1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by struct memblock_region that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the struct memblock_type
54  * which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with struct memblock. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 /*
136  * keep a pointer to &memblock.memory in the text section to use it in
137  * __next_mem_range() and its helpers.
138  *  For architectures that do not keep memblock data after init, this
139  * pointer will be reset to NULL at memblock_discard()
140  */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142 
143 #define for_each_memblock_type(i, memblock_type, rgn)			\
144 	for (i = 0, rgn = &memblock_type->regions[0];			\
145 	     i < memblock_type->cnt;					\
146 	     i++, rgn = &memblock_type->regions[i])
147 
148 #define memblock_dbg(fmt, ...)						\
149 	do {								\
150 		if (memblock_debug)					\
151 			pr_info(fmt, ##__VA_ARGS__);			\
152 	} while (0)
153 
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159 
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164 
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 	return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170 
171 /*
172  * Address comparison utilities
173  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 				       phys_addr_t base2, phys_addr_t size2)
176 {
177 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 					phys_addr_t base, phys_addr_t size)
182 {
183 	unsigned long i;
184 
185 	memblock_cap_size(base, &size);
186 
187 	for (i = 0; i < type->cnt; i++)
188 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 					   type->regions[i].size))
190 			break;
191 	return i < type->cnt;
192 }
193 
194 /**
195  * __memblock_find_range_bottom_up - find free area utility in bottom-up
196  * @start: start of candidate range
197  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198  *       %MEMBLOCK_ALLOC_ACCESSIBLE
199  * @size: size of free area to find
200  * @align: alignment of free area to find
201  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202  * @flags: pick from blocks based on memory attributes
203  *
204  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205  *
206  * Return:
207  * Found address on success, 0 on failure.
208  */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 				phys_addr_t size, phys_addr_t align, int nid,
212 				enum memblock_flags flags)
213 {
214 	phys_addr_t this_start, this_end, cand;
215 	u64 i;
216 
217 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 		this_start = clamp(this_start, start, end);
219 		this_end = clamp(this_end, start, end);
220 
221 		cand = round_up(this_start, align);
222 		if (cand < this_end && this_end - cand >= size)
223 			return cand;
224 	}
225 
226 	return 0;
227 }
228 
229 /**
230  * __memblock_find_range_top_down - find free area utility, in top-down
231  * @start: start of candidate range
232  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233  *       %MEMBLOCK_ALLOC_ACCESSIBLE
234  * @size: size of free area to find
235  * @align: alignment of free area to find
236  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237  * @flags: pick from blocks based on memory attributes
238  *
239  * Utility called from memblock_find_in_range_node(), find free area top-down.
240  *
241  * Return:
242  * Found address on success, 0 on failure.
243  */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 			       phys_addr_t size, phys_addr_t align, int nid,
247 			       enum memblock_flags flags)
248 {
249 	phys_addr_t this_start, this_end, cand;
250 	u64 i;
251 
252 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 					NULL) {
254 		this_start = clamp(this_start, start, end);
255 		this_end = clamp(this_end, start, end);
256 
257 		if (this_end < size)
258 			continue;
259 
260 		cand = round_down(this_end - size, align);
261 		if (cand >= this_start)
262 			return cand;
263 	}
264 
265 	return 0;
266 }
267 
268 /**
269  * memblock_find_in_range_node - find free area in given range and node
270  * @size: size of free area to find
271  * @align: alignment of free area to find
272  * @start: start of candidate range
273  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274  *       %MEMBLOCK_ALLOC_ACCESSIBLE
275  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276  * @flags: pick from blocks based on memory attributes
277  *
278  * Find @size free area aligned to @align in the specified range and node.
279  *
280  * Return:
281  * Found address on success, 0 on failure.
282  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 					phys_addr_t align, phys_addr_t start,
285 					phys_addr_t end, int nid,
286 					enum memblock_flags flags)
287 {
288 	/* pump up @end */
289 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
291 		end = memblock.current_limit;
292 
293 	/* avoid allocating the first page */
294 	start = max_t(phys_addr_t, start, PAGE_SIZE);
295 	end = max(start, end);
296 
297 	if (memblock_bottom_up())
298 		return __memblock_find_range_bottom_up(start, end, size, align,
299 						       nid, flags);
300 	else
301 		return __memblock_find_range_top_down(start, end, size, align,
302 						      nid, flags);
303 }
304 
305 /**
306  * memblock_find_in_range - find free area in given range
307  * @start: start of candidate range
308  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309  *       %MEMBLOCK_ALLOC_ACCESSIBLE
310  * @size: size of free area to find
311  * @align: alignment of free area to find
312  *
313  * Find @size free area aligned to @align in the specified range.
314  *
315  * Return:
316  * Found address on success, 0 on failure.
317  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 					phys_addr_t end, phys_addr_t size,
320 					phys_addr_t align)
321 {
322 	phys_addr_t ret;
323 	enum memblock_flags flags = choose_memblock_flags();
324 
325 again:
326 	ret = memblock_find_in_range_node(size, align, start, end,
327 					    NUMA_NO_NODE, flags);
328 
329 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 			&size);
332 		flags &= ~MEMBLOCK_MIRROR;
333 		goto again;
334 	}
335 
336 	return ret;
337 }
338 
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 	type->total_size -= type->regions[r].size;
342 	memmove(&type->regions[r], &type->regions[r + 1],
343 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 	type->cnt--;
345 
346 	/* Special case for empty arrays */
347 	if (type->cnt == 0) {
348 		WARN_ON(type->total_size != 0);
349 		type->cnt = 1;
350 		type->regions[0].base = 0;
351 		type->regions[0].size = 0;
352 		type->regions[0].flags = 0;
353 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 	}
355 }
356 
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359  * memblock_discard - discard memory and reserved arrays if they were allocated
360  */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 	phys_addr_t addr, size;
364 
365 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 		addr = __pa(memblock.reserved.regions);
367 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 				  memblock.reserved.max);
369 		if (memblock_reserved_in_slab)
370 			kfree(memblock.reserved.regions);
371 		else
372 			memblock_free_late(addr, size);
373 	}
374 
375 	if (memblock.memory.regions != memblock_memory_init_regions) {
376 		addr = __pa(memblock.memory.regions);
377 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 				  memblock.memory.max);
379 		if (memblock_memory_in_slab)
380 			kfree(memblock.memory.regions);
381 		else
382 			memblock_free_late(addr, size);
383 	}
384 
385 	memblock_memory = NULL;
386 }
387 #endif
388 
389 /**
390  * memblock_double_array - double the size of the memblock regions array
391  * @type: memblock type of the regions array being doubled
392  * @new_area_start: starting address of memory range to avoid overlap with
393  * @new_area_size: size of memory range to avoid overlap with
394  *
395  * Double the size of the @type regions array. If memblock is being used to
396  * allocate memory for a new reserved regions array and there is a previously
397  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398  * waiting to be reserved, ensure the memory used by the new array does
399  * not overlap.
400  *
401  * Return:
402  * 0 on success, -1 on failure.
403  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)404 static int __init_memblock memblock_double_array(struct memblock_type *type,
405 						phys_addr_t new_area_start,
406 						phys_addr_t new_area_size)
407 {
408 	struct memblock_region *new_array, *old_array;
409 	phys_addr_t old_alloc_size, new_alloc_size;
410 	phys_addr_t old_size, new_size, addr, new_end;
411 	int use_slab = slab_is_available();
412 	int *in_slab;
413 
414 	/* We don't allow resizing until we know about the reserved regions
415 	 * of memory that aren't suitable for allocation
416 	 */
417 	if (!memblock_can_resize)
418 		return -1;
419 
420 	/* Calculate new doubled size */
421 	old_size = type->max * sizeof(struct memblock_region);
422 	new_size = old_size << 1;
423 	/*
424 	 * We need to allocated new one align to PAGE_SIZE,
425 	 *   so we can free them completely later.
426 	 */
427 	old_alloc_size = PAGE_ALIGN(old_size);
428 	new_alloc_size = PAGE_ALIGN(new_size);
429 
430 	/* Retrieve the slab flag */
431 	if (type == &memblock.memory)
432 		in_slab = &memblock_memory_in_slab;
433 	else
434 		in_slab = &memblock_reserved_in_slab;
435 
436 	/* Try to find some space for it */
437 	if (use_slab) {
438 		new_array = kmalloc(new_size, GFP_KERNEL);
439 		addr = new_array ? __pa(new_array) : 0;
440 	} else {
441 		/* only exclude range when trying to double reserved.regions */
442 		if (type != &memblock.reserved)
443 			new_area_start = new_area_size = 0;
444 
445 		addr = memblock_find_in_range(new_area_start + new_area_size,
446 						memblock.current_limit,
447 						new_alloc_size, PAGE_SIZE);
448 		if (!addr && new_area_size)
449 			addr = memblock_find_in_range(0,
450 				min(new_area_start, memblock.current_limit),
451 				new_alloc_size, PAGE_SIZE);
452 
453 		new_array = addr ? __va(addr) : NULL;
454 	}
455 	if (!addr) {
456 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457 		       type->name, type->max, type->max * 2);
458 		return -1;
459 	}
460 
461 	new_end = addr + new_size - 1;
462 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 			type->name, type->max * 2, &addr, &new_end);
464 
465 	/*
466 	 * Found space, we now need to move the array over before we add the
467 	 * reserved region since it may be our reserved array itself that is
468 	 * full.
469 	 */
470 	memcpy(new_array, type->regions, old_size);
471 	memset(new_array + type->max, 0, old_size);
472 	old_array = type->regions;
473 	type->regions = new_array;
474 	type->max <<= 1;
475 
476 	/* Free old array. We needn't free it if the array is the static one */
477 	if (*in_slab)
478 		kfree(old_array);
479 	else if (old_array != memblock_memory_init_regions &&
480 		 old_array != memblock_reserved_init_regions)
481 		memblock_free(old_array, old_alloc_size);
482 
483 	/*
484 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
485 	 * needn't do it
486 	 */
487 	if (!use_slab)
488 		BUG_ON(memblock_reserve(addr, new_alloc_size));
489 
490 	/* Update slab flag */
491 	*in_slab = use_slab;
492 
493 	return 0;
494 }
495 
496 /**
497  * memblock_merge_regions - merge neighboring compatible regions
498  * @type: memblock type to scan
499  *
500  * Scan @type and merge neighboring compatible regions.
501  */
memblock_merge_regions(struct memblock_type * type)502 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503 {
504 	int i = 0;
505 
506 	/* cnt never goes below 1 */
507 	while (i < type->cnt - 1) {
508 		struct memblock_region *this = &type->regions[i];
509 		struct memblock_region *next = &type->regions[i + 1];
510 
511 		if (this->base + this->size != next->base ||
512 		    memblock_get_region_node(this) !=
513 		    memblock_get_region_node(next) ||
514 		    this->flags != next->flags) {
515 			BUG_ON(this->base + this->size > next->base);
516 			i++;
517 			continue;
518 		}
519 
520 		this->size += next->size;
521 		/* move forward from next + 1, index of which is i + 2 */
522 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523 		type->cnt--;
524 	}
525 }
526 
527 /**
528  * memblock_insert_region - insert new memblock region
529  * @type:	memblock type to insert into
530  * @idx:	index for the insertion point
531  * @base:	base address of the new region
532  * @size:	size of the new region
533  * @nid:	node id of the new region
534  * @flags:	flags of the new region
535  *
536  * Insert new memblock region [@base, @base + @size) into @type at @idx.
537  * @type must already have extra room to accommodate the new region.
538  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)539 static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 						   int idx, phys_addr_t base,
541 						   phys_addr_t size,
542 						   int nid,
543 						   enum memblock_flags flags)
544 {
545 	struct memblock_region *rgn = &type->regions[idx];
546 
547 	BUG_ON(type->cnt >= type->max);
548 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549 	rgn->base = base;
550 	rgn->size = size;
551 	rgn->flags = flags;
552 	memblock_set_region_node(rgn, nid);
553 	type->cnt++;
554 	type->total_size += size;
555 }
556 
557 /**
558  * memblock_add_range - add new memblock region
559  * @type: memblock type to add new region into
560  * @base: base address of the new region
561  * @size: size of the new region
562  * @nid: nid of the new region
563  * @flags: flags of the new region
564  *
565  * Add new memblock region [@base, @base + @size) into @type.  The new region
566  * is allowed to overlap with existing ones - overlaps don't affect already
567  * existing regions.  @type is guaranteed to be minimal (all neighbouring
568  * compatible regions are merged) after the addition.
569  *
570  * Return:
571  * 0 on success, -errno on failure.
572  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)573 static int __init_memblock memblock_add_range(struct memblock_type *type,
574 				phys_addr_t base, phys_addr_t size,
575 				int nid, enum memblock_flags flags)
576 {
577 	bool insert = false;
578 	phys_addr_t obase = base;
579 	phys_addr_t end = base + memblock_cap_size(base, &size);
580 	int idx, nr_new;
581 	struct memblock_region *rgn;
582 
583 	if (!size)
584 		return 0;
585 
586 	/* special case for empty array */
587 	if (type->regions[0].size == 0) {
588 		WARN_ON(type->cnt != 1 || type->total_size);
589 		type->regions[0].base = base;
590 		type->regions[0].size = size;
591 		type->regions[0].flags = flags;
592 		memblock_set_region_node(&type->regions[0], nid);
593 		type->total_size = size;
594 		return 0;
595 	}
596 repeat:
597 	/*
598 	 * The following is executed twice.  Once with %false @insert and
599 	 * then with %true.  The first counts the number of regions needed
600 	 * to accommodate the new area.  The second actually inserts them.
601 	 */
602 	base = obase;
603 	nr_new = 0;
604 
605 	for_each_memblock_type(idx, type, rgn) {
606 		phys_addr_t rbase = rgn->base;
607 		phys_addr_t rend = rbase + rgn->size;
608 
609 		if (rbase >= end)
610 			break;
611 		if (rend <= base)
612 			continue;
613 		/*
614 		 * @rgn overlaps.  If it separates the lower part of new
615 		 * area, insert that portion.
616 		 */
617 		if (rbase > base) {
618 #ifdef CONFIG_NUMA
619 			WARN_ON(nid != memblock_get_region_node(rgn));
620 #endif
621 			WARN_ON(flags != rgn->flags);
622 			nr_new++;
623 			if (insert)
624 				memblock_insert_region(type, idx++, base,
625 						       rbase - base, nid,
626 						       flags);
627 		}
628 		/* area below @rend is dealt with, forget about it */
629 		base = min(rend, end);
630 	}
631 
632 	/* insert the remaining portion */
633 	if (base < end) {
634 		nr_new++;
635 		if (insert)
636 			memblock_insert_region(type, idx, base, end - base,
637 					       nid, flags);
638 	}
639 
640 	if (!nr_new)
641 		return 0;
642 
643 	/*
644 	 * If this was the first round, resize array and repeat for actual
645 	 * insertions; otherwise, merge and return.
646 	 */
647 	if (!insert) {
648 		while (type->cnt + nr_new > type->max)
649 			if (memblock_double_array(type, obase, size) < 0)
650 				return -ENOMEM;
651 		insert = true;
652 		goto repeat;
653 	} else {
654 		memblock_merge_regions(type);
655 		return 0;
656 	}
657 }
658 
659 /**
660  * memblock_add_node - add new memblock region within a NUMA node
661  * @base: base address of the new region
662  * @size: size of the new region
663  * @nid: nid of the new region
664  * @flags: flags of the new region
665  *
666  * Add new memblock region [@base, @base + @size) to the "memory"
667  * type. See memblock_add_range() description for mode details
668  *
669  * Return:
670  * 0 on success, -errno on failure.
671  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
673 				      int nid, enum memblock_flags flags)
674 {
675 	phys_addr_t end = base + size - 1;
676 
677 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
678 		     &base, &end, nid, flags, (void *)_RET_IP_);
679 
680 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
681 }
682 
683 /**
684  * memblock_add - add new memblock region
685  * @base: base address of the new region
686  * @size: size of the new region
687  *
688  * Add new memblock region [@base, @base + @size) to the "memory"
689  * type. See memblock_add_range() description for mode details
690  *
691  * Return:
692  * 0 on success, -errno on failure.
693  */
memblock_add(phys_addr_t base,phys_addr_t size)694 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
695 {
696 	phys_addr_t end = base + size - 1;
697 
698 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
699 		     &base, &end, (void *)_RET_IP_);
700 
701 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
702 }
703 
704 /**
705  * memblock_isolate_range - isolate given range into disjoint memblocks
706  * @type: memblock type to isolate range for
707  * @base: base of range to isolate
708  * @size: size of range to isolate
709  * @start_rgn: out parameter for the start of isolated region
710  * @end_rgn: out parameter for the end of isolated region
711  *
712  * Walk @type and ensure that regions don't cross the boundaries defined by
713  * [@base, @base + @size).  Crossing regions are split at the boundaries,
714  * which may create at most two more regions.  The index of the first
715  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
716  *
717  * Return:
718  * 0 on success, -errno on failure.
719  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)720 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
721 					phys_addr_t base, phys_addr_t size,
722 					int *start_rgn, int *end_rgn)
723 {
724 	phys_addr_t end = base + memblock_cap_size(base, &size);
725 	int idx;
726 	struct memblock_region *rgn;
727 
728 	*start_rgn = *end_rgn = 0;
729 
730 	if (!size)
731 		return 0;
732 
733 	/* we'll create at most two more regions */
734 	while (type->cnt + 2 > type->max)
735 		if (memblock_double_array(type, base, size) < 0)
736 			return -ENOMEM;
737 
738 	for_each_memblock_type(idx, type, rgn) {
739 		phys_addr_t rbase = rgn->base;
740 		phys_addr_t rend = rbase + rgn->size;
741 
742 		if (rbase >= end)
743 			break;
744 		if (rend <= base)
745 			continue;
746 
747 		if (rbase < base) {
748 			/*
749 			 * @rgn intersects from below.  Split and continue
750 			 * to process the next region - the new top half.
751 			 */
752 			rgn->base = base;
753 			rgn->size -= base - rbase;
754 			type->total_size -= base - rbase;
755 			memblock_insert_region(type, idx, rbase, base - rbase,
756 					       memblock_get_region_node(rgn),
757 					       rgn->flags);
758 		} else if (rend > end) {
759 			/*
760 			 * @rgn intersects from above.  Split and redo the
761 			 * current region - the new bottom half.
762 			 */
763 			rgn->base = end;
764 			rgn->size -= end - rbase;
765 			type->total_size -= end - rbase;
766 			memblock_insert_region(type, idx--, rbase, end - rbase,
767 					       memblock_get_region_node(rgn),
768 					       rgn->flags);
769 		} else {
770 			/* @rgn is fully contained, record it */
771 			if (!*end_rgn)
772 				*start_rgn = idx;
773 			*end_rgn = idx + 1;
774 		}
775 	}
776 
777 	return 0;
778 }
779 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)780 static int __init_memblock memblock_remove_range(struct memblock_type *type,
781 					  phys_addr_t base, phys_addr_t size)
782 {
783 	int start_rgn, end_rgn;
784 	int i, ret;
785 
786 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
787 	if (ret)
788 		return ret;
789 
790 	for (i = end_rgn - 1; i >= start_rgn; i--)
791 		memblock_remove_region(type, i);
792 	return 0;
793 }
794 
memblock_remove(phys_addr_t base,phys_addr_t size)795 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
796 {
797 	phys_addr_t end = base + size - 1;
798 
799 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
800 		     &base, &end, (void *)_RET_IP_);
801 
802 	return memblock_remove_range(&memblock.memory, base, size);
803 }
804 
805 /**
806  * memblock_free - free boot memory allocation
807  * @ptr: starting address of the  boot memory allocation
808  * @size: size of the boot memory block in bytes
809  *
810  * Free boot memory block previously allocated by memblock_alloc_xx() API.
811  * The freeing memory will not be released to the buddy allocator.
812  */
memblock_free(void * ptr,size_t size)813 void __init_memblock memblock_free(void *ptr, size_t size)
814 {
815 	if (ptr)
816 		memblock_phys_free(__pa(ptr), size);
817 }
818 
819 /**
820  * memblock_phys_free - free boot memory block
821  * @base: phys starting address of the  boot memory block
822  * @size: size of the boot memory block in bytes
823  *
824  * Free boot memory block previously allocated by memblock_alloc_xx() API.
825  * The freeing memory will not be released to the buddy allocator.
826  */
memblock_phys_free(phys_addr_t base,phys_addr_t size)827 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
828 {
829 	phys_addr_t end = base + size - 1;
830 
831 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
832 		     &base, &end, (void *)_RET_IP_);
833 
834 	kmemleak_free_part_phys(base, size);
835 	return memblock_remove_range(&memblock.reserved, base, size);
836 }
837 
memblock_reserve(phys_addr_t base,phys_addr_t size)838 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
839 {
840 	phys_addr_t end = base + size - 1;
841 
842 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
843 		     &base, &end, (void *)_RET_IP_);
844 
845 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
846 }
847 
848 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)849 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
850 {
851 	phys_addr_t end = base + size - 1;
852 
853 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
854 		     &base, &end, (void *)_RET_IP_);
855 
856 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
857 }
858 #endif
859 
860 /**
861  * memblock_setclr_flag - set or clear flag for a memory region
862  * @base: base address of the region
863  * @size: size of the region
864  * @set: set or clear the flag
865  * @flag: the flag to update
866  *
867  * This function isolates region [@base, @base + @size), and sets/clears flag
868  *
869  * Return: 0 on success, -errno on failure.
870  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)871 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
872 				phys_addr_t size, int set, int flag)
873 {
874 	struct memblock_type *type = &memblock.memory;
875 	int i, ret, start_rgn, end_rgn;
876 
877 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
878 	if (ret)
879 		return ret;
880 
881 	for (i = start_rgn; i < end_rgn; i++) {
882 		struct memblock_region *r = &type->regions[i];
883 
884 		if (set)
885 			r->flags |= flag;
886 		else
887 			r->flags &= ~flag;
888 	}
889 
890 	memblock_merge_regions(type);
891 	return 0;
892 }
893 
894 /**
895  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
896  * @base: the base phys addr of the region
897  * @size: the size of the region
898  *
899  * Return: 0 on success, -errno on failure.
900  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)901 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
902 {
903 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
904 }
905 
906 /**
907  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
908  * @base: the base phys addr of the region
909  * @size: the size of the region
910  *
911  * Return: 0 on success, -errno on failure.
912  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)913 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
914 {
915 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
916 }
917 
918 /**
919  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
920  * @base: the base phys addr of the region
921  * @size: the size of the region
922  *
923  * Return: 0 on success, -errno on failure.
924  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)925 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
926 {
927 	system_has_some_mirror = true;
928 
929 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
930 }
931 
932 /**
933  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
934  * @base: the base phys addr of the region
935  * @size: the size of the region
936  *
937  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
938  * direct mapping of the physical memory. These regions will still be
939  * covered by the memory map. The struct page representing NOMAP memory
940  * frames in the memory map will be PageReserved()
941  *
942  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
943  * memblock, the caller must inform kmemleak to ignore that memory
944  *
945  * Return: 0 on success, -errno on failure.
946  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)947 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
948 {
949 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
950 }
951 
952 /**
953  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
954  * @base: the base phys addr of the region
955  * @size: the size of the region
956  *
957  * Return: 0 on success, -errno on failure.
958  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)959 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
960 {
961 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
962 }
963 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)964 static bool should_skip_region(struct memblock_type *type,
965 			       struct memblock_region *m,
966 			       int nid, int flags)
967 {
968 	int m_nid = memblock_get_region_node(m);
969 
970 	/* we never skip regions when iterating memblock.reserved or physmem */
971 	if (type != memblock_memory)
972 		return false;
973 
974 	/* only memory regions are associated with nodes, check it */
975 	if (nid != NUMA_NO_NODE && nid != m_nid)
976 		return true;
977 
978 	/* skip hotpluggable memory regions if needed */
979 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
980 	    !(flags & MEMBLOCK_HOTPLUG))
981 		return true;
982 
983 	/* if we want mirror memory skip non-mirror memory regions */
984 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
985 		return true;
986 
987 	/* skip nomap memory unless we were asked for it explicitly */
988 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
989 		return true;
990 
991 	/* skip driver-managed memory unless we were asked for it explicitly */
992 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
993 		return true;
994 
995 	return false;
996 }
997 
998 /**
999  * __next_mem_range - next function for for_each_free_mem_range() etc.
1000  * @idx: pointer to u64 loop variable
1001  * @nid: node selector, %NUMA_NO_NODE for all nodes
1002  * @flags: pick from blocks based on memory attributes
1003  * @type_a: pointer to memblock_type from where the range is taken
1004  * @type_b: pointer to memblock_type which excludes memory from being taken
1005  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1006  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1007  * @out_nid: ptr to int for nid of the range, can be %NULL
1008  *
1009  * Find the first area from *@idx which matches @nid, fill the out
1010  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1011  * *@idx contains index into type_a and the upper 32bit indexes the
1012  * areas before each region in type_b.	For example, if type_b regions
1013  * look like the following,
1014  *
1015  *	0:[0-16), 1:[32-48), 2:[128-130)
1016  *
1017  * The upper 32bit indexes the following regions.
1018  *
1019  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1020  *
1021  * As both region arrays are sorted, the function advances the two indices
1022  * in lockstep and returns each intersection.
1023  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1024 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1025 		      struct memblock_type *type_a,
1026 		      struct memblock_type *type_b, phys_addr_t *out_start,
1027 		      phys_addr_t *out_end, int *out_nid)
1028 {
1029 	int idx_a = *idx & 0xffffffff;
1030 	int idx_b = *idx >> 32;
1031 
1032 	if (WARN_ONCE(nid == MAX_NUMNODES,
1033 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1034 		nid = NUMA_NO_NODE;
1035 
1036 	for (; idx_a < type_a->cnt; idx_a++) {
1037 		struct memblock_region *m = &type_a->regions[idx_a];
1038 
1039 		phys_addr_t m_start = m->base;
1040 		phys_addr_t m_end = m->base + m->size;
1041 		int	    m_nid = memblock_get_region_node(m);
1042 
1043 		if (should_skip_region(type_a, m, nid, flags))
1044 			continue;
1045 
1046 		if (!type_b) {
1047 			if (out_start)
1048 				*out_start = m_start;
1049 			if (out_end)
1050 				*out_end = m_end;
1051 			if (out_nid)
1052 				*out_nid = m_nid;
1053 			idx_a++;
1054 			*idx = (u32)idx_a | (u64)idx_b << 32;
1055 			return;
1056 		}
1057 
1058 		/* scan areas before each reservation */
1059 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1060 			struct memblock_region *r;
1061 			phys_addr_t r_start;
1062 			phys_addr_t r_end;
1063 
1064 			r = &type_b->regions[idx_b];
1065 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1066 			r_end = idx_b < type_b->cnt ?
1067 				r->base : PHYS_ADDR_MAX;
1068 
1069 			/*
1070 			 * if idx_b advanced past idx_a,
1071 			 * break out to advance idx_a
1072 			 */
1073 			if (r_start >= m_end)
1074 				break;
1075 			/* if the two regions intersect, we're done */
1076 			if (m_start < r_end) {
1077 				if (out_start)
1078 					*out_start =
1079 						max(m_start, r_start);
1080 				if (out_end)
1081 					*out_end = min(m_end, r_end);
1082 				if (out_nid)
1083 					*out_nid = m_nid;
1084 				/*
1085 				 * The region which ends first is
1086 				 * advanced for the next iteration.
1087 				 */
1088 				if (m_end <= r_end)
1089 					idx_a++;
1090 				else
1091 					idx_b++;
1092 				*idx = (u32)idx_a | (u64)idx_b << 32;
1093 				return;
1094 			}
1095 		}
1096 	}
1097 
1098 	/* signal end of iteration */
1099 	*idx = ULLONG_MAX;
1100 }
1101 
1102 /**
1103  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1104  *
1105  * @idx: pointer to u64 loop variable
1106  * @nid: node selector, %NUMA_NO_NODE for all nodes
1107  * @flags: pick from blocks based on memory attributes
1108  * @type_a: pointer to memblock_type from where the range is taken
1109  * @type_b: pointer to memblock_type which excludes memory from being taken
1110  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1111  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1112  * @out_nid: ptr to int for nid of the range, can be %NULL
1113  *
1114  * Finds the next range from type_a which is not marked as unsuitable
1115  * in type_b.
1116  *
1117  * Reverse of __next_mem_range().
1118  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1119 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1120 					  enum memblock_flags flags,
1121 					  struct memblock_type *type_a,
1122 					  struct memblock_type *type_b,
1123 					  phys_addr_t *out_start,
1124 					  phys_addr_t *out_end, int *out_nid)
1125 {
1126 	int idx_a = *idx & 0xffffffff;
1127 	int idx_b = *idx >> 32;
1128 
1129 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1130 		nid = NUMA_NO_NODE;
1131 
1132 	if (*idx == (u64)ULLONG_MAX) {
1133 		idx_a = type_a->cnt - 1;
1134 		if (type_b != NULL)
1135 			idx_b = type_b->cnt;
1136 		else
1137 			idx_b = 0;
1138 	}
1139 
1140 	for (; idx_a >= 0; idx_a--) {
1141 		struct memblock_region *m = &type_a->regions[idx_a];
1142 
1143 		phys_addr_t m_start = m->base;
1144 		phys_addr_t m_end = m->base + m->size;
1145 		int m_nid = memblock_get_region_node(m);
1146 
1147 		if (should_skip_region(type_a, m, nid, flags))
1148 			continue;
1149 
1150 		if (!type_b) {
1151 			if (out_start)
1152 				*out_start = m_start;
1153 			if (out_end)
1154 				*out_end = m_end;
1155 			if (out_nid)
1156 				*out_nid = m_nid;
1157 			idx_a--;
1158 			*idx = (u32)idx_a | (u64)idx_b << 32;
1159 			return;
1160 		}
1161 
1162 		/* scan areas before each reservation */
1163 		for (; idx_b >= 0; idx_b--) {
1164 			struct memblock_region *r;
1165 			phys_addr_t r_start;
1166 			phys_addr_t r_end;
1167 
1168 			r = &type_b->regions[idx_b];
1169 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1170 			r_end = idx_b < type_b->cnt ?
1171 				r->base : PHYS_ADDR_MAX;
1172 			/*
1173 			 * if idx_b advanced past idx_a,
1174 			 * break out to advance idx_a
1175 			 */
1176 
1177 			if (r_end <= m_start)
1178 				break;
1179 			/* if the two regions intersect, we're done */
1180 			if (m_end > r_start) {
1181 				if (out_start)
1182 					*out_start = max(m_start, r_start);
1183 				if (out_end)
1184 					*out_end = min(m_end, r_end);
1185 				if (out_nid)
1186 					*out_nid = m_nid;
1187 				if (m_start >= r_start)
1188 					idx_a--;
1189 				else
1190 					idx_b--;
1191 				*idx = (u32)idx_a | (u64)idx_b << 32;
1192 				return;
1193 			}
1194 		}
1195 	}
1196 	/* signal end of iteration */
1197 	*idx = ULLONG_MAX;
1198 }
1199 
1200 /*
1201  * Common iterator interface used to define for_each_mem_pfn_range().
1202  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1203 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1204 				unsigned long *out_start_pfn,
1205 				unsigned long *out_end_pfn, int *out_nid)
1206 {
1207 	struct memblock_type *type = &memblock.memory;
1208 	struct memblock_region *r;
1209 	int r_nid;
1210 
1211 	while (++*idx < type->cnt) {
1212 		r = &type->regions[*idx];
1213 		r_nid = memblock_get_region_node(r);
1214 
1215 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1216 			continue;
1217 		if (nid == MAX_NUMNODES || nid == r_nid)
1218 			break;
1219 	}
1220 	if (*idx >= type->cnt) {
1221 		*idx = -1;
1222 		return;
1223 	}
1224 
1225 	if (out_start_pfn)
1226 		*out_start_pfn = PFN_UP(r->base);
1227 	if (out_end_pfn)
1228 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1229 	if (out_nid)
1230 		*out_nid = r_nid;
1231 }
1232 
1233 /**
1234  * memblock_set_node - set node ID on memblock regions
1235  * @base: base of area to set node ID for
1236  * @size: size of area to set node ID for
1237  * @type: memblock type to set node ID for
1238  * @nid: node ID to set
1239  *
1240  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1241  * Regions which cross the area boundaries are split as necessary.
1242  *
1243  * Return:
1244  * 0 on success, -errno on failure.
1245  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1246 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1247 				      struct memblock_type *type, int nid)
1248 {
1249 #ifdef CONFIG_NUMA
1250 	int start_rgn, end_rgn;
1251 	int i, ret;
1252 
1253 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1254 	if (ret)
1255 		return ret;
1256 
1257 	for (i = start_rgn; i < end_rgn; i++)
1258 		memblock_set_region_node(&type->regions[i], nid);
1259 
1260 	memblock_merge_regions(type);
1261 #endif
1262 	return 0;
1263 }
1264 
1265 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1266 /**
1267  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1268  *
1269  * @idx: pointer to u64 loop variable
1270  * @zone: zone in which all of the memory blocks reside
1271  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1272  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1273  *
1274  * This function is meant to be a zone/pfn specific wrapper for the
1275  * for_each_mem_range type iterators. Specifically they are used in the
1276  * deferred memory init routines and as such we were duplicating much of
1277  * this logic throughout the code. So instead of having it in multiple
1278  * locations it seemed like it would make more sense to centralize this to
1279  * one new iterator that does everything they need.
1280  */
1281 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1282 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1283 			     unsigned long *out_spfn, unsigned long *out_epfn)
1284 {
1285 	int zone_nid = zone_to_nid(zone);
1286 	phys_addr_t spa, epa;
1287 
1288 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 			 &memblock.memory, &memblock.reserved,
1290 			 &spa, &epa, NULL);
1291 
1292 	while (*idx != U64_MAX) {
1293 		unsigned long epfn = PFN_DOWN(epa);
1294 		unsigned long spfn = PFN_UP(spa);
1295 
1296 		/*
1297 		 * Verify the end is at least past the start of the zone and
1298 		 * that we have at least one PFN to initialize.
1299 		 */
1300 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1301 			/* if we went too far just stop searching */
1302 			if (zone_end_pfn(zone) <= spfn) {
1303 				*idx = U64_MAX;
1304 				break;
1305 			}
1306 
1307 			if (out_spfn)
1308 				*out_spfn = max(zone->zone_start_pfn, spfn);
1309 			if (out_epfn)
1310 				*out_epfn = min(zone_end_pfn(zone), epfn);
1311 
1312 			return;
1313 		}
1314 
1315 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1316 				 &memblock.memory, &memblock.reserved,
1317 				 &spa, &epa, NULL);
1318 	}
1319 
1320 	/* signal end of iteration */
1321 	if (out_spfn)
1322 		*out_spfn = ULONG_MAX;
1323 	if (out_epfn)
1324 		*out_epfn = 0;
1325 }
1326 
1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1328 
1329 /**
1330  * memblock_alloc_range_nid - allocate boot memory block
1331  * @size: size of memory block to be allocated in bytes
1332  * @align: alignment of the region and block's size
1333  * @start: the lower bound of the memory region to allocate (phys address)
1334  * @end: the upper bound of the memory region to allocate (phys address)
1335  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1336  * @exact_nid: control the allocation fall back to other nodes
1337  *
1338  * The allocation is performed from memory region limited by
1339  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1340  *
1341  * If the specified node can not hold the requested memory and @exact_nid
1342  * is false, the allocation falls back to any node in the system.
1343  *
1344  * For systems with memory mirroring, the allocation is attempted first
1345  * from the regions with mirroring enabled and then retried from any
1346  * memory region.
1347  *
1348  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1349  * allocated boot memory block, so that it is never reported as leaks.
1350  *
1351  * Return:
1352  * Physical address of allocated memory block on success, %0 on failure.
1353  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1354 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1355 					phys_addr_t align, phys_addr_t start,
1356 					phys_addr_t end, int nid,
1357 					bool exact_nid)
1358 {
1359 	enum memblock_flags flags = choose_memblock_flags();
1360 	phys_addr_t found;
1361 
1362 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1363 		nid = NUMA_NO_NODE;
1364 
1365 	if (!align) {
1366 		/* Can't use WARNs this early in boot on powerpc */
1367 		dump_stack();
1368 		align = SMP_CACHE_BYTES;
1369 	}
1370 
1371 again:
1372 	found = memblock_find_in_range_node(size, align, start, end, nid,
1373 					    flags);
1374 	if (found && !memblock_reserve(found, size))
1375 		goto done;
1376 
1377 	if (nid != NUMA_NO_NODE && !exact_nid) {
1378 		found = memblock_find_in_range_node(size, align, start,
1379 						    end, NUMA_NO_NODE,
1380 						    flags);
1381 		if (found && !memblock_reserve(found, size))
1382 			goto done;
1383 	}
1384 
1385 	if (flags & MEMBLOCK_MIRROR) {
1386 		flags &= ~MEMBLOCK_MIRROR;
1387 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1388 			&size);
1389 		goto again;
1390 	}
1391 
1392 	return 0;
1393 
1394 done:
1395 	/*
1396 	 * Skip kmemleak for those places like kasan_init() and
1397 	 * early_pgtable_alloc() due to high volume.
1398 	 */
1399 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1400 		/*
1401 		 * The min_count is set to 0 so that memblock allocated
1402 		 * blocks are never reported as leaks. This is because many
1403 		 * of these blocks are only referred via the physical
1404 		 * address which is not looked up by kmemleak.
1405 		 */
1406 		kmemleak_alloc_phys(found, size, 0, 0);
1407 
1408 	return found;
1409 }
1410 
1411 /**
1412  * memblock_phys_alloc_range - allocate a memory block inside specified range
1413  * @size: size of memory block to be allocated in bytes
1414  * @align: alignment of the region and block's size
1415  * @start: the lower bound of the memory region to allocate (physical address)
1416  * @end: the upper bound of the memory region to allocate (physical address)
1417  *
1418  * Allocate @size bytes in the between @start and @end.
1419  *
1420  * Return: physical address of the allocated memory block on success,
1421  * %0 on failure.
1422  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1423 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1424 					     phys_addr_t align,
1425 					     phys_addr_t start,
1426 					     phys_addr_t end)
1427 {
1428 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1429 		     __func__, (u64)size, (u64)align, &start, &end,
1430 		     (void *)_RET_IP_);
1431 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1432 					false);
1433 }
1434 
1435 /**
1436  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1437  * @size: size of memory block to be allocated in bytes
1438  * @align: alignment of the region and block's size
1439  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1440  *
1441  * Allocates memory block from the specified NUMA node. If the node
1442  * has no available memory, attempts to allocated from any node in the
1443  * system.
1444  *
1445  * Return: physical address of the allocated memory block on success,
1446  * %0 on failure.
1447  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1448 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1449 {
1450 	return memblock_alloc_range_nid(size, align, 0,
1451 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1452 }
1453 
1454 /**
1455  * memblock_alloc_internal - allocate boot memory block
1456  * @size: size of memory block to be allocated in bytes
1457  * @align: alignment of the region and block's size
1458  * @min_addr: the lower bound of the memory region to allocate (phys address)
1459  * @max_addr: the upper bound of the memory region to allocate (phys address)
1460  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1461  * @exact_nid: control the allocation fall back to other nodes
1462  *
1463  * Allocates memory block using memblock_alloc_range_nid() and
1464  * converts the returned physical address to virtual.
1465  *
1466  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1467  * will fall back to memory below @min_addr. Other constraints, such
1468  * as node and mirrored memory will be handled again in
1469  * memblock_alloc_range_nid().
1470  *
1471  * Return:
1472  * Virtual address of allocated memory block on success, NULL on failure.
1473  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1474 static void * __init memblock_alloc_internal(
1475 				phys_addr_t size, phys_addr_t align,
1476 				phys_addr_t min_addr, phys_addr_t max_addr,
1477 				int nid, bool exact_nid)
1478 {
1479 	phys_addr_t alloc;
1480 
1481 	/*
1482 	 * Detect any accidental use of these APIs after slab is ready, as at
1483 	 * this moment memblock may be deinitialized already and its
1484 	 * internal data may be destroyed (after execution of memblock_free_all)
1485 	 */
1486 	if (WARN_ON_ONCE(slab_is_available()))
1487 		return kzalloc_node(size, GFP_NOWAIT, nid);
1488 
1489 	if (max_addr > memblock.current_limit)
1490 		max_addr = memblock.current_limit;
1491 
1492 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1493 					exact_nid);
1494 
1495 	/* retry allocation without lower limit */
1496 	if (!alloc && min_addr)
1497 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1498 						exact_nid);
1499 
1500 	if (!alloc)
1501 		return NULL;
1502 
1503 	return phys_to_virt(alloc);
1504 }
1505 
1506 /**
1507  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1508  * without zeroing memory
1509  * @size: size of memory block to be allocated in bytes
1510  * @align: alignment of the region and block's size
1511  * @min_addr: the lower bound of the memory region from where the allocation
1512  *	  is preferred (phys address)
1513  * @max_addr: the upper bound of the memory region from where the allocation
1514  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515  *	      allocate only from memory limited by memblock.current_limit value
1516  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517  *
1518  * Public function, provides additional debug information (including caller
1519  * info), if enabled. Does not zero allocated memory.
1520  *
1521  * Return:
1522  * Virtual address of allocated memory block on success, NULL on failure.
1523  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1524 void * __init memblock_alloc_exact_nid_raw(
1525 			phys_addr_t size, phys_addr_t align,
1526 			phys_addr_t min_addr, phys_addr_t max_addr,
1527 			int nid)
1528 {
1529 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1530 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1531 		     &max_addr, (void *)_RET_IP_);
1532 
1533 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1534 				       true);
1535 }
1536 
1537 /**
1538  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1539  * memory and without panicking
1540  * @size: size of memory block to be allocated in bytes
1541  * @align: alignment of the region and block's size
1542  * @min_addr: the lower bound of the memory region from where the allocation
1543  *	  is preferred (phys address)
1544  * @max_addr: the upper bound of the memory region from where the allocation
1545  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546  *	      allocate only from memory limited by memblock.current_limit value
1547  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548  *
1549  * Public function, provides additional debug information (including caller
1550  * info), if enabled. Does not zero allocated memory, does not panic if request
1551  * cannot be satisfied.
1552  *
1553  * Return:
1554  * Virtual address of allocated memory block on success, NULL on failure.
1555  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1556 void * __init memblock_alloc_try_nid_raw(
1557 			phys_addr_t size, phys_addr_t align,
1558 			phys_addr_t min_addr, phys_addr_t max_addr,
1559 			int nid)
1560 {
1561 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1562 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1563 		     &max_addr, (void *)_RET_IP_);
1564 
1565 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1566 				       false);
1567 }
1568 
1569 /**
1570  * memblock_alloc_try_nid - allocate boot memory block
1571  * @size: size of memory block to be allocated in bytes
1572  * @align: alignment of the region and block's size
1573  * @min_addr: the lower bound of the memory region from where the allocation
1574  *	  is preferred (phys address)
1575  * @max_addr: the upper bound of the memory region from where the allocation
1576  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1577  *	      allocate only from memory limited by memblock.current_limit value
1578  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1579  *
1580  * Public function, provides additional debug information (including caller
1581  * info), if enabled. This function zeroes the allocated memory.
1582  *
1583  * Return:
1584  * Virtual address of allocated memory block on success, NULL on failure.
1585  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1586 void * __init memblock_alloc_try_nid(
1587 			phys_addr_t size, phys_addr_t align,
1588 			phys_addr_t min_addr, phys_addr_t max_addr,
1589 			int nid)
1590 {
1591 	void *ptr;
1592 
1593 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1594 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1595 		     &max_addr, (void *)_RET_IP_);
1596 	ptr = memblock_alloc_internal(size, align,
1597 					   min_addr, max_addr, nid, false);
1598 	if (ptr)
1599 		memset(ptr, 0, size);
1600 
1601 	return ptr;
1602 }
1603 
1604 /**
1605  * memblock_free_late - free pages directly to buddy allocator
1606  * @base: phys starting address of the  boot memory block
1607  * @size: size of the boot memory block in bytes
1608  *
1609  * This is only useful when the memblock allocator has already been torn
1610  * down, but we are still initializing the system.  Pages are released directly
1611  * to the buddy allocator.
1612  */
memblock_free_late(phys_addr_t base,phys_addr_t size)1613 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1614 {
1615 	phys_addr_t cursor, end;
1616 
1617 	end = base + size - 1;
1618 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1619 		     __func__, &base, &end, (void *)_RET_IP_);
1620 	kmemleak_free_part_phys(base, size);
1621 	cursor = PFN_UP(base);
1622 	end = PFN_DOWN(base + size);
1623 
1624 	for (; cursor < end; cursor++) {
1625 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1626 		totalram_pages_inc();
1627 	}
1628 }
1629 
1630 /*
1631  * Remaining API functions
1632  */
1633 
memblock_phys_mem_size(void)1634 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1635 {
1636 	return memblock.memory.total_size;
1637 }
1638 
memblock_reserved_size(void)1639 phys_addr_t __init_memblock memblock_reserved_size(void)
1640 {
1641 	return memblock.reserved.total_size;
1642 }
1643 
1644 /* lowest address */
memblock_start_of_DRAM(void)1645 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1646 {
1647 	return memblock.memory.regions[0].base;
1648 }
1649 
memblock_end_of_DRAM(void)1650 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1651 {
1652 	int idx = memblock.memory.cnt - 1;
1653 
1654 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1655 }
1656 
__find_max_addr(phys_addr_t limit)1657 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1658 {
1659 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1660 	struct memblock_region *r;
1661 
1662 	/*
1663 	 * translate the memory @limit size into the max address within one of
1664 	 * the memory memblock regions, if the @limit exceeds the total size
1665 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1666 	 */
1667 	for_each_mem_region(r) {
1668 		if (limit <= r->size) {
1669 			max_addr = r->base + limit;
1670 			break;
1671 		}
1672 		limit -= r->size;
1673 	}
1674 
1675 	return max_addr;
1676 }
1677 
memblock_enforce_memory_limit(phys_addr_t limit)1678 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1679 {
1680 	phys_addr_t max_addr;
1681 
1682 	if (!limit)
1683 		return;
1684 
1685 	max_addr = __find_max_addr(limit);
1686 
1687 	/* @limit exceeds the total size of the memory, do nothing */
1688 	if (max_addr == PHYS_ADDR_MAX)
1689 		return;
1690 
1691 	/* truncate both memory and reserved regions */
1692 	memblock_remove_range(&memblock.memory, max_addr,
1693 			      PHYS_ADDR_MAX);
1694 	memblock_remove_range(&memblock.reserved, max_addr,
1695 			      PHYS_ADDR_MAX);
1696 }
1697 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1698 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1699 {
1700 	int start_rgn, end_rgn;
1701 	int i, ret;
1702 
1703 	if (!size)
1704 		return;
1705 
1706 	if (!memblock_memory->total_size) {
1707 		pr_warn("%s: No memory registered yet\n", __func__);
1708 		return;
1709 	}
1710 
1711 	ret = memblock_isolate_range(&memblock.memory, base, size,
1712 						&start_rgn, &end_rgn);
1713 	if (ret)
1714 		return;
1715 
1716 	/* remove all the MAP regions */
1717 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1718 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1719 			memblock_remove_region(&memblock.memory, i);
1720 
1721 	for (i = start_rgn - 1; i >= 0; i--)
1722 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1723 			memblock_remove_region(&memblock.memory, i);
1724 
1725 	/* truncate the reserved regions */
1726 	memblock_remove_range(&memblock.reserved, 0, base);
1727 	memblock_remove_range(&memblock.reserved,
1728 			base + size, PHYS_ADDR_MAX);
1729 }
1730 
memblock_mem_limit_remove_map(phys_addr_t limit)1731 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1732 {
1733 	phys_addr_t max_addr;
1734 
1735 	if (!limit)
1736 		return;
1737 
1738 	max_addr = __find_max_addr(limit);
1739 
1740 	/* @limit exceeds the total size of the memory, do nothing */
1741 	if (max_addr == PHYS_ADDR_MAX)
1742 		return;
1743 
1744 	memblock_cap_memory_range(0, max_addr);
1745 }
1746 
memblock_search(struct memblock_type * type,phys_addr_t addr)1747 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1748 {
1749 	unsigned int left = 0, right = type->cnt;
1750 
1751 	do {
1752 		unsigned int mid = (right + left) / 2;
1753 
1754 		if (addr < type->regions[mid].base)
1755 			right = mid;
1756 		else if (addr >= (type->regions[mid].base +
1757 				  type->regions[mid].size))
1758 			left = mid + 1;
1759 		else
1760 			return mid;
1761 	} while (left < right);
1762 	return -1;
1763 }
1764 
memblock_is_reserved(phys_addr_t addr)1765 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1766 {
1767 	return memblock_search(&memblock.reserved, addr) != -1;
1768 }
1769 
memblock_is_memory(phys_addr_t addr)1770 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1771 {
1772 	return memblock_search(&memblock.memory, addr) != -1;
1773 }
1774 
memblock_is_map_memory(phys_addr_t addr)1775 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1776 {
1777 	int i = memblock_search(&memblock.memory, addr);
1778 
1779 	if (i == -1)
1780 		return false;
1781 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1782 }
1783 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1784 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1785 			 unsigned long *start_pfn, unsigned long *end_pfn)
1786 {
1787 	struct memblock_type *type = &memblock.memory;
1788 	int mid = memblock_search(type, PFN_PHYS(pfn));
1789 
1790 	if (mid == -1)
1791 		return -1;
1792 
1793 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1794 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1795 
1796 	return memblock_get_region_node(&type->regions[mid]);
1797 }
1798 
1799 /**
1800  * memblock_is_region_memory - check if a region is a subset of memory
1801  * @base: base of region to check
1802  * @size: size of region to check
1803  *
1804  * Check if the region [@base, @base + @size) is a subset of a memory block.
1805  *
1806  * Return:
1807  * 0 if false, non-zero if true
1808  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1809 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1810 {
1811 	int idx = memblock_search(&memblock.memory, base);
1812 	phys_addr_t end = base + memblock_cap_size(base, &size);
1813 
1814 	if (idx == -1)
1815 		return false;
1816 	return (memblock.memory.regions[idx].base +
1817 		 memblock.memory.regions[idx].size) >= end;
1818 }
1819 
1820 /**
1821  * memblock_is_region_reserved - check if a region intersects reserved memory
1822  * @base: base of region to check
1823  * @size: size of region to check
1824  *
1825  * Check if the region [@base, @base + @size) intersects a reserved
1826  * memory block.
1827  *
1828  * Return:
1829  * True if they intersect, false if not.
1830  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1831 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1832 {
1833 	return memblock_overlaps_region(&memblock.reserved, base, size);
1834 }
1835 
memblock_trim_memory(phys_addr_t align)1836 void __init_memblock memblock_trim_memory(phys_addr_t align)
1837 {
1838 	phys_addr_t start, end, orig_start, orig_end;
1839 	struct memblock_region *r;
1840 
1841 	for_each_mem_region(r) {
1842 		orig_start = r->base;
1843 		orig_end = r->base + r->size;
1844 		start = round_up(orig_start, align);
1845 		end = round_down(orig_end, align);
1846 
1847 		if (start == orig_start && end == orig_end)
1848 			continue;
1849 
1850 		if (start < end) {
1851 			r->base = start;
1852 			r->size = end - start;
1853 		} else {
1854 			memblock_remove_region(&memblock.memory,
1855 					       r - memblock.memory.regions);
1856 			r--;
1857 		}
1858 	}
1859 }
1860 
memblock_set_current_limit(phys_addr_t limit)1861 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1862 {
1863 	memblock.current_limit = limit;
1864 }
1865 
memblock_get_current_limit(void)1866 phys_addr_t __init_memblock memblock_get_current_limit(void)
1867 {
1868 	return memblock.current_limit;
1869 }
1870 
memblock_dump(struct memblock_type * type)1871 static void __init_memblock memblock_dump(struct memblock_type *type)
1872 {
1873 	phys_addr_t base, end, size;
1874 	enum memblock_flags flags;
1875 	int idx;
1876 	struct memblock_region *rgn;
1877 
1878 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1879 
1880 	for_each_memblock_type(idx, type, rgn) {
1881 		char nid_buf[32] = "";
1882 
1883 		base = rgn->base;
1884 		size = rgn->size;
1885 		end = base + size - 1;
1886 		flags = rgn->flags;
1887 #ifdef CONFIG_NUMA
1888 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1889 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1890 				 memblock_get_region_node(rgn));
1891 #endif
1892 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1893 			type->name, idx, &base, &end, &size, nid_buf, flags);
1894 	}
1895 }
1896 
__memblock_dump_all(void)1897 static void __init_memblock __memblock_dump_all(void)
1898 {
1899 	pr_info("MEMBLOCK configuration:\n");
1900 	pr_info(" memory size = %pa reserved size = %pa\n",
1901 		&memblock.memory.total_size,
1902 		&memblock.reserved.total_size);
1903 
1904 	memblock_dump(&memblock.memory);
1905 	memblock_dump(&memblock.reserved);
1906 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1907 	memblock_dump(&physmem);
1908 #endif
1909 }
1910 
memblock_dump_all(void)1911 void __init_memblock memblock_dump_all(void)
1912 {
1913 	if (memblock_debug)
1914 		__memblock_dump_all();
1915 }
1916 
memblock_allow_resize(void)1917 void __init memblock_allow_resize(void)
1918 {
1919 	memblock_can_resize = 1;
1920 }
1921 
early_memblock(char * p)1922 static int __init early_memblock(char *p)
1923 {
1924 	if (p && strstr(p, "debug"))
1925 		memblock_debug = 1;
1926 	return 0;
1927 }
1928 early_param("memblock", early_memblock);
1929 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1930 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1931 {
1932 	struct page *start_pg, *end_pg;
1933 	phys_addr_t pg, pgend;
1934 
1935 	/*
1936 	 * Convert start_pfn/end_pfn to a struct page pointer.
1937 	 */
1938 	start_pg = pfn_to_page(start_pfn - 1) + 1;
1939 	end_pg = pfn_to_page(end_pfn - 1) + 1;
1940 
1941 	/*
1942 	 * Convert to physical addresses, and round start upwards and end
1943 	 * downwards.
1944 	 */
1945 	pg = PAGE_ALIGN(__pa(start_pg));
1946 	pgend = __pa(end_pg) & PAGE_MASK;
1947 
1948 	/*
1949 	 * If there are free pages between these, free the section of the
1950 	 * memmap array.
1951 	 */
1952 	if (pg < pgend)
1953 		memblock_phys_free(pg, pgend - pg);
1954 }
1955 
1956 /*
1957  * The mem_map array can get very big.  Free the unused area of the memory map.
1958  */
free_unused_memmap(void)1959 static void __init free_unused_memmap(void)
1960 {
1961 	unsigned long start, end, prev_end = 0;
1962 	int i;
1963 
1964 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1965 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1966 		return;
1967 
1968 	/*
1969 	 * This relies on each bank being in address order.
1970 	 * The banks are sorted previously in bootmem_init().
1971 	 */
1972 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1973 #ifdef CONFIG_SPARSEMEM
1974 		/*
1975 		 * Take care not to free memmap entries that don't exist
1976 		 * due to SPARSEMEM sections which aren't present.
1977 		 */
1978 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1979 #endif
1980 		/*
1981 		 * Align down here since many operations in VM subsystem
1982 		 * presume that there are no holes in the memory map inside
1983 		 * a pageblock
1984 		 */
1985 		start = round_down(start, pageblock_nr_pages);
1986 
1987 		/*
1988 		 * If we had a previous bank, and there is a space
1989 		 * between the current bank and the previous, free it.
1990 		 */
1991 		if (prev_end && prev_end < start)
1992 			free_memmap(prev_end, start);
1993 
1994 		/*
1995 		 * Align up here since many operations in VM subsystem
1996 		 * presume that there are no holes in the memory map inside
1997 		 * a pageblock
1998 		 */
1999 		prev_end = ALIGN(end, pageblock_nr_pages);
2000 	}
2001 
2002 #ifdef CONFIG_SPARSEMEM
2003 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2004 		prev_end = ALIGN(end, pageblock_nr_pages);
2005 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2006 	}
2007 #endif
2008 }
2009 
__free_pages_memory(unsigned long start,unsigned long end)2010 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2011 {
2012 	int order;
2013 
2014 	while (start < end) {
2015 		order = min(MAX_ORDER - 1UL, __ffs(start));
2016 
2017 		while (start + (1UL << order) > end)
2018 			order--;
2019 
2020 		memblock_free_pages(pfn_to_page(start), start, order);
2021 
2022 		start += (1UL << order);
2023 	}
2024 }
2025 
__free_memory_core(phys_addr_t start,phys_addr_t end)2026 static unsigned long __init __free_memory_core(phys_addr_t start,
2027 				 phys_addr_t end)
2028 {
2029 	unsigned long start_pfn = PFN_UP(start);
2030 	unsigned long end_pfn = min_t(unsigned long,
2031 				      PFN_DOWN(end), max_low_pfn);
2032 
2033 	if (start_pfn >= end_pfn)
2034 		return 0;
2035 
2036 	__free_pages_memory(start_pfn, end_pfn);
2037 
2038 	return end_pfn - start_pfn;
2039 }
2040 
memmap_init_reserved_pages(void)2041 static void __init memmap_init_reserved_pages(void)
2042 {
2043 	struct memblock_region *region;
2044 	phys_addr_t start, end;
2045 	u64 i;
2046 
2047 	/* initialize struct pages for the reserved regions */
2048 	for_each_reserved_mem_range(i, &start, &end)
2049 		reserve_bootmem_region(start, end);
2050 
2051 	/* and also treat struct pages for the NOMAP regions as PageReserved */
2052 	for_each_mem_region(region) {
2053 		if (memblock_is_nomap(region)) {
2054 			start = region->base;
2055 			end = start + region->size;
2056 			reserve_bootmem_region(start, end);
2057 		}
2058 	}
2059 }
2060 
free_low_memory_core_early(void)2061 static unsigned long __init free_low_memory_core_early(void)
2062 {
2063 	unsigned long count = 0;
2064 	phys_addr_t start, end;
2065 	u64 i;
2066 
2067 	memblock_clear_hotplug(0, -1);
2068 
2069 	memmap_init_reserved_pages();
2070 
2071 	/*
2072 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2073 	 *  because in some case like Node0 doesn't have RAM installed
2074 	 *  low ram will be on Node1
2075 	 */
2076 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2077 				NULL)
2078 		count += __free_memory_core(start, end);
2079 
2080 	return count;
2081 }
2082 
2083 static int reset_managed_pages_done __initdata;
2084 
reset_node_managed_pages(pg_data_t * pgdat)2085 void reset_node_managed_pages(pg_data_t *pgdat)
2086 {
2087 	struct zone *z;
2088 
2089 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2090 		atomic_long_set(&z->managed_pages, 0);
2091 }
2092 
reset_all_zones_managed_pages(void)2093 void __init reset_all_zones_managed_pages(void)
2094 {
2095 	struct pglist_data *pgdat;
2096 
2097 	if (reset_managed_pages_done)
2098 		return;
2099 
2100 	for_each_online_pgdat(pgdat)
2101 		reset_node_managed_pages(pgdat);
2102 
2103 	reset_managed_pages_done = 1;
2104 }
2105 
2106 /**
2107  * memblock_free_all - release free pages to the buddy allocator
2108  */
memblock_free_all(void)2109 void __init memblock_free_all(void)
2110 {
2111 	unsigned long pages;
2112 
2113 	free_unused_memmap();
2114 	reset_all_zones_managed_pages();
2115 
2116 	pages = free_low_memory_core_early();
2117 	totalram_pages_add(pages);
2118 }
2119 
2120 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2121 
memblock_debug_show(struct seq_file * m,void * private)2122 static int memblock_debug_show(struct seq_file *m, void *private)
2123 {
2124 	struct memblock_type *type = m->private;
2125 	struct memblock_region *reg;
2126 	int i;
2127 	phys_addr_t end;
2128 
2129 	for (i = 0; i < type->cnt; i++) {
2130 		reg = &type->regions[i];
2131 		end = reg->base + reg->size - 1;
2132 
2133 		seq_printf(m, "%4d: ", i);
2134 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2135 	}
2136 	return 0;
2137 }
2138 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2139 
memblock_init_debugfs(void)2140 static int __init memblock_init_debugfs(void)
2141 {
2142 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2143 
2144 	debugfs_create_file("memory", 0444, root,
2145 			    &memblock.memory, &memblock_debug_fops);
2146 	debugfs_create_file("reserved", 0444, root,
2147 			    &memblock.reserved, &memblock_debug_fops);
2148 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2149 	debugfs_create_file("physmem", 0444, root, &physmem,
2150 			    &memblock_debug_fops);
2151 #endif
2152 
2153 	return 0;
2154 }
2155 __initcall(memblock_init_debugfs);
2156 
2157 #endif /* CONFIG_DEBUG_FS */
2158