1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * mapping->i_mmap_rwsem
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in block_dirty_folio)
34 * folio_lock_memcg move_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * page->flags PG_locked (lock_page)
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77
78 #include <asm/tlbflush.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107 }
108
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 *
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152 {
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 *
185 * This must be called with the mmap_lock held for reading.
186 */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
192
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266 * anon_vma_fork(). The first three want an exact copy of src, while the last
267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
278 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 struct anon_vma_chain *avc, *pavc;
282 struct anon_vma *root = NULL;
283
284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 struct anon_vma *anon_vma;
286
287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
298
299 /*
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
302 *
303 * Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
309 dst->anon_vma = anon_vma;
310 }
311 if (dst->anon_vma)
312 dst->anon_vma->num_active_vmas++;
313 unlock_anon_vma_root(root);
314 return 0;
315
316 enomem_failure:
317 /*
318 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
319 * decremented in unlink_anon_vmas().
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
326 }
327
328 /*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
337 int error;
338
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
353
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
362 anon_vma->num_active_vmas++;
363 avc = anon_vma_chain_alloc(GFP_KERNEL);
364 if (!avc)
365 goto out_error_free_anon_vma;
366
367 /*
368 * The root anon_vma's rwsem is the lock actually used when we
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
372 anon_vma->parent = pvma->anon_vma;
373 /*
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
377 */
378 get_anon_vma(anon_vma->root);
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
381 anon_vma_lock_write(anon_vma);
382 anon_vma_chain_link(vma, avc, anon_vma);
383 anon_vma->parent->num_children++;
384 anon_vma_unlock_write(anon_vma);
385
386 return 0;
387
388 out_error_free_anon_vma:
389 put_anon_vma(anon_vma);
390 out_error:
391 unlink_anon_vmas(vma);
392 return -ENOMEM;
393 }
394
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 struct anon_vma_chain *avc, *next;
398 struct anon_vma *root = NULL;
399
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 anon_vma->parent->num_children--;
416 continue;
417 }
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 if (vma->anon_vma) {
423 vma->anon_vma->num_active_vmas--;
424
425 /*
426 * vma would still be needed after unlink, and anon_vma will be prepared
427 * when handle fault.
428 */
429 vma->anon_vma = NULL;
430 }
431 unlock_anon_vma_root(root);
432
433 /*
434 * Iterate the list once more, it now only contains empty and unlinked
435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 * needing to write-acquire the anon_vma->root->rwsem.
437 */
438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 struct anon_vma *anon_vma = avc->anon_vma;
440
441 VM_WARN_ON(anon_vma->num_children);
442 VM_WARN_ON(anon_vma->num_active_vmas);
443 put_anon_vma(anon_vma);
444
445 list_del(&avc->same_vma);
446 anon_vma_chain_free(avc);
447 }
448 }
449
anon_vma_ctor(void * data)450 static void anon_vma_ctor(void *data)
451 {
452 struct anon_vma *anon_vma = data;
453
454 init_rwsem(&anon_vma->rwsem);
455 atomic_set(&anon_vma->refcount, 0);
456 anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458
anon_vma_init(void)459 void __init anon_vma_init(void)
460 {
461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 anon_vma_ctor);
464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 SLAB_PANIC|SLAB_ACCOUNT);
466 }
467
468 /*
469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470 *
471 * Since there is no serialization what so ever against page_remove_rmap()
472 * the best this function can do is return a refcount increased anon_vma
473 * that might have been relevant to this page.
474 *
475 * The page might have been remapped to a different anon_vma or the anon_vma
476 * returned may already be freed (and even reused).
477 *
478 * In case it was remapped to a different anon_vma, the new anon_vma will be a
479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480 * ensure that any anon_vma obtained from the page will still be valid for as
481 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482 *
483 * All users of this function must be very careful when walking the anon_vma
484 * chain and verify that the page in question is indeed mapped in it
485 * [ something equivalent to page_mapped_in_vma() ].
486 *
487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489 * if there is a mapcount, we can dereference the anon_vma after observing
490 * those.
491 */
folio_get_anon_vma(struct folio * folio)492 struct anon_vma *folio_get_anon_vma(struct folio *folio)
493 {
494 struct anon_vma *anon_vma = NULL;
495 unsigned long anon_mapping;
496
497 rcu_read_lock();
498 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
500 goto out;
501 if (!folio_mapped(folio))
502 goto out;
503
504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
505 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506 anon_vma = NULL;
507 goto out;
508 }
509
510 /*
511 * If this folio is still mapped, then its anon_vma cannot have been
512 * freed. But if it has been unmapped, we have no security against the
513 * anon_vma structure being freed and reused (for another anon_vma:
514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
515 * above cannot corrupt).
516 */
517 if (!folio_mapped(folio)) {
518 rcu_read_unlock();
519 put_anon_vma(anon_vma);
520 return NULL;
521 }
522 out:
523 rcu_read_unlock();
524
525 return anon_vma;
526 }
527
528 /*
529 * Similar to folio_get_anon_vma() except it locks the anon_vma.
530 *
531 * Its a little more complex as it tries to keep the fast path to a single
532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
533 * reference like with folio_get_anon_vma() and then block on the mutex
534 * on !rwc->try_lock case.
535 */
folio_lock_anon_vma_read(struct folio * folio,struct rmap_walk_control * rwc)536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537 struct rmap_walk_control *rwc)
538 {
539 struct anon_vma *anon_vma = NULL;
540 struct anon_vma *root_anon_vma;
541 unsigned long anon_mapping;
542
543 rcu_read_lock();
544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546 goto out;
547 if (!folio_mapped(folio))
548 goto out;
549
550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
551 root_anon_vma = READ_ONCE(anon_vma->root);
552 if (down_read_trylock(&root_anon_vma->rwsem)) {
553 /*
554 * If the folio is still mapped, then this anon_vma is still
555 * its anon_vma, and holding the mutex ensures that it will
556 * not go away, see anon_vma_free().
557 */
558 if (!folio_mapped(folio)) {
559 up_read(&root_anon_vma->rwsem);
560 anon_vma = NULL;
561 }
562 goto out;
563 }
564
565 if (rwc && rwc->try_lock) {
566 anon_vma = NULL;
567 rwc->contended = true;
568 goto out;
569 }
570
571 /* trylock failed, we got to sleep */
572 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573 anon_vma = NULL;
574 goto out;
575 }
576
577 if (!folio_mapped(folio)) {
578 rcu_read_unlock();
579 put_anon_vma(anon_vma);
580 return NULL;
581 }
582
583 /* we pinned the anon_vma, its safe to sleep */
584 rcu_read_unlock();
585 anon_vma_lock_read(anon_vma);
586
587 if (atomic_dec_and_test(&anon_vma->refcount)) {
588 /*
589 * Oops, we held the last refcount, release the lock
590 * and bail -- can't simply use put_anon_vma() because
591 * we'll deadlock on the anon_vma_lock_write() recursion.
592 */
593 anon_vma_unlock_read(anon_vma);
594 __put_anon_vma(anon_vma);
595 anon_vma = NULL;
596 }
597
598 return anon_vma;
599
600 out:
601 rcu_read_unlock();
602 return anon_vma;
603 }
604
605 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
606 /*
607 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
608 * important if a PTE was dirty when it was unmapped that it's flushed
609 * before any IO is initiated on the page to prevent lost writes. Similarly,
610 * it must be flushed before freeing to prevent data leakage.
611 */
try_to_unmap_flush(void)612 void try_to_unmap_flush(void)
613 {
614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
615
616 if (!tlb_ubc->flush_required)
617 return;
618
619 arch_tlbbatch_flush(&tlb_ubc->arch);
620 tlb_ubc->flush_required = false;
621 tlb_ubc->writable = false;
622 }
623
624 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)625 void try_to_unmap_flush_dirty(void)
626 {
627 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
628
629 if (tlb_ubc->writable)
630 try_to_unmap_flush();
631 }
632
633 /*
634 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
635 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
636 */
637 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
638 #define TLB_FLUSH_BATCH_PENDING_MASK \
639 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
640 #define TLB_FLUSH_BATCH_PENDING_LARGE \
641 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
642
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
644 {
645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
646 int batch, nbatch;
647
648 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
649 tlb_ubc->flush_required = true;
650
651 /*
652 * Ensure compiler does not re-order the setting of tlb_flush_batched
653 * before the PTE is cleared.
654 */
655 barrier();
656 batch = atomic_read(&mm->tlb_flush_batched);
657 retry:
658 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
659 /*
660 * Prevent `pending' from catching up with `flushed' because of
661 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
662 * `pending' becomes large.
663 */
664 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
665 if (nbatch != batch) {
666 batch = nbatch;
667 goto retry;
668 }
669 } else {
670 atomic_inc(&mm->tlb_flush_batched);
671 }
672
673 /*
674 * If the PTE was dirty then it's best to assume it's writable. The
675 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
676 * before the page is queued for IO.
677 */
678 if (writable)
679 tlb_ubc->writable = true;
680 }
681
682 /*
683 * Returns true if the TLB flush should be deferred to the end of a batch of
684 * unmap operations to reduce IPIs.
685 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)686 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687 {
688 bool should_defer = false;
689
690 if (!(flags & TTU_BATCH_FLUSH))
691 return false;
692
693 /* If remote CPUs need to be flushed then defer batch the flush */
694 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
695 should_defer = true;
696 put_cpu();
697
698 return should_defer;
699 }
700
701 /*
702 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
703 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
704 * operation such as mprotect or munmap to race between reclaim unmapping
705 * the page and flushing the page. If this race occurs, it potentially allows
706 * access to data via a stale TLB entry. Tracking all mm's that have TLB
707 * batching in flight would be expensive during reclaim so instead track
708 * whether TLB batching occurred in the past and if so then do a flush here
709 * if required. This will cost one additional flush per reclaim cycle paid
710 * by the first operation at risk such as mprotect and mumap.
711 *
712 * This must be called under the PTL so that an access to tlb_flush_batched
713 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
714 * via the PTL.
715 */
flush_tlb_batched_pending(struct mm_struct * mm)716 void flush_tlb_batched_pending(struct mm_struct *mm)
717 {
718 int batch = atomic_read(&mm->tlb_flush_batched);
719 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
720 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
721
722 if (pending != flushed) {
723 flush_tlb_mm(mm);
724 /*
725 * If the new TLB flushing is pending during flushing, leave
726 * mm->tlb_flush_batched as is, to avoid losing flushing.
727 */
728 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
729 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
730 }
731 }
732 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)733 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
734 {
735 }
736
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)737 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
738 {
739 return false;
740 }
741 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
742
743 /*
744 * At what user virtual address is page expected in vma?
745 * Caller should check the page is actually part of the vma.
746 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)747 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
748 {
749 struct folio *folio = page_folio(page);
750 if (folio_test_anon(folio)) {
751 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
752 /*
753 * Note: swapoff's unuse_vma() is more efficient with this
754 * check, and needs it to match anon_vma when KSM is active.
755 */
756 if (!vma->anon_vma || !page__anon_vma ||
757 vma->anon_vma->root != page__anon_vma->root)
758 return -EFAULT;
759 } else if (!vma->vm_file) {
760 return -EFAULT;
761 } else if (vma->vm_file->f_mapping != folio->mapping) {
762 return -EFAULT;
763 }
764
765 return vma_address(page, vma);
766 }
767
768 /*
769 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
770 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
771 * represents.
772 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774 {
775 pgd_t *pgd;
776 p4d_t *p4d;
777 pud_t *pud;
778 pmd_t *pmd = NULL;
779
780 pgd = pgd_offset(mm, address);
781 if (!pgd_present(*pgd))
782 goto out;
783
784 p4d = p4d_offset(pgd, address);
785 if (!p4d_present(*p4d))
786 goto out;
787
788 pud = pud_offset(p4d, address);
789 if (!pud_present(*pud))
790 goto out;
791
792 pmd = pmd_offset(pud, address);
793 out:
794 return pmd;
795 }
796
797 struct folio_referenced_arg {
798 int mapcount;
799 int referenced;
800 unsigned long vm_flags;
801 struct mem_cgroup *memcg;
802 };
803 /*
804 * arg: folio_referenced_arg will be passed
805 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)806 static bool folio_referenced_one(struct folio *folio,
807 struct vm_area_struct *vma, unsigned long address, void *arg)
808 {
809 struct folio_referenced_arg *pra = arg;
810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
811 int referenced = 0;
812
813 while (page_vma_mapped_walk(&pvmw)) {
814 address = pvmw.address;
815
816 if ((vma->vm_flags & VM_LOCKED) &&
817 (!folio_test_large(folio) || !pvmw.pte)) {
818 /* Restore the mlock which got missed */
819 mlock_vma_folio(folio, vma, !pvmw.pte);
820 page_vma_mapped_walk_done(&pvmw);
821 pra->vm_flags |= VM_LOCKED;
822 return false; /* To break the loop */
823 }
824
825 if (pvmw.pte) {
826 if (lru_gen_enabled() && pte_young(*pvmw.pte) &&
827 !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) {
828 lru_gen_look_around(&pvmw);
829 referenced++;
830 }
831
832 if (ptep_clear_flush_young_notify(vma, address,
833 pvmw.pte)) {
834 /*
835 * Don't treat a reference through
836 * a sequentially read mapping as such.
837 * If the folio has been used in another mapping,
838 * we will catch it; if this other mapping is
839 * already gone, the unmap path will have set
840 * the referenced flag or activated the folio.
841 */
842 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
843 referenced++;
844 }
845 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
846 if (pmdp_clear_flush_young_notify(vma, address,
847 pvmw.pmd))
848 referenced++;
849 } else {
850 /* unexpected pmd-mapped folio? */
851 WARN_ON_ONCE(1);
852 }
853
854 pra->mapcount--;
855 }
856
857 if (referenced)
858 folio_clear_idle(folio);
859 if (folio_test_clear_young(folio))
860 referenced++;
861
862 if (referenced) {
863 pra->referenced++;
864 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
865 }
866
867 if (!pra->mapcount)
868 return false; /* To break the loop */
869
870 return true;
871 }
872
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)873 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
874 {
875 struct folio_referenced_arg *pra = arg;
876 struct mem_cgroup *memcg = pra->memcg;
877
878 if (!mm_match_cgroup(vma->vm_mm, memcg))
879 return true;
880
881 return false;
882 }
883
884 /**
885 * folio_referenced() - Test if the folio was referenced.
886 * @folio: The folio to test.
887 * @is_locked: Caller holds lock on the folio.
888 * @memcg: target memory cgroup
889 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
890 *
891 * Quick test_and_clear_referenced for all mappings of a folio,
892 *
893 * Return: The number of mappings which referenced the folio. Return -1 if
894 * the function bailed out due to rmap lock contention.
895 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)896 int folio_referenced(struct folio *folio, int is_locked,
897 struct mem_cgroup *memcg, unsigned long *vm_flags)
898 {
899 int we_locked = 0;
900 struct folio_referenced_arg pra = {
901 .mapcount = folio_mapcount(folio),
902 .memcg = memcg,
903 };
904 struct rmap_walk_control rwc = {
905 .rmap_one = folio_referenced_one,
906 .arg = (void *)&pra,
907 .anon_lock = folio_lock_anon_vma_read,
908 .try_lock = true,
909 };
910
911 *vm_flags = 0;
912 if (!pra.mapcount)
913 return 0;
914
915 if (!folio_raw_mapping(folio))
916 return 0;
917
918 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
919 we_locked = folio_trylock(folio);
920 if (!we_locked)
921 return 1;
922 }
923
924 /*
925 * If we are reclaiming on behalf of a cgroup, skip
926 * counting on behalf of references from different
927 * cgroups
928 */
929 if (memcg) {
930 rwc.invalid_vma = invalid_folio_referenced_vma;
931 }
932
933 rmap_walk(folio, &rwc);
934 *vm_flags = pra.vm_flags;
935
936 if (we_locked)
937 folio_unlock(folio);
938
939 return rwc.contended ? -1 : pra.referenced;
940 }
941
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)942 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
943 {
944 int cleaned = 0;
945 struct vm_area_struct *vma = pvmw->vma;
946 struct mmu_notifier_range range;
947 unsigned long address = pvmw->address;
948
949 /*
950 * We have to assume the worse case ie pmd for invalidation. Note that
951 * the folio can not be freed from this function.
952 */
953 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
954 0, vma, vma->vm_mm, address,
955 vma_address_end(pvmw));
956 mmu_notifier_invalidate_range_start(&range);
957
958 while (page_vma_mapped_walk(pvmw)) {
959 int ret = 0;
960
961 address = pvmw->address;
962 if (pvmw->pte) {
963 pte_t entry;
964 pte_t *pte = pvmw->pte;
965
966 if (!pte_dirty(*pte) && !pte_write(*pte))
967 continue;
968
969 flush_cache_page(vma, address, pte_pfn(*pte));
970 entry = ptep_clear_flush(vma, address, pte);
971 entry = pte_wrprotect(entry);
972 entry = pte_mkclean(entry);
973 set_pte_at(vma->vm_mm, address, pte, entry);
974 ret = 1;
975 } else {
976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
977 pmd_t *pmd = pvmw->pmd;
978 pmd_t entry;
979
980 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
981 continue;
982
983 flush_cache_range(vma, address,
984 address + HPAGE_PMD_SIZE);
985 entry = pmdp_invalidate(vma, address, pmd);
986 entry = pmd_wrprotect(entry);
987 entry = pmd_mkclean(entry);
988 set_pmd_at(vma->vm_mm, address, pmd, entry);
989 ret = 1;
990 #else
991 /* unexpected pmd-mapped folio? */
992 WARN_ON_ONCE(1);
993 #endif
994 }
995
996 /*
997 * No need to call mmu_notifier_invalidate_range() as we are
998 * downgrading page table protection not changing it to point
999 * to a new page.
1000 *
1001 * See Documentation/mm/mmu_notifier.rst
1002 */
1003 if (ret)
1004 cleaned++;
1005 }
1006
1007 mmu_notifier_invalidate_range_end(&range);
1008
1009 return cleaned;
1010 }
1011
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1012 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1013 unsigned long address, void *arg)
1014 {
1015 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1016 int *cleaned = arg;
1017
1018 *cleaned += page_vma_mkclean_one(&pvmw);
1019
1020 return true;
1021 }
1022
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1023 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1024 {
1025 if (vma->vm_flags & VM_SHARED)
1026 return false;
1027
1028 return true;
1029 }
1030
folio_mkclean(struct folio * folio)1031 int folio_mkclean(struct folio *folio)
1032 {
1033 int cleaned = 0;
1034 struct address_space *mapping;
1035 struct rmap_walk_control rwc = {
1036 .arg = (void *)&cleaned,
1037 .rmap_one = page_mkclean_one,
1038 .invalid_vma = invalid_mkclean_vma,
1039 };
1040
1041 BUG_ON(!folio_test_locked(folio));
1042
1043 if (!folio_mapped(folio))
1044 return 0;
1045
1046 mapping = folio_mapping(folio);
1047 if (!mapping)
1048 return 0;
1049
1050 rmap_walk(folio, &rwc);
1051
1052 return cleaned;
1053 }
1054 EXPORT_SYMBOL_GPL(folio_mkclean);
1055
1056 /**
1057 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1058 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1059 * within the @vma of shared mappings. And since clean PTEs
1060 * should also be readonly, write protects them too.
1061 * @pfn: start pfn.
1062 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1063 * @pgoff: page offset that the @pfn mapped with.
1064 * @vma: vma that @pfn mapped within.
1065 *
1066 * Returns the number of cleaned PTEs (including PMDs).
1067 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1068 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1069 struct vm_area_struct *vma)
1070 {
1071 struct page_vma_mapped_walk pvmw = {
1072 .pfn = pfn,
1073 .nr_pages = nr_pages,
1074 .pgoff = pgoff,
1075 .vma = vma,
1076 .flags = PVMW_SYNC,
1077 };
1078
1079 if (invalid_mkclean_vma(vma, NULL))
1080 return 0;
1081
1082 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1083 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1084
1085 return page_vma_mkclean_one(&pvmw);
1086 }
1087
1088 /**
1089 * page_move_anon_rmap - move a page to our anon_vma
1090 * @page: the page to move to our anon_vma
1091 * @vma: the vma the page belongs to
1092 *
1093 * When a page belongs exclusively to one process after a COW event,
1094 * that page can be moved into the anon_vma that belongs to just that
1095 * process, so the rmap code will not search the parent or sibling
1096 * processes.
1097 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1098 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1099 {
1100 void *anon_vma = vma->anon_vma;
1101 struct folio *folio = page_folio(page);
1102
1103 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1104 VM_BUG_ON_VMA(!anon_vma, vma);
1105
1106 anon_vma += PAGE_MAPPING_ANON;
1107 /*
1108 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1109 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1110 * folio_test_anon()) will not see one without the other.
1111 */
1112 WRITE_ONCE(folio->mapping, anon_vma);
1113 SetPageAnonExclusive(page);
1114 }
1115
1116 /**
1117 * __page_set_anon_rmap - set up new anonymous rmap
1118 * @page: Page or Hugepage to add to rmap
1119 * @vma: VM area to add page to.
1120 * @address: User virtual address of the mapping
1121 * @exclusive: the page is exclusively owned by the current process
1122 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1123 static void __page_set_anon_rmap(struct page *page,
1124 struct vm_area_struct *vma, unsigned long address, int exclusive)
1125 {
1126 struct anon_vma *anon_vma = vma->anon_vma;
1127
1128 BUG_ON(!anon_vma);
1129
1130 if (PageAnon(page))
1131 goto out;
1132
1133 /*
1134 * If the page isn't exclusively mapped into this vma,
1135 * we must use the _oldest_ possible anon_vma for the
1136 * page mapping!
1137 */
1138 if (!exclusive)
1139 anon_vma = anon_vma->root;
1140
1141 /*
1142 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1143 * Make sure the compiler doesn't split the stores of anon_vma and
1144 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1145 * could mistake the mapping for a struct address_space and crash.
1146 */
1147 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1148 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1149 page->index = linear_page_index(vma, address);
1150 out:
1151 if (exclusive)
1152 SetPageAnonExclusive(page);
1153 }
1154
1155 /**
1156 * __page_check_anon_rmap - sanity check anonymous rmap addition
1157 * @page: the page to add the mapping to
1158 * @vma: the vm area in which the mapping is added
1159 * @address: the user virtual address mapped
1160 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1161 static void __page_check_anon_rmap(struct page *page,
1162 struct vm_area_struct *vma, unsigned long address)
1163 {
1164 struct folio *folio = page_folio(page);
1165 /*
1166 * The page's anon-rmap details (mapping and index) are guaranteed to
1167 * be set up correctly at this point.
1168 *
1169 * We have exclusion against page_add_anon_rmap because the caller
1170 * always holds the page locked.
1171 *
1172 * We have exclusion against page_add_new_anon_rmap because those pages
1173 * are initially only visible via the pagetables, and the pte is locked
1174 * over the call to page_add_new_anon_rmap.
1175 */
1176 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1177 folio);
1178 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1179 page);
1180 }
1181
1182 /**
1183 * page_add_anon_rmap - add pte mapping to an anonymous page
1184 * @page: the page to add the mapping to
1185 * @vma: the vm area in which the mapping is added
1186 * @address: the user virtual address mapped
1187 * @flags: the rmap flags
1188 *
1189 * The caller needs to hold the pte lock, and the page must be locked in
1190 * the anon_vma case: to serialize mapping,index checking after setting,
1191 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1192 * (but PageKsm is never downgraded to PageAnon).
1193 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1194 void page_add_anon_rmap(struct page *page,
1195 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1196 {
1197 bool compound = flags & RMAP_COMPOUND;
1198 bool first;
1199
1200 if (unlikely(PageKsm(page)))
1201 lock_page_memcg(page);
1202 else
1203 VM_BUG_ON_PAGE(!PageLocked(page), page);
1204
1205 if (compound) {
1206 atomic_t *mapcount;
1207 VM_BUG_ON_PAGE(!PageLocked(page), page);
1208 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1209 mapcount = compound_mapcount_ptr(page);
1210 first = atomic_inc_and_test(mapcount);
1211 } else {
1212 first = atomic_inc_and_test(&page->_mapcount);
1213 }
1214 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1215 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1216
1217 if (first) {
1218 int nr = compound ? thp_nr_pages(page) : 1;
1219 /*
1220 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1221 * these counters are not modified in interrupt context, and
1222 * pte lock(a spinlock) is held, which implies preemption
1223 * disabled.
1224 */
1225 if (compound)
1226 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1227 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1228 }
1229
1230 if (unlikely(PageKsm(page)))
1231 unlock_page_memcg(page);
1232
1233 /* address might be in next vma when migration races vma_adjust */
1234 else if (first)
1235 __page_set_anon_rmap(page, vma, address,
1236 !!(flags & RMAP_EXCLUSIVE));
1237 else
1238 __page_check_anon_rmap(page, vma, address);
1239
1240 mlock_vma_page(page, vma, compound);
1241 }
1242
1243 /**
1244 * page_add_new_anon_rmap - add mapping to a new anonymous page
1245 * @page: the page to add the mapping to
1246 * @vma: the vm area in which the mapping is added
1247 * @address: the user virtual address mapped
1248 *
1249 * If it's a compound page, it is accounted as a compound page. As the page
1250 * is new, it's assume to get mapped exclusively by a single process.
1251 *
1252 * Same as page_add_anon_rmap but must only be called on *new* pages.
1253 * This means the inc-and-test can be bypassed.
1254 * Page does not have to be locked.
1255 */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1256 void page_add_new_anon_rmap(struct page *page,
1257 struct vm_area_struct *vma, unsigned long address)
1258 {
1259 const bool compound = PageCompound(page);
1260 int nr = compound ? thp_nr_pages(page) : 1;
1261
1262 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1263 __SetPageSwapBacked(page);
1264 if (compound) {
1265 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1266 /* increment count (starts at -1) */
1267 atomic_set(compound_mapcount_ptr(page), 0);
1268 atomic_set(compound_pincount_ptr(page), 0);
1269
1270 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1271 } else {
1272 /* increment count (starts at -1) */
1273 atomic_set(&page->_mapcount, 0);
1274 }
1275 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1276 __page_set_anon_rmap(page, vma, address, 1);
1277 }
1278
1279 /**
1280 * page_add_file_rmap - add pte mapping to a file page
1281 * @page: the page to add the mapping to
1282 * @vma: the vm area in which the mapping is added
1283 * @compound: charge the page as compound or small page
1284 *
1285 * The caller needs to hold the pte lock.
1286 */
page_add_file_rmap(struct page * page,struct vm_area_struct * vma,bool compound)1287 void page_add_file_rmap(struct page *page,
1288 struct vm_area_struct *vma, bool compound)
1289 {
1290 int i, nr = 0;
1291
1292 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1293 lock_page_memcg(page);
1294 if (compound && PageTransHuge(page)) {
1295 int nr_pages = thp_nr_pages(page);
1296
1297 for (i = 0; i < nr_pages; i++) {
1298 if (atomic_inc_and_test(&page[i]._mapcount))
1299 nr++;
1300 }
1301 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1302 goto out;
1303
1304 /*
1305 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1306 * but page lock is held by all page_add_file_rmap() compound
1307 * callers, and SetPageDoubleMap below warns if !PageLocked:
1308 * so here is a place that DoubleMap can be safely cleared.
1309 */
1310 VM_WARN_ON_ONCE(!PageLocked(page));
1311 if (nr == nr_pages && PageDoubleMap(page))
1312 ClearPageDoubleMap(page);
1313
1314 if (PageSwapBacked(page))
1315 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1316 nr_pages);
1317 else
1318 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1319 nr_pages);
1320 } else {
1321 if (PageTransCompound(page) && page_mapping(page)) {
1322 VM_WARN_ON_ONCE(!PageLocked(page));
1323 SetPageDoubleMap(compound_head(page));
1324 }
1325 if (atomic_inc_and_test(&page->_mapcount))
1326 nr++;
1327 }
1328 out:
1329 if (nr)
1330 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1331 unlock_page_memcg(page);
1332
1333 mlock_vma_page(page, vma, compound);
1334 }
1335
page_remove_file_rmap(struct page * page,bool compound)1336 static void page_remove_file_rmap(struct page *page, bool compound)
1337 {
1338 int i, nr = 0;
1339
1340 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1341
1342 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1343 if (unlikely(PageHuge(page))) {
1344 /* hugetlb pages are always mapped with pmds */
1345 atomic_dec(compound_mapcount_ptr(page));
1346 return;
1347 }
1348
1349 /* page still mapped by someone else? */
1350 if (compound && PageTransHuge(page)) {
1351 int nr_pages = thp_nr_pages(page);
1352
1353 for (i = 0; i < nr_pages; i++) {
1354 if (atomic_add_negative(-1, &page[i]._mapcount))
1355 nr++;
1356 }
1357 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1358 goto out;
1359 if (PageSwapBacked(page))
1360 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1361 -nr_pages);
1362 else
1363 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1364 -nr_pages);
1365 } else {
1366 if (atomic_add_negative(-1, &page->_mapcount))
1367 nr++;
1368 }
1369 out:
1370 if (nr)
1371 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1372 }
1373
page_remove_anon_compound_rmap(struct page * page)1374 static void page_remove_anon_compound_rmap(struct page *page)
1375 {
1376 int i, nr;
1377
1378 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1379 return;
1380
1381 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1382 if (unlikely(PageHuge(page)))
1383 return;
1384
1385 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1386 return;
1387
1388 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1389
1390 if (TestClearPageDoubleMap(page)) {
1391 /*
1392 * Subpages can be mapped with PTEs too. Check how many of
1393 * them are still mapped.
1394 */
1395 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1396 if (atomic_add_negative(-1, &page[i]._mapcount))
1397 nr++;
1398 }
1399
1400 /*
1401 * Queue the page for deferred split if at least one small
1402 * page of the compound page is unmapped, but at least one
1403 * small page is still mapped.
1404 */
1405 if (nr && nr < thp_nr_pages(page))
1406 deferred_split_huge_page(page);
1407 } else {
1408 nr = thp_nr_pages(page);
1409 }
1410
1411 if (nr)
1412 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1413 }
1414
1415 /**
1416 * page_remove_rmap - take down pte mapping from a page
1417 * @page: page to remove mapping from
1418 * @vma: the vm area from which the mapping is removed
1419 * @compound: uncharge the page as compound or small page
1420 *
1421 * The caller needs to hold the pte lock.
1422 */
page_remove_rmap(struct page * page,struct vm_area_struct * vma,bool compound)1423 void page_remove_rmap(struct page *page,
1424 struct vm_area_struct *vma, bool compound)
1425 {
1426 lock_page_memcg(page);
1427
1428 if (!PageAnon(page)) {
1429 page_remove_file_rmap(page, compound);
1430 goto out;
1431 }
1432
1433 if (compound) {
1434 page_remove_anon_compound_rmap(page);
1435 goto out;
1436 }
1437
1438 /* page still mapped by someone else? */
1439 if (!atomic_add_negative(-1, &page->_mapcount))
1440 goto out;
1441
1442 /*
1443 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1444 * these counters are not modified in interrupt context, and
1445 * pte lock(a spinlock) is held, which implies preemption disabled.
1446 */
1447 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1448
1449 if (PageTransCompound(page))
1450 deferred_split_huge_page(compound_head(page));
1451
1452 /*
1453 * It would be tidy to reset the PageAnon mapping here,
1454 * but that might overwrite a racing page_add_anon_rmap
1455 * which increments mapcount after us but sets mapping
1456 * before us: so leave the reset to free_unref_page,
1457 * and remember that it's only reliable while mapped.
1458 * Leaving it set also helps swapoff to reinstate ptes
1459 * faster for those pages still in swapcache.
1460 */
1461 out:
1462 unlock_page_memcg(page);
1463
1464 munlock_vma_page(page, vma, compound);
1465 }
1466
1467 /*
1468 * @arg: enum ttu_flags will be passed to this argument
1469 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1470 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1471 unsigned long address, void *arg)
1472 {
1473 struct mm_struct *mm = vma->vm_mm;
1474 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1475 pte_t pteval;
1476 struct page *subpage;
1477 bool anon_exclusive, ret = true;
1478 struct mmu_notifier_range range;
1479 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1480
1481 /*
1482 * When racing against e.g. zap_pte_range() on another cpu,
1483 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1484 * try_to_unmap() may return before page_mapped() has become false,
1485 * if page table locking is skipped: use TTU_SYNC to wait for that.
1486 */
1487 if (flags & TTU_SYNC)
1488 pvmw.flags = PVMW_SYNC;
1489
1490 if (flags & TTU_SPLIT_HUGE_PMD)
1491 split_huge_pmd_address(vma, address, false, folio);
1492
1493 /*
1494 * For THP, we have to assume the worse case ie pmd for invalidation.
1495 * For hugetlb, it could be much worse if we need to do pud
1496 * invalidation in the case of pmd sharing.
1497 *
1498 * Note that the folio can not be freed in this function as call of
1499 * try_to_unmap() must hold a reference on the folio.
1500 */
1501 range.end = vma_address_end(&pvmw);
1502 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1503 address, range.end);
1504 if (folio_test_hugetlb(folio)) {
1505 /*
1506 * If sharing is possible, start and end will be adjusted
1507 * accordingly.
1508 */
1509 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1510 &range.end);
1511 }
1512 mmu_notifier_invalidate_range_start(&range);
1513
1514 while (page_vma_mapped_walk(&pvmw)) {
1515 /* Unexpected PMD-mapped THP? */
1516 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1517
1518 /*
1519 * If the folio is in an mlock()d vma, we must not swap it out.
1520 */
1521 if (!(flags & TTU_IGNORE_MLOCK) &&
1522 (vma->vm_flags & VM_LOCKED)) {
1523 /* Restore the mlock which got missed */
1524 mlock_vma_folio(folio, vma, false);
1525 page_vma_mapped_walk_done(&pvmw);
1526 ret = false;
1527 break;
1528 }
1529
1530 subpage = folio_page(folio,
1531 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1532 address = pvmw.address;
1533 anon_exclusive = folio_test_anon(folio) &&
1534 PageAnonExclusive(subpage);
1535
1536 if (folio_test_hugetlb(folio)) {
1537 bool anon = folio_test_anon(folio);
1538
1539 /*
1540 * The try_to_unmap() is only passed a hugetlb page
1541 * in the case where the hugetlb page is poisoned.
1542 */
1543 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1544 /*
1545 * huge_pmd_unshare may unmap an entire PMD page.
1546 * There is no way of knowing exactly which PMDs may
1547 * be cached for this mm, so we must flush them all.
1548 * start/end were already adjusted above to cover this
1549 * range.
1550 */
1551 flush_cache_range(vma, range.start, range.end);
1552
1553 /*
1554 * To call huge_pmd_unshare, i_mmap_rwsem must be
1555 * held in write mode. Caller needs to explicitly
1556 * do this outside rmap routines.
1557 *
1558 * We also must hold hugetlb vma_lock in write mode.
1559 * Lock order dictates acquiring vma_lock BEFORE
1560 * i_mmap_rwsem. We can only try lock here and fail
1561 * if unsuccessful.
1562 */
1563 if (!anon) {
1564 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1565 if (!hugetlb_vma_trylock_write(vma)) {
1566 page_vma_mapped_walk_done(&pvmw);
1567 ret = false;
1568 break;
1569 }
1570 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1571 hugetlb_vma_unlock_write(vma);
1572 flush_tlb_range(vma,
1573 range.start, range.end);
1574 mmu_notifier_invalidate_range(mm,
1575 range.start, range.end);
1576 /*
1577 * The ref count of the PMD page was
1578 * dropped which is part of the way map
1579 * counting is done for shared PMDs.
1580 * Return 'true' here. When there is
1581 * no other sharing, huge_pmd_unshare
1582 * returns false and we will unmap the
1583 * actual page and drop map count
1584 * to zero.
1585 */
1586 page_vma_mapped_walk_done(&pvmw);
1587 break;
1588 }
1589 hugetlb_vma_unlock_write(vma);
1590 }
1591 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1592 } else {
1593 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1594 /* Nuke the page table entry. */
1595 if (should_defer_flush(mm, flags)) {
1596 /*
1597 * We clear the PTE but do not flush so potentially
1598 * a remote CPU could still be writing to the folio.
1599 * If the entry was previously clean then the
1600 * architecture must guarantee that a clear->dirty
1601 * transition on a cached TLB entry is written through
1602 * and traps if the PTE is unmapped.
1603 */
1604 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1605
1606 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1607 } else {
1608 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1609 }
1610 }
1611
1612 /*
1613 * Now the pte is cleared. If this pte was uffd-wp armed,
1614 * we may want to replace a none pte with a marker pte if
1615 * it's file-backed, so we don't lose the tracking info.
1616 */
1617 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1618
1619 /* Set the dirty flag on the folio now the pte is gone. */
1620 if (pte_dirty(pteval))
1621 folio_mark_dirty(folio);
1622
1623 /* Update high watermark before we lower rss */
1624 update_hiwater_rss(mm);
1625
1626 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1627 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1628 if (folio_test_hugetlb(folio)) {
1629 hugetlb_count_sub(folio_nr_pages(folio), mm);
1630 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1631 } else {
1632 dec_mm_counter(mm, mm_counter(&folio->page));
1633 set_pte_at(mm, address, pvmw.pte, pteval);
1634 }
1635
1636 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1637 /*
1638 * The guest indicated that the page content is of no
1639 * interest anymore. Simply discard the pte, vmscan
1640 * will take care of the rest.
1641 * A future reference will then fault in a new zero
1642 * page. When userfaultfd is active, we must not drop
1643 * this page though, as its main user (postcopy
1644 * migration) will not expect userfaults on already
1645 * copied pages.
1646 */
1647 dec_mm_counter(mm, mm_counter(&folio->page));
1648 /* We have to invalidate as we cleared the pte */
1649 mmu_notifier_invalidate_range(mm, address,
1650 address + PAGE_SIZE);
1651 } else if (folio_test_anon(folio)) {
1652 swp_entry_t entry = { .val = page_private(subpage) };
1653 pte_t swp_pte;
1654 /*
1655 * Store the swap location in the pte.
1656 * See handle_pte_fault() ...
1657 */
1658 if (unlikely(folio_test_swapbacked(folio) !=
1659 folio_test_swapcache(folio))) {
1660 WARN_ON_ONCE(1);
1661 ret = false;
1662 /* We have to invalidate as we cleared the pte */
1663 mmu_notifier_invalidate_range(mm, address,
1664 address + PAGE_SIZE);
1665 page_vma_mapped_walk_done(&pvmw);
1666 break;
1667 }
1668
1669 /* MADV_FREE page check */
1670 if (!folio_test_swapbacked(folio)) {
1671 int ref_count, map_count;
1672
1673 /*
1674 * Synchronize with gup_pte_range():
1675 * - clear PTE; barrier; read refcount
1676 * - inc refcount; barrier; read PTE
1677 */
1678 smp_mb();
1679
1680 ref_count = folio_ref_count(folio);
1681 map_count = folio_mapcount(folio);
1682
1683 /*
1684 * Order reads for page refcount and dirty flag
1685 * (see comments in __remove_mapping()).
1686 */
1687 smp_rmb();
1688
1689 /*
1690 * The only page refs must be one from isolation
1691 * plus the rmap(s) (dropped by discard:).
1692 */
1693 if (ref_count == 1 + map_count &&
1694 !folio_test_dirty(folio)) {
1695 /* Invalidate as we cleared the pte */
1696 mmu_notifier_invalidate_range(mm,
1697 address, address + PAGE_SIZE);
1698 dec_mm_counter(mm, MM_ANONPAGES);
1699 goto discard;
1700 }
1701
1702 /*
1703 * If the folio was redirtied, it cannot be
1704 * discarded. Remap the page to page table.
1705 */
1706 set_pte_at(mm, address, pvmw.pte, pteval);
1707 folio_set_swapbacked(folio);
1708 ret = false;
1709 page_vma_mapped_walk_done(&pvmw);
1710 break;
1711 }
1712
1713 if (swap_duplicate(entry) < 0) {
1714 set_pte_at(mm, address, pvmw.pte, pteval);
1715 ret = false;
1716 page_vma_mapped_walk_done(&pvmw);
1717 break;
1718 }
1719 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1720 swap_free(entry);
1721 set_pte_at(mm, address, pvmw.pte, pteval);
1722 ret = false;
1723 page_vma_mapped_walk_done(&pvmw);
1724 break;
1725 }
1726
1727 /* See page_try_share_anon_rmap(): clear PTE first. */
1728 if (anon_exclusive &&
1729 page_try_share_anon_rmap(subpage)) {
1730 swap_free(entry);
1731 set_pte_at(mm, address, pvmw.pte, pteval);
1732 ret = false;
1733 page_vma_mapped_walk_done(&pvmw);
1734 break;
1735 }
1736 /*
1737 * Note: We *don't* remember if the page was mapped
1738 * exclusively in the swap pte if the architecture
1739 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1740 * that case, swapin code has to re-determine that
1741 * manually and might detect the page as possibly
1742 * shared, for example, if there are other references on
1743 * the page or if the page is under writeback. We made
1744 * sure that there are no GUP pins on the page that
1745 * would rely on it, so for GUP pins this is fine.
1746 */
1747 if (list_empty(&mm->mmlist)) {
1748 spin_lock(&mmlist_lock);
1749 if (list_empty(&mm->mmlist))
1750 list_add(&mm->mmlist, &init_mm.mmlist);
1751 spin_unlock(&mmlist_lock);
1752 }
1753 dec_mm_counter(mm, MM_ANONPAGES);
1754 inc_mm_counter(mm, MM_SWAPENTS);
1755 swp_pte = swp_entry_to_pte(entry);
1756 if (anon_exclusive)
1757 swp_pte = pte_swp_mkexclusive(swp_pte);
1758 if (pte_soft_dirty(pteval))
1759 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1760 if (pte_uffd_wp(pteval))
1761 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1762 set_pte_at(mm, address, pvmw.pte, swp_pte);
1763 /* Invalidate as we cleared the pte */
1764 mmu_notifier_invalidate_range(mm, address,
1765 address + PAGE_SIZE);
1766 } else {
1767 /*
1768 * This is a locked file-backed folio,
1769 * so it cannot be removed from the page
1770 * cache and replaced by a new folio before
1771 * mmu_notifier_invalidate_range_end, so no
1772 * concurrent thread might update its page table
1773 * to point at a new folio while a device is
1774 * still using this folio.
1775 *
1776 * See Documentation/mm/mmu_notifier.rst
1777 */
1778 dec_mm_counter(mm, mm_counter_file(&folio->page));
1779 }
1780 discard:
1781 /*
1782 * No need to call mmu_notifier_invalidate_range() it has be
1783 * done above for all cases requiring it to happen under page
1784 * table lock before mmu_notifier_invalidate_range_end()
1785 *
1786 * See Documentation/mm/mmu_notifier.rst
1787 */
1788 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1789 if (vma->vm_flags & VM_LOCKED)
1790 mlock_page_drain_local();
1791 folio_put(folio);
1792 }
1793
1794 mmu_notifier_invalidate_range_end(&range);
1795
1796 return ret;
1797 }
1798
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1799 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1800 {
1801 return vma_is_temporary_stack(vma);
1802 }
1803
page_not_mapped(struct folio * folio)1804 static int page_not_mapped(struct folio *folio)
1805 {
1806 return !folio_mapped(folio);
1807 }
1808
1809 /**
1810 * try_to_unmap - Try to remove all page table mappings to a folio.
1811 * @folio: The folio to unmap.
1812 * @flags: action and flags
1813 *
1814 * Tries to remove all the page table entries which are mapping this
1815 * folio. It is the caller's responsibility to check if the folio is
1816 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1817 *
1818 * Context: Caller must hold the folio lock.
1819 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)1820 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1821 {
1822 struct rmap_walk_control rwc = {
1823 .rmap_one = try_to_unmap_one,
1824 .arg = (void *)flags,
1825 .done = page_not_mapped,
1826 .anon_lock = folio_lock_anon_vma_read,
1827 };
1828
1829 if (flags & TTU_RMAP_LOCKED)
1830 rmap_walk_locked(folio, &rwc);
1831 else
1832 rmap_walk(folio, &rwc);
1833 }
1834
1835 /*
1836 * @arg: enum ttu_flags will be passed to this argument.
1837 *
1838 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1839 * containing migration entries.
1840 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1841 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1842 unsigned long address, void *arg)
1843 {
1844 struct mm_struct *mm = vma->vm_mm;
1845 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1846 pte_t pteval;
1847 struct page *subpage;
1848 bool anon_exclusive, ret = true;
1849 struct mmu_notifier_range range;
1850 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1851
1852 /*
1853 * When racing against e.g. zap_pte_range() on another cpu,
1854 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1855 * try_to_migrate() may return before page_mapped() has become false,
1856 * if page table locking is skipped: use TTU_SYNC to wait for that.
1857 */
1858 if (flags & TTU_SYNC)
1859 pvmw.flags = PVMW_SYNC;
1860
1861 /*
1862 * unmap_page() in mm/huge_memory.c is the only user of migration with
1863 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1864 */
1865 if (flags & TTU_SPLIT_HUGE_PMD)
1866 split_huge_pmd_address(vma, address, true, folio);
1867
1868 /*
1869 * For THP, we have to assume the worse case ie pmd for invalidation.
1870 * For hugetlb, it could be much worse if we need to do pud
1871 * invalidation in the case of pmd sharing.
1872 *
1873 * Note that the page can not be free in this function as call of
1874 * try_to_unmap() must hold a reference on the page.
1875 */
1876 range.end = vma_address_end(&pvmw);
1877 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1878 address, range.end);
1879 if (folio_test_hugetlb(folio)) {
1880 /*
1881 * If sharing is possible, start and end will be adjusted
1882 * accordingly.
1883 */
1884 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1885 &range.end);
1886 }
1887 mmu_notifier_invalidate_range_start(&range);
1888
1889 while (page_vma_mapped_walk(&pvmw)) {
1890 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1891 /* PMD-mapped THP migration entry */
1892 if (!pvmw.pte) {
1893 subpage = folio_page(folio,
1894 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1895 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1896 !folio_test_pmd_mappable(folio), folio);
1897
1898 if (set_pmd_migration_entry(&pvmw, subpage)) {
1899 ret = false;
1900 page_vma_mapped_walk_done(&pvmw);
1901 break;
1902 }
1903 continue;
1904 }
1905 #endif
1906
1907 /* Unexpected PMD-mapped THP? */
1908 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1909
1910 if (folio_is_zone_device(folio)) {
1911 /*
1912 * Our PTE is a non-present device exclusive entry and
1913 * calculating the subpage as for the common case would
1914 * result in an invalid pointer.
1915 *
1916 * Since only PAGE_SIZE pages can currently be
1917 * migrated, just set it to page. This will need to be
1918 * changed when hugepage migrations to device private
1919 * memory are supported.
1920 */
1921 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1922 subpage = &folio->page;
1923 } else {
1924 subpage = folio_page(folio,
1925 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1926 }
1927 address = pvmw.address;
1928 anon_exclusive = folio_test_anon(folio) &&
1929 PageAnonExclusive(subpage);
1930
1931 if (folio_test_hugetlb(folio)) {
1932 bool anon = folio_test_anon(folio);
1933
1934 /*
1935 * huge_pmd_unshare may unmap an entire PMD page.
1936 * There is no way of knowing exactly which PMDs may
1937 * be cached for this mm, so we must flush them all.
1938 * start/end were already adjusted above to cover this
1939 * range.
1940 */
1941 flush_cache_range(vma, range.start, range.end);
1942
1943 /*
1944 * To call huge_pmd_unshare, i_mmap_rwsem must be
1945 * held in write mode. Caller needs to explicitly
1946 * do this outside rmap routines.
1947 *
1948 * We also must hold hugetlb vma_lock in write mode.
1949 * Lock order dictates acquiring vma_lock BEFORE
1950 * i_mmap_rwsem. We can only try lock here and
1951 * fail if unsuccessful.
1952 */
1953 if (!anon) {
1954 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1955 if (!hugetlb_vma_trylock_write(vma)) {
1956 page_vma_mapped_walk_done(&pvmw);
1957 ret = false;
1958 break;
1959 }
1960 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1961 hugetlb_vma_unlock_write(vma);
1962 flush_tlb_range(vma,
1963 range.start, range.end);
1964 mmu_notifier_invalidate_range(mm,
1965 range.start, range.end);
1966
1967 /*
1968 * The ref count of the PMD page was
1969 * dropped which is part of the way map
1970 * counting is done for shared PMDs.
1971 * Return 'true' here. When there is
1972 * no other sharing, huge_pmd_unshare
1973 * returns false and we will unmap the
1974 * actual page and drop map count
1975 * to zero.
1976 */
1977 page_vma_mapped_walk_done(&pvmw);
1978 break;
1979 }
1980 hugetlb_vma_unlock_write(vma);
1981 }
1982 /* Nuke the hugetlb page table entry */
1983 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1984 } else {
1985 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1986 /* Nuke the page table entry. */
1987 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1988 }
1989
1990 /* Set the dirty flag on the folio now the pte is gone. */
1991 if (pte_dirty(pteval))
1992 folio_mark_dirty(folio);
1993
1994 /* Update high watermark before we lower rss */
1995 update_hiwater_rss(mm);
1996
1997 if (folio_is_device_private(folio)) {
1998 unsigned long pfn = folio_pfn(folio);
1999 swp_entry_t entry;
2000 pte_t swp_pte;
2001
2002 if (anon_exclusive)
2003 BUG_ON(page_try_share_anon_rmap(subpage));
2004
2005 /*
2006 * Store the pfn of the page in a special migration
2007 * pte. do_swap_page() will wait until the migration
2008 * pte is removed and then restart fault handling.
2009 */
2010 entry = pte_to_swp_entry(pteval);
2011 if (is_writable_device_private_entry(entry))
2012 entry = make_writable_migration_entry(pfn);
2013 else if (anon_exclusive)
2014 entry = make_readable_exclusive_migration_entry(pfn);
2015 else
2016 entry = make_readable_migration_entry(pfn);
2017 swp_pte = swp_entry_to_pte(entry);
2018
2019 /*
2020 * pteval maps a zone device page and is therefore
2021 * a swap pte.
2022 */
2023 if (pte_swp_soft_dirty(pteval))
2024 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2025 if (pte_swp_uffd_wp(pteval))
2026 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2027 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2028 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2029 compound_order(&folio->page));
2030 /*
2031 * No need to invalidate here it will synchronize on
2032 * against the special swap migration pte.
2033 */
2034 } else if (PageHWPoison(subpage)) {
2035 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2036 if (folio_test_hugetlb(folio)) {
2037 hugetlb_count_sub(folio_nr_pages(folio), mm);
2038 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2039 } else {
2040 dec_mm_counter(mm, mm_counter(&folio->page));
2041 set_pte_at(mm, address, pvmw.pte, pteval);
2042 }
2043
2044 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2045 /*
2046 * The guest indicated that the page content is of no
2047 * interest anymore. Simply discard the pte, vmscan
2048 * will take care of the rest.
2049 * A future reference will then fault in a new zero
2050 * page. When userfaultfd is active, we must not drop
2051 * this page though, as its main user (postcopy
2052 * migration) will not expect userfaults on already
2053 * copied pages.
2054 */
2055 dec_mm_counter(mm, mm_counter(&folio->page));
2056 /* We have to invalidate as we cleared the pte */
2057 mmu_notifier_invalidate_range(mm, address,
2058 address + PAGE_SIZE);
2059 } else {
2060 swp_entry_t entry;
2061 pte_t swp_pte;
2062
2063 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2064 if (folio_test_hugetlb(folio))
2065 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2066 else
2067 set_pte_at(mm, address, pvmw.pte, pteval);
2068 ret = false;
2069 page_vma_mapped_walk_done(&pvmw);
2070 break;
2071 }
2072 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2073 !anon_exclusive, subpage);
2074
2075 /* See page_try_share_anon_rmap(): clear PTE first. */
2076 if (anon_exclusive &&
2077 page_try_share_anon_rmap(subpage)) {
2078 if (folio_test_hugetlb(folio))
2079 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2080 else
2081 set_pte_at(mm, address, pvmw.pte, pteval);
2082 ret = false;
2083 page_vma_mapped_walk_done(&pvmw);
2084 break;
2085 }
2086
2087 /*
2088 * Store the pfn of the page in a special migration
2089 * pte. do_swap_page() will wait until the migration
2090 * pte is removed and then restart fault handling.
2091 */
2092 if (pte_write(pteval))
2093 entry = make_writable_migration_entry(
2094 page_to_pfn(subpage));
2095 else if (anon_exclusive)
2096 entry = make_readable_exclusive_migration_entry(
2097 page_to_pfn(subpage));
2098 else
2099 entry = make_readable_migration_entry(
2100 page_to_pfn(subpage));
2101 if (pte_young(pteval))
2102 entry = make_migration_entry_young(entry);
2103 if (pte_dirty(pteval))
2104 entry = make_migration_entry_dirty(entry);
2105 swp_pte = swp_entry_to_pte(entry);
2106 if (pte_soft_dirty(pteval))
2107 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2108 if (pte_uffd_wp(pteval))
2109 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2110 if (folio_test_hugetlb(folio))
2111 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2112 else
2113 set_pte_at(mm, address, pvmw.pte, swp_pte);
2114 trace_set_migration_pte(address, pte_val(swp_pte),
2115 compound_order(&folio->page));
2116 /*
2117 * No need to invalidate here it will synchronize on
2118 * against the special swap migration pte.
2119 */
2120 }
2121
2122 /*
2123 * No need to call mmu_notifier_invalidate_range() it has be
2124 * done above for all cases requiring it to happen under page
2125 * table lock before mmu_notifier_invalidate_range_end()
2126 *
2127 * See Documentation/mm/mmu_notifier.rst
2128 */
2129 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2130 if (vma->vm_flags & VM_LOCKED)
2131 mlock_page_drain_local();
2132 folio_put(folio);
2133 }
2134
2135 mmu_notifier_invalidate_range_end(&range);
2136
2137 return ret;
2138 }
2139
2140 /**
2141 * try_to_migrate - try to replace all page table mappings with swap entries
2142 * @folio: the folio to replace page table entries for
2143 * @flags: action and flags
2144 *
2145 * Tries to remove all the page table entries which are mapping this folio and
2146 * replace them with special swap entries. Caller must hold the folio lock.
2147 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2148 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2149 {
2150 struct rmap_walk_control rwc = {
2151 .rmap_one = try_to_migrate_one,
2152 .arg = (void *)flags,
2153 .done = page_not_mapped,
2154 .anon_lock = folio_lock_anon_vma_read,
2155 };
2156
2157 /*
2158 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2159 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2160 */
2161 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2162 TTU_SYNC)))
2163 return;
2164
2165 if (folio_is_zone_device(folio) &&
2166 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2167 return;
2168
2169 /*
2170 * During exec, a temporary VMA is setup and later moved.
2171 * The VMA is moved under the anon_vma lock but not the
2172 * page tables leading to a race where migration cannot
2173 * find the migration ptes. Rather than increasing the
2174 * locking requirements of exec(), migration skips
2175 * temporary VMAs until after exec() completes.
2176 */
2177 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2178 rwc.invalid_vma = invalid_migration_vma;
2179
2180 if (flags & TTU_RMAP_LOCKED)
2181 rmap_walk_locked(folio, &rwc);
2182 else
2183 rmap_walk(folio, &rwc);
2184 }
2185
2186 #ifdef CONFIG_DEVICE_PRIVATE
2187 struct make_exclusive_args {
2188 struct mm_struct *mm;
2189 unsigned long address;
2190 void *owner;
2191 bool valid;
2192 };
2193
page_make_device_exclusive_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * priv)2194 static bool page_make_device_exclusive_one(struct folio *folio,
2195 struct vm_area_struct *vma, unsigned long address, void *priv)
2196 {
2197 struct mm_struct *mm = vma->vm_mm;
2198 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2199 struct make_exclusive_args *args = priv;
2200 pte_t pteval;
2201 struct page *subpage;
2202 bool ret = true;
2203 struct mmu_notifier_range range;
2204 swp_entry_t entry;
2205 pte_t swp_pte;
2206
2207 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2208 vma->vm_mm, address, min(vma->vm_end,
2209 address + folio_size(folio)),
2210 args->owner);
2211 mmu_notifier_invalidate_range_start(&range);
2212
2213 while (page_vma_mapped_walk(&pvmw)) {
2214 /* Unexpected PMD-mapped THP? */
2215 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2216
2217 if (!pte_present(*pvmw.pte)) {
2218 ret = false;
2219 page_vma_mapped_walk_done(&pvmw);
2220 break;
2221 }
2222
2223 subpage = folio_page(folio,
2224 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2225 address = pvmw.address;
2226
2227 /* Nuke the page table entry. */
2228 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2229 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2230
2231 /* Set the dirty flag on the folio now the pte is gone. */
2232 if (pte_dirty(pteval))
2233 folio_mark_dirty(folio);
2234
2235 /*
2236 * Check that our target page is still mapped at the expected
2237 * address.
2238 */
2239 if (args->mm == mm && args->address == address &&
2240 pte_write(pteval))
2241 args->valid = true;
2242
2243 /*
2244 * Store the pfn of the page in a special migration
2245 * pte. do_swap_page() will wait until the migration
2246 * pte is removed and then restart fault handling.
2247 */
2248 if (pte_write(pteval))
2249 entry = make_writable_device_exclusive_entry(
2250 page_to_pfn(subpage));
2251 else
2252 entry = make_readable_device_exclusive_entry(
2253 page_to_pfn(subpage));
2254 swp_pte = swp_entry_to_pte(entry);
2255 if (pte_soft_dirty(pteval))
2256 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2257 if (pte_uffd_wp(pteval))
2258 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2259
2260 set_pte_at(mm, address, pvmw.pte, swp_pte);
2261
2262 /*
2263 * There is a reference on the page for the swap entry which has
2264 * been removed, so shouldn't take another.
2265 */
2266 page_remove_rmap(subpage, vma, false);
2267 }
2268
2269 mmu_notifier_invalidate_range_end(&range);
2270
2271 return ret;
2272 }
2273
2274 /**
2275 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2276 * @folio: The folio to replace page table entries for.
2277 * @mm: The mm_struct where the folio is expected to be mapped.
2278 * @address: Address where the folio is expected to be mapped.
2279 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2280 *
2281 * Tries to remove all the page table entries which are mapping this
2282 * folio and replace them with special device exclusive swap entries to
2283 * grant a device exclusive access to the folio.
2284 *
2285 * Context: Caller must hold the folio lock.
2286 * Return: false if the page is still mapped, or if it could not be unmapped
2287 * from the expected address. Otherwise returns true (success).
2288 */
folio_make_device_exclusive(struct folio * folio,struct mm_struct * mm,unsigned long address,void * owner)2289 static bool folio_make_device_exclusive(struct folio *folio,
2290 struct mm_struct *mm, unsigned long address, void *owner)
2291 {
2292 struct make_exclusive_args args = {
2293 .mm = mm,
2294 .address = address,
2295 .owner = owner,
2296 .valid = false,
2297 };
2298 struct rmap_walk_control rwc = {
2299 .rmap_one = page_make_device_exclusive_one,
2300 .done = page_not_mapped,
2301 .anon_lock = folio_lock_anon_vma_read,
2302 .arg = &args,
2303 };
2304
2305 /*
2306 * Restrict to anonymous folios for now to avoid potential writeback
2307 * issues.
2308 */
2309 if (!folio_test_anon(folio))
2310 return false;
2311
2312 rmap_walk(folio, &rwc);
2313
2314 return args.valid && !folio_mapcount(folio);
2315 }
2316
2317 /**
2318 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2319 * @mm: mm_struct of associated target process
2320 * @start: start of the region to mark for exclusive device access
2321 * @end: end address of region
2322 * @pages: returns the pages which were successfully marked for exclusive access
2323 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2324 *
2325 * Returns: number of pages found in the range by GUP. A page is marked for
2326 * exclusive access only if the page pointer is non-NULL.
2327 *
2328 * This function finds ptes mapping page(s) to the given address range, locks
2329 * them and replaces mappings with special swap entries preventing userspace CPU
2330 * access. On fault these entries are replaced with the original mapping after
2331 * calling MMU notifiers.
2332 *
2333 * A driver using this to program access from a device must use a mmu notifier
2334 * critical section to hold a device specific lock during programming. Once
2335 * programming is complete it should drop the page lock and reference after
2336 * which point CPU access to the page will revoke the exclusive access.
2337 */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2338 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2339 unsigned long end, struct page **pages,
2340 void *owner)
2341 {
2342 long npages = (end - start) >> PAGE_SHIFT;
2343 long i;
2344
2345 npages = get_user_pages_remote(mm, start, npages,
2346 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2347 pages, NULL, NULL);
2348 if (npages < 0)
2349 return npages;
2350
2351 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2352 struct folio *folio = page_folio(pages[i]);
2353 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2354 folio_put(folio);
2355 pages[i] = NULL;
2356 continue;
2357 }
2358
2359 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2360 folio_unlock(folio);
2361 folio_put(folio);
2362 pages[i] = NULL;
2363 }
2364 }
2365
2366 return npages;
2367 }
2368 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2369 #endif
2370
__put_anon_vma(struct anon_vma * anon_vma)2371 void __put_anon_vma(struct anon_vma *anon_vma)
2372 {
2373 struct anon_vma *root = anon_vma->root;
2374
2375 anon_vma_free(anon_vma);
2376 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2377 anon_vma_free(root);
2378 }
2379
rmap_walk_anon_lock(struct folio * folio,struct rmap_walk_control * rwc)2380 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2381 struct rmap_walk_control *rwc)
2382 {
2383 struct anon_vma *anon_vma;
2384
2385 if (rwc->anon_lock)
2386 return rwc->anon_lock(folio, rwc);
2387
2388 /*
2389 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2390 * because that depends on page_mapped(); but not all its usages
2391 * are holding mmap_lock. Users without mmap_lock are required to
2392 * take a reference count to prevent the anon_vma disappearing
2393 */
2394 anon_vma = folio_anon_vma(folio);
2395 if (!anon_vma)
2396 return NULL;
2397
2398 if (anon_vma_trylock_read(anon_vma))
2399 goto out;
2400
2401 if (rwc->try_lock) {
2402 anon_vma = NULL;
2403 rwc->contended = true;
2404 goto out;
2405 }
2406
2407 anon_vma_lock_read(anon_vma);
2408 out:
2409 return anon_vma;
2410 }
2411
2412 /*
2413 * rmap_walk_anon - do something to anonymous page using the object-based
2414 * rmap method
2415 * @page: the page to be handled
2416 * @rwc: control variable according to each walk type
2417 *
2418 * Find all the mappings of a page using the mapping pointer and the vma chains
2419 * contained in the anon_vma struct it points to.
2420 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2421 static void rmap_walk_anon(struct folio *folio,
2422 struct rmap_walk_control *rwc, bool locked)
2423 {
2424 struct anon_vma *anon_vma;
2425 pgoff_t pgoff_start, pgoff_end;
2426 struct anon_vma_chain *avc;
2427
2428 if (locked) {
2429 anon_vma = folio_anon_vma(folio);
2430 /* anon_vma disappear under us? */
2431 VM_BUG_ON_FOLIO(!anon_vma, folio);
2432 } else {
2433 anon_vma = rmap_walk_anon_lock(folio, rwc);
2434 }
2435 if (!anon_vma)
2436 return;
2437
2438 pgoff_start = folio_pgoff(folio);
2439 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2440 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2441 pgoff_start, pgoff_end) {
2442 struct vm_area_struct *vma = avc->vma;
2443 unsigned long address = vma_address(&folio->page, vma);
2444
2445 VM_BUG_ON_VMA(address == -EFAULT, vma);
2446 cond_resched();
2447
2448 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2449 continue;
2450
2451 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2452 break;
2453 if (rwc->done && rwc->done(folio))
2454 break;
2455 }
2456
2457 if (!locked)
2458 anon_vma_unlock_read(anon_vma);
2459 }
2460
2461 /*
2462 * rmap_walk_file - do something to file page using the object-based rmap method
2463 * @page: the page to be handled
2464 * @rwc: control variable according to each walk type
2465 *
2466 * Find all the mappings of a page using the mapping pointer and the vma chains
2467 * contained in the address_space struct it points to.
2468 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2469 static void rmap_walk_file(struct folio *folio,
2470 struct rmap_walk_control *rwc, bool locked)
2471 {
2472 struct address_space *mapping = folio_mapping(folio);
2473 pgoff_t pgoff_start, pgoff_end;
2474 struct vm_area_struct *vma;
2475
2476 /*
2477 * The page lock not only makes sure that page->mapping cannot
2478 * suddenly be NULLified by truncation, it makes sure that the
2479 * structure at mapping cannot be freed and reused yet,
2480 * so we can safely take mapping->i_mmap_rwsem.
2481 */
2482 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2483
2484 if (!mapping)
2485 return;
2486
2487 pgoff_start = folio_pgoff(folio);
2488 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2489 if (!locked) {
2490 if (i_mmap_trylock_read(mapping))
2491 goto lookup;
2492
2493 if (rwc->try_lock) {
2494 rwc->contended = true;
2495 return;
2496 }
2497
2498 i_mmap_lock_read(mapping);
2499 }
2500 lookup:
2501 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2502 pgoff_start, pgoff_end) {
2503 unsigned long address = vma_address(&folio->page, vma);
2504
2505 VM_BUG_ON_VMA(address == -EFAULT, vma);
2506 cond_resched();
2507
2508 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2509 continue;
2510
2511 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2512 goto done;
2513 if (rwc->done && rwc->done(folio))
2514 goto done;
2515 }
2516
2517 done:
2518 if (!locked)
2519 i_mmap_unlock_read(mapping);
2520 }
2521
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2522 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2523 {
2524 if (unlikely(folio_test_ksm(folio)))
2525 rmap_walk_ksm(folio, rwc);
2526 else if (folio_test_anon(folio))
2527 rmap_walk_anon(folio, rwc, false);
2528 else
2529 rmap_walk_file(folio, rwc, false);
2530 }
2531
2532 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2533 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2534 {
2535 /* no ksm support for now */
2536 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2537 if (folio_test_anon(folio))
2538 rmap_walk_anon(folio, rwc, true);
2539 else
2540 rmap_walk_file(folio, rwc, true);
2541 }
2542
2543 #ifdef CONFIG_HUGETLB_PAGE
2544 /*
2545 * The following two functions are for anonymous (private mapped) hugepages.
2546 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2547 * and no lru code, because we handle hugepages differently from common pages.
2548 *
2549 * RMAP_COMPOUND is ignored.
2550 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2551 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2552 unsigned long address, rmap_t flags)
2553 {
2554 struct anon_vma *anon_vma = vma->anon_vma;
2555 int first;
2556
2557 BUG_ON(!PageLocked(page));
2558 BUG_ON(!anon_vma);
2559 /* address might be in next vma when migration races vma_adjust */
2560 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2561 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2562 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2563 if (first)
2564 __page_set_anon_rmap(page, vma, address,
2565 !!(flags & RMAP_EXCLUSIVE));
2566 }
2567
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2568 void hugepage_add_new_anon_rmap(struct page *page,
2569 struct vm_area_struct *vma, unsigned long address)
2570 {
2571 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2572 atomic_set(compound_mapcount_ptr(page), 0);
2573 atomic_set(compound_pincount_ptr(page), 0);
2574
2575 __page_set_anon_rmap(page, vma, address, 1);
2576 }
2577 #endif /* CONFIG_HUGETLB_PAGE */
2578