1 /* SPDX-License-Identifier: GPL-2.0-only
2 * Copyright (C) 2020 Marvell.
3 */
4 #ifndef __OTX2_CPTLF_H
5 #define __OTX2_CPTLF_H
6
7 #include <linux/soc/marvell/octeontx2/asm.h>
8 #include <mbox.h>
9 #include <rvu.h>
10 #include "otx2_cpt_common.h"
11 #include "otx2_cpt_reqmgr.h"
12
13 /*
14 * CPT instruction and pending queues user requested length in CPT_INST_S msgs
15 */
16 #define OTX2_CPT_USER_REQUESTED_QLEN_MSGS 8200
17
18 /*
19 * CPT instruction queue size passed to HW is in units of 40*CPT_INST_S
20 * messages.
21 */
22 #define OTX2_CPT_SIZE_DIV40 (OTX2_CPT_USER_REQUESTED_QLEN_MSGS/40)
23
24 /*
25 * CPT instruction and pending queues length in CPT_INST_S messages
26 */
27 #define OTX2_CPT_INST_QLEN_MSGS ((OTX2_CPT_SIZE_DIV40 - 1) * 40)
28
29 /*
30 * LDWB is getting incorrectly used when IQB_LDWB = 1 and CPT instruction
31 * queue has less than 320 free entries. So, increase HW instruction queue
32 * size by 320 and give 320 entries less for SW/NIX RX as a workaround.
33 */
34 #define OTX2_CPT_INST_QLEN_EXTRA_BYTES (320 * OTX2_CPT_INST_SIZE)
35 #define OTX2_CPT_EXTRA_SIZE_DIV40 (320/40)
36
37 /* CPT instruction queue length in bytes */
38 #define OTX2_CPT_INST_QLEN_BYTES \
39 ((OTX2_CPT_SIZE_DIV40 * 40 * OTX2_CPT_INST_SIZE) + \
40 OTX2_CPT_INST_QLEN_EXTRA_BYTES)
41
42 /* CPT instruction group queue length in bytes */
43 #define OTX2_CPT_INST_GRP_QLEN_BYTES \
44 ((OTX2_CPT_SIZE_DIV40 + OTX2_CPT_EXTRA_SIZE_DIV40) * 16)
45
46 /* CPT FC length in bytes */
47 #define OTX2_CPT_Q_FC_LEN 128
48
49 /* CPT instruction queue alignment */
50 #define OTX2_CPT_INST_Q_ALIGNMENT 128
51
52 /* Mask which selects all engine groups */
53 #define OTX2_CPT_ALL_ENG_GRPS_MASK 0xFF
54
55 /* Maximum LFs supported in OcteonTX2 for CPT */
56 #define OTX2_CPT_MAX_LFS_NUM 64
57
58 /* Queue priority */
59 #define OTX2_CPT_QUEUE_HI_PRIO 0x1
60 #define OTX2_CPT_QUEUE_LOW_PRIO 0x0
61
62 enum otx2_cptlf_state {
63 OTX2_CPTLF_IN_RESET,
64 OTX2_CPTLF_STARTED,
65 };
66
67 struct otx2_cpt_inst_queue {
68 u8 *vaddr;
69 u8 *real_vaddr;
70 dma_addr_t dma_addr;
71 dma_addr_t real_dma_addr;
72 u32 size;
73 };
74
75 struct otx2_cptlfs_info;
76 struct otx2_cptlf_wqe {
77 struct tasklet_struct work;
78 struct otx2_cptlfs_info *lfs;
79 u8 lf_num;
80 };
81
82 struct otx2_cptlf_info {
83 struct otx2_cptlfs_info *lfs; /* Ptr to cptlfs_info struct */
84 void __iomem *lmtline; /* Address of LMTLINE */
85 void __iomem *ioreg; /* LMTLINE send register */
86 int msix_offset; /* MSI-X interrupts offset */
87 cpumask_var_t affinity_mask; /* IRQs affinity mask */
88 u8 irq_name[OTX2_CPT_LF_MSIX_VECTORS][32];/* Interrupts name */
89 u8 is_irq_reg[OTX2_CPT_LF_MSIX_VECTORS]; /* Is interrupt registered */
90 u8 slot; /* Slot number of this LF */
91
92 struct otx2_cpt_inst_queue iqueue;/* Instruction queue */
93 struct otx2_cpt_pending_queue pqueue; /* Pending queue */
94 struct otx2_cptlf_wqe *wqe; /* Tasklet work info */
95 };
96
97 struct cpt_hw_ops {
98 void (*send_cmd)(union otx2_cpt_inst_s *cptinst, u32 insts_num,
99 struct otx2_cptlf_info *lf);
100 u8 (*cpt_get_compcode)(union otx2_cpt_res_s *result);
101 u8 (*cpt_get_uc_compcode)(union otx2_cpt_res_s *result);
102 };
103
104 struct otx2_cptlfs_info {
105 /* Registers start address of VF/PF LFs are attached to */
106 void __iomem *reg_base;
107 #define LMTLINE_SIZE 128
108 void __iomem *lmt_base;
109 struct pci_dev *pdev; /* Device LFs are attached to */
110 struct otx2_cptlf_info lf[OTX2_CPT_MAX_LFS_NUM];
111 struct otx2_mbox *mbox;
112 struct cpt_hw_ops *ops;
113 u8 are_lfs_attached; /* Whether CPT LFs are attached */
114 u8 lfs_num; /* Number of CPT LFs */
115 u8 kcrypto_eng_grp_num; /* Kernel crypto engine group number */
116 u8 kvf_limits; /* Kernel crypto limits */
117 atomic_t state; /* LF's state. started/reset */
118 int blkaddr; /* CPT blkaddr: BLKADDR_CPT0/BLKADDR_CPT1 */
119 };
120
otx2_cpt_free_instruction_queues(struct otx2_cptlfs_info * lfs)121 static inline void otx2_cpt_free_instruction_queues(
122 struct otx2_cptlfs_info *lfs)
123 {
124 struct otx2_cpt_inst_queue *iq;
125 int i;
126
127 for (i = 0; i < lfs->lfs_num; i++) {
128 iq = &lfs->lf[i].iqueue;
129 if (iq->real_vaddr)
130 dma_free_coherent(&lfs->pdev->dev,
131 iq->size,
132 iq->real_vaddr,
133 iq->real_dma_addr);
134 iq->real_vaddr = NULL;
135 iq->vaddr = NULL;
136 }
137 }
138
otx2_cpt_alloc_instruction_queues(struct otx2_cptlfs_info * lfs)139 static inline int otx2_cpt_alloc_instruction_queues(
140 struct otx2_cptlfs_info *lfs)
141 {
142 struct otx2_cpt_inst_queue *iq;
143 int ret = 0, i;
144
145 if (!lfs->lfs_num)
146 return -EINVAL;
147
148 for (i = 0; i < lfs->lfs_num; i++) {
149 iq = &lfs->lf[i].iqueue;
150 iq->size = OTX2_CPT_INST_QLEN_BYTES +
151 OTX2_CPT_Q_FC_LEN +
152 OTX2_CPT_INST_GRP_QLEN_BYTES +
153 OTX2_CPT_INST_Q_ALIGNMENT;
154 iq->real_vaddr = dma_alloc_coherent(&lfs->pdev->dev, iq->size,
155 &iq->real_dma_addr, GFP_KERNEL);
156 if (!iq->real_vaddr) {
157 ret = -ENOMEM;
158 goto error;
159 }
160 iq->vaddr = iq->real_vaddr + OTX2_CPT_INST_GRP_QLEN_BYTES;
161 iq->dma_addr = iq->real_dma_addr + OTX2_CPT_INST_GRP_QLEN_BYTES;
162
163 /* Align pointers */
164 iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_CPT_INST_Q_ALIGNMENT);
165 iq->dma_addr = PTR_ALIGN(iq->dma_addr,
166 OTX2_CPT_INST_Q_ALIGNMENT);
167 }
168 return 0;
169
170 error:
171 otx2_cpt_free_instruction_queues(lfs);
172 return ret;
173 }
174
otx2_cptlf_set_iqueues_base_addr(struct otx2_cptlfs_info * lfs)175 static inline void otx2_cptlf_set_iqueues_base_addr(
176 struct otx2_cptlfs_info *lfs)
177 {
178 union otx2_cptx_lf_q_base lf_q_base;
179 int slot;
180
181 for (slot = 0; slot < lfs->lfs_num; slot++) {
182 lf_q_base.u = lfs->lf[slot].iqueue.dma_addr;
183 otx2_cpt_write64(lfs->reg_base, BLKADDR_CPT0, slot,
184 OTX2_CPT_LF_Q_BASE, lf_q_base.u);
185 }
186 }
187
otx2_cptlf_do_set_iqueue_size(struct otx2_cptlf_info * lf)188 static inline void otx2_cptlf_do_set_iqueue_size(struct otx2_cptlf_info *lf)
189 {
190 union otx2_cptx_lf_q_size lf_q_size = { .u = 0x0 };
191
192 lf_q_size.s.size_div40 = OTX2_CPT_SIZE_DIV40 +
193 OTX2_CPT_EXTRA_SIZE_DIV40;
194 otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
195 OTX2_CPT_LF_Q_SIZE, lf_q_size.u);
196 }
197
otx2_cptlf_set_iqueues_size(struct otx2_cptlfs_info * lfs)198 static inline void otx2_cptlf_set_iqueues_size(struct otx2_cptlfs_info *lfs)
199 {
200 int slot;
201
202 for (slot = 0; slot < lfs->lfs_num; slot++)
203 otx2_cptlf_do_set_iqueue_size(&lfs->lf[slot]);
204 }
205
otx2_cptlf_do_disable_iqueue(struct otx2_cptlf_info * lf)206 static inline void otx2_cptlf_do_disable_iqueue(struct otx2_cptlf_info *lf)
207 {
208 union otx2_cptx_lf_ctl lf_ctl = { .u = 0x0 };
209 union otx2_cptx_lf_inprog lf_inprog;
210 int timeout = 20;
211
212 /* Disable instructions enqueuing */
213 otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
214 OTX2_CPT_LF_CTL, lf_ctl.u);
215
216 /* Wait for instruction queue to become empty */
217 do {
218 lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0,
219 lf->slot, OTX2_CPT_LF_INPROG);
220 if (!lf_inprog.s.inflight)
221 break;
222
223 usleep_range(10000, 20000);
224 if (timeout-- < 0) {
225 dev_err(&lf->lfs->pdev->dev,
226 "Error LF %d is still busy.\n", lf->slot);
227 break;
228 }
229
230 } while (1);
231
232 /*
233 * Disable executions in the LF's queue,
234 * the queue should be empty at this point
235 */
236 lf_inprog.s.eena = 0x0;
237 otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
238 OTX2_CPT_LF_INPROG, lf_inprog.u);
239 }
240
otx2_cptlf_disable_iqueues(struct otx2_cptlfs_info * lfs)241 static inline void otx2_cptlf_disable_iqueues(struct otx2_cptlfs_info *lfs)
242 {
243 int slot;
244
245 for (slot = 0; slot < lfs->lfs_num; slot++)
246 otx2_cptlf_do_disable_iqueue(&lfs->lf[slot]);
247 }
248
otx2_cptlf_set_iqueue_enq(struct otx2_cptlf_info * lf,bool enable)249 static inline void otx2_cptlf_set_iqueue_enq(struct otx2_cptlf_info *lf,
250 bool enable)
251 {
252 union otx2_cptx_lf_ctl lf_ctl;
253
254 lf_ctl.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
255 OTX2_CPT_LF_CTL);
256
257 /* Set iqueue's enqueuing */
258 lf_ctl.s.ena = enable ? 0x1 : 0x0;
259 otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
260 OTX2_CPT_LF_CTL, lf_ctl.u);
261 }
262
otx2_cptlf_enable_iqueue_enq(struct otx2_cptlf_info * lf)263 static inline void otx2_cptlf_enable_iqueue_enq(struct otx2_cptlf_info *lf)
264 {
265 otx2_cptlf_set_iqueue_enq(lf, true);
266 }
267
otx2_cptlf_set_iqueue_exec(struct otx2_cptlf_info * lf,bool enable)268 static inline void otx2_cptlf_set_iqueue_exec(struct otx2_cptlf_info *lf,
269 bool enable)
270 {
271 union otx2_cptx_lf_inprog lf_inprog;
272
273 lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
274 OTX2_CPT_LF_INPROG);
275
276 /* Set iqueue's execution */
277 lf_inprog.s.eena = enable ? 0x1 : 0x0;
278 otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
279 OTX2_CPT_LF_INPROG, lf_inprog.u);
280 }
281
otx2_cptlf_enable_iqueue_exec(struct otx2_cptlf_info * lf)282 static inline void otx2_cptlf_enable_iqueue_exec(struct otx2_cptlf_info *lf)
283 {
284 otx2_cptlf_set_iqueue_exec(lf, true);
285 }
286
otx2_cptlf_disable_iqueue_exec(struct otx2_cptlf_info * lf)287 static inline void otx2_cptlf_disable_iqueue_exec(struct otx2_cptlf_info *lf)
288 {
289 otx2_cptlf_set_iqueue_exec(lf, false);
290 }
291
otx2_cptlf_enable_iqueues(struct otx2_cptlfs_info * lfs)292 static inline void otx2_cptlf_enable_iqueues(struct otx2_cptlfs_info *lfs)
293 {
294 int slot;
295
296 for (slot = 0; slot < lfs->lfs_num; slot++) {
297 otx2_cptlf_enable_iqueue_exec(&lfs->lf[slot]);
298 otx2_cptlf_enable_iqueue_enq(&lfs->lf[slot]);
299 }
300 }
301
otx2_cpt_fill_inst(union otx2_cpt_inst_s * cptinst,struct otx2_cpt_iq_command * iq_cmd,u64 comp_baddr)302 static inline void otx2_cpt_fill_inst(union otx2_cpt_inst_s *cptinst,
303 struct otx2_cpt_iq_command *iq_cmd,
304 u64 comp_baddr)
305 {
306 cptinst->u[0] = 0x0;
307 cptinst->s.doneint = true;
308 cptinst->s.res_addr = comp_baddr;
309 cptinst->u[2] = 0x0;
310 cptinst->u[3] = 0x0;
311 cptinst->s.ei0 = iq_cmd->cmd.u;
312 cptinst->s.ei1 = iq_cmd->dptr;
313 cptinst->s.ei2 = iq_cmd->rptr;
314 cptinst->s.ei3 = iq_cmd->cptr.u;
315 }
316
317 /*
318 * On OcteonTX2 platform the parameter insts_num is used as a count of
319 * instructions to be enqueued. The valid values for insts_num are:
320 * 1 - 1 CPT instruction will be enqueued during LMTST operation
321 * 2 - 2 CPT instructions will be enqueued during LMTST operation
322 */
otx2_cpt_send_cmd(union otx2_cpt_inst_s * cptinst,u32 insts_num,struct otx2_cptlf_info * lf)323 static inline void otx2_cpt_send_cmd(union otx2_cpt_inst_s *cptinst,
324 u32 insts_num, struct otx2_cptlf_info *lf)
325 {
326 void __iomem *lmtline = lf->lmtline;
327 long ret;
328
329 /*
330 * Make sure memory areas pointed in CPT_INST_S
331 * are flushed before the instruction is sent to CPT
332 */
333 dma_wmb();
334
335 do {
336 /* Copy CPT command to LMTLINE */
337 memcpy_toio(lmtline, cptinst, insts_num * OTX2_CPT_INST_SIZE);
338
339 /*
340 * LDEOR initiates atomic transfer to I/O device
341 * The following will cause the LMTST to fail (the LDEOR
342 * returns zero):
343 * - No stores have been performed to the LMTLINE since it was
344 * last invalidated.
345 * - The bytes which have been stored to LMTLINE since it was
346 * last invalidated form a pattern that is non-contiguous, does
347 * not start at byte 0, or does not end on a 8-byte boundary.
348 * (i.e.comprises a formation of other than 1–16 8-byte
349 * words.)
350 *
351 * These rules are designed such that an operating system
352 * context switch or hypervisor guest switch need have no
353 * knowledge of the LMTST operations; the switch code does not
354 * need to store to LMTCANCEL. Also note as LMTLINE data cannot
355 * be read, there is no information leakage between processes.
356 */
357 ret = otx2_lmt_flush(lf->ioreg);
358
359 } while (!ret);
360 }
361
otx2_cptlf_started(struct otx2_cptlfs_info * lfs)362 static inline bool otx2_cptlf_started(struct otx2_cptlfs_info *lfs)
363 {
364 return atomic_read(&lfs->state) == OTX2_CPTLF_STARTED;
365 }
366
367 int otx2_cptlf_init(struct otx2_cptlfs_info *lfs, u8 eng_grp_msk, int pri,
368 int lfs_num);
369 void otx2_cptlf_shutdown(struct otx2_cptlfs_info *lfs);
370 int otx2_cptlf_register_interrupts(struct otx2_cptlfs_info *lfs);
371 void otx2_cptlf_unregister_interrupts(struct otx2_cptlfs_info *lfs);
372 void otx2_cptlf_free_irqs_affinity(struct otx2_cptlfs_info *lfs);
373 int otx2_cptlf_set_irqs_affinity(struct otx2_cptlfs_info *lfs);
374
375 #endif /* __OTX2_CPTLF_H */
376