1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22 enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 };
28
mapping_set_error(struct address_space * mapping,int error)29 static inline void mapping_set_error(struct address_space *mapping, int error)
30 {
31 if (unlikely(error)) {
32 if (error == -ENOSPC)
33 set_bit(AS_ENOSPC, &mapping->flags);
34 else
35 set_bit(AS_EIO, &mapping->flags);
36 }
37 }
38
mapping_set_unevictable(struct address_space * mapping)39 static inline void mapping_set_unevictable(struct address_space *mapping)
40 {
41 set_bit(AS_UNEVICTABLE, &mapping->flags);
42 }
43
mapping_clear_unevictable(struct address_space * mapping)44 static inline void mapping_clear_unevictable(struct address_space *mapping)
45 {
46 clear_bit(AS_UNEVICTABLE, &mapping->flags);
47 }
48
mapping_unevictable(struct address_space * mapping)49 static inline int mapping_unevictable(struct address_space *mapping)
50 {
51 if (mapping)
52 return test_bit(AS_UNEVICTABLE, &mapping->flags);
53 return !!mapping;
54 }
55
mapping_gfp_mask(struct address_space * mapping)56 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
57 {
58 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
59 }
60
61 /*
62 * This is non-atomic. Only to be used before the mapping is activated.
63 * Probably needs a barrier...
64 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)65 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
66 {
67 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
68 (__force unsigned long)mask;
69 }
70
71 /*
72 * The page cache can done in larger chunks than
73 * one page, because it allows for more efficient
74 * throughput (it can then be mapped into user
75 * space in smaller chunks for same flexibility).
76 *
77 * Or rather, it _will_ be done in larger chunks.
78 */
79 #define PAGE_CACHE_SHIFT PAGE_SHIFT
80 #define PAGE_CACHE_SIZE PAGE_SIZE
81 #define PAGE_CACHE_MASK PAGE_MASK
82 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
83
84 #define page_cache_get(page) get_page(page)
85 #define page_cache_release(page) put_page(page)
86 void release_pages(struct page **pages, int nr, int cold);
87
88 /*
89 * speculatively take a reference to a page.
90 * If the page is free (_count == 0), then _count is untouched, and 0
91 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
92 *
93 * This function must be called inside the same rcu_read_lock() section as has
94 * been used to lookup the page in the pagecache radix-tree (or page table):
95 * this allows allocators to use a synchronize_rcu() to stabilize _count.
96 *
97 * Unless an RCU grace period has passed, the count of all pages coming out
98 * of the allocator must be considered unstable. page_count may return higher
99 * than expected, and put_page must be able to do the right thing when the
100 * page has been finished with, no matter what it is subsequently allocated
101 * for (because put_page is what is used here to drop an invalid speculative
102 * reference).
103 *
104 * This is the interesting part of the lockless pagecache (and lockless
105 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
106 * has the following pattern:
107 * 1. find page in radix tree
108 * 2. conditionally increment refcount
109 * 3. check the page is still in pagecache (if no, goto 1)
110 *
111 * Remove-side that cares about stability of _count (eg. reclaim) has the
112 * following (with tree_lock held for write):
113 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
114 * B. remove page from pagecache
115 * C. free the page
116 *
117 * There are 2 critical interleavings that matter:
118 * - 2 runs before A: in this case, A sees elevated refcount and bails out
119 * - A runs before 2: in this case, 2 sees zero refcount and retries;
120 * subsequently, B will complete and 1 will find no page, causing the
121 * lookup to return NULL.
122 *
123 * It is possible that between 1 and 2, the page is removed then the exact same
124 * page is inserted into the same position in pagecache. That's OK: the
125 * old find_get_page using tree_lock could equally have run before or after
126 * such a re-insertion, depending on order that locks are granted.
127 *
128 * Lookups racing against pagecache insertion isn't a big problem: either 1
129 * will find the page or it will not. Likewise, the old find_get_page could run
130 * either before the insertion or afterwards, depending on timing.
131 */
page_cache_get_speculative(struct page * page)132 static inline int page_cache_get_speculative(struct page *page)
133 {
134 VM_BUG_ON(in_interrupt());
135
136 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
137 # ifdef CONFIG_PREEMPT_COUNT
138 VM_BUG_ON(!in_atomic());
139 # endif
140 /*
141 * Preempt must be disabled here - we rely on rcu_read_lock doing
142 * this for us.
143 *
144 * Pagecache won't be truncated from interrupt context, so if we have
145 * found a page in the radix tree here, we have pinned its refcount by
146 * disabling preempt, and hence no need for the "speculative get" that
147 * SMP requires.
148 */
149 VM_BUG_ON(page_count(page) == 0);
150 atomic_inc(&page->_count);
151
152 #else
153 if (unlikely(!get_page_unless_zero(page))) {
154 /*
155 * Either the page has been freed, or will be freed.
156 * In either case, retry here and the caller should
157 * do the right thing (see comments above).
158 */
159 return 0;
160 }
161 #endif
162 VM_BUG_ON(PageTail(page));
163
164 return 1;
165 }
166
167 /*
168 * Same as above, but add instead of inc (could just be merged)
169 */
page_cache_add_speculative(struct page * page,int count)170 static inline int page_cache_add_speculative(struct page *page, int count)
171 {
172 VM_BUG_ON(in_interrupt());
173
174 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
175 # ifdef CONFIG_PREEMPT_COUNT
176 VM_BUG_ON(!in_atomic());
177 # endif
178 VM_BUG_ON(page_count(page) == 0);
179 atomic_add(count, &page->_count);
180
181 #else
182 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
183 return 0;
184 #endif
185 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
186
187 return 1;
188 }
189
page_freeze_refs(struct page * page,int count)190 static inline int page_freeze_refs(struct page *page, int count)
191 {
192 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
193 }
194
page_unfreeze_refs(struct page * page,int count)195 static inline void page_unfreeze_refs(struct page *page, int count)
196 {
197 VM_BUG_ON(page_count(page) != 0);
198 VM_BUG_ON(count == 0);
199
200 atomic_set(&page->_count, count);
201 }
202
203 #ifdef CONFIG_NUMA
204 extern struct page *__page_cache_alloc(gfp_t gfp);
205 #else
__page_cache_alloc(gfp_t gfp)206 static inline struct page *__page_cache_alloc(gfp_t gfp)
207 {
208 return alloc_pages(gfp, 0);
209 }
210 #endif
211
page_cache_alloc(struct address_space * x)212 static inline struct page *page_cache_alloc(struct address_space *x)
213 {
214 return __page_cache_alloc(mapping_gfp_mask(x));
215 }
216
page_cache_alloc_cold(struct address_space * x)217 static inline struct page *page_cache_alloc_cold(struct address_space *x)
218 {
219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
220 }
221
page_cache_alloc_readahead(struct address_space * x)222 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
223 {
224 return __page_cache_alloc(mapping_gfp_mask(x) |
225 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
226 }
227
228 typedef int filler_t(void *, struct page *);
229
230 extern struct page * find_get_page(struct address_space *mapping,
231 pgoff_t index);
232 extern struct page * find_lock_page(struct address_space *mapping,
233 pgoff_t index);
234 extern struct page * find_or_create_page(struct address_space *mapping,
235 pgoff_t index, gfp_t gfp_mask);
236 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
237 unsigned int nr_pages, struct page **pages);
238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
239 unsigned int nr_pages, struct page **pages);
240 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
241 int tag, unsigned int nr_pages, struct page **pages);
242
243 struct page *grab_cache_page_write_begin(struct address_space *mapping,
244 pgoff_t index, unsigned flags);
245
246 /*
247 * Returns locked page at given index in given cache, creating it if needed.
248 */
grab_cache_page(struct address_space * mapping,pgoff_t index)249 static inline struct page *grab_cache_page(struct address_space *mapping,
250 pgoff_t index)
251 {
252 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
253 }
254
255 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
256 pgoff_t index);
257 extern struct page * read_cache_page_async(struct address_space *mapping,
258 pgoff_t index, filler_t *filler, void *data);
259 extern struct page * read_cache_page(struct address_space *mapping,
260 pgoff_t index, filler_t *filler, void *data);
261 extern struct page * read_cache_page_gfp(struct address_space *mapping,
262 pgoff_t index, gfp_t gfp_mask);
263 extern int read_cache_pages(struct address_space *mapping,
264 struct list_head *pages, filler_t *filler, void *data);
265
read_mapping_page_async(struct address_space * mapping,pgoff_t index,void * data)266 static inline struct page *read_mapping_page_async(
267 struct address_space *mapping,
268 pgoff_t index, void *data)
269 {
270 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
271 return read_cache_page_async(mapping, index, filler, data);
272 }
273
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)274 static inline struct page *read_mapping_page(struct address_space *mapping,
275 pgoff_t index, void *data)
276 {
277 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
278 return read_cache_page(mapping, index, filler, data);
279 }
280
281 /*
282 * Return byte-offset into filesystem object for page.
283 */
page_offset(struct page * page)284 static inline loff_t page_offset(struct page *page)
285 {
286 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
287 }
288
289 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
290 unsigned long address);
291
linear_page_index(struct vm_area_struct * vma,unsigned long address)292 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
293 unsigned long address)
294 {
295 pgoff_t pgoff;
296 if (unlikely(is_vm_hugetlb_page(vma)))
297 return linear_hugepage_index(vma, address);
298 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
299 pgoff += vma->vm_pgoff;
300 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
301 }
302
303 extern void __lock_page(struct page *page);
304 extern int __lock_page_killable(struct page *page);
305 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
306 unsigned int flags);
307 extern void unlock_page(struct page *page);
308
__set_page_locked(struct page * page)309 static inline void __set_page_locked(struct page *page)
310 {
311 __set_bit(PG_locked, &page->flags);
312 }
313
__clear_page_locked(struct page * page)314 static inline void __clear_page_locked(struct page *page)
315 {
316 __clear_bit(PG_locked, &page->flags);
317 }
318
trylock_page(struct page * page)319 static inline int trylock_page(struct page *page)
320 {
321 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
322 }
323
324 /*
325 * lock_page may only be called if we have the page's inode pinned.
326 */
lock_page(struct page * page)327 static inline void lock_page(struct page *page)
328 {
329 might_sleep();
330 if (!trylock_page(page))
331 __lock_page(page);
332 }
333
334 /*
335 * lock_page_killable is like lock_page but can be interrupted by fatal
336 * signals. It returns 0 if it locked the page and -EINTR if it was
337 * killed while waiting.
338 */
lock_page_killable(struct page * page)339 static inline int lock_page_killable(struct page *page)
340 {
341 might_sleep();
342 if (!trylock_page(page))
343 return __lock_page_killable(page);
344 return 0;
345 }
346
347 /*
348 * lock_page_or_retry - Lock the page, unless this would block and the
349 * caller indicated that it can handle a retry.
350 */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)351 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
352 unsigned int flags)
353 {
354 might_sleep();
355 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
356 }
357
358 /*
359 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
360 * Never use this directly!
361 */
362 extern void wait_on_page_bit(struct page *page, int bit_nr);
363
364 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
365
wait_on_page_locked_killable(struct page * page)366 static inline int wait_on_page_locked_killable(struct page *page)
367 {
368 if (PageLocked(page))
369 return wait_on_page_bit_killable(page, PG_locked);
370 return 0;
371 }
372
373 /*
374 * Wait for a page to be unlocked.
375 *
376 * This must be called with the caller "holding" the page,
377 * ie with increased "page->count" so that the page won't
378 * go away during the wait..
379 */
wait_on_page_locked(struct page * page)380 static inline void wait_on_page_locked(struct page *page)
381 {
382 if (PageLocked(page))
383 wait_on_page_bit(page, PG_locked);
384 }
385
386 /*
387 * Wait for a page to complete writeback
388 */
wait_on_page_writeback(struct page * page)389 static inline void wait_on_page_writeback(struct page *page)
390 {
391 if (PageWriteback(page))
392 wait_on_page_bit(page, PG_writeback);
393 }
394
395 extern void end_page_writeback(struct page *page);
396
397 /*
398 * Add an arbitrary waiter to a page's wait queue
399 */
400 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
401
402 /*
403 * Fault a userspace page into pagetables. Return non-zero on a fault.
404 *
405 * This assumes that two userspace pages are always sufficient. That's
406 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
407 */
fault_in_pages_writeable(char __user * uaddr,int size)408 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
409 {
410 int ret;
411
412 if (unlikely(size == 0))
413 return 0;
414
415 /*
416 * Writing zeroes into userspace here is OK, because we know that if
417 * the zero gets there, we'll be overwriting it.
418 */
419 ret = __put_user(0, uaddr);
420 if (ret == 0) {
421 char __user *end = uaddr + size - 1;
422
423 /*
424 * If the page was already mapped, this will get a cache miss
425 * for sure, so try to avoid doing it.
426 */
427 if (((unsigned long)uaddr & PAGE_MASK) !=
428 ((unsigned long)end & PAGE_MASK))
429 ret = __put_user(0, end);
430 }
431 return ret;
432 }
433
fault_in_pages_readable(const char __user * uaddr,int size)434 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
435 {
436 volatile char c;
437 int ret;
438
439 if (unlikely(size == 0))
440 return 0;
441
442 ret = __get_user(c, uaddr);
443 if (ret == 0) {
444 const char __user *end = uaddr + size - 1;
445
446 if (((unsigned long)uaddr & PAGE_MASK) !=
447 ((unsigned long)end & PAGE_MASK)) {
448 ret = __get_user(c, end);
449 (void)c;
450 }
451 }
452 return ret;
453 }
454
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t index, gfp_t gfp_mask);
457 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
458 pgoff_t index, gfp_t gfp_mask);
459 extern void delete_from_page_cache(struct page *page);
460 extern void __delete_from_page_cache(struct page *page);
461 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
462
463 /*
464 * Like add_to_page_cache_locked, but used to add newly allocated pages:
465 * the page is new, so we can just run __set_page_locked() against it.
466 */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)467 static inline int add_to_page_cache(struct page *page,
468 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
469 {
470 int error;
471
472 __set_page_locked(page);
473 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
474 if (unlikely(error))
475 __clear_page_locked(page);
476 return error;
477 }
478
479 #endif /* _LINUX_PAGEMAP_H */
480