1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77
78 #include <asm/tlbflush.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107 }
108
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 *
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152 {
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 *
185 * This must be called with the mmap_lock held for reading.
186 */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
192
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266 * anon_vma_fork(). The first three want an exact copy of src, while the last
267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
278 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 struct anon_vma_chain *avc, *pavc;
282 struct anon_vma *root = NULL;
283
284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 struct anon_vma *anon_vma;
286
287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
298
299 /*
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
302 *
303 * Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
309 dst->anon_vma = anon_vma;
310 }
311 if (dst->anon_vma)
312 dst->anon_vma->num_active_vmas++;
313 unlock_anon_vma_root(root);
314 return 0;
315
316 enomem_failure:
317 /*
318 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
319 * decremented in unlink_anon_vmas().
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
326 }
327
328 /*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
337 int error;
338
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
353
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
362 anon_vma->num_active_vmas++;
363 avc = anon_vma_chain_alloc(GFP_KERNEL);
364 if (!avc)
365 goto out_error_free_anon_vma;
366
367 /*
368 * The root anon_vma's rwsem is the lock actually used when we
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
372 anon_vma->parent = pvma->anon_vma;
373 /*
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
377 */
378 get_anon_vma(anon_vma->root);
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
381 anon_vma_lock_write(anon_vma);
382 anon_vma_chain_link(vma, avc, anon_vma);
383 anon_vma->parent->num_children++;
384 anon_vma_unlock_write(anon_vma);
385
386 return 0;
387
388 out_error_free_anon_vma:
389 put_anon_vma(anon_vma);
390 out_error:
391 unlink_anon_vmas(vma);
392 return -ENOMEM;
393 }
394
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 struct anon_vma_chain *avc, *next;
398 struct anon_vma *root = NULL;
399
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 anon_vma->parent->num_children--;
416 continue;
417 }
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 if (vma->anon_vma) {
423 vma->anon_vma->num_active_vmas--;
424
425 /*
426 * vma would still be needed after unlink, and anon_vma will be prepared
427 * when handle fault.
428 */
429 vma->anon_vma = NULL;
430 }
431 unlock_anon_vma_root(root);
432
433 /*
434 * Iterate the list once more, it now only contains empty and unlinked
435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 * needing to write-acquire the anon_vma->root->rwsem.
437 */
438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 struct anon_vma *anon_vma = avc->anon_vma;
440
441 VM_WARN_ON(anon_vma->num_children);
442 VM_WARN_ON(anon_vma->num_active_vmas);
443 put_anon_vma(anon_vma);
444
445 list_del(&avc->same_vma);
446 anon_vma_chain_free(avc);
447 }
448 }
449
anon_vma_ctor(void * data)450 static void anon_vma_ctor(void *data)
451 {
452 struct anon_vma *anon_vma = data;
453
454 init_rwsem(&anon_vma->rwsem);
455 atomic_set(&anon_vma->refcount, 0);
456 anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458
anon_vma_init(void)459 void __init anon_vma_init(void)
460 {
461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 anon_vma_ctor);
464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 SLAB_PANIC|SLAB_ACCOUNT);
466 }
467
468 /*
469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470 *
471 * Since there is no serialization what so ever against page_remove_rmap()
472 * the best this function can do is return a refcount increased anon_vma
473 * that might have been relevant to this page.
474 *
475 * The page might have been remapped to a different anon_vma or the anon_vma
476 * returned may already be freed (and even reused).
477 *
478 * In case it was remapped to a different anon_vma, the new anon_vma will be a
479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480 * ensure that any anon_vma obtained from the page will still be valid for as
481 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482 *
483 * All users of this function must be very careful when walking the anon_vma
484 * chain and verify that the page in question is indeed mapped in it
485 * [ something equivalent to page_mapped_in_vma() ].
486 *
487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489 * if there is a mapcount, we can dereference the anon_vma after observing
490 * those.
491 */
page_get_anon_vma(struct page * page)492 struct anon_vma *page_get_anon_vma(struct page *page)
493 {
494 struct anon_vma *anon_vma = NULL;
495 unsigned long anon_mapping;
496
497 rcu_read_lock();
498 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
500 goto out;
501 if (!page_mapped(page))
502 goto out;
503
504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
505 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506 anon_vma = NULL;
507 goto out;
508 }
509
510 /*
511 * If this page is still mapped, then its anon_vma cannot have been
512 * freed. But if it has been unmapped, we have no security against the
513 * anon_vma structure being freed and reused (for another anon_vma:
514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
515 * above cannot corrupt).
516 */
517 if (!page_mapped(page)) {
518 rcu_read_unlock();
519 put_anon_vma(anon_vma);
520 return NULL;
521 }
522 out:
523 rcu_read_unlock();
524
525 return anon_vma;
526 }
527
528 /*
529 * Similar to page_get_anon_vma() except it locks the anon_vma.
530 *
531 * Its a little more complex as it tries to keep the fast path to a single
532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
533 * reference like with page_get_anon_vma() and then block on the mutex
534 * on !rwc->try_lock case.
535 */
folio_lock_anon_vma_read(struct folio * folio,struct rmap_walk_control * rwc)536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537 struct rmap_walk_control *rwc)
538 {
539 struct anon_vma *anon_vma = NULL;
540 struct anon_vma *root_anon_vma;
541 unsigned long anon_mapping;
542
543 rcu_read_lock();
544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546 goto out;
547 if (!folio_mapped(folio))
548 goto out;
549
550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
551 root_anon_vma = READ_ONCE(anon_vma->root);
552 if (down_read_trylock(&root_anon_vma->rwsem)) {
553 /*
554 * If the folio is still mapped, then this anon_vma is still
555 * its anon_vma, and holding the mutex ensures that it will
556 * not go away, see anon_vma_free().
557 */
558 if (!folio_mapped(folio)) {
559 up_read(&root_anon_vma->rwsem);
560 anon_vma = NULL;
561 }
562 goto out;
563 }
564
565 if (rwc && rwc->try_lock) {
566 anon_vma = NULL;
567 rwc->contended = true;
568 goto out;
569 }
570
571 /* trylock failed, we got to sleep */
572 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573 anon_vma = NULL;
574 goto out;
575 }
576
577 if (!folio_mapped(folio)) {
578 rcu_read_unlock();
579 put_anon_vma(anon_vma);
580 return NULL;
581 }
582
583 /* we pinned the anon_vma, its safe to sleep */
584 rcu_read_unlock();
585 anon_vma_lock_read(anon_vma);
586
587 if (atomic_dec_and_test(&anon_vma->refcount)) {
588 /*
589 * Oops, we held the last refcount, release the lock
590 * and bail -- can't simply use put_anon_vma() because
591 * we'll deadlock on the anon_vma_lock_write() recursion.
592 */
593 anon_vma_unlock_read(anon_vma);
594 __put_anon_vma(anon_vma);
595 anon_vma = NULL;
596 }
597
598 return anon_vma;
599
600 out:
601 rcu_read_unlock();
602 return anon_vma;
603 }
604
page_unlock_anon_vma_read(struct anon_vma * anon_vma)605 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
606 {
607 anon_vma_unlock_read(anon_vma);
608 }
609
610 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
611 /*
612 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
613 * important if a PTE was dirty when it was unmapped that it's flushed
614 * before any IO is initiated on the page to prevent lost writes. Similarly,
615 * it must be flushed before freeing to prevent data leakage.
616 */
try_to_unmap_flush(void)617 void try_to_unmap_flush(void)
618 {
619 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
620
621 if (!tlb_ubc->flush_required)
622 return;
623
624 arch_tlbbatch_flush(&tlb_ubc->arch);
625 tlb_ubc->flush_required = false;
626 tlb_ubc->writable = false;
627 }
628
629 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)630 void try_to_unmap_flush_dirty(void)
631 {
632 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
633
634 if (tlb_ubc->writable)
635 try_to_unmap_flush();
636 }
637
638 /*
639 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
640 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
641 */
642 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
643 #define TLB_FLUSH_BATCH_PENDING_MASK \
644 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
645 #define TLB_FLUSH_BATCH_PENDING_LARGE \
646 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
647
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)648 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
649 {
650 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
651 int batch, nbatch;
652
653 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
654 tlb_ubc->flush_required = true;
655
656 /*
657 * Ensure compiler does not re-order the setting of tlb_flush_batched
658 * before the PTE is cleared.
659 */
660 barrier();
661 batch = atomic_read(&mm->tlb_flush_batched);
662 retry:
663 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
664 /*
665 * Prevent `pending' from catching up with `flushed' because of
666 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
667 * `pending' becomes large.
668 */
669 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
670 if (nbatch != batch) {
671 batch = nbatch;
672 goto retry;
673 }
674 } else {
675 atomic_inc(&mm->tlb_flush_batched);
676 }
677
678 /*
679 * If the PTE was dirty then it's best to assume it's writable. The
680 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
681 * before the page is queued for IO.
682 */
683 if (writable)
684 tlb_ubc->writable = true;
685 }
686
687 /*
688 * Returns true if the TLB flush should be deferred to the end of a batch of
689 * unmap operations to reduce IPIs.
690 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
692 {
693 bool should_defer = false;
694
695 if (!(flags & TTU_BATCH_FLUSH))
696 return false;
697
698 /* If remote CPUs need to be flushed then defer batch the flush */
699 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
700 should_defer = true;
701 put_cpu();
702
703 return should_defer;
704 }
705
706 /*
707 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
708 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
709 * operation such as mprotect or munmap to race between reclaim unmapping
710 * the page and flushing the page. If this race occurs, it potentially allows
711 * access to data via a stale TLB entry. Tracking all mm's that have TLB
712 * batching in flight would be expensive during reclaim so instead track
713 * whether TLB batching occurred in the past and if so then do a flush here
714 * if required. This will cost one additional flush per reclaim cycle paid
715 * by the first operation at risk such as mprotect and mumap.
716 *
717 * This must be called under the PTL so that an access to tlb_flush_batched
718 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
719 * via the PTL.
720 */
flush_tlb_batched_pending(struct mm_struct * mm)721 void flush_tlb_batched_pending(struct mm_struct *mm)
722 {
723 int batch = atomic_read(&mm->tlb_flush_batched);
724 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
725 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
726
727 if (pending != flushed) {
728 flush_tlb_mm(mm);
729 /*
730 * If the new TLB flushing is pending during flushing, leave
731 * mm->tlb_flush_batched as is, to avoid losing flushing.
732 */
733 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
734 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
735 }
736 }
737 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)738 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
739 {
740 }
741
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)742 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
743 {
744 return false;
745 }
746 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
747
748 /*
749 * At what user virtual address is page expected in vma?
750 * Caller should check the page is actually part of the vma.
751 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)752 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
753 {
754 struct folio *folio = page_folio(page);
755 if (folio_test_anon(folio)) {
756 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
757 /*
758 * Note: swapoff's unuse_vma() is more efficient with this
759 * check, and needs it to match anon_vma when KSM is active.
760 */
761 if (!vma->anon_vma || !page__anon_vma ||
762 vma->anon_vma->root != page__anon_vma->root)
763 return -EFAULT;
764 } else if (!vma->vm_file) {
765 return -EFAULT;
766 } else if (vma->vm_file->f_mapping != folio->mapping) {
767 return -EFAULT;
768 }
769
770 return vma_address(page, vma);
771 }
772
mm_find_pmd(struct mm_struct * mm,unsigned long address)773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774 {
775 pgd_t *pgd;
776 p4d_t *p4d;
777 pud_t *pud;
778 pmd_t *pmd = NULL;
779 pmd_t pmde;
780
781 pgd = pgd_offset(mm, address);
782 if (!pgd_present(*pgd))
783 goto out;
784
785 p4d = p4d_offset(pgd, address);
786 if (!p4d_present(*p4d))
787 goto out;
788
789 pud = pud_offset(p4d, address);
790 if (!pud_present(*pud))
791 goto out;
792
793 pmd = pmd_offset(pud, address);
794 /*
795 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
796 * without holding anon_vma lock for write. So when looking for a
797 * genuine pmde (in which to find pte), test present and !THP together.
798 */
799 pmde = *pmd;
800 barrier();
801 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
802 pmd = NULL;
803 out:
804 return pmd;
805 }
806
807 struct folio_referenced_arg {
808 int mapcount;
809 int referenced;
810 unsigned long vm_flags;
811 struct mem_cgroup *memcg;
812 };
813 /*
814 * arg: folio_referenced_arg will be passed
815 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)816 static bool folio_referenced_one(struct folio *folio,
817 struct vm_area_struct *vma, unsigned long address, void *arg)
818 {
819 struct folio_referenced_arg *pra = arg;
820 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
821 int referenced = 0;
822
823 while (page_vma_mapped_walk(&pvmw)) {
824 address = pvmw.address;
825
826 if ((vma->vm_flags & VM_LOCKED) &&
827 (!folio_test_large(folio) || !pvmw.pte)) {
828 /* Restore the mlock which got missed */
829 mlock_vma_folio(folio, vma, !pvmw.pte);
830 page_vma_mapped_walk_done(&pvmw);
831 pra->vm_flags |= VM_LOCKED;
832 return false; /* To break the loop */
833 }
834
835 if (pvmw.pte) {
836 if (ptep_clear_flush_young_notify(vma, address,
837 pvmw.pte)) {
838 /*
839 * Don't treat a reference through
840 * a sequentially read mapping as such.
841 * If the folio has been used in another mapping,
842 * we will catch it; if this other mapping is
843 * already gone, the unmap path will have set
844 * the referenced flag or activated the folio.
845 */
846 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
847 referenced++;
848 }
849 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
850 if (pmdp_clear_flush_young_notify(vma, address,
851 pvmw.pmd))
852 referenced++;
853 } else {
854 /* unexpected pmd-mapped folio? */
855 WARN_ON_ONCE(1);
856 }
857
858 pra->mapcount--;
859 }
860
861 if (referenced)
862 folio_clear_idle(folio);
863 if (folio_test_clear_young(folio))
864 referenced++;
865
866 if (referenced) {
867 pra->referenced++;
868 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
869 }
870
871 if (!pra->mapcount)
872 return false; /* To break the loop */
873
874 return true;
875 }
876
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)877 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
878 {
879 struct folio_referenced_arg *pra = arg;
880 struct mem_cgroup *memcg = pra->memcg;
881
882 if (!mm_match_cgroup(vma->vm_mm, memcg))
883 return true;
884
885 return false;
886 }
887
888 /**
889 * folio_referenced() - Test if the folio was referenced.
890 * @folio: The folio to test.
891 * @is_locked: Caller holds lock on the folio.
892 * @memcg: target memory cgroup
893 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
894 *
895 * Quick test_and_clear_referenced for all mappings of a folio,
896 *
897 * Return: The number of mappings which referenced the folio. Return -1 if
898 * the function bailed out due to rmap lock contention.
899 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)900 int folio_referenced(struct folio *folio, int is_locked,
901 struct mem_cgroup *memcg, unsigned long *vm_flags)
902 {
903 int we_locked = 0;
904 struct folio_referenced_arg pra = {
905 .mapcount = folio_mapcount(folio),
906 .memcg = memcg,
907 };
908 struct rmap_walk_control rwc = {
909 .rmap_one = folio_referenced_one,
910 .arg = (void *)&pra,
911 .anon_lock = folio_lock_anon_vma_read,
912 .try_lock = true,
913 };
914
915 *vm_flags = 0;
916 if (!pra.mapcount)
917 return 0;
918
919 if (!folio_raw_mapping(folio))
920 return 0;
921
922 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
923 we_locked = folio_trylock(folio);
924 if (!we_locked)
925 return 1;
926 }
927
928 /*
929 * If we are reclaiming on behalf of a cgroup, skip
930 * counting on behalf of references from different
931 * cgroups
932 */
933 if (memcg) {
934 rwc.invalid_vma = invalid_folio_referenced_vma;
935 }
936
937 rmap_walk(folio, &rwc);
938 *vm_flags = pra.vm_flags;
939
940 if (we_locked)
941 folio_unlock(folio);
942
943 return rwc.contended ? -1 : pra.referenced;
944 }
945
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)946 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
947 {
948 int cleaned = 0;
949 struct vm_area_struct *vma = pvmw->vma;
950 struct mmu_notifier_range range;
951 unsigned long address = pvmw->address;
952
953 /*
954 * We have to assume the worse case ie pmd for invalidation. Note that
955 * the folio can not be freed from this function.
956 */
957 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
958 0, vma, vma->vm_mm, address,
959 vma_address_end(pvmw));
960 mmu_notifier_invalidate_range_start(&range);
961
962 while (page_vma_mapped_walk(pvmw)) {
963 int ret = 0;
964
965 address = pvmw->address;
966 if (pvmw->pte) {
967 pte_t entry;
968 pte_t *pte = pvmw->pte;
969
970 if (!pte_dirty(*pte) && !pte_write(*pte))
971 continue;
972
973 flush_cache_page(vma, address, pte_pfn(*pte));
974 entry = ptep_clear_flush(vma, address, pte);
975 entry = pte_wrprotect(entry);
976 entry = pte_mkclean(entry);
977 set_pte_at(vma->vm_mm, address, pte, entry);
978 ret = 1;
979 } else {
980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
981 pmd_t *pmd = pvmw->pmd;
982 pmd_t entry;
983
984 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
985 continue;
986
987 flush_cache_range(vma, address,
988 address + HPAGE_PMD_SIZE);
989 entry = pmdp_invalidate(vma, address, pmd);
990 entry = pmd_wrprotect(entry);
991 entry = pmd_mkclean(entry);
992 set_pmd_at(vma->vm_mm, address, pmd, entry);
993 ret = 1;
994 #else
995 /* unexpected pmd-mapped folio? */
996 WARN_ON_ONCE(1);
997 #endif
998 }
999
1000 /*
1001 * No need to call mmu_notifier_invalidate_range() as we are
1002 * downgrading page table protection not changing it to point
1003 * to a new page.
1004 *
1005 * See Documentation/vm/mmu_notifier.rst
1006 */
1007 if (ret)
1008 cleaned++;
1009 }
1010
1011 mmu_notifier_invalidate_range_end(&range);
1012
1013 return cleaned;
1014 }
1015
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1016 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1017 unsigned long address, void *arg)
1018 {
1019 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1020 int *cleaned = arg;
1021
1022 *cleaned += page_vma_mkclean_one(&pvmw);
1023
1024 return true;
1025 }
1026
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1027 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1028 {
1029 if (vma->vm_flags & VM_SHARED)
1030 return false;
1031
1032 return true;
1033 }
1034
folio_mkclean(struct folio * folio)1035 int folio_mkclean(struct folio *folio)
1036 {
1037 int cleaned = 0;
1038 struct address_space *mapping;
1039 struct rmap_walk_control rwc = {
1040 .arg = (void *)&cleaned,
1041 .rmap_one = page_mkclean_one,
1042 .invalid_vma = invalid_mkclean_vma,
1043 };
1044
1045 BUG_ON(!folio_test_locked(folio));
1046
1047 if (!folio_mapped(folio))
1048 return 0;
1049
1050 mapping = folio_mapping(folio);
1051 if (!mapping)
1052 return 0;
1053
1054 rmap_walk(folio, &rwc);
1055
1056 return cleaned;
1057 }
1058 EXPORT_SYMBOL_GPL(folio_mkclean);
1059
1060 /**
1061 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1062 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1063 * within the @vma of shared mappings. And since clean PTEs
1064 * should also be readonly, write protects them too.
1065 * @pfn: start pfn.
1066 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1067 * @pgoff: page offset that the @pfn mapped with.
1068 * @vma: vma that @pfn mapped within.
1069 *
1070 * Returns the number of cleaned PTEs (including PMDs).
1071 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1072 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1073 struct vm_area_struct *vma)
1074 {
1075 struct page_vma_mapped_walk pvmw = {
1076 .pfn = pfn,
1077 .nr_pages = nr_pages,
1078 .pgoff = pgoff,
1079 .vma = vma,
1080 .flags = PVMW_SYNC,
1081 };
1082
1083 if (invalid_mkclean_vma(vma, NULL))
1084 return 0;
1085
1086 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1087 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1088
1089 return page_vma_mkclean_one(&pvmw);
1090 }
1091
1092 /**
1093 * page_move_anon_rmap - move a page to our anon_vma
1094 * @page: the page to move to our anon_vma
1095 * @vma: the vma the page belongs to
1096 *
1097 * When a page belongs exclusively to one process after a COW event,
1098 * that page can be moved into the anon_vma that belongs to just that
1099 * process, so the rmap code will not search the parent or sibling
1100 * processes.
1101 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1102 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1103 {
1104 struct anon_vma *anon_vma = vma->anon_vma;
1105 struct page *subpage = page;
1106
1107 page = compound_head(page);
1108
1109 VM_BUG_ON_PAGE(!PageLocked(page), page);
1110 VM_BUG_ON_VMA(!anon_vma, vma);
1111
1112 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1113 /*
1114 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1115 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1116 * folio_test_anon()) will not see one without the other.
1117 */
1118 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1119 SetPageAnonExclusive(subpage);
1120 }
1121
1122 /**
1123 * __page_set_anon_rmap - set up new anonymous rmap
1124 * @page: Page or Hugepage to add to rmap
1125 * @vma: VM area to add page to.
1126 * @address: User virtual address of the mapping
1127 * @exclusive: the page is exclusively owned by the current process
1128 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1129 static void __page_set_anon_rmap(struct page *page,
1130 struct vm_area_struct *vma, unsigned long address, int exclusive)
1131 {
1132 struct anon_vma *anon_vma = vma->anon_vma;
1133
1134 BUG_ON(!anon_vma);
1135
1136 if (PageAnon(page))
1137 goto out;
1138
1139 /*
1140 * If the page isn't exclusively mapped into this vma,
1141 * we must use the _oldest_ possible anon_vma for the
1142 * page mapping!
1143 */
1144 if (!exclusive)
1145 anon_vma = anon_vma->root;
1146
1147 /*
1148 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1149 * Make sure the compiler doesn't split the stores of anon_vma and
1150 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1151 * could mistake the mapping for a struct address_space and crash.
1152 */
1153 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1154 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1155 page->index = linear_page_index(vma, address);
1156 out:
1157 if (exclusive)
1158 SetPageAnonExclusive(page);
1159 }
1160
1161 /**
1162 * __page_check_anon_rmap - sanity check anonymous rmap addition
1163 * @page: the page to add the mapping to
1164 * @vma: the vm area in which the mapping is added
1165 * @address: the user virtual address mapped
1166 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1167 static void __page_check_anon_rmap(struct page *page,
1168 struct vm_area_struct *vma, unsigned long address)
1169 {
1170 struct folio *folio = page_folio(page);
1171 /*
1172 * The page's anon-rmap details (mapping and index) are guaranteed to
1173 * be set up correctly at this point.
1174 *
1175 * We have exclusion against page_add_anon_rmap because the caller
1176 * always holds the page locked.
1177 *
1178 * We have exclusion against page_add_new_anon_rmap because those pages
1179 * are initially only visible via the pagetables, and the pte is locked
1180 * over the call to page_add_new_anon_rmap.
1181 */
1182 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1183 folio);
1184 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1185 page);
1186 }
1187
1188 /**
1189 * page_add_anon_rmap - add pte mapping to an anonymous page
1190 * @page: the page to add the mapping to
1191 * @vma: the vm area in which the mapping is added
1192 * @address: the user virtual address mapped
1193 * @flags: the rmap flags
1194 *
1195 * The caller needs to hold the pte lock, and the page must be locked in
1196 * the anon_vma case: to serialize mapping,index checking after setting,
1197 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1198 * (but PageKsm is never downgraded to PageAnon).
1199 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1200 void page_add_anon_rmap(struct page *page,
1201 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1202 {
1203 bool compound = flags & RMAP_COMPOUND;
1204 bool first;
1205
1206 if (unlikely(PageKsm(page)))
1207 lock_page_memcg(page);
1208 else
1209 VM_BUG_ON_PAGE(!PageLocked(page), page);
1210
1211 if (compound) {
1212 atomic_t *mapcount;
1213 VM_BUG_ON_PAGE(!PageLocked(page), page);
1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 mapcount = compound_mapcount_ptr(page);
1216 first = atomic_inc_and_test(mapcount);
1217 } else {
1218 first = atomic_inc_and_test(&page->_mapcount);
1219 }
1220 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1221 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1222
1223 if (first) {
1224 int nr = compound ? thp_nr_pages(page) : 1;
1225 /*
1226 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1227 * these counters are not modified in interrupt context, and
1228 * pte lock(a spinlock) is held, which implies preemption
1229 * disabled.
1230 */
1231 if (compound)
1232 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1233 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1234 }
1235
1236 if (unlikely(PageKsm(page)))
1237 unlock_page_memcg(page);
1238
1239 /* address might be in next vma when migration races vma_adjust */
1240 else if (first)
1241 __page_set_anon_rmap(page, vma, address,
1242 !!(flags & RMAP_EXCLUSIVE));
1243 else
1244 __page_check_anon_rmap(page, vma, address);
1245
1246 mlock_vma_page(page, vma, compound);
1247 }
1248
1249 /**
1250 * page_add_new_anon_rmap - add mapping to a new anonymous page
1251 * @page: the page to add the mapping to
1252 * @vma: the vm area in which the mapping is added
1253 * @address: the user virtual address mapped
1254 *
1255 * If it's a compound page, it is accounted as a compound page. As the page
1256 * is new, it's assume to get mapped exclusively by a single process.
1257 *
1258 * Same as page_add_anon_rmap but must only be called on *new* pages.
1259 * This means the inc-and-test can be bypassed.
1260 * Page does not have to be locked.
1261 */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1262 void page_add_new_anon_rmap(struct page *page,
1263 struct vm_area_struct *vma, unsigned long address)
1264 {
1265 const bool compound = PageCompound(page);
1266 int nr = compound ? thp_nr_pages(page) : 1;
1267
1268 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1269 __SetPageSwapBacked(page);
1270 if (compound) {
1271 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1272 /* increment count (starts at -1) */
1273 atomic_set(compound_mapcount_ptr(page), 0);
1274 atomic_set(compound_pincount_ptr(page), 0);
1275
1276 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1277 } else {
1278 /* increment count (starts at -1) */
1279 atomic_set(&page->_mapcount, 0);
1280 }
1281 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1282 __page_set_anon_rmap(page, vma, address, 1);
1283 }
1284
1285 /**
1286 * page_add_file_rmap - add pte mapping to a file page
1287 * @page: the page to add the mapping to
1288 * @vma: the vm area in which the mapping is added
1289 * @compound: charge the page as compound or small page
1290 *
1291 * The caller needs to hold the pte lock.
1292 */
page_add_file_rmap(struct page * page,struct vm_area_struct * vma,bool compound)1293 void page_add_file_rmap(struct page *page,
1294 struct vm_area_struct *vma, bool compound)
1295 {
1296 int i, nr = 0;
1297
1298 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1299 lock_page_memcg(page);
1300 if (compound && PageTransHuge(page)) {
1301 int nr_pages = thp_nr_pages(page);
1302
1303 for (i = 0; i < nr_pages; i++) {
1304 if (atomic_inc_and_test(&page[i]._mapcount))
1305 nr++;
1306 }
1307 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1308 goto out;
1309
1310 /*
1311 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1312 * but page lock is held by all page_add_file_rmap() compound
1313 * callers, and SetPageDoubleMap below warns if !PageLocked:
1314 * so here is a place that DoubleMap can be safely cleared.
1315 */
1316 VM_WARN_ON_ONCE(!PageLocked(page));
1317 if (nr == nr_pages && PageDoubleMap(page))
1318 ClearPageDoubleMap(page);
1319
1320 if (PageSwapBacked(page))
1321 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1322 nr_pages);
1323 else
1324 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1325 nr_pages);
1326 } else {
1327 if (PageTransCompound(page) && page_mapping(page)) {
1328 VM_WARN_ON_ONCE(!PageLocked(page));
1329 SetPageDoubleMap(compound_head(page));
1330 }
1331 if (atomic_inc_and_test(&page->_mapcount))
1332 nr++;
1333 }
1334 out:
1335 if (nr)
1336 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1337 unlock_page_memcg(page);
1338
1339 mlock_vma_page(page, vma, compound);
1340 }
1341
page_remove_file_rmap(struct page * page,bool compound)1342 static void page_remove_file_rmap(struct page *page, bool compound)
1343 {
1344 int i, nr = 0;
1345
1346 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1347
1348 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1349 if (unlikely(PageHuge(page))) {
1350 /* hugetlb pages are always mapped with pmds */
1351 atomic_dec(compound_mapcount_ptr(page));
1352 return;
1353 }
1354
1355 /* page still mapped by someone else? */
1356 if (compound && PageTransHuge(page)) {
1357 int nr_pages = thp_nr_pages(page);
1358
1359 for (i = 0; i < nr_pages; i++) {
1360 if (atomic_add_negative(-1, &page[i]._mapcount))
1361 nr++;
1362 }
1363 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1364 goto out;
1365 if (PageSwapBacked(page))
1366 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1367 -nr_pages);
1368 else
1369 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1370 -nr_pages);
1371 } else {
1372 if (atomic_add_negative(-1, &page->_mapcount))
1373 nr++;
1374 }
1375 out:
1376 if (nr)
1377 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1378 }
1379
page_remove_anon_compound_rmap(struct page * page)1380 static void page_remove_anon_compound_rmap(struct page *page)
1381 {
1382 int i, nr;
1383
1384 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1385 return;
1386
1387 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1388 if (unlikely(PageHuge(page)))
1389 return;
1390
1391 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1392 return;
1393
1394 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1395
1396 if (TestClearPageDoubleMap(page)) {
1397 /*
1398 * Subpages can be mapped with PTEs too. Check how many of
1399 * them are still mapped.
1400 */
1401 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1402 if (atomic_add_negative(-1, &page[i]._mapcount))
1403 nr++;
1404 }
1405
1406 /*
1407 * Queue the page for deferred split if at least one small
1408 * page of the compound page is unmapped, but at least one
1409 * small page is still mapped.
1410 */
1411 if (nr && nr < thp_nr_pages(page))
1412 deferred_split_huge_page(page);
1413 } else {
1414 nr = thp_nr_pages(page);
1415 }
1416
1417 if (nr)
1418 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1419 }
1420
1421 /**
1422 * page_remove_rmap - take down pte mapping from a page
1423 * @page: page to remove mapping from
1424 * @vma: the vm area from which the mapping is removed
1425 * @compound: uncharge the page as compound or small page
1426 *
1427 * The caller needs to hold the pte lock.
1428 */
page_remove_rmap(struct page * page,struct vm_area_struct * vma,bool compound)1429 void page_remove_rmap(struct page *page,
1430 struct vm_area_struct *vma, bool compound)
1431 {
1432 lock_page_memcg(page);
1433
1434 if (!PageAnon(page)) {
1435 page_remove_file_rmap(page, compound);
1436 goto out;
1437 }
1438
1439 if (compound) {
1440 page_remove_anon_compound_rmap(page);
1441 goto out;
1442 }
1443
1444 /* page still mapped by someone else? */
1445 if (!atomic_add_negative(-1, &page->_mapcount))
1446 goto out;
1447
1448 /*
1449 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1450 * these counters are not modified in interrupt context, and
1451 * pte lock(a spinlock) is held, which implies preemption disabled.
1452 */
1453 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1454
1455 if (PageTransCompound(page))
1456 deferred_split_huge_page(compound_head(page));
1457
1458 /*
1459 * It would be tidy to reset the PageAnon mapping here,
1460 * but that might overwrite a racing page_add_anon_rmap
1461 * which increments mapcount after us but sets mapping
1462 * before us: so leave the reset to free_unref_page,
1463 * and remember that it's only reliable while mapped.
1464 * Leaving it set also helps swapoff to reinstate ptes
1465 * faster for those pages still in swapcache.
1466 */
1467 out:
1468 unlock_page_memcg(page);
1469
1470 munlock_vma_page(page, vma, compound);
1471 }
1472
1473 /*
1474 * @arg: enum ttu_flags will be passed to this argument
1475 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1476 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1477 unsigned long address, void *arg)
1478 {
1479 struct mm_struct *mm = vma->vm_mm;
1480 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1481 pte_t pteval;
1482 struct page *subpage;
1483 bool anon_exclusive, ret = true;
1484 struct mmu_notifier_range range;
1485 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1486
1487 /*
1488 * When racing against e.g. zap_pte_range() on another cpu,
1489 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1490 * try_to_unmap() may return before page_mapped() has become false,
1491 * if page table locking is skipped: use TTU_SYNC to wait for that.
1492 */
1493 if (flags & TTU_SYNC)
1494 pvmw.flags = PVMW_SYNC;
1495
1496 if (flags & TTU_SPLIT_HUGE_PMD)
1497 split_huge_pmd_address(vma, address, false, folio);
1498
1499 /*
1500 * For THP, we have to assume the worse case ie pmd for invalidation.
1501 * For hugetlb, it could be much worse if we need to do pud
1502 * invalidation in the case of pmd sharing.
1503 *
1504 * Note that the folio can not be freed in this function as call of
1505 * try_to_unmap() must hold a reference on the folio.
1506 */
1507 range.end = vma_address_end(&pvmw);
1508 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1509 address, range.end);
1510 if (folio_test_hugetlb(folio)) {
1511 /*
1512 * If sharing is possible, start and end will be adjusted
1513 * accordingly.
1514 */
1515 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1516 &range.end);
1517 }
1518 mmu_notifier_invalidate_range_start(&range);
1519
1520 while (page_vma_mapped_walk(&pvmw)) {
1521 /* Unexpected PMD-mapped THP? */
1522 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1523
1524 /*
1525 * If the folio is in an mlock()d vma, we must not swap it out.
1526 */
1527 if (!(flags & TTU_IGNORE_MLOCK) &&
1528 (vma->vm_flags & VM_LOCKED)) {
1529 /* Restore the mlock which got missed */
1530 mlock_vma_folio(folio, vma, false);
1531 page_vma_mapped_walk_done(&pvmw);
1532 ret = false;
1533 break;
1534 }
1535
1536 subpage = folio_page(folio,
1537 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1538 address = pvmw.address;
1539 anon_exclusive = folio_test_anon(folio) &&
1540 PageAnonExclusive(subpage);
1541
1542 if (folio_test_hugetlb(folio)) {
1543 /*
1544 * The try_to_unmap() is only passed a hugetlb page
1545 * in the case where the hugetlb page is poisoned.
1546 */
1547 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1548 /*
1549 * huge_pmd_unshare may unmap an entire PMD page.
1550 * There is no way of knowing exactly which PMDs may
1551 * be cached for this mm, so we must flush them all.
1552 * start/end were already adjusted above to cover this
1553 * range.
1554 */
1555 flush_cache_range(vma, range.start, range.end);
1556
1557 if (!folio_test_anon(folio)) {
1558 /*
1559 * To call huge_pmd_unshare, i_mmap_rwsem must be
1560 * held in write mode. Caller needs to explicitly
1561 * do this outside rmap routines.
1562 */
1563 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1564
1565 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1566 flush_tlb_range(vma, range.start, range.end);
1567 mmu_notifier_invalidate_range(mm, range.start,
1568 range.end);
1569
1570 /*
1571 * The ref count of the PMD page was dropped
1572 * which is part of the way map counting
1573 * is done for shared PMDs. Return 'true'
1574 * here. When there is no other sharing,
1575 * huge_pmd_unshare returns false and we will
1576 * unmap the actual page and drop map count
1577 * to zero.
1578 */
1579 page_vma_mapped_walk_done(&pvmw);
1580 break;
1581 }
1582 }
1583 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1584 } else {
1585 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1586 /*
1587 * Nuke the page table entry. When having to clear
1588 * PageAnonExclusive(), we always have to flush.
1589 */
1590 if (should_defer_flush(mm, flags) && !anon_exclusive) {
1591 /*
1592 * We clear the PTE but do not flush so potentially
1593 * a remote CPU could still be writing to the folio.
1594 * If the entry was previously clean then the
1595 * architecture must guarantee that a clear->dirty
1596 * transition on a cached TLB entry is written through
1597 * and traps if the PTE is unmapped.
1598 */
1599 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1600
1601 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1602 } else {
1603 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1604 }
1605 }
1606
1607 /*
1608 * Now the pte is cleared. If this pte was uffd-wp armed,
1609 * we may want to replace a none pte with a marker pte if
1610 * it's file-backed, so we don't lose the tracking info.
1611 */
1612 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1613
1614 /* Set the dirty flag on the folio now the pte is gone. */
1615 if (pte_dirty(pteval))
1616 folio_mark_dirty(folio);
1617
1618 /* Update high watermark before we lower rss */
1619 update_hiwater_rss(mm);
1620
1621 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1622 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1623 if (folio_test_hugetlb(folio)) {
1624 hugetlb_count_sub(folio_nr_pages(folio), mm);
1625 set_huge_swap_pte_at(mm, address,
1626 pvmw.pte, pteval,
1627 vma_mmu_pagesize(vma));
1628 } else {
1629 dec_mm_counter(mm, mm_counter(&folio->page));
1630 set_pte_at(mm, address, pvmw.pte, pteval);
1631 }
1632
1633 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1634 /*
1635 * The guest indicated that the page content is of no
1636 * interest anymore. Simply discard the pte, vmscan
1637 * will take care of the rest.
1638 * A future reference will then fault in a new zero
1639 * page. When userfaultfd is active, we must not drop
1640 * this page though, as its main user (postcopy
1641 * migration) will not expect userfaults on already
1642 * copied pages.
1643 */
1644 dec_mm_counter(mm, mm_counter(&folio->page));
1645 /* We have to invalidate as we cleared the pte */
1646 mmu_notifier_invalidate_range(mm, address,
1647 address + PAGE_SIZE);
1648 } else if (folio_test_anon(folio)) {
1649 swp_entry_t entry = { .val = page_private(subpage) };
1650 pte_t swp_pte;
1651 /*
1652 * Store the swap location in the pte.
1653 * See handle_pte_fault() ...
1654 */
1655 if (unlikely(folio_test_swapbacked(folio) !=
1656 folio_test_swapcache(folio))) {
1657 WARN_ON_ONCE(1);
1658 ret = false;
1659 /* We have to invalidate as we cleared the pte */
1660 mmu_notifier_invalidate_range(mm, address,
1661 address + PAGE_SIZE);
1662 page_vma_mapped_walk_done(&pvmw);
1663 break;
1664 }
1665
1666 /* MADV_FREE page check */
1667 if (!folio_test_swapbacked(folio)) {
1668 int ref_count, map_count;
1669
1670 /*
1671 * Synchronize with gup_pte_range():
1672 * - clear PTE; barrier; read refcount
1673 * - inc refcount; barrier; read PTE
1674 */
1675 smp_mb();
1676
1677 ref_count = folio_ref_count(folio);
1678 map_count = folio_mapcount(folio);
1679
1680 /*
1681 * Order reads for page refcount and dirty flag
1682 * (see comments in __remove_mapping()).
1683 */
1684 smp_rmb();
1685
1686 /*
1687 * The only page refs must be one from isolation
1688 * plus the rmap(s) (dropped by discard:).
1689 */
1690 if (ref_count == 1 + map_count &&
1691 !folio_test_dirty(folio)) {
1692 /* Invalidate as we cleared the pte */
1693 mmu_notifier_invalidate_range(mm,
1694 address, address + PAGE_SIZE);
1695 dec_mm_counter(mm, MM_ANONPAGES);
1696 goto discard;
1697 }
1698
1699 /*
1700 * If the folio was redirtied, it cannot be
1701 * discarded. Remap the page to page table.
1702 */
1703 set_pte_at(mm, address, pvmw.pte, pteval);
1704 folio_set_swapbacked(folio);
1705 ret = false;
1706 page_vma_mapped_walk_done(&pvmw);
1707 break;
1708 }
1709
1710 if (swap_duplicate(entry) < 0) {
1711 set_pte_at(mm, address, pvmw.pte, pteval);
1712 ret = false;
1713 page_vma_mapped_walk_done(&pvmw);
1714 break;
1715 }
1716 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1717 swap_free(entry);
1718 set_pte_at(mm, address, pvmw.pte, pteval);
1719 ret = false;
1720 page_vma_mapped_walk_done(&pvmw);
1721 break;
1722 }
1723 if (anon_exclusive &&
1724 page_try_share_anon_rmap(subpage)) {
1725 swap_free(entry);
1726 set_pte_at(mm, address, pvmw.pte, pteval);
1727 ret = false;
1728 page_vma_mapped_walk_done(&pvmw);
1729 break;
1730 }
1731 /*
1732 * Note: We *don't* remember if the page was mapped
1733 * exclusively in the swap pte if the architecture
1734 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1735 * that case, swapin code has to re-determine that
1736 * manually and might detect the page as possibly
1737 * shared, for example, if there are other references on
1738 * the page or if the page is under writeback. We made
1739 * sure that there are no GUP pins on the page that
1740 * would rely on it, so for GUP pins this is fine.
1741 */
1742 if (list_empty(&mm->mmlist)) {
1743 spin_lock(&mmlist_lock);
1744 if (list_empty(&mm->mmlist))
1745 list_add(&mm->mmlist, &init_mm.mmlist);
1746 spin_unlock(&mmlist_lock);
1747 }
1748 dec_mm_counter(mm, MM_ANONPAGES);
1749 inc_mm_counter(mm, MM_SWAPENTS);
1750 swp_pte = swp_entry_to_pte(entry);
1751 if (anon_exclusive)
1752 swp_pte = pte_swp_mkexclusive(swp_pte);
1753 if (pte_soft_dirty(pteval))
1754 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1755 if (pte_uffd_wp(pteval))
1756 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1757 set_pte_at(mm, address, pvmw.pte, swp_pte);
1758 /* Invalidate as we cleared the pte */
1759 mmu_notifier_invalidate_range(mm, address,
1760 address + PAGE_SIZE);
1761 } else {
1762 /*
1763 * This is a locked file-backed folio,
1764 * so it cannot be removed from the page
1765 * cache and replaced by a new folio before
1766 * mmu_notifier_invalidate_range_end, so no
1767 * concurrent thread might update its page table
1768 * to point at a new folio while a device is
1769 * still using this folio.
1770 *
1771 * See Documentation/vm/mmu_notifier.rst
1772 */
1773 dec_mm_counter(mm, mm_counter_file(&folio->page));
1774 }
1775 discard:
1776 /*
1777 * No need to call mmu_notifier_invalidate_range() it has be
1778 * done above for all cases requiring it to happen under page
1779 * table lock before mmu_notifier_invalidate_range_end()
1780 *
1781 * See Documentation/vm/mmu_notifier.rst
1782 */
1783 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1784 if (vma->vm_flags & VM_LOCKED)
1785 mlock_page_drain_local();
1786 folio_put(folio);
1787 }
1788
1789 mmu_notifier_invalidate_range_end(&range);
1790
1791 return ret;
1792 }
1793
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1794 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1795 {
1796 return vma_is_temporary_stack(vma);
1797 }
1798
page_not_mapped(struct folio * folio)1799 static int page_not_mapped(struct folio *folio)
1800 {
1801 return !folio_mapped(folio);
1802 }
1803
1804 /**
1805 * try_to_unmap - Try to remove all page table mappings to a folio.
1806 * @folio: The folio to unmap.
1807 * @flags: action and flags
1808 *
1809 * Tries to remove all the page table entries which are mapping this
1810 * folio. It is the caller's responsibility to check if the folio is
1811 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1812 *
1813 * Context: Caller must hold the folio lock.
1814 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)1815 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1816 {
1817 struct rmap_walk_control rwc = {
1818 .rmap_one = try_to_unmap_one,
1819 .arg = (void *)flags,
1820 .done = page_not_mapped,
1821 .anon_lock = folio_lock_anon_vma_read,
1822 };
1823
1824 if (flags & TTU_RMAP_LOCKED)
1825 rmap_walk_locked(folio, &rwc);
1826 else
1827 rmap_walk(folio, &rwc);
1828 }
1829
1830 /*
1831 * @arg: enum ttu_flags will be passed to this argument.
1832 *
1833 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1834 * containing migration entries.
1835 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1836 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1837 unsigned long address, void *arg)
1838 {
1839 struct mm_struct *mm = vma->vm_mm;
1840 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1841 pte_t pteval;
1842 struct page *subpage;
1843 bool anon_exclusive, ret = true;
1844 struct mmu_notifier_range range;
1845 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1846
1847 /*
1848 * When racing against e.g. zap_pte_range() on another cpu,
1849 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1850 * try_to_migrate() may return before page_mapped() has become false,
1851 * if page table locking is skipped: use TTU_SYNC to wait for that.
1852 */
1853 if (flags & TTU_SYNC)
1854 pvmw.flags = PVMW_SYNC;
1855
1856 /*
1857 * unmap_page() in mm/huge_memory.c is the only user of migration with
1858 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1859 */
1860 if (flags & TTU_SPLIT_HUGE_PMD)
1861 split_huge_pmd_address(vma, address, true, folio);
1862
1863 /*
1864 * For THP, we have to assume the worse case ie pmd for invalidation.
1865 * For hugetlb, it could be much worse if we need to do pud
1866 * invalidation in the case of pmd sharing.
1867 *
1868 * Note that the page can not be free in this function as call of
1869 * try_to_unmap() must hold a reference on the page.
1870 */
1871 range.end = vma_address_end(&pvmw);
1872 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1873 address, range.end);
1874 if (folio_test_hugetlb(folio)) {
1875 /*
1876 * If sharing is possible, start and end will be adjusted
1877 * accordingly.
1878 */
1879 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1880 &range.end);
1881 }
1882 mmu_notifier_invalidate_range_start(&range);
1883
1884 while (page_vma_mapped_walk(&pvmw)) {
1885 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1886 /* PMD-mapped THP migration entry */
1887 if (!pvmw.pte) {
1888 subpage = folio_page(folio,
1889 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1890 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1891 !folio_test_pmd_mappable(folio), folio);
1892
1893 if (set_pmd_migration_entry(&pvmw, subpage)) {
1894 ret = false;
1895 page_vma_mapped_walk_done(&pvmw);
1896 break;
1897 }
1898 continue;
1899 }
1900 #endif
1901
1902 /* Unexpected PMD-mapped THP? */
1903 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1904
1905 if (folio_is_zone_device(folio)) {
1906 /*
1907 * Our PTE is a non-present device exclusive entry and
1908 * calculating the subpage as for the common case would
1909 * result in an invalid pointer.
1910 *
1911 * Since only PAGE_SIZE pages can currently be
1912 * migrated, just set it to page. This will need to be
1913 * changed when hugepage migrations to device private
1914 * memory are supported.
1915 */
1916 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1917 subpage = &folio->page;
1918 } else {
1919 subpage = folio_page(folio,
1920 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1921 }
1922 address = pvmw.address;
1923 anon_exclusive = folio_test_anon(folio) &&
1924 PageAnonExclusive(subpage);
1925
1926 if (folio_test_hugetlb(folio)) {
1927 /*
1928 * huge_pmd_unshare may unmap an entire PMD page.
1929 * There is no way of knowing exactly which PMDs may
1930 * be cached for this mm, so we must flush them all.
1931 * start/end were already adjusted above to cover this
1932 * range.
1933 */
1934 flush_cache_range(vma, range.start, range.end);
1935
1936 if (!folio_test_anon(folio)) {
1937 /*
1938 * To call huge_pmd_unshare, i_mmap_rwsem must be
1939 * held in write mode. Caller needs to explicitly
1940 * do this outside rmap routines.
1941 */
1942 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1943
1944 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1945 flush_tlb_range(vma, range.start, range.end);
1946 mmu_notifier_invalidate_range(mm, range.start,
1947 range.end);
1948
1949 /*
1950 * The ref count of the PMD page was dropped
1951 * which is part of the way map counting
1952 * is done for shared PMDs. Return 'true'
1953 * here. When there is no other sharing,
1954 * huge_pmd_unshare returns false and we will
1955 * unmap the actual page and drop map count
1956 * to zero.
1957 */
1958 page_vma_mapped_walk_done(&pvmw);
1959 break;
1960 }
1961 }
1962
1963 /* Nuke the hugetlb page table entry */
1964 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1965 } else {
1966 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1967 /* Nuke the page table entry. */
1968 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1969 }
1970
1971 /* Set the dirty flag on the folio now the pte is gone. */
1972 if (pte_dirty(pteval))
1973 folio_mark_dirty(folio);
1974
1975 /* Update high watermark before we lower rss */
1976 update_hiwater_rss(mm);
1977
1978 if (folio_is_zone_device(folio)) {
1979 unsigned long pfn = folio_pfn(folio);
1980 swp_entry_t entry;
1981 pte_t swp_pte;
1982
1983 if (anon_exclusive)
1984 BUG_ON(page_try_share_anon_rmap(subpage));
1985
1986 /*
1987 * Store the pfn of the page in a special migration
1988 * pte. do_swap_page() will wait until the migration
1989 * pte is removed and then restart fault handling.
1990 */
1991 entry = pte_to_swp_entry(pteval);
1992 if (is_writable_device_private_entry(entry))
1993 entry = make_writable_migration_entry(pfn);
1994 else if (anon_exclusive)
1995 entry = make_readable_exclusive_migration_entry(pfn);
1996 else
1997 entry = make_readable_migration_entry(pfn);
1998 swp_pte = swp_entry_to_pte(entry);
1999
2000 /*
2001 * pteval maps a zone device page and is therefore
2002 * a swap pte.
2003 */
2004 if (pte_swp_soft_dirty(pteval))
2005 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2006 if (pte_swp_uffd_wp(pteval))
2007 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2008 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2009 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2010 compound_order(&folio->page));
2011 /*
2012 * No need to invalidate here it will synchronize on
2013 * against the special swap migration pte.
2014 */
2015 } else if (PageHWPoison(subpage)) {
2016 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2017 if (folio_test_hugetlb(folio)) {
2018 hugetlb_count_sub(folio_nr_pages(folio), mm);
2019 set_huge_swap_pte_at(mm, address,
2020 pvmw.pte, pteval,
2021 vma_mmu_pagesize(vma));
2022 } else {
2023 dec_mm_counter(mm, mm_counter(&folio->page));
2024 set_pte_at(mm, address, pvmw.pte, pteval);
2025 }
2026
2027 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2028 /*
2029 * The guest indicated that the page content is of no
2030 * interest anymore. Simply discard the pte, vmscan
2031 * will take care of the rest.
2032 * A future reference will then fault in a new zero
2033 * page. When userfaultfd is active, we must not drop
2034 * this page though, as its main user (postcopy
2035 * migration) will not expect userfaults on already
2036 * copied pages.
2037 */
2038 dec_mm_counter(mm, mm_counter(&folio->page));
2039 /* We have to invalidate as we cleared the pte */
2040 mmu_notifier_invalidate_range(mm, address,
2041 address + PAGE_SIZE);
2042 } else {
2043 swp_entry_t entry;
2044 pte_t swp_pte;
2045
2046 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2047 if (folio_test_hugetlb(folio))
2048 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2049 else
2050 set_pte_at(mm, address, pvmw.pte, pteval);
2051 ret = false;
2052 page_vma_mapped_walk_done(&pvmw);
2053 break;
2054 }
2055 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2056 !anon_exclusive, subpage);
2057 if (anon_exclusive &&
2058 page_try_share_anon_rmap(subpage)) {
2059 if (folio_test_hugetlb(folio))
2060 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2061 else
2062 set_pte_at(mm, address, pvmw.pte, pteval);
2063 ret = false;
2064 page_vma_mapped_walk_done(&pvmw);
2065 break;
2066 }
2067
2068 /*
2069 * Store the pfn of the page in a special migration
2070 * pte. do_swap_page() will wait until the migration
2071 * pte is removed and then restart fault handling.
2072 */
2073 if (pte_write(pteval))
2074 entry = make_writable_migration_entry(
2075 page_to_pfn(subpage));
2076 else if (anon_exclusive)
2077 entry = make_readable_exclusive_migration_entry(
2078 page_to_pfn(subpage));
2079 else
2080 entry = make_readable_migration_entry(
2081 page_to_pfn(subpage));
2082
2083 swp_pte = swp_entry_to_pte(entry);
2084 if (pte_soft_dirty(pteval))
2085 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2086 if (pte_uffd_wp(pteval))
2087 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2088 if (folio_test_hugetlb(folio))
2089 set_huge_swap_pte_at(mm, address, pvmw.pte,
2090 swp_pte, vma_mmu_pagesize(vma));
2091 else
2092 set_pte_at(mm, address, pvmw.pte, swp_pte);
2093 trace_set_migration_pte(address, pte_val(swp_pte),
2094 compound_order(&folio->page));
2095 /*
2096 * No need to invalidate here it will synchronize on
2097 * against the special swap migration pte.
2098 */
2099 }
2100
2101 /*
2102 * No need to call mmu_notifier_invalidate_range() it has be
2103 * done above for all cases requiring it to happen under page
2104 * table lock before mmu_notifier_invalidate_range_end()
2105 *
2106 * See Documentation/vm/mmu_notifier.rst
2107 */
2108 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2109 if (vma->vm_flags & VM_LOCKED)
2110 mlock_page_drain_local();
2111 folio_put(folio);
2112 }
2113
2114 mmu_notifier_invalidate_range_end(&range);
2115
2116 return ret;
2117 }
2118
2119 /**
2120 * try_to_migrate - try to replace all page table mappings with swap entries
2121 * @folio: the folio to replace page table entries for
2122 * @flags: action and flags
2123 *
2124 * Tries to remove all the page table entries which are mapping this folio and
2125 * replace them with special swap entries. Caller must hold the folio lock.
2126 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2127 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2128 {
2129 struct rmap_walk_control rwc = {
2130 .rmap_one = try_to_migrate_one,
2131 .arg = (void *)flags,
2132 .done = page_not_mapped,
2133 .anon_lock = folio_lock_anon_vma_read,
2134 };
2135
2136 /*
2137 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2138 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2139 */
2140 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2141 TTU_SYNC)))
2142 return;
2143
2144 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
2145 return;
2146
2147 /*
2148 * During exec, a temporary VMA is setup and later moved.
2149 * The VMA is moved under the anon_vma lock but not the
2150 * page tables leading to a race where migration cannot
2151 * find the migration ptes. Rather than increasing the
2152 * locking requirements of exec(), migration skips
2153 * temporary VMAs until after exec() completes.
2154 */
2155 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2156 rwc.invalid_vma = invalid_migration_vma;
2157
2158 if (flags & TTU_RMAP_LOCKED)
2159 rmap_walk_locked(folio, &rwc);
2160 else
2161 rmap_walk(folio, &rwc);
2162 }
2163
2164 #ifdef CONFIG_DEVICE_PRIVATE
2165 struct make_exclusive_args {
2166 struct mm_struct *mm;
2167 unsigned long address;
2168 void *owner;
2169 bool valid;
2170 };
2171
page_make_device_exclusive_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * priv)2172 static bool page_make_device_exclusive_one(struct folio *folio,
2173 struct vm_area_struct *vma, unsigned long address, void *priv)
2174 {
2175 struct mm_struct *mm = vma->vm_mm;
2176 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2177 struct make_exclusive_args *args = priv;
2178 pte_t pteval;
2179 struct page *subpage;
2180 bool ret = true;
2181 struct mmu_notifier_range range;
2182 swp_entry_t entry;
2183 pte_t swp_pte;
2184
2185 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2186 vma->vm_mm, address, min(vma->vm_end,
2187 address + folio_size(folio)),
2188 args->owner);
2189 mmu_notifier_invalidate_range_start(&range);
2190
2191 while (page_vma_mapped_walk(&pvmw)) {
2192 /* Unexpected PMD-mapped THP? */
2193 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2194
2195 if (!pte_present(*pvmw.pte)) {
2196 ret = false;
2197 page_vma_mapped_walk_done(&pvmw);
2198 break;
2199 }
2200
2201 subpage = folio_page(folio,
2202 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2203 address = pvmw.address;
2204
2205 /* Nuke the page table entry. */
2206 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2207 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2208
2209 /* Set the dirty flag on the folio now the pte is gone. */
2210 if (pte_dirty(pteval))
2211 folio_mark_dirty(folio);
2212
2213 /*
2214 * Check that our target page is still mapped at the expected
2215 * address.
2216 */
2217 if (args->mm == mm && args->address == address &&
2218 pte_write(pteval))
2219 args->valid = true;
2220
2221 /*
2222 * Store the pfn of the page in a special migration
2223 * pte. do_swap_page() will wait until the migration
2224 * pte is removed and then restart fault handling.
2225 */
2226 if (pte_write(pteval))
2227 entry = make_writable_device_exclusive_entry(
2228 page_to_pfn(subpage));
2229 else
2230 entry = make_readable_device_exclusive_entry(
2231 page_to_pfn(subpage));
2232 swp_pte = swp_entry_to_pte(entry);
2233 if (pte_soft_dirty(pteval))
2234 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2235 if (pte_uffd_wp(pteval))
2236 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2237
2238 set_pte_at(mm, address, pvmw.pte, swp_pte);
2239
2240 /*
2241 * There is a reference on the page for the swap entry which has
2242 * been removed, so shouldn't take another.
2243 */
2244 page_remove_rmap(subpage, vma, false);
2245 }
2246
2247 mmu_notifier_invalidate_range_end(&range);
2248
2249 return ret;
2250 }
2251
2252 /**
2253 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2254 * @folio: The folio to replace page table entries for.
2255 * @mm: The mm_struct where the folio is expected to be mapped.
2256 * @address: Address where the folio is expected to be mapped.
2257 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2258 *
2259 * Tries to remove all the page table entries which are mapping this
2260 * folio and replace them with special device exclusive swap entries to
2261 * grant a device exclusive access to the folio.
2262 *
2263 * Context: Caller must hold the folio lock.
2264 * Return: false if the page is still mapped, or if it could not be unmapped
2265 * from the expected address. Otherwise returns true (success).
2266 */
folio_make_device_exclusive(struct folio * folio,struct mm_struct * mm,unsigned long address,void * owner)2267 static bool folio_make_device_exclusive(struct folio *folio,
2268 struct mm_struct *mm, unsigned long address, void *owner)
2269 {
2270 struct make_exclusive_args args = {
2271 .mm = mm,
2272 .address = address,
2273 .owner = owner,
2274 .valid = false,
2275 };
2276 struct rmap_walk_control rwc = {
2277 .rmap_one = page_make_device_exclusive_one,
2278 .done = page_not_mapped,
2279 .anon_lock = folio_lock_anon_vma_read,
2280 .arg = &args,
2281 };
2282
2283 /*
2284 * Restrict to anonymous folios for now to avoid potential writeback
2285 * issues.
2286 */
2287 if (!folio_test_anon(folio))
2288 return false;
2289
2290 rmap_walk(folio, &rwc);
2291
2292 return args.valid && !folio_mapcount(folio);
2293 }
2294
2295 /**
2296 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2297 * @mm: mm_struct of associated target process
2298 * @start: start of the region to mark for exclusive device access
2299 * @end: end address of region
2300 * @pages: returns the pages which were successfully marked for exclusive access
2301 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2302 *
2303 * Returns: number of pages found in the range by GUP. A page is marked for
2304 * exclusive access only if the page pointer is non-NULL.
2305 *
2306 * This function finds ptes mapping page(s) to the given address range, locks
2307 * them and replaces mappings with special swap entries preventing userspace CPU
2308 * access. On fault these entries are replaced with the original mapping after
2309 * calling MMU notifiers.
2310 *
2311 * A driver using this to program access from a device must use a mmu notifier
2312 * critical section to hold a device specific lock during programming. Once
2313 * programming is complete it should drop the page lock and reference after
2314 * which point CPU access to the page will revoke the exclusive access.
2315 */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2316 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2317 unsigned long end, struct page **pages,
2318 void *owner)
2319 {
2320 long npages = (end - start) >> PAGE_SHIFT;
2321 long i;
2322
2323 npages = get_user_pages_remote(mm, start, npages,
2324 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2325 pages, NULL, NULL);
2326 if (npages < 0)
2327 return npages;
2328
2329 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2330 struct folio *folio = page_folio(pages[i]);
2331 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2332 folio_put(folio);
2333 pages[i] = NULL;
2334 continue;
2335 }
2336
2337 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2338 folio_unlock(folio);
2339 folio_put(folio);
2340 pages[i] = NULL;
2341 }
2342 }
2343
2344 return npages;
2345 }
2346 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2347 #endif
2348
__put_anon_vma(struct anon_vma * anon_vma)2349 void __put_anon_vma(struct anon_vma *anon_vma)
2350 {
2351 struct anon_vma *root = anon_vma->root;
2352
2353 anon_vma_free(anon_vma);
2354 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2355 anon_vma_free(root);
2356 }
2357
rmap_walk_anon_lock(struct folio * folio,struct rmap_walk_control * rwc)2358 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2359 struct rmap_walk_control *rwc)
2360 {
2361 struct anon_vma *anon_vma;
2362
2363 if (rwc->anon_lock)
2364 return rwc->anon_lock(folio, rwc);
2365
2366 /*
2367 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2368 * because that depends on page_mapped(); but not all its usages
2369 * are holding mmap_lock. Users without mmap_lock are required to
2370 * take a reference count to prevent the anon_vma disappearing
2371 */
2372 anon_vma = folio_anon_vma(folio);
2373 if (!anon_vma)
2374 return NULL;
2375
2376 if (anon_vma_trylock_read(anon_vma))
2377 goto out;
2378
2379 if (rwc->try_lock) {
2380 anon_vma = NULL;
2381 rwc->contended = true;
2382 goto out;
2383 }
2384
2385 anon_vma_lock_read(anon_vma);
2386 out:
2387 return anon_vma;
2388 }
2389
2390 /*
2391 * rmap_walk_anon - do something to anonymous page using the object-based
2392 * rmap method
2393 * @page: the page to be handled
2394 * @rwc: control variable according to each walk type
2395 *
2396 * Find all the mappings of a page using the mapping pointer and the vma chains
2397 * contained in the anon_vma struct it points to.
2398 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2399 static void rmap_walk_anon(struct folio *folio,
2400 struct rmap_walk_control *rwc, bool locked)
2401 {
2402 struct anon_vma *anon_vma;
2403 pgoff_t pgoff_start, pgoff_end;
2404 struct anon_vma_chain *avc;
2405
2406 if (locked) {
2407 anon_vma = folio_anon_vma(folio);
2408 /* anon_vma disappear under us? */
2409 VM_BUG_ON_FOLIO(!anon_vma, folio);
2410 } else {
2411 anon_vma = rmap_walk_anon_lock(folio, rwc);
2412 }
2413 if (!anon_vma)
2414 return;
2415
2416 pgoff_start = folio_pgoff(folio);
2417 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2418 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2419 pgoff_start, pgoff_end) {
2420 struct vm_area_struct *vma = avc->vma;
2421 unsigned long address = vma_address(&folio->page, vma);
2422
2423 VM_BUG_ON_VMA(address == -EFAULT, vma);
2424 cond_resched();
2425
2426 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2427 continue;
2428
2429 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2430 break;
2431 if (rwc->done && rwc->done(folio))
2432 break;
2433 }
2434
2435 if (!locked)
2436 anon_vma_unlock_read(anon_vma);
2437 }
2438
2439 /*
2440 * rmap_walk_file - do something to file page using the object-based rmap method
2441 * @page: the page to be handled
2442 * @rwc: control variable according to each walk type
2443 *
2444 * Find all the mappings of a page using the mapping pointer and the vma chains
2445 * contained in the address_space struct it points to.
2446 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2447 static void rmap_walk_file(struct folio *folio,
2448 struct rmap_walk_control *rwc, bool locked)
2449 {
2450 struct address_space *mapping = folio_mapping(folio);
2451 pgoff_t pgoff_start, pgoff_end;
2452 struct vm_area_struct *vma;
2453
2454 /*
2455 * The page lock not only makes sure that page->mapping cannot
2456 * suddenly be NULLified by truncation, it makes sure that the
2457 * structure at mapping cannot be freed and reused yet,
2458 * so we can safely take mapping->i_mmap_rwsem.
2459 */
2460 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2461
2462 if (!mapping)
2463 return;
2464
2465 pgoff_start = folio_pgoff(folio);
2466 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2467 if (!locked) {
2468 if (i_mmap_trylock_read(mapping))
2469 goto lookup;
2470
2471 if (rwc->try_lock) {
2472 rwc->contended = true;
2473 return;
2474 }
2475
2476 i_mmap_lock_read(mapping);
2477 }
2478 lookup:
2479 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2480 pgoff_start, pgoff_end) {
2481 unsigned long address = vma_address(&folio->page, vma);
2482
2483 VM_BUG_ON_VMA(address == -EFAULT, vma);
2484 cond_resched();
2485
2486 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2487 continue;
2488
2489 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2490 goto done;
2491 if (rwc->done && rwc->done(folio))
2492 goto done;
2493 }
2494
2495 done:
2496 if (!locked)
2497 i_mmap_unlock_read(mapping);
2498 }
2499
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2500 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2501 {
2502 if (unlikely(folio_test_ksm(folio)))
2503 rmap_walk_ksm(folio, rwc);
2504 else if (folio_test_anon(folio))
2505 rmap_walk_anon(folio, rwc, false);
2506 else
2507 rmap_walk_file(folio, rwc, false);
2508 }
2509
2510 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2511 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2512 {
2513 /* no ksm support for now */
2514 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2515 if (folio_test_anon(folio))
2516 rmap_walk_anon(folio, rwc, true);
2517 else
2518 rmap_walk_file(folio, rwc, true);
2519 }
2520
2521 #ifdef CONFIG_HUGETLB_PAGE
2522 /*
2523 * The following two functions are for anonymous (private mapped) hugepages.
2524 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2525 * and no lru code, because we handle hugepages differently from common pages.
2526 *
2527 * RMAP_COMPOUND is ignored.
2528 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2529 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2530 unsigned long address, rmap_t flags)
2531 {
2532 struct anon_vma *anon_vma = vma->anon_vma;
2533 int first;
2534
2535 BUG_ON(!PageLocked(page));
2536 BUG_ON(!anon_vma);
2537 /* address might be in next vma when migration races vma_adjust */
2538 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2539 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2540 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2541 if (first)
2542 __page_set_anon_rmap(page, vma, address,
2543 !!(flags & RMAP_EXCLUSIVE));
2544 }
2545
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2546 void hugepage_add_new_anon_rmap(struct page *page,
2547 struct vm_area_struct *vma, unsigned long address)
2548 {
2549 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2550 atomic_set(compound_mapcount_ptr(page), 0);
2551 atomic_set(compound_pincount_ptr(page), 0);
2552
2553 __page_set_anon_rmap(page, vma, address, 1);
2554 }
2555 #endif /* CONFIG_HUGETLB_PAGE */
2556