1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13 
14 
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/ctype.h>
22 #include <linux/zlib.h>
23 #include <asm/uaccess.h>
24 #include <asm/nvram.h>
25 #include <asm/rtas.h>
26 #include <asm/prom.h>
27 #include <asm/machdep.h>
28 
29 /* Max bytes to read/write in one go */
30 #define NVRW_CNT 0x20
31 
32 static unsigned int nvram_size;
33 static int nvram_fetch, nvram_store;
34 static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
35 static DEFINE_SPINLOCK(nvram_lock);
36 
37 struct err_log_info {
38 	int error_type;
39 	unsigned int seq_num;
40 };
41 
42 struct nvram_os_partition {
43 	const char *name;
44 	int req_size;	/* desired size, in bytes */
45 	int min_size;	/* minimum acceptable size (0 means req_size) */
46 	long size;	/* size of data portion (excluding err_log_info) */
47 	long index;	/* offset of data portion of partition */
48 };
49 
50 static struct nvram_os_partition rtas_log_partition = {
51 	.name = "ibm,rtas-log",
52 	.req_size = 2079,
53 	.min_size = 1055,
54 	.index = -1
55 };
56 
57 static struct nvram_os_partition oops_log_partition = {
58 	.name = "lnx,oops-log",
59 	.req_size = 4000,
60 	.min_size = 2000,
61 	.index = -1
62 };
63 
64 static const char *pseries_nvram_os_partitions[] = {
65 	"ibm,rtas-log",
66 	"lnx,oops-log",
67 	NULL
68 };
69 
70 static void oops_to_nvram(struct kmsg_dumper *dumper,
71 		enum kmsg_dump_reason reason,
72 		const char *old_msgs, unsigned long old_len,
73 		const char *new_msgs, unsigned long new_len);
74 
75 static struct kmsg_dumper nvram_kmsg_dumper = {
76 	.dump = oops_to_nvram
77 };
78 
79 /* See clobbering_unread_rtas_event() */
80 #define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
81 static unsigned long last_unread_rtas_event;	/* timestamp */
82 
83 /*
84  * For capturing and compressing an oops or panic report...
85 
86  * big_oops_buf[] holds the uncompressed text we're capturing.
87  *
88  * oops_buf[] holds the compressed text, preceded by a prefix.
89  * The prefix is just a u16 holding the length of the compressed* text.
90  * (*Or uncompressed, if compression fails.)  oops_buf[] gets written
91  * to NVRAM.
92  *
93  * oops_len points to the prefix.  oops_data points to the compressed text.
94  *
95  * +- oops_buf
96  * |		+- oops_data
97  * v		v
98  * +------------+-----------------------------------------------+
99  * | length	| text                                          |
100  * | (2 bytes)	| (oops_data_sz bytes)                          |
101  * +------------+-----------------------------------------------+
102  * ^
103  * +- oops_len
104  *
105  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
106  */
107 static size_t big_oops_buf_sz;
108 static char *big_oops_buf, *oops_buf;
109 static u16 *oops_len;
110 static char *oops_data;
111 static size_t oops_data_sz;
112 
113 /* Compression parameters */
114 #define COMPR_LEVEL 6
115 #define WINDOW_BITS 12
116 #define MEM_LEVEL 4
117 static struct z_stream_s stream;
118 
pSeries_nvram_read(char * buf,size_t count,loff_t * index)119 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
120 {
121 	unsigned int i;
122 	unsigned long len;
123 	int done;
124 	unsigned long flags;
125 	char *p = buf;
126 
127 
128 	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
129 		return -ENODEV;
130 
131 	if (*index >= nvram_size)
132 		return 0;
133 
134 	i = *index;
135 	if (i + count > nvram_size)
136 		count = nvram_size - i;
137 
138 	spin_lock_irqsave(&nvram_lock, flags);
139 
140 	for (; count != 0; count -= len) {
141 		len = count;
142 		if (len > NVRW_CNT)
143 			len = NVRW_CNT;
144 
145 		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
146 			       len) != 0) || len != done) {
147 			spin_unlock_irqrestore(&nvram_lock, flags);
148 			return -EIO;
149 		}
150 
151 		memcpy(p, nvram_buf, len);
152 
153 		p += len;
154 		i += len;
155 	}
156 
157 	spin_unlock_irqrestore(&nvram_lock, flags);
158 
159 	*index = i;
160 	return p - buf;
161 }
162 
pSeries_nvram_write(char * buf,size_t count,loff_t * index)163 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
164 {
165 	unsigned int i;
166 	unsigned long len;
167 	int done;
168 	unsigned long flags;
169 	const char *p = buf;
170 
171 	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
172 		return -ENODEV;
173 
174 	if (*index >= nvram_size)
175 		return 0;
176 
177 	i = *index;
178 	if (i + count > nvram_size)
179 		count = nvram_size - i;
180 
181 	spin_lock_irqsave(&nvram_lock, flags);
182 
183 	for (; count != 0; count -= len) {
184 		len = count;
185 		if (len > NVRW_CNT)
186 			len = NVRW_CNT;
187 
188 		memcpy(nvram_buf, p, len);
189 
190 		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
191 			       len) != 0) || len != done) {
192 			spin_unlock_irqrestore(&nvram_lock, flags);
193 			return -EIO;
194 		}
195 
196 		p += len;
197 		i += len;
198 	}
199 	spin_unlock_irqrestore(&nvram_lock, flags);
200 
201 	*index = i;
202 	return p - buf;
203 }
204 
pSeries_nvram_get_size(void)205 static ssize_t pSeries_nvram_get_size(void)
206 {
207 	return nvram_size ? nvram_size : -ENODEV;
208 }
209 
210 
211 /* nvram_write_os_partition, nvram_write_error_log
212  *
213  * We need to buffer the error logs into nvram to ensure that we have
214  * the failure information to decode.  If we have a severe error there
215  * is no way to guarantee that the OS or the machine is in a state to
216  * get back to user land and write the error to disk.  For example if
217  * the SCSI device driver causes a Machine Check by writing to a bad
218  * IO address, there is no way of guaranteeing that the device driver
219  * is in any state that is would also be able to write the error data
220  * captured to disk, thus we buffer it in NVRAM for analysis on the
221  * next boot.
222  *
223  * In NVRAM the partition containing the error log buffer will looks like:
224  * Header (in bytes):
225  * +-----------+----------+--------+------------+------------------+
226  * | signature | checksum | length | name       | data             |
227  * |0          |1         |2      3|4         15|16        length-1|
228  * +-----------+----------+--------+------------+------------------+
229  *
230  * The 'data' section would look like (in bytes):
231  * +--------------+------------+-----------------------------------+
232  * | event_logged | sequence # | error log                         |
233  * |0            3|4          7|8                  error_log_size-1|
234  * +--------------+------------+-----------------------------------+
235  *
236  * event_logged: 0 if event has not been logged to syslog, 1 if it has
237  * sequence #: The unique sequence # for each event. (until it wraps)
238  * error log: The error log from event_scan
239  */
nvram_write_os_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)240 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
241 		int length, unsigned int err_type, unsigned int error_log_cnt)
242 {
243 	int rc;
244 	loff_t tmp_index;
245 	struct err_log_info info;
246 
247 	if (part->index == -1) {
248 		return -ESPIPE;
249 	}
250 
251 	if (length > part->size) {
252 		length = part->size;
253 	}
254 
255 	info.error_type = err_type;
256 	info.seq_num = error_log_cnt;
257 
258 	tmp_index = part->index;
259 
260 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
261 	if (rc <= 0) {
262 		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
263 		return rc;
264 	}
265 
266 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
267 	if (rc <= 0) {
268 		pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
269 		return rc;
270 	}
271 
272 	return 0;
273 }
274 
nvram_write_error_log(char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)275 int nvram_write_error_log(char * buff, int length,
276                           unsigned int err_type, unsigned int error_log_cnt)
277 {
278 	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
279 						err_type, error_log_cnt);
280 	if (!rc)
281 		last_unread_rtas_event = get_seconds();
282 	return rc;
283 }
284 
285 /* nvram_read_error_log
286  *
287  * Reads nvram for error log for at most 'length'
288  */
nvram_read_error_log(char * buff,int length,unsigned int * err_type,unsigned int * error_log_cnt)289 int nvram_read_error_log(char * buff, int length,
290                          unsigned int * err_type, unsigned int * error_log_cnt)
291 {
292 	int rc;
293 	loff_t tmp_index;
294 	struct err_log_info info;
295 
296 	if (rtas_log_partition.index == -1)
297 		return -1;
298 
299 	if (length > rtas_log_partition.size)
300 		length = rtas_log_partition.size;
301 
302 	tmp_index = rtas_log_partition.index;
303 
304 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
305 	if (rc <= 0) {
306 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
307 		return rc;
308 	}
309 
310 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
311 	if (rc <= 0) {
312 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
313 		return rc;
314 	}
315 
316 	*error_log_cnt = info.seq_num;
317 	*err_type = info.error_type;
318 
319 	return 0;
320 }
321 
322 /* This doesn't actually zero anything, but it sets the event_logged
323  * word to tell that this event is safely in syslog.
324  */
nvram_clear_error_log(void)325 int nvram_clear_error_log(void)
326 {
327 	loff_t tmp_index;
328 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
329 	int rc;
330 
331 	if (rtas_log_partition.index == -1)
332 		return -1;
333 
334 	tmp_index = rtas_log_partition.index;
335 
336 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
337 	if (rc <= 0) {
338 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
339 		return rc;
340 	}
341 	last_unread_rtas_event = 0;
342 
343 	return 0;
344 }
345 
346 /* pseries_nvram_init_os_partition
347  *
348  * This sets up a partition with an "OS" signature.
349  *
350  * The general strategy is the following:
351  * 1.) If a partition with the indicated name already exists...
352  *	- If it's large enough, use it.
353  *	- Otherwise, recycle it and keep going.
354  * 2.) Search for a free partition that is large enough.
355  * 3.) If there's not a free partition large enough, recycle any obsolete
356  * OS partitions and try again.
357  * 4.) Will first try getting a chunk that will satisfy the requested size.
358  * 5.) If a chunk of the requested size cannot be allocated, then try finding
359  * a chunk that will satisfy the minum needed.
360  *
361  * Returns 0 on success, else -1.
362  */
pseries_nvram_init_os_partition(struct nvram_os_partition * part)363 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
364 									*part)
365 {
366 	loff_t p;
367 	int size;
368 
369 	/* Scan nvram for partitions */
370 	nvram_scan_partitions();
371 
372 	/* Look for ours */
373 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
374 
375 	/* Found one but too small, remove it */
376 	if (p && size < part->min_size) {
377 		pr_info("nvram: Found too small %s partition,"
378 					" removing it...\n", part->name);
379 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
380 		p = 0;
381 	}
382 
383 	/* Create one if we didn't find */
384 	if (!p) {
385 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
386 					part->req_size, part->min_size);
387 		if (p == -ENOSPC) {
388 			pr_info("nvram: No room to create %s partition, "
389 				"deleting any obsolete OS partitions...\n",
390 				part->name);
391 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
392 						pseries_nvram_os_partitions);
393 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
394 					part->req_size, part->min_size);
395 		}
396 	}
397 
398 	if (p <= 0) {
399 		pr_err("nvram: Failed to find or create %s"
400 		       " partition, err %d\n", part->name, (int)p);
401 		return -1;
402 	}
403 
404 	part->index = p;
405 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
406 
407 	return 0;
408 }
409 
nvram_init_oops_partition(int rtas_partition_exists)410 static void __init nvram_init_oops_partition(int rtas_partition_exists)
411 {
412 	int rc;
413 
414 	rc = pseries_nvram_init_os_partition(&oops_log_partition);
415 	if (rc != 0) {
416 		if (!rtas_partition_exists)
417 			return;
418 		pr_notice("nvram: Using %s partition to log both"
419 			" RTAS errors and oops/panic reports\n",
420 			rtas_log_partition.name);
421 		memcpy(&oops_log_partition, &rtas_log_partition,
422 						sizeof(rtas_log_partition));
423 	}
424 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
425 	if (!oops_buf) {
426 		pr_err("nvram: No memory for %s partition\n",
427 						oops_log_partition.name);
428 		return;
429 	}
430 	oops_len = (u16*) oops_buf;
431 	oops_data = oops_buf + sizeof(u16);
432 	oops_data_sz = oops_log_partition.size - sizeof(u16);
433 
434 	/*
435 	 * Figure compression (preceded by elimination of each line's <n>
436 	 * severity prefix) will reduce the oops/panic report to at most
437 	 * 45% of its original size.
438 	 */
439 	big_oops_buf_sz = (oops_data_sz * 100) / 45;
440 	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
441 	if (big_oops_buf) {
442 		stream.workspace = kmalloc(zlib_deflate_workspacesize(
443 				WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
444 		if (!stream.workspace) {
445 			pr_err("nvram: No memory for compression workspace; "
446 				"skipping compression of %s partition data\n",
447 				oops_log_partition.name);
448 			kfree(big_oops_buf);
449 			big_oops_buf = NULL;
450 		}
451 	} else {
452 		pr_err("No memory for uncompressed %s data; "
453 			"skipping compression\n", oops_log_partition.name);
454 		stream.workspace = NULL;
455 	}
456 
457 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
458 	if (rc != 0) {
459 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
460 		kfree(oops_buf);
461 		kfree(big_oops_buf);
462 		kfree(stream.workspace);
463 	}
464 }
465 
pseries_nvram_init_log_partitions(void)466 static int __init pseries_nvram_init_log_partitions(void)
467 {
468 	int rc;
469 
470 	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
471 	nvram_init_oops_partition(rc == 0);
472 	return 0;
473 }
474 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
475 
pSeries_nvram_init(void)476 int __init pSeries_nvram_init(void)
477 {
478 	struct device_node *nvram;
479 	const unsigned int *nbytes_p;
480 	unsigned int proplen;
481 
482 	nvram = of_find_node_by_type(NULL, "nvram");
483 	if (nvram == NULL)
484 		return -ENODEV;
485 
486 	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
487 	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
488 		of_node_put(nvram);
489 		return -EIO;
490 	}
491 
492 	nvram_size = *nbytes_p;
493 
494 	nvram_fetch = rtas_token("nvram-fetch");
495 	nvram_store = rtas_token("nvram-store");
496 	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
497 	of_node_put(nvram);
498 
499 	ppc_md.nvram_read	= pSeries_nvram_read;
500 	ppc_md.nvram_write	= pSeries_nvram_write;
501 	ppc_md.nvram_size	= pSeries_nvram_get_size;
502 
503 	return 0;
504 }
505 
506 /*
507  * Try to capture the last capture_len bytes of the printk buffer.  Return
508  * the amount actually captured.
509  */
capture_last_msgs(const char * old_msgs,size_t old_len,const char * new_msgs,size_t new_len,char * captured,size_t capture_len)510 static size_t capture_last_msgs(const char *old_msgs, size_t old_len,
511 				const char *new_msgs, size_t new_len,
512 				char *captured, size_t capture_len)
513 {
514 	if (new_len >= capture_len) {
515 		memcpy(captured, new_msgs + (new_len - capture_len),
516 								capture_len);
517 		return capture_len;
518 	} else {
519 		/* Grab the end of old_msgs. */
520 		size_t old_tail_len = min(old_len, capture_len - new_len);
521 		memcpy(captured, old_msgs + (old_len - old_tail_len),
522 								old_tail_len);
523 		memcpy(captured + old_tail_len, new_msgs, new_len);
524 		return old_tail_len + new_len;
525 	}
526 }
527 
528 /*
529  * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
530  * would logging this oops/panic overwrite an RTAS event that rtas_errd
531  * hasn't had a chance to read and process?  Return 1 if so, else 0.
532  *
533  * We assume that if rtas_errd hasn't read the RTAS event in
534  * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
535  */
clobbering_unread_rtas_event(void)536 static int clobbering_unread_rtas_event(void)
537 {
538 	return (oops_log_partition.index == rtas_log_partition.index
539 		&& last_unread_rtas_event
540 		&& get_seconds() - last_unread_rtas_event <=
541 						NVRAM_RTAS_READ_TIMEOUT);
542 }
543 
544 /* Squeeze out each line's <n> severity prefix. */
elide_severities(char * buf,size_t len)545 static size_t elide_severities(char *buf, size_t len)
546 {
547 	char *in, *out, *buf_end = buf + len;
548 	/* Assume a <n> at the very beginning marks the start of a line. */
549 	int newline = 1;
550 
551 	in = out = buf;
552 	while (in < buf_end) {
553 		if (newline && in+3 <= buf_end &&
554 				*in == '<' && isdigit(in[1]) && in[2] == '>') {
555 			in += 3;
556 			newline = 0;
557 		} else {
558 			newline = (*in == '\n');
559 			*out++ = *in++;
560 		}
561 	}
562 	return out - buf;
563 }
564 
565 /* Derived from logfs_compress() */
nvram_compress(const void * in,void * out,size_t inlen,size_t outlen)566 static int nvram_compress(const void *in, void *out, size_t inlen,
567 							size_t outlen)
568 {
569 	int err, ret;
570 
571 	ret = -EIO;
572 	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
573 						MEM_LEVEL, Z_DEFAULT_STRATEGY);
574 	if (err != Z_OK)
575 		goto error;
576 
577 	stream.next_in = in;
578 	stream.avail_in = inlen;
579 	stream.total_in = 0;
580 	stream.next_out = out;
581 	stream.avail_out = outlen;
582 	stream.total_out = 0;
583 
584 	err = zlib_deflate(&stream, Z_FINISH);
585 	if (err != Z_STREAM_END)
586 		goto error;
587 
588 	err = zlib_deflateEnd(&stream);
589 	if (err != Z_OK)
590 		goto error;
591 
592 	if (stream.total_out >= stream.total_in)
593 		goto error;
594 
595 	ret = stream.total_out;
596 error:
597 	return ret;
598 }
599 
600 /* Compress the text from big_oops_buf into oops_buf. */
zip_oops(size_t text_len)601 static int zip_oops(size_t text_len)
602 {
603 	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
604 								oops_data_sz);
605 	if (zipped_len < 0) {
606 		pr_err("nvram: compression failed; returned %d\n", zipped_len);
607 		pr_err("nvram: logging uncompressed oops/panic report\n");
608 		return -1;
609 	}
610 	*oops_len = (u16) zipped_len;
611 	return 0;
612 }
613 
614 /*
615  * This is our kmsg_dump callback, called after an oops or panic report
616  * has been written to the printk buffer.  We want to capture as much
617  * of the printk buffer as possible.  First, capture as much as we can
618  * that we think will compress sufficiently to fit in the lnx,oops-log
619  * partition.  If that's too much, go back and capture uncompressed text.
620  */
oops_to_nvram(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason,const char * old_msgs,unsigned long old_len,const char * new_msgs,unsigned long new_len)621 static void oops_to_nvram(struct kmsg_dumper *dumper,
622 		enum kmsg_dump_reason reason,
623 		const char *old_msgs, unsigned long old_len,
624 		const char *new_msgs, unsigned long new_len)
625 {
626 	static unsigned int oops_count = 0;
627 	static bool panicking = false;
628 	static DEFINE_SPINLOCK(lock);
629 	unsigned long flags;
630 	size_t text_len;
631 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
632 	int rc = -1;
633 
634 	switch (reason) {
635 	case KMSG_DUMP_RESTART:
636 	case KMSG_DUMP_HALT:
637 	case KMSG_DUMP_POWEROFF:
638 		/* These are almost always orderly shutdowns. */
639 		return;
640 	case KMSG_DUMP_OOPS:
641 		break;
642 	case KMSG_DUMP_PANIC:
643 		panicking = true;
644 		break;
645 	case KMSG_DUMP_EMERG:
646 		if (panicking)
647 			/* Panic report already captured. */
648 			return;
649 		break;
650 	default:
651 		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
652 						__FUNCTION__, (int) reason);
653 		return;
654 	}
655 
656 	if (clobbering_unread_rtas_event())
657 		return;
658 
659 	if (!spin_trylock_irqsave(&lock, flags))
660 		return;
661 
662 	if (big_oops_buf) {
663 		text_len = capture_last_msgs(old_msgs, old_len,
664 			new_msgs, new_len, big_oops_buf, big_oops_buf_sz);
665 		text_len = elide_severities(big_oops_buf, text_len);
666 		rc = zip_oops(text_len);
667 	}
668 	if (rc != 0) {
669 		text_len = capture_last_msgs(old_msgs, old_len,
670 				new_msgs, new_len, oops_data, oops_data_sz);
671 		err_type = ERR_TYPE_KERNEL_PANIC;
672 		*oops_len = (u16) text_len;
673 	}
674 
675 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
676 		(int) (sizeof(*oops_len) + *oops_len), err_type, ++oops_count);
677 
678 	spin_unlock_irqrestore(&lock, flags);
679 }
680