1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22
23 extern struct workqueue_struct *gfs2_control_wq;
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47 {
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52 }
53
54 /**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
gfs2_update_reply_times(struct gfs2_glock * gl)71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72 {
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87 }
88
89 /**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
gfs2_update_request_times(struct gfs2_glock * gl)98 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99 {
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113 }
114
gdlm_ast(void * arg)115 static void gdlm_ast(void *arg)
116 {
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
120 gfs2_update_reply_times(gl);
121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
123 if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID)
124 memset(gl->gl_lvb, 0, GDLM_LVB_SIZE);
125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
128 gfs2_glock_free(gl);
129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
134 case -EDEADLK: /* Deadlock detected */
135 goto out;
136 case -ETIMEDOUT: /* Canceled due to timeout */
137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
145 ret = gl->gl_req;
146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
147 if (gl->gl_req == LM_ST_SHARED)
148 ret = LM_ST_DEFERRED;
149 else if (gl->gl_req == LM_ST_DEFERRED)
150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158 out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162 }
163
gdlm_bast(void * arg,int mode)164 static void gdlm_bast(void *arg, int mode)
165 {
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182 }
183
184 /* convert gfs lock-state to dlm lock-mode */
185
make_mode(const unsigned int lmstate)186 static int make_mode(const unsigned int lmstate)
187 {
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201 }
202
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
204 const int req)
205 {
206 u32 lkf = DLM_LKF_VALBLK;
207 u32 lkid = gl->gl_lksb.sb_lkid;
208
209 if (gfs_flags & LM_FLAG_TRY)
210 lkf |= DLM_LKF_NOQUEUE;
211
212 if (gfs_flags & LM_FLAG_TRY_1CB) {
213 lkf |= DLM_LKF_NOQUEUE;
214 lkf |= DLM_LKF_NOQUEUEBAST;
215 }
216
217 if (gfs_flags & LM_FLAG_PRIORITY) {
218 lkf |= DLM_LKF_NOORDER;
219 lkf |= DLM_LKF_HEADQUE;
220 }
221
222 if (gfs_flags & LM_FLAG_ANY) {
223 if (req == DLM_LOCK_PR)
224 lkf |= DLM_LKF_ALTCW;
225 else if (req == DLM_LOCK_CW)
226 lkf |= DLM_LKF_ALTPR;
227 else
228 BUG();
229 }
230
231 if (lkid != 0) {
232 lkf |= DLM_LKF_CONVERT;
233 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
234 lkf |= DLM_LKF_QUECVT;
235 }
236
237 return lkf;
238 }
239
gfs2_reverse_hex(char * c,u64 value)240 static void gfs2_reverse_hex(char *c, u64 value)
241 {
242 while (value) {
243 *c-- = hex_asc[value & 0x0f];
244 value >>= 4;
245 }
246 }
247
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)248 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
249 unsigned int flags)
250 {
251 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
252 int req;
253 u32 lkf;
254 char strname[GDLM_STRNAME_BYTES] = "";
255
256 req = make_mode(req_state);
257 lkf = make_flags(gl, flags, req);
258 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
259 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
260 if (gl->gl_lksb.sb_lkid) {
261 gfs2_update_request_times(gl);
262 } else {
263 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
264 strname[GDLM_STRNAME_BYTES - 1] = '\0';
265 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
266 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
267 gl->gl_dstamp = ktime_get_real();
268 }
269 /*
270 * Submit the actual lock request.
271 */
272
273 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
274 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
275 }
276
gdlm_put_lock(struct gfs2_glock * gl)277 static void gdlm_put_lock(struct gfs2_glock *gl)
278 {
279 struct gfs2_sbd *sdp = gl->gl_sbd;
280 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
281 int error;
282
283 if (gl->gl_lksb.sb_lkid == 0) {
284 gfs2_glock_free(gl);
285 return;
286 }
287
288 clear_bit(GLF_BLOCKING, &gl->gl_flags);
289 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
290 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
291 gfs2_update_request_times(gl);
292 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
293 NULL, gl);
294 if (error) {
295 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
296 gl->gl_name.ln_type,
297 (unsigned long long)gl->gl_name.ln_number, error);
298 return;
299 }
300 }
301
gdlm_cancel(struct gfs2_glock * gl)302 static void gdlm_cancel(struct gfs2_glock *gl)
303 {
304 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
305 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
306 }
307
308 /*
309 * dlm/gfs2 recovery coordination using dlm_recover callbacks
310 *
311 * 1. dlm_controld sees lockspace members change
312 * 2. dlm_controld blocks dlm-kernel locking activity
313 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
314 * 4. dlm_controld starts and finishes its own user level recovery
315 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
316 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
317 * 7. dlm_recoverd does its own lock recovery
318 * 8. dlm_recoverd unblocks dlm-kernel locking activity
319 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
320 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
321 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
322 * 12. gfs2_recover dequeues and recovers journals of failed nodes
323 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
324 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
325 * 15. gfs2_control unblocks normal locking when all journals are recovered
326 *
327 * - failures during recovery
328 *
329 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
330 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
331 * recovering for a prior failure. gfs2_control needs a way to detect
332 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
333 * the recover_block and recover_start values.
334 *
335 * recover_done() provides a new lockspace generation number each time it
336 * is called (step 9). This generation number is saved as recover_start.
337 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
338 * recover_block = recover_start. So, while recover_block is equal to
339 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
340 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
341 *
342 * - more specific gfs2 steps in sequence above
343 *
344 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
345 * 6. recover_slot records any failed jids (maybe none)
346 * 9. recover_done sets recover_start = new generation number
347 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
348 * 12. gfs2_recover does journal recoveries for failed jids identified above
349 * 14. gfs2_control clears control_lock lvb bits for recovered jids
350 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
351 * again) then do nothing, otherwise if recover_start > recover_block
352 * then clear BLOCK_LOCKS.
353 *
354 * - parallel recovery steps across all nodes
355 *
356 * All nodes attempt to update the control_lock lvb with the new generation
357 * number and jid bits, but only the first to get the control_lock EX will
358 * do so; others will see that it's already done (lvb already contains new
359 * generation number.)
360 *
361 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
362 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
363 * . One node gets control_lock first and writes the lvb, others see it's done
364 * . All nodes attempt to recover jids for which they see control_lock bits set
365 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
366 * . All nodes will eventually see all lvb bits clear and unblock locks
367 *
368 * - is there a problem with clearing an lvb bit that should be set
369 * and missing a journal recovery?
370 *
371 * 1. jid fails
372 * 2. lvb bit set for step 1
373 * 3. jid recovered for step 1
374 * 4. jid taken again (new mount)
375 * 5. jid fails (for step 4)
376 * 6. lvb bit set for step 5 (will already be set)
377 * 7. lvb bit cleared for step 3
378 *
379 * This is not a problem because the failure in step 5 does not
380 * require recovery, because the mount in step 4 could not have
381 * progressed far enough to unblock locks and access the fs. The
382 * control_mount() function waits for all recoveries to be complete
383 * for the latest lockspace generation before ever unblocking locks
384 * and returning. The mount in step 4 waits until the recovery in
385 * step 1 is done.
386 *
387 * - special case of first mounter: first node to mount the fs
388 *
389 * The first node to mount a gfs2 fs needs to check all the journals
390 * and recover any that need recovery before other nodes are allowed
391 * to mount the fs. (Others may begin mounting, but they must wait
392 * for the first mounter to be done before taking locks on the fs
393 * or accessing the fs.) This has two parts:
394 *
395 * 1. The mounted_lock tells a node it's the first to mount the fs.
396 * Each node holds the mounted_lock in PR while it's mounted.
397 * Each node tries to acquire the mounted_lock in EX when it mounts.
398 * If a node is granted the mounted_lock EX it means there are no
399 * other mounted nodes (no PR locks exist), and it is the first mounter.
400 * The mounted_lock is demoted to PR when first recovery is done, so
401 * others will fail to get an EX lock, but will get a PR lock.
402 *
403 * 2. The control_lock blocks others in control_mount() while the first
404 * mounter is doing first mount recovery of all journals.
405 * A mounting node needs to acquire control_lock in EX mode before
406 * it can proceed. The first mounter holds control_lock in EX while doing
407 * the first mount recovery, blocking mounts from other nodes, then demotes
408 * control_lock to NL when it's done (others_may_mount/first_done),
409 * allowing other nodes to continue mounting.
410 *
411 * first mounter:
412 * control_lock EX/NOQUEUE success
413 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
414 * set first=1
415 * do first mounter recovery
416 * mounted_lock EX->PR
417 * control_lock EX->NL, write lvb generation
418 *
419 * other mounter:
420 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
421 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
422 * mounted_lock PR/NOQUEUE success
423 * read lvb generation
424 * control_lock EX->NL
425 * set first=0
426 *
427 * - mount during recovery
428 *
429 * If a node mounts while others are doing recovery (not first mounter),
430 * the mounting node will get its initial recover_done() callback without
431 * having seen any previous failures/callbacks.
432 *
433 * It must wait for all recoveries preceding its mount to be finished
434 * before it unblocks locks. It does this by repeating the "other mounter"
435 * steps above until the lvb generation number is >= its mount generation
436 * number (from initial recover_done) and all lvb bits are clear.
437 *
438 * - control_lock lvb format
439 *
440 * 4 bytes generation number: the latest dlm lockspace generation number
441 * from recover_done callback. Indicates the jid bitmap has been updated
442 * to reflect all slot failures through that generation.
443 * 4 bytes unused.
444 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
445 * that jid N needs recovery.
446 */
447
448 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
449
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)450 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
451 char *lvb_bits)
452 {
453 uint32_t gen;
454 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
455 memcpy(&gen, lvb_bits, sizeof(uint32_t));
456 *lvb_gen = le32_to_cpu(gen);
457 }
458
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)459 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
460 char *lvb_bits)
461 {
462 uint32_t gen;
463 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
464 gen = cpu_to_le32(lvb_gen);
465 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
466 }
467
all_jid_bits_clear(char * lvb)468 static int all_jid_bits_clear(char *lvb)
469 {
470 int i;
471 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
472 if (lvb[i])
473 return 0;
474 }
475 return 1;
476 }
477
sync_wait_cb(void * arg)478 static void sync_wait_cb(void *arg)
479 {
480 struct lm_lockstruct *ls = arg;
481 complete(&ls->ls_sync_wait);
482 }
483
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)484 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
485 {
486 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
487 int error;
488
489 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
490 if (error) {
491 fs_err(sdp, "%s lkid %x error %d\n",
492 name, lksb->sb_lkid, error);
493 return error;
494 }
495
496 wait_for_completion(&ls->ls_sync_wait);
497
498 if (lksb->sb_status != -DLM_EUNLOCK) {
499 fs_err(sdp, "%s lkid %x status %d\n",
500 name, lksb->sb_lkid, lksb->sb_status);
501 return -1;
502 }
503 return 0;
504 }
505
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)506 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
507 unsigned int num, struct dlm_lksb *lksb, char *name)
508 {
509 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
510 char strname[GDLM_STRNAME_BYTES];
511 int error, status;
512
513 memset(strname, 0, GDLM_STRNAME_BYTES);
514 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
515
516 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
517 strname, GDLM_STRNAME_BYTES - 1,
518 0, sync_wait_cb, ls, NULL);
519 if (error) {
520 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
521 name, lksb->sb_lkid, flags, mode, error);
522 return error;
523 }
524
525 wait_for_completion(&ls->ls_sync_wait);
526
527 status = lksb->sb_status;
528
529 if (status && status != -EAGAIN) {
530 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
531 name, lksb->sb_lkid, flags, mode, status);
532 }
533
534 return status;
535 }
536
mounted_unlock(struct gfs2_sbd * sdp)537 static int mounted_unlock(struct gfs2_sbd *sdp)
538 {
539 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
540 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
541 }
542
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)543 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
544 {
545 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
546 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
547 &ls->ls_mounted_lksb, "mounted_lock");
548 }
549
control_unlock(struct gfs2_sbd * sdp)550 static int control_unlock(struct gfs2_sbd *sdp)
551 {
552 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
554 }
555
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)556 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
557 {
558 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
559 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
560 &ls->ls_control_lksb, "control_lock");
561 }
562
gfs2_control_func(struct work_struct * work)563 static void gfs2_control_func(struct work_struct *work)
564 {
565 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
566 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
567 char lvb_bits[GDLM_LVB_SIZE];
568 uint32_t block_gen, start_gen, lvb_gen, flags;
569 int recover_set = 0;
570 int write_lvb = 0;
571 int recover_size;
572 int i, error;
573
574 spin_lock(&ls->ls_recover_spin);
575 /*
576 * No MOUNT_DONE means we're still mounting; control_mount()
577 * will set this flag, after which this thread will take over
578 * all further clearing of BLOCK_LOCKS.
579 *
580 * FIRST_MOUNT means this node is doing first mounter recovery,
581 * for which recovery control is handled by
582 * control_mount()/control_first_done(), not this thread.
583 */
584 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
585 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
586 spin_unlock(&ls->ls_recover_spin);
587 return;
588 }
589 block_gen = ls->ls_recover_block;
590 start_gen = ls->ls_recover_start;
591 spin_unlock(&ls->ls_recover_spin);
592
593 /*
594 * Equal block_gen and start_gen implies we are between
595 * recover_prep and recover_done callbacks, which means
596 * dlm recovery is in progress and dlm locking is blocked.
597 * There's no point trying to do any work until recover_done.
598 */
599
600 if (block_gen == start_gen)
601 return;
602
603 /*
604 * Propagate recover_submit[] and recover_result[] to lvb:
605 * dlm_recoverd adds to recover_submit[] jids needing recovery
606 * gfs2_recover adds to recover_result[] journal recovery results
607 *
608 * set lvb bit for jids in recover_submit[] if the lvb has not
609 * yet been updated for the generation of the failure
610 *
611 * clear lvb bit for jids in recover_result[] if the result of
612 * the journal recovery is SUCCESS
613 */
614
615 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
616 if (error) {
617 fs_err(sdp, "control lock EX error %d\n", error);
618 return;
619 }
620
621 control_lvb_read(ls, &lvb_gen, lvb_bits);
622
623 spin_lock(&ls->ls_recover_spin);
624 if (block_gen != ls->ls_recover_block ||
625 start_gen != ls->ls_recover_start) {
626 fs_info(sdp, "recover generation %u block1 %u %u\n",
627 start_gen, block_gen, ls->ls_recover_block);
628 spin_unlock(&ls->ls_recover_spin);
629 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
630 return;
631 }
632
633 recover_size = ls->ls_recover_size;
634
635 if (lvb_gen <= start_gen) {
636 /*
637 * Clear lvb bits for jids we've successfully recovered.
638 * Because all nodes attempt to recover failed journals,
639 * a journal can be recovered multiple times successfully
640 * in succession. Only the first will really do recovery,
641 * the others find it clean, but still report a successful
642 * recovery. So, another node may have already recovered
643 * the jid and cleared the lvb bit for it.
644 */
645 for (i = 0; i < recover_size; i++) {
646 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
647 continue;
648
649 ls->ls_recover_result[i] = 0;
650
651 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
652 continue;
653
654 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
655 write_lvb = 1;
656 }
657 }
658
659 if (lvb_gen == start_gen) {
660 /*
661 * Failed slots before start_gen are already set in lvb.
662 */
663 for (i = 0; i < recover_size; i++) {
664 if (!ls->ls_recover_submit[i])
665 continue;
666 if (ls->ls_recover_submit[i] < lvb_gen)
667 ls->ls_recover_submit[i] = 0;
668 }
669 } else if (lvb_gen < start_gen) {
670 /*
671 * Failed slots before start_gen are not yet set in lvb.
672 */
673 for (i = 0; i < recover_size; i++) {
674 if (!ls->ls_recover_submit[i])
675 continue;
676 if (ls->ls_recover_submit[i] < start_gen) {
677 ls->ls_recover_submit[i] = 0;
678 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
679 }
680 }
681 /* even if there are no bits to set, we need to write the
682 latest generation to the lvb */
683 write_lvb = 1;
684 } else {
685 /*
686 * we should be getting a recover_done() for lvb_gen soon
687 */
688 }
689 spin_unlock(&ls->ls_recover_spin);
690
691 if (write_lvb) {
692 control_lvb_write(ls, start_gen, lvb_bits);
693 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
694 } else {
695 flags = DLM_LKF_CONVERT;
696 }
697
698 error = control_lock(sdp, DLM_LOCK_NL, flags);
699 if (error) {
700 fs_err(sdp, "control lock NL error %d\n", error);
701 return;
702 }
703
704 /*
705 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
706 * and clear a jid bit in the lvb if the recovery is a success.
707 * Eventually all journals will be recovered, all jid bits will
708 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
709 */
710
711 for (i = 0; i < recover_size; i++) {
712 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
713 fs_info(sdp, "recover generation %u jid %d\n",
714 start_gen, i);
715 gfs2_recover_set(sdp, i);
716 recover_set++;
717 }
718 }
719 if (recover_set)
720 return;
721
722 /*
723 * No more jid bits set in lvb, all recovery is done, unblock locks
724 * (unless a new recover_prep callback has occured blocking locks
725 * again while working above)
726 */
727
728 spin_lock(&ls->ls_recover_spin);
729 if (ls->ls_recover_block == block_gen &&
730 ls->ls_recover_start == start_gen) {
731 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
732 spin_unlock(&ls->ls_recover_spin);
733 fs_info(sdp, "recover generation %u done\n", start_gen);
734 gfs2_glock_thaw(sdp);
735 } else {
736 fs_info(sdp, "recover generation %u block2 %u %u\n",
737 start_gen, block_gen, ls->ls_recover_block);
738 spin_unlock(&ls->ls_recover_spin);
739 }
740 }
741
control_mount(struct gfs2_sbd * sdp)742 static int control_mount(struct gfs2_sbd *sdp)
743 {
744 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
745 char lvb_bits[GDLM_LVB_SIZE];
746 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
747 int mounted_mode;
748 int retries = 0;
749 int error;
750
751 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
752 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
753 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
754 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
755 init_completion(&ls->ls_sync_wait);
756
757 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
758
759 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
760 if (error) {
761 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
762 return error;
763 }
764
765 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
766 if (error) {
767 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
768 control_unlock(sdp);
769 return error;
770 }
771 mounted_mode = DLM_LOCK_NL;
772
773 restart:
774 if (retries++ && signal_pending(current)) {
775 error = -EINTR;
776 goto fail;
777 }
778
779 /*
780 * We always start with both locks in NL. control_lock is
781 * demoted to NL below so we don't need to do it here.
782 */
783
784 if (mounted_mode != DLM_LOCK_NL) {
785 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
786 if (error)
787 goto fail;
788 mounted_mode = DLM_LOCK_NL;
789 }
790
791 /*
792 * Other nodes need to do some work in dlm recovery and gfs2_control
793 * before the recover_done and control_lock will be ready for us below.
794 * A delay here is not required but often avoids having to retry.
795 */
796
797 msleep_interruptible(500);
798
799 /*
800 * Acquire control_lock in EX and mounted_lock in either EX or PR.
801 * control_lock lvb keeps track of any pending journal recoveries.
802 * mounted_lock indicates if any other nodes have the fs mounted.
803 */
804
805 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
806 if (error == -EAGAIN) {
807 goto restart;
808 } else if (error) {
809 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
810 goto fail;
811 }
812
813 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
814 if (!error) {
815 mounted_mode = DLM_LOCK_EX;
816 goto locks_done;
817 } else if (error != -EAGAIN) {
818 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
819 goto fail;
820 }
821
822 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
823 if (!error) {
824 mounted_mode = DLM_LOCK_PR;
825 goto locks_done;
826 } else {
827 /* not even -EAGAIN should happen here */
828 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
829 goto fail;
830 }
831
832 locks_done:
833 /*
834 * If we got both locks above in EX, then we're the first mounter.
835 * If not, then we need to wait for the control_lock lvb to be
836 * updated by other mounted nodes to reflect our mount generation.
837 *
838 * In simple first mounter cases, first mounter will see zero lvb_gen,
839 * but in cases where all existing nodes leave/fail before mounting
840 * nodes finish control_mount, then all nodes will be mounting and
841 * lvb_gen will be non-zero.
842 */
843
844 control_lvb_read(ls, &lvb_gen, lvb_bits);
845
846 if (lvb_gen == 0xFFFFFFFF) {
847 /* special value to force mount attempts to fail */
848 fs_err(sdp, "control_mount control_lock disabled\n");
849 error = -EINVAL;
850 goto fail;
851 }
852
853 if (mounted_mode == DLM_LOCK_EX) {
854 /* first mounter, keep both EX while doing first recovery */
855 spin_lock(&ls->ls_recover_spin);
856 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
857 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
858 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
859 spin_unlock(&ls->ls_recover_spin);
860 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
861 return 0;
862 }
863
864 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
865 if (error)
866 goto fail;
867
868 /*
869 * We are not first mounter, now we need to wait for the control_lock
870 * lvb generation to be >= the generation from our first recover_done
871 * and all lvb bits to be clear (no pending journal recoveries.)
872 */
873
874 if (!all_jid_bits_clear(lvb_bits)) {
875 /* journals need recovery, wait until all are clear */
876 fs_info(sdp, "control_mount wait for journal recovery\n");
877 goto restart;
878 }
879
880 spin_lock(&ls->ls_recover_spin);
881 block_gen = ls->ls_recover_block;
882 start_gen = ls->ls_recover_start;
883 mount_gen = ls->ls_recover_mount;
884
885 if (lvb_gen < mount_gen) {
886 /* wait for mounted nodes to update control_lock lvb to our
887 generation, which might include new recovery bits set */
888 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
889 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
890 lvb_gen, ls->ls_recover_flags);
891 spin_unlock(&ls->ls_recover_spin);
892 goto restart;
893 }
894
895 if (lvb_gen != start_gen) {
896 /* wait for mounted nodes to update control_lock lvb to the
897 latest recovery generation */
898 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
899 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
900 lvb_gen, ls->ls_recover_flags);
901 spin_unlock(&ls->ls_recover_spin);
902 goto restart;
903 }
904
905 if (block_gen == start_gen) {
906 /* dlm recovery in progress, wait for it to finish */
907 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
908 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
909 lvb_gen, ls->ls_recover_flags);
910 spin_unlock(&ls->ls_recover_spin);
911 goto restart;
912 }
913
914 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
915 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
916 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
917 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
918 spin_unlock(&ls->ls_recover_spin);
919 return 0;
920
921 fail:
922 mounted_unlock(sdp);
923 control_unlock(sdp);
924 return error;
925 }
926
dlm_recovery_wait(void * word)927 static int dlm_recovery_wait(void *word)
928 {
929 schedule();
930 return 0;
931 }
932
control_first_done(struct gfs2_sbd * sdp)933 static int control_first_done(struct gfs2_sbd *sdp)
934 {
935 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
936 char lvb_bits[GDLM_LVB_SIZE];
937 uint32_t start_gen, block_gen;
938 int error;
939
940 restart:
941 spin_lock(&ls->ls_recover_spin);
942 start_gen = ls->ls_recover_start;
943 block_gen = ls->ls_recover_block;
944
945 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
946 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
947 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
948 /* sanity check, should not happen */
949 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
950 start_gen, block_gen, ls->ls_recover_flags);
951 spin_unlock(&ls->ls_recover_spin);
952 control_unlock(sdp);
953 return -1;
954 }
955
956 if (start_gen == block_gen) {
957 /*
958 * Wait for the end of a dlm recovery cycle to switch from
959 * first mounter recovery. We can ignore any recover_slot
960 * callbacks between the recover_prep and next recover_done
961 * because we are still the first mounter and any failed nodes
962 * have not fully mounted, so they don't need recovery.
963 */
964 spin_unlock(&ls->ls_recover_spin);
965 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
966
967 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
968 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
969 goto restart;
970 }
971
972 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
973 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
974 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
975 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
976 spin_unlock(&ls->ls_recover_spin);
977
978 memset(lvb_bits, 0, sizeof(lvb_bits));
979 control_lvb_write(ls, start_gen, lvb_bits);
980
981 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
982 if (error)
983 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
984
985 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
986 if (error)
987 fs_err(sdp, "control_first_done control NL error %d\n", error);
988
989 return error;
990 }
991
992 /*
993 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
994 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
995 * gfs2 jids start at 0, so jid = slot - 1)
996 */
997
998 #define RECOVER_SIZE_INC 16
999
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1000 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1001 int num_slots)
1002 {
1003 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1004 uint32_t *submit = NULL;
1005 uint32_t *result = NULL;
1006 uint32_t old_size, new_size;
1007 int i, max_jid;
1008
1009 max_jid = 0;
1010 for (i = 0; i < num_slots; i++) {
1011 if (max_jid < slots[i].slot - 1)
1012 max_jid = slots[i].slot - 1;
1013 }
1014
1015 old_size = ls->ls_recover_size;
1016
1017 if (old_size >= max_jid + 1)
1018 return 0;
1019
1020 new_size = old_size + RECOVER_SIZE_INC;
1021
1022 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1023 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1024 if (!submit || !result) {
1025 kfree(submit);
1026 kfree(result);
1027 return -ENOMEM;
1028 }
1029
1030 spin_lock(&ls->ls_recover_spin);
1031 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1032 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1033 kfree(ls->ls_recover_submit);
1034 kfree(ls->ls_recover_result);
1035 ls->ls_recover_submit = submit;
1036 ls->ls_recover_result = result;
1037 ls->ls_recover_size = new_size;
1038 spin_unlock(&ls->ls_recover_spin);
1039 return 0;
1040 }
1041
free_recover_size(struct lm_lockstruct * ls)1042 static void free_recover_size(struct lm_lockstruct *ls)
1043 {
1044 kfree(ls->ls_recover_submit);
1045 kfree(ls->ls_recover_result);
1046 ls->ls_recover_submit = NULL;
1047 ls->ls_recover_result = NULL;
1048 ls->ls_recover_size = 0;
1049 }
1050
1051 /* dlm calls before it does lock recovery */
1052
gdlm_recover_prep(void * arg)1053 static void gdlm_recover_prep(void *arg)
1054 {
1055 struct gfs2_sbd *sdp = arg;
1056 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1057
1058 spin_lock(&ls->ls_recover_spin);
1059 ls->ls_recover_block = ls->ls_recover_start;
1060 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1061
1062 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1063 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1064 spin_unlock(&ls->ls_recover_spin);
1065 return;
1066 }
1067 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1068 spin_unlock(&ls->ls_recover_spin);
1069 }
1070
1071 /* dlm calls after recover_prep has been completed on all lockspace members;
1072 identifies slot/jid of failed member */
1073
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1074 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1075 {
1076 struct gfs2_sbd *sdp = arg;
1077 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1078 int jid = slot->slot - 1;
1079
1080 spin_lock(&ls->ls_recover_spin);
1081 if (ls->ls_recover_size < jid + 1) {
1082 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1083 jid, ls->ls_recover_block, ls->ls_recover_size);
1084 spin_unlock(&ls->ls_recover_spin);
1085 return;
1086 }
1087
1088 if (ls->ls_recover_submit[jid]) {
1089 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1090 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1091 }
1092 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1093 spin_unlock(&ls->ls_recover_spin);
1094 }
1095
1096 /* dlm calls after recover_slot and after it completes lock recovery */
1097
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1098 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1099 int our_slot, uint32_t generation)
1100 {
1101 struct gfs2_sbd *sdp = arg;
1102 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1103
1104 /* ensure the ls jid arrays are large enough */
1105 set_recover_size(sdp, slots, num_slots);
1106
1107 spin_lock(&ls->ls_recover_spin);
1108 ls->ls_recover_start = generation;
1109
1110 if (!ls->ls_recover_mount) {
1111 ls->ls_recover_mount = generation;
1112 ls->ls_jid = our_slot - 1;
1113 }
1114
1115 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1116 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1117
1118 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1119 smp_mb__after_clear_bit();
1120 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1121 spin_unlock(&ls->ls_recover_spin);
1122 }
1123
1124 /* gfs2_recover thread has a journal recovery result */
1125
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1126 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1127 unsigned int result)
1128 {
1129 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1130
1131 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1132 return;
1133
1134 /* don't care about the recovery of own journal during mount */
1135 if (jid == ls->ls_jid)
1136 return;
1137
1138 spin_lock(&ls->ls_recover_spin);
1139 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1140 spin_unlock(&ls->ls_recover_spin);
1141 return;
1142 }
1143 if (ls->ls_recover_size < jid + 1) {
1144 fs_err(sdp, "recovery_result jid %d short size %d",
1145 jid, ls->ls_recover_size);
1146 spin_unlock(&ls->ls_recover_spin);
1147 return;
1148 }
1149
1150 fs_info(sdp, "recover jid %d result %s\n", jid,
1151 result == LM_RD_GAVEUP ? "busy" : "success");
1152
1153 ls->ls_recover_result[jid] = result;
1154
1155 /* GAVEUP means another node is recovering the journal; delay our
1156 next attempt to recover it, to give the other node a chance to
1157 finish before trying again */
1158
1159 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1160 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1161 result == LM_RD_GAVEUP ? HZ : 0);
1162 spin_unlock(&ls->ls_recover_spin);
1163 }
1164
1165 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1166 .recover_prep = gdlm_recover_prep,
1167 .recover_slot = gdlm_recover_slot,
1168 .recover_done = gdlm_recover_done,
1169 };
1170
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1171 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1172 {
1173 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1174 char cluster[GFS2_LOCKNAME_LEN];
1175 const char *fsname;
1176 uint32_t flags;
1177 int error, ops_result;
1178
1179 /*
1180 * initialize everything
1181 */
1182
1183 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1184 spin_lock_init(&ls->ls_recover_spin);
1185 ls->ls_recover_flags = 0;
1186 ls->ls_recover_mount = 0;
1187 ls->ls_recover_start = 0;
1188 ls->ls_recover_block = 0;
1189 ls->ls_recover_size = 0;
1190 ls->ls_recover_submit = NULL;
1191 ls->ls_recover_result = NULL;
1192
1193 error = set_recover_size(sdp, NULL, 0);
1194 if (error)
1195 goto fail;
1196
1197 /*
1198 * prepare dlm_new_lockspace args
1199 */
1200
1201 fsname = strchr(table, ':');
1202 if (!fsname) {
1203 fs_info(sdp, "no fsname found\n");
1204 error = -EINVAL;
1205 goto fail_free;
1206 }
1207 memset(cluster, 0, sizeof(cluster));
1208 memcpy(cluster, table, strlen(table) - strlen(fsname));
1209 fsname++;
1210
1211 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1212 if (ls->ls_nodir)
1213 flags |= DLM_LSFL_NODIR;
1214
1215 /*
1216 * create/join lockspace
1217 */
1218
1219 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1220 &gdlm_lockspace_ops, sdp, &ops_result,
1221 &ls->ls_dlm);
1222 if (error) {
1223 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1224 goto fail_free;
1225 }
1226
1227 if (ops_result < 0) {
1228 /*
1229 * dlm does not support ops callbacks,
1230 * old dlm_controld/gfs_controld are used, try without ops.
1231 */
1232 fs_info(sdp, "dlm lockspace ops not used\n");
1233 free_recover_size(ls);
1234 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1235 return 0;
1236 }
1237
1238 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1239 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1240 error = -EINVAL;
1241 goto fail_release;
1242 }
1243
1244 /*
1245 * control_mount() uses control_lock to determine first mounter,
1246 * and for later mounts, waits for any recoveries to be cleared.
1247 */
1248
1249 error = control_mount(sdp);
1250 if (error) {
1251 fs_err(sdp, "mount control error %d\n", error);
1252 goto fail_release;
1253 }
1254
1255 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1256 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1257 smp_mb__after_clear_bit();
1258 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1259 return 0;
1260
1261 fail_release:
1262 dlm_release_lockspace(ls->ls_dlm, 2);
1263 fail_free:
1264 free_recover_size(ls);
1265 fail:
1266 return error;
1267 }
1268
gdlm_first_done(struct gfs2_sbd * sdp)1269 static void gdlm_first_done(struct gfs2_sbd *sdp)
1270 {
1271 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1272 int error;
1273
1274 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1275 return;
1276
1277 error = control_first_done(sdp);
1278 if (error)
1279 fs_err(sdp, "mount first_done error %d\n", error);
1280 }
1281
gdlm_unmount(struct gfs2_sbd * sdp)1282 static void gdlm_unmount(struct gfs2_sbd *sdp)
1283 {
1284 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1285
1286 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1287 goto release;
1288
1289 /* wait for gfs2_control_wq to be done with this mount */
1290
1291 spin_lock(&ls->ls_recover_spin);
1292 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1293 spin_unlock(&ls->ls_recover_spin);
1294 flush_delayed_work_sync(&sdp->sd_control_work);
1295
1296 /* mounted_lock and control_lock will be purged in dlm recovery */
1297 release:
1298 if (ls->ls_dlm) {
1299 dlm_release_lockspace(ls->ls_dlm, 2);
1300 ls->ls_dlm = NULL;
1301 }
1302
1303 free_recover_size(ls);
1304 }
1305
1306 static const match_table_t dlm_tokens = {
1307 { Opt_jid, "jid=%d"},
1308 { Opt_id, "id=%d"},
1309 { Opt_first, "first=%d"},
1310 { Opt_nodir, "nodir=%d"},
1311 { Opt_err, NULL },
1312 };
1313
1314 const struct lm_lockops gfs2_dlm_ops = {
1315 .lm_proto_name = "lock_dlm",
1316 .lm_mount = gdlm_mount,
1317 .lm_first_done = gdlm_first_done,
1318 .lm_recovery_result = gdlm_recovery_result,
1319 .lm_unmount = gdlm_unmount,
1320 .lm_put_lock = gdlm_put_lock,
1321 .lm_lock = gdlm_lock,
1322 .lm_cancel = gdlm_cancel,
1323 .lm_tokens = &dlm_tokens,
1324 };
1325
1326