 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1676 HV_PGSZ_MASK_256MB);
1677 ktsb_descr[1].assoc = 1;
1678 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1679 ktsb_descr[1].ctx_idx = 0;
1680 ktsb_descr[1].tsb_base = ktsb_pa;
1681 ktsb_descr[1].resv = 0;
1682 #endif
1683 }
1684
sun4v_ktsb_register(void)1685 void __cpuinit sun4v_ktsb_register(void)
1686 {
1687 unsigned long pa, ret;
1688
1689 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1690
1691 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1692 if (ret != 0) {
1693 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1694 "errors with %lx\n", pa, ret);
1695 prom_halt();
1696 }
1697 }
1698
1699 /* paging_init() sets up the page tables */
1700
1701 static unsigned long last_valid_pfn;
1702 pgd_t swapper_pg_dir[2048];
1703
1704 static void sun4u_pgprot_init(void);
1705 static void sun4v_pgprot_init(void);
1706
paging_init(void)1707 void __init paging_init(void)
1708 {
1709 unsigned long end_pfn, shift, phys_base;
1710 unsigned long real_end, i;
1711
1712 /* These build time checkes make sure that the dcache_dirty_cpu()
1713 * page->flags usage will work.
1714 *
1715 * When a page gets marked as dcache-dirty, we store the
1716 * cpu number starting at bit 32 in the page->flags. Also,
1717 * functions like clear_dcache_dirty_cpu use the cpu mask
1718 * in 13-bit signed-immediate instruction fields.
1719 */
1720
1721 /*
1722 * Page flags must not reach into upper 32 bits that are used
1723 * for the cpu number
1724 */
1725 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1726
1727 /*
1728 * The bit fields placed in the high range must not reach below
1729 * the 32 bit boundary. Otherwise we cannot place the cpu field
1730 * at the 32 bit boundary.
1731 */
1732 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1733 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1734
1735 BUILD_BUG_ON(NR_CPUS > 4096);
1736
1737 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1738 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1739
1740 /* Invalidate both kernel TSBs. */
1741 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1742 #ifndef CONFIG_DEBUG_PAGEALLOC
1743 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1744 #endif
1745
1746 if (tlb_type == hypervisor)
1747 sun4v_pgprot_init();
1748 else
1749 sun4u_pgprot_init();
1750
1751 if (tlb_type == cheetah_plus ||
1752 tlb_type == hypervisor) {
1753 tsb_phys_patch();
1754 ktsb_phys_patch();
1755 }
1756
1757 if (tlb_type == hypervisor) {
1758 sun4v_patch_tlb_handlers();
1759 sun4v_ktsb_init();
1760 }
1761
1762 /* Find available physical memory...
1763 *
1764 * Read it twice in order to work around a bug in openfirmware.
1765 * The call to grab this table itself can cause openfirmware to
1766 * allocate memory, which in turn can take away some space from
1767 * the list of available memory. Reading it twice makes sure
1768 * we really do get the final value.
1769 */
1770 read_obp_translations();
1771 read_obp_memory("reg", &pall[0], &pall_ents);
1772 read_obp_memory("available", &pavail[0], &pavail_ents);
1773 read_obp_memory("available", &pavail[0], &pavail_ents);
1774
1775 phys_base = 0xffffffffffffffffUL;
1776 for (i = 0; i < pavail_ents; i++) {
1777 phys_base = min(phys_base, pavail[i].phys_addr);
1778 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1779 }
1780
1781 memblock_reserve(kern_base, kern_size);
1782
1783 find_ramdisk(phys_base);
1784
1785 memblock_enforce_memory_limit(cmdline_memory_size);
1786
1787 memblock_allow_resize();
1788 memblock_dump_all();
1789
1790 set_bit(0, mmu_context_bmap);
1791
1792 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1793
1794 real_end = (unsigned long)_end;
1795 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1796 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1797 num_kernel_image_mappings);
1798
1799 /* Set kernel pgd to upper alias so physical page computations
1800 * work.
1801 */
1802 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1803
1804 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1805
1806 /* Now can init the kernel/bad page tables. */
1807 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1808 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1809
1810 inherit_prom_mappings();
1811
1812 init_kpte_bitmap();
1813
1814 /* Ok, we can use our TLB miss and window trap handlers safely. */
1815 setup_tba();
1816
1817 __flush_tlb_all();
1818
1819 if (tlb_type == hypervisor)
1820 sun4v_ktsb_register();
1821
1822 prom_build_devicetree();
1823 of_populate_present_mask();
1824 #ifndef CONFIG_SMP
1825 of_fill_in_cpu_data();
1826 #endif
1827
1828 if (tlb_type == hypervisor) {
1829 sun4v_mdesc_init();
1830 mdesc_populate_present_mask(cpu_all_mask);
1831 #ifndef CONFIG_SMP
1832 mdesc_fill_in_cpu_data(cpu_all_mask);
1833 #endif
1834 }
1835
1836 /* Once the OF device tree and MDESC have been setup, we know
1837 * the list of possible cpus. Therefore we can allocate the
1838 * IRQ stacks.
1839 */
1840 for_each_possible_cpu(i) {
1841 /* XXX Use node local allocations... XXX */
1842 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1843 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1844 }
1845
1846 /* Setup bootmem... */
1847 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1848
1849 #ifndef CONFIG_NEED_MULTIPLE_NODES
1850 max_mapnr = last_valid_pfn;
1851 #endif
1852 kernel_physical_mapping_init();
1853
1854 {
1855 unsigned long max_zone_pfns[MAX_NR_ZONES];
1856
1857 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1858
1859 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1860
1861 free_area_init_nodes(max_zone_pfns);
1862 }
1863
1864 printk("Booting Linux...\n");
1865 }
1866
page_in_phys_avail(unsigned long paddr)1867 int __devinit page_in_phys_avail(unsigned long paddr)
1868 {
1869 int i;
1870
1871 paddr &= PAGE_MASK;
1872
1873 for (i = 0; i < pavail_ents; i++) {
1874 unsigned long start, end;
1875
1876 start = pavail[i].phys_addr;
1877 end = start + pavail[i].reg_size;
1878
1879 if (paddr >= start && paddr < end)
1880 return 1;
1881 }
1882 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1883 return 1;
1884 #ifdef CONFIG_BLK_DEV_INITRD
1885 if (paddr >= __pa(initrd_start) &&
1886 paddr < __pa(PAGE_ALIGN(initrd_end)))
1887 return 1;
1888 #endif
1889
1890 return 0;
1891 }
1892
1893 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1894 static int pavail_rescan_ents __initdata;
1895
1896 /* Certain OBP calls, such as fetching "available" properties, can
1897 * claim physical memory. So, along with initializing the valid
1898 * address bitmap, what we do here is refetch the physical available
1899 * memory list again, and make sure it provides at least as much
1900 * memory as 'pavail' does.
1901 */
setup_valid_addr_bitmap_from_pavail(unsigned long * bitmap)1902 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1903 {
1904 int i;
1905
1906 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1907
1908 for (i = 0; i < pavail_ents; i++) {
1909 unsigned long old_start, old_end;
1910
1911 old_start = pavail[i].phys_addr;
1912 old_end = old_start + pavail[i].reg_size;
1913 while (old_start < old_end) {
1914 int n;
1915
1916 for (n = 0; n < pavail_rescan_ents; n++) {
1917 unsigned long new_start, new_end;
1918
1919 new_start = pavail_rescan[n].phys_addr;
1920 new_end = new_start +
1921 pavail_rescan[n].reg_size;
1922
1923 if (new_start <= old_start &&
1924 new_end >= (old_start + PAGE_SIZE)) {
1925 set_bit(old_start >> 22, bitmap);
1926 goto do_next_page;
1927 }
1928 }
1929
1930 prom_printf("mem_init: Lost memory in pavail\n");
1931 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1932 pavail[i].phys_addr,
1933 pavail[i].reg_size);
1934 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1935 pavail_rescan[i].phys_addr,
1936 pavail_rescan[i].reg_size);
1937 prom_printf("mem_init: Cannot continue, aborting.\n");
1938 prom_halt();
1939
1940 do_next_page:
1941 old_start += PAGE_SIZE;
1942 }
1943 }
1944 }
1945
patch_tlb_miss_handler_bitmap(void)1946 static void __init patch_tlb_miss_handler_bitmap(void)
1947 {
1948 extern unsigned int valid_addr_bitmap_insn[];
1949 extern unsigned int valid_addr_bitmap_patch[];
1950
1951 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1952 mb();
1953 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1954 flushi(&valid_addr_bitmap_insn[0]);
1955 }
1956
mem_init(void)1957 void __init mem_init(void)
1958 {
1959 unsigned long codepages, datapages, initpages;
1960 unsigned long addr, last;
1961
1962 addr = PAGE_OFFSET + kern_base;
1963 last = PAGE_ALIGN(kern_size) + addr;
1964 while (addr < last) {
1965 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1966 addr += PAGE_SIZE;
1967 }
1968
1969 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1970 patch_tlb_miss_handler_bitmap();
1971
1972 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1973
1974 #ifdef CONFIG_NEED_MULTIPLE_NODES
1975 {
1976 int i;
1977 for_each_online_node(i) {
1978 if (NODE_DATA(i)->node_spanned_pages != 0) {
1979 totalram_pages +=
1980 free_all_bootmem_node(NODE_DATA(i));
1981 }
1982 }
1983 }
1984 #else
1985 totalram_pages = free_all_bootmem();
1986 #endif
1987
1988 /* We subtract one to account for the mem_map_zero page
1989 * allocated below.
1990 */
1991 totalram_pages -= 1;
1992 num_physpages = totalram_pages;
1993
1994 /*
1995 * Set up the zero page, mark it reserved, so that page count
1996 * is not manipulated when freeing the page from user ptes.
1997 */
1998 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1999 if (mem_map_zero == NULL) {
2000 prom_printf("paging_init: Cannot alloc zero page.\n");
2001 prom_halt();
2002 }
2003 SetPageReserved(mem_map_zero);
2004
2005 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2006 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2007 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2008 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2009 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2010 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2011
2012 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2013 nr_free_pages() << (PAGE_SHIFT-10),
2014 codepages << (PAGE_SHIFT-10),
2015 datapages << (PAGE_SHIFT-10),
2016 initpages << (PAGE_SHIFT-10),
2017 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2018
2019 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2020 cheetah_ecache_flush_init();
2021 }
2022
free_initmem(void)2023 void free_initmem(void)
2024 {
2025 unsigned long addr, initend;
2026 int do_free = 1;
2027
2028 /* If the physical memory maps were trimmed by kernel command
2029 * line options, don't even try freeing this initmem stuff up.
2030 * The kernel image could have been in the trimmed out region
2031 * and if so the freeing below will free invalid page structs.
2032 */
2033 if (cmdline_memory_size)
2034 do_free = 0;
2035
2036 /*
2037 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2038 */
2039 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2040 initend = (unsigned long)(__init_end) & PAGE_MASK;
2041 for (; addr < initend; addr += PAGE_SIZE) {
2042 unsigned long page;
2043 struct page *p;
2044
2045 page = (addr +
2046 ((unsigned long) __va(kern_base)) -
2047 ((unsigned long) KERNBASE));
2048 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2049
2050 if (do_free) {
2051 p = virt_to_page(page);
2052
2053 ClearPageReserved(p);
2054 init_page_count(p);
2055 __free_page(p);
2056 num_physpages++;
2057 totalram_pages++;
2058 }
2059 }
2060 }
2061
2062 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2063 void free_initrd_mem(unsigned long start, unsigned long end)
2064 {
2065 if (start < end)
2066 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2067 for (; start < end; start += PAGE_SIZE) {
2068 struct page *p = virt_to_page(start);
2069
2070 ClearPageReserved(p);
2071 init_page_count(p);
2072 __free_page(p);
2073 num_physpages++;
2074 totalram_pages++;
2075 }
2076 }
2077 #endif
2078
2079 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2080 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2081 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2082 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2083 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2084 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2085
2086 pgprot_t PAGE_KERNEL __read_mostly;
2087 EXPORT_SYMBOL(PAGE_KERNEL);
2088
2089 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2090 pgprot_t PAGE_COPY __read_mostly;
2091
2092 pgprot_t PAGE_SHARED __read_mostly;
2093 EXPORT_SYMBOL(PAGE_SHARED);
2094
2095 unsigned long pg_iobits __read_mostly;
2096
2097 unsigned long _PAGE_IE __read_mostly;
2098 EXPORT_SYMBOL(_PAGE_IE);
2099
2100 unsigned long _PAGE_E __read_mostly;
2101 EXPORT_SYMBOL(_PAGE_E);
2102
2103 unsigned long _PAGE_CACHE __read_mostly;
2104 EXPORT_SYMBOL(_PAGE_CACHE);
2105
2106 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2107 unsigned long vmemmap_table[VMEMMAP_SIZE];
2108
2109 static long __meminitdata addr_start, addr_end;
2110 static int __meminitdata node_start;
2111
vmemmap_populate(struct page * start,unsigned long nr,int node)2112 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2113 {
2114 unsigned long vstart = (unsigned long) start;
2115 unsigned long vend = (unsigned long) (start + nr);
2116 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2117 unsigned long phys_end = (vend - VMEMMAP_BASE);
2118 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2119 unsigned long end = VMEMMAP_ALIGN(phys_end);
2120 unsigned long pte_base;
2121
2122 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2123 _PAGE_CP_4U | _PAGE_CV_4U |
2124 _PAGE_P_4U | _PAGE_W_4U);
2125 if (tlb_type == hypervisor)
2126 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2127 _PAGE_CP_4V | _PAGE_CV_4V |
2128 _PAGE_P_4V | _PAGE_W_4V);
2129
2130 for (; addr < end; addr += VMEMMAP_CHUNK) {
2131 unsigned long *vmem_pp =
2132 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2133 void *block;
2134
2135 if (!(*vmem_pp & _PAGE_VALID)) {
2136 block = vmemmap_alloc_block(1UL << 22, node);
2137 if (!block)
2138 return -ENOMEM;
2139
2140 *vmem_pp = pte_base | __pa(block);
2141
2142 /* check to see if we have contiguous blocks */
2143 if (addr_end != addr || node_start != node) {
2144 if (addr_start)
2145 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2146 addr_start, addr_end-1, node_start);
2147 addr_start = addr;
2148 node_start = node;
2149 }
2150 addr_end = addr + VMEMMAP_CHUNK;
2151 }
2152 }
2153 return 0;
2154 }
2155
vmemmap_populate_print_last(void)2156 void __meminit vmemmap_populate_print_last(void)
2157 {
2158 if (addr_start) {
2159 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2160 addr_start, addr_end-1, node_start);
2161 addr_start = 0;
2162 addr_end = 0;
2163 node_start = 0;
2164 }
2165 }
2166 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2167
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2168 static void prot_init_common(unsigned long page_none,
2169 unsigned long page_shared,
2170 unsigned long page_copy,
2171 unsigned long page_readonly,
2172 unsigned long page_exec_bit)
2173 {
2174 PAGE_COPY = __pgprot(page_copy);
2175 PAGE_SHARED = __pgprot(page_shared);
2176
2177 protection_map[0x0] = __pgprot(page_none);
2178 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2179 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2180 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2181 protection_map[0x4] = __pgprot(page_readonly);
2182 protection_map[0x5] = __pgprot(page_readonly);
2183 protection_map[0x6] = __pgprot(page_copy);
2184 protection_map[0x7] = __pgprot(page_copy);
2185 protection_map[0x8] = __pgprot(page_none);
2186 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2187 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2188 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2189 protection_map[0xc] = __pgprot(page_readonly);
2190 protection_map[0xd] = __pgprot(page_readonly);
2191 protection_map[0xe] = __pgprot(page_shared);
2192 protection_map[0xf] = __pgprot(page_shared);
2193 }
2194
sun4u_pgprot_init(void)2195 static void __init sun4u_pgprot_init(void)
2196 {
2197 unsigned long page_none, page_shared, page_copy, page_readonly;
2198 unsigned long page_exec_bit;
2199
2200 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2201 _PAGE_CACHE_4U | _PAGE_P_4U |
2202 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2203 _PAGE_EXEC_4U);
2204 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2205 _PAGE_CACHE_4U | _PAGE_P_4U |
2206 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2207 _PAGE_EXEC_4U | _PAGE_L_4U);
2208
2209 _PAGE_IE = _PAGE_IE_4U;
2210 _PAGE_E = _PAGE_E_4U;
2211 _PAGE_CACHE = _PAGE_CACHE_4U;
2212
2213 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2214 __ACCESS_BITS_4U | _PAGE_E_4U);
2215
2216 #ifdef CONFIG_DEBUG_PAGEALLOC
2217 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2218 0xfffff80000000000UL;
2219 #else
2220 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2221 0xfffff80000000000UL;
2222 #endif
2223 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2224 _PAGE_P_4U | _PAGE_W_4U);
2225
2226 /* XXX Should use 256MB on Panther. XXX */
2227 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2228
2229 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2230 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2231 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2232 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2233
2234
2235 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2236 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2237 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2238 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2239 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2240 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2241 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2242
2243 page_exec_bit = _PAGE_EXEC_4U;
2244
2245 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2246 page_exec_bit);
2247 }
2248
sun4v_pgprot_init(void)2249 static void __init sun4v_pgprot_init(void)
2250 {
2251 unsigned long page_none, page_shared, page_copy, page_readonly;
2252 unsigned long page_exec_bit;
2253
2254 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2255 _PAGE_CACHE_4V | _PAGE_P_4V |
2256 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2257 _PAGE_EXEC_4V);
2258 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2259
2260 _PAGE_IE = _PAGE_IE_4V;
2261 _PAGE_E = _PAGE_E_4V;
2262 _PAGE_CACHE = _PAGE_CACHE_4V;
2263
2264 #ifdef CONFIG_DEBUG_PAGEALLOC
2265 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2266 0xfffff80000000000UL;
2267 #else
2268 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2269 0xfffff80000000000UL;
2270 #endif
2271 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2272 _PAGE_P_4V | _PAGE_W_4V);
2273
2274 #ifdef CONFIG_DEBUG_PAGEALLOC
2275 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2276 0xfffff80000000000UL;
2277 #else
2278 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2279 0xfffff80000000000UL;
2280 #endif
2281 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2282 _PAGE_P_4V | _PAGE_W_4V);
2283
2284 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2285 __ACCESS_BITS_4V | _PAGE_E_4V);
2286
2287 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2288 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2289 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2290 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2291 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2292
2293 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2294 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2295 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2296 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2297 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2298 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2299 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2300
2301 page_exec_bit = _PAGE_EXEC_4V;
2302
2303 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2304 page_exec_bit);
2305 }
2306
pte_sz_bits(unsigned long sz)2307 unsigned long pte_sz_bits(unsigned long sz)
2308 {
2309 if (tlb_type == hypervisor) {
2310 switch (sz) {
2311 case 8 * 1024:
2312 default:
2313 return _PAGE_SZ8K_4V;
2314 case 64 * 1024:
2315 return _PAGE_SZ64K_4V;
2316 case 512 * 1024:
2317 return _PAGE_SZ512K_4V;
2318 case 4 * 1024 * 1024:
2319 return _PAGE_SZ4MB_4V;
2320 }
2321 } else {
2322 switch (sz) {
2323 case 8 * 1024:
2324 default:
2325 return _PAGE_SZ8K_4U;
2326 case 64 * 1024:
2327 return _PAGE_SZ64K_4U;
2328 case 512 * 1024:
2329 return _PAGE_SZ512K_4U;
2330 case 4 * 1024 * 1024:
2331 return _PAGE_SZ4MB_4U;
2332 }
2333 }
2334 }
2335
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2336 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2337 {
2338 pte_t pte;
2339
2340 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2341 pte_val(pte) |= (((unsigned long)space) << 32);
2342 pte_val(pte) |= pte_sz_bits(page_size);
2343
2344 return pte;
2345 }
2346
kern_large_tte(unsigned long paddr)2347 static unsigned long kern_large_tte(unsigned long paddr)
2348 {
2349 unsigned long val;
2350
2351 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2352 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2353 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2354 if (tlb_type == hypervisor)
2355 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2356 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2357 _PAGE_EXEC_4V | _PAGE_W_4V);
2358
2359 return val | paddr;
2360 }
2361
2362 /* If not locked, zap it. */
__flush_tlb_all(void)2363 void __flush_tlb_all(void)
2364 {
2365 unsigned long pstate;
2366 int i;
2367
2368 __asm__ __volatile__("flushw\n\t"
2369 "rdpr %%pstate, %0\n\t"
2370 "wrpr %0, %1, %%pstate"
2371 : "=r" (pstate)
2372 : "i" (PSTATE_IE));
2373 if (tlb_type == hypervisor) {
2374 sun4v_mmu_demap_all();
2375 } else if (tlb_type == spitfire) {
2376 for (i = 0; i < 64; i++) {
2377 /* Spitfire Errata #32 workaround */
2378 /* NOTE: Always runs on spitfire, so no
2379 * cheetah+ page size encodings.
2380 */
2381 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2382 "flush %%g6"
2383 : /* No outputs */
2384 : "r" (0),
2385 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2386
2387 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2388 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2389 "membar #Sync"
2390 : /* no outputs */
2391 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2392 spitfire_put_dtlb_data(i, 0x0UL);
2393 }
2394
2395 /* Spitfire Errata #32 workaround */
2396 /* NOTE: Always runs on spitfire, so no
2397 * cheetah+ page size encodings.
2398 */
2399 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2400 "flush %%g6"
2401 : /* No outputs */
2402 : "r" (0),
2403 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2404
2405 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2406 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2407 "membar #Sync"
2408 : /* no outputs */
2409 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2410 spitfire_put_itlb_data(i, 0x0UL);
2411 }
2412 }
2413 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2414 cheetah_flush_dtlb_all();
2415 cheetah_flush_itlb_all();
2416 }
2417 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2418 : : "r" (pstate));
2419 }
2420