1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * OS Noise Tracer: computes the OS Noise suffered by a running thread.
4 * Timerlat Tracer: measures the wakeup latency of a timer triggered IRQ and thread.
5 *
6 * Based on "hwlat_detector" tracer by:
7 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
8 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
9 * With feedback from Clark Williams <williams@redhat.com>
10 *
11 * And also based on the rtsl tracer presented on:
12 * DE OLIVEIRA, Daniel Bristot, et al. Demystifying the real-time linux
13 * scheduling latency. In: 32nd Euromicro Conference on Real-Time Systems
14 * (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2020.
15 *
16 * Copyright (C) 2021 Daniel Bristot de Oliveira, Red Hat, Inc. <bristot@redhat.com>
17 */
18
19 #include <linux/kthread.h>
20 #include <linux/tracefs.h>
21 #include <linux/uaccess.h>
22 #include <linux/cpumask.h>
23 #include <linux/delay.h>
24 #include <linux/sched/clock.h>
25 #include <uapi/linux/sched/types.h>
26 #include <linux/sched.h>
27 #include "trace.h"
28
29 #ifdef CONFIG_X86_LOCAL_APIC
30 #include <asm/trace/irq_vectors.h>
31 #undef TRACE_INCLUDE_PATH
32 #undef TRACE_INCLUDE_FILE
33 #endif /* CONFIG_X86_LOCAL_APIC */
34
35 #include <trace/events/irq.h>
36 #include <trace/events/sched.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/osnoise.h>
40
41 /*
42 * Default values.
43 */
44 #define BANNER "osnoise: "
45 #define DEFAULT_SAMPLE_PERIOD 1000000 /* 1s */
46 #define DEFAULT_SAMPLE_RUNTIME 1000000 /* 1s */
47
48 #define DEFAULT_TIMERLAT_PERIOD 1000 /* 1ms */
49 #define DEFAULT_TIMERLAT_PRIO 95 /* FIFO 95 */
50
51 /*
52 * trace_array of the enabled osnoise/timerlat instances.
53 */
54 struct osnoise_instance {
55 struct list_head list;
56 struct trace_array *tr;
57 };
58
59 static struct list_head osnoise_instances;
60
osnoise_has_registered_instances(void)61 static bool osnoise_has_registered_instances(void)
62 {
63 return !!list_first_or_null_rcu(&osnoise_instances,
64 struct osnoise_instance,
65 list);
66 }
67
68 /*
69 * osnoise_instance_registered - check if a tr is already registered
70 */
osnoise_instance_registered(struct trace_array * tr)71 static int osnoise_instance_registered(struct trace_array *tr)
72 {
73 struct osnoise_instance *inst;
74 int found = 0;
75
76 rcu_read_lock();
77 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
78 if (inst->tr == tr)
79 found = 1;
80 }
81 rcu_read_unlock();
82
83 return found;
84 }
85
86 /*
87 * osnoise_register_instance - register a new trace instance
88 *
89 * Register a trace_array *tr in the list of instances running
90 * osnoise/timerlat tracers.
91 */
osnoise_register_instance(struct trace_array * tr)92 static int osnoise_register_instance(struct trace_array *tr)
93 {
94 struct osnoise_instance *inst;
95
96 /*
97 * register/unregister serialization is provided by trace's
98 * trace_types_lock.
99 */
100 lockdep_assert_held(&trace_types_lock);
101
102 inst = kmalloc(sizeof(*inst), GFP_KERNEL);
103 if (!inst)
104 return -ENOMEM;
105
106 INIT_LIST_HEAD_RCU(&inst->list);
107 inst->tr = tr;
108 list_add_tail_rcu(&inst->list, &osnoise_instances);
109
110 return 0;
111 }
112
113 /*
114 * osnoise_unregister_instance - unregister a registered trace instance
115 *
116 * Remove the trace_array *tr from the list of instances running
117 * osnoise/timerlat tracers.
118 */
osnoise_unregister_instance(struct trace_array * tr)119 static void osnoise_unregister_instance(struct trace_array *tr)
120 {
121 struct osnoise_instance *inst;
122 int found = 0;
123
124 /*
125 * register/unregister serialization is provided by trace's
126 * trace_types_lock.
127 */
128 list_for_each_entry_rcu(inst, &osnoise_instances, list,
129 lockdep_is_held(&trace_types_lock)) {
130 if (inst->tr == tr) {
131 list_del_rcu(&inst->list);
132 found = 1;
133 break;
134 }
135 }
136
137 if (!found)
138 return;
139
140 kvfree_rcu(inst);
141 }
142
143 /*
144 * NMI runtime info.
145 */
146 struct osn_nmi {
147 u64 count;
148 u64 delta_start;
149 };
150
151 /*
152 * IRQ runtime info.
153 */
154 struct osn_irq {
155 u64 count;
156 u64 arrival_time;
157 u64 delta_start;
158 };
159
160 #define IRQ_CONTEXT 0
161 #define THREAD_CONTEXT 1
162 /*
163 * sofirq runtime info.
164 */
165 struct osn_softirq {
166 u64 count;
167 u64 arrival_time;
168 u64 delta_start;
169 };
170
171 /*
172 * thread runtime info.
173 */
174 struct osn_thread {
175 u64 count;
176 u64 arrival_time;
177 u64 delta_start;
178 };
179
180 /*
181 * Runtime information: this structure saves the runtime information used by
182 * one sampling thread.
183 */
184 struct osnoise_variables {
185 struct task_struct *kthread;
186 bool sampling;
187 pid_t pid;
188 struct osn_nmi nmi;
189 struct osn_irq irq;
190 struct osn_softirq softirq;
191 struct osn_thread thread;
192 local_t int_counter;
193 };
194
195 /*
196 * Per-cpu runtime information.
197 */
198 DEFINE_PER_CPU(struct osnoise_variables, per_cpu_osnoise_var);
199
200 /*
201 * this_cpu_osn_var - Return the per-cpu osnoise_variables on its relative CPU
202 */
this_cpu_osn_var(void)203 static inline struct osnoise_variables *this_cpu_osn_var(void)
204 {
205 return this_cpu_ptr(&per_cpu_osnoise_var);
206 }
207
208 #ifdef CONFIG_TIMERLAT_TRACER
209 /*
210 * Runtime information for the timer mode.
211 */
212 struct timerlat_variables {
213 struct task_struct *kthread;
214 struct hrtimer timer;
215 u64 rel_period;
216 u64 abs_period;
217 bool tracing_thread;
218 u64 count;
219 };
220
221 DEFINE_PER_CPU(struct timerlat_variables, per_cpu_timerlat_var);
222
223 /*
224 * this_cpu_tmr_var - Return the per-cpu timerlat_variables on its relative CPU
225 */
this_cpu_tmr_var(void)226 static inline struct timerlat_variables *this_cpu_tmr_var(void)
227 {
228 return this_cpu_ptr(&per_cpu_timerlat_var);
229 }
230
231 /*
232 * tlat_var_reset - Reset the values of the given timerlat_variables
233 */
tlat_var_reset(void)234 static inline void tlat_var_reset(void)
235 {
236 struct timerlat_variables *tlat_var;
237 int cpu;
238 /*
239 * So far, all the values are initialized as 0, so
240 * zeroing the structure is perfect.
241 */
242 for_each_cpu(cpu, cpu_online_mask) {
243 tlat_var = per_cpu_ptr(&per_cpu_timerlat_var, cpu);
244 memset(tlat_var, 0, sizeof(*tlat_var));
245 }
246 }
247 #else /* CONFIG_TIMERLAT_TRACER */
248 #define tlat_var_reset() do {} while (0)
249 #endif /* CONFIG_TIMERLAT_TRACER */
250
251 /*
252 * osn_var_reset - Reset the values of the given osnoise_variables
253 */
osn_var_reset(void)254 static inline void osn_var_reset(void)
255 {
256 struct osnoise_variables *osn_var;
257 int cpu;
258
259 /*
260 * So far, all the values are initialized as 0, so
261 * zeroing the structure is perfect.
262 */
263 for_each_cpu(cpu, cpu_online_mask) {
264 osn_var = per_cpu_ptr(&per_cpu_osnoise_var, cpu);
265 memset(osn_var, 0, sizeof(*osn_var));
266 }
267 }
268
269 /*
270 * osn_var_reset_all - Reset the value of all per-cpu osnoise_variables
271 */
osn_var_reset_all(void)272 static inline void osn_var_reset_all(void)
273 {
274 osn_var_reset();
275 tlat_var_reset();
276 }
277
278 /*
279 * Tells NMIs to call back to the osnoise tracer to record timestamps.
280 */
281 bool trace_osnoise_callback_enabled;
282
283 /*
284 * osnoise sample structure definition. Used to store the statistics of a
285 * sample run.
286 */
287 struct osnoise_sample {
288 u64 runtime; /* runtime */
289 u64 noise; /* noise */
290 u64 max_sample; /* max single noise sample */
291 int hw_count; /* # HW (incl. hypervisor) interference */
292 int nmi_count; /* # NMIs during this sample */
293 int irq_count; /* # IRQs during this sample */
294 int softirq_count; /* # softirqs during this sample */
295 int thread_count; /* # threads during this sample */
296 };
297
298 #ifdef CONFIG_TIMERLAT_TRACER
299 /*
300 * timerlat sample structure definition. Used to store the statistics of
301 * a sample run.
302 */
303 struct timerlat_sample {
304 u64 timer_latency; /* timer_latency */
305 unsigned int seqnum; /* unique sequence */
306 int context; /* timer context */
307 };
308 #endif
309
310 /*
311 * Protect the interface.
312 */
313 struct mutex interface_lock;
314
315 /*
316 * Tracer data.
317 */
318 static struct osnoise_data {
319 u64 sample_period; /* total sampling period */
320 u64 sample_runtime; /* active sampling portion of period */
321 u64 stop_tracing; /* stop trace in the internal operation (loop/irq) */
322 u64 stop_tracing_total; /* stop trace in the final operation (report/thread) */
323 #ifdef CONFIG_TIMERLAT_TRACER
324 u64 timerlat_period; /* timerlat period */
325 u64 print_stack; /* print IRQ stack if total > */
326 int timerlat_tracer; /* timerlat tracer */
327 #endif
328 bool tainted; /* infor users and developers about a problem */
329 } osnoise_data = {
330 .sample_period = DEFAULT_SAMPLE_PERIOD,
331 .sample_runtime = DEFAULT_SAMPLE_RUNTIME,
332 .stop_tracing = 0,
333 .stop_tracing_total = 0,
334 #ifdef CONFIG_TIMERLAT_TRACER
335 .print_stack = 0,
336 .timerlat_period = DEFAULT_TIMERLAT_PERIOD,
337 .timerlat_tracer = 0,
338 #endif
339 };
340
341 #ifdef CONFIG_TIMERLAT_TRACER
timerlat_enabled(void)342 static inline bool timerlat_enabled(void)
343 {
344 return osnoise_data.timerlat_tracer;
345 }
346
timerlat_softirq_exit(struct osnoise_variables * osn_var)347 static inline int timerlat_softirq_exit(struct osnoise_variables *osn_var)
348 {
349 struct timerlat_variables *tlat_var = this_cpu_tmr_var();
350 /*
351 * If the timerlat is enabled, but the irq handler did
352 * not run yet enabling timerlat_tracer, do not trace.
353 */
354 if (!tlat_var->tracing_thread) {
355 osn_var->softirq.arrival_time = 0;
356 osn_var->softirq.delta_start = 0;
357 return 0;
358 }
359 return 1;
360 }
361
timerlat_thread_exit(struct osnoise_variables * osn_var)362 static inline int timerlat_thread_exit(struct osnoise_variables *osn_var)
363 {
364 struct timerlat_variables *tlat_var = this_cpu_tmr_var();
365 /*
366 * If the timerlat is enabled, but the irq handler did
367 * not run yet enabling timerlat_tracer, do not trace.
368 */
369 if (!tlat_var->tracing_thread) {
370 osn_var->thread.delta_start = 0;
371 osn_var->thread.arrival_time = 0;
372 return 0;
373 }
374 return 1;
375 }
376 #else /* CONFIG_TIMERLAT_TRACER */
timerlat_enabled(void)377 static inline bool timerlat_enabled(void)
378 {
379 return false;
380 }
381
timerlat_softirq_exit(struct osnoise_variables * osn_var)382 static inline int timerlat_softirq_exit(struct osnoise_variables *osn_var)
383 {
384 return 1;
385 }
timerlat_thread_exit(struct osnoise_variables * osn_var)386 static inline int timerlat_thread_exit(struct osnoise_variables *osn_var)
387 {
388 return 1;
389 }
390 #endif
391
392 #ifdef CONFIG_PREEMPT_RT
393 /*
394 * Print the osnoise header info.
395 */
print_osnoise_headers(struct seq_file * s)396 static void print_osnoise_headers(struct seq_file *s)
397 {
398 if (osnoise_data.tainted)
399 seq_puts(s, "# osnoise is tainted!\n");
400
401 seq_puts(s, "# _-------=> irqs-off\n");
402 seq_puts(s, "# / _------=> need-resched\n");
403 seq_puts(s, "# | / _-----=> need-resched-lazy\n");
404 seq_puts(s, "# || / _----=> hardirq/softirq\n");
405 seq_puts(s, "# ||| / _---=> preempt-depth\n");
406 seq_puts(s, "# |||| / _--=> preempt-lazy-depth\n");
407 seq_puts(s, "# ||||| / _-=> migrate-disable\n");
408
409 seq_puts(s, "# |||||| / ");
410 seq_puts(s, " MAX\n");
411
412 seq_puts(s, "# ||||| / ");
413 seq_puts(s, " SINGLE Interference counters:\n");
414
415 seq_puts(s, "# ||||||| RUNTIME ");
416 seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n");
417
418 seq_puts(s, "# TASK-PID CPU# ||||||| TIMESTAMP IN US ");
419 seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n");
420
421 seq_puts(s, "# | | | ||||||| | | ");
422 seq_puts(s, " | | | | | | | |\n");
423 }
424 #else /* CONFIG_PREEMPT_RT */
print_osnoise_headers(struct seq_file * s)425 static void print_osnoise_headers(struct seq_file *s)
426 {
427 if (osnoise_data.tainted)
428 seq_puts(s, "# osnoise is tainted!\n");
429
430 seq_puts(s, "# _-----=> irqs-off\n");
431 seq_puts(s, "# / _----=> need-resched\n");
432 seq_puts(s, "# | / _---=> hardirq/softirq\n");
433 seq_puts(s, "# || / _--=> preempt-depth\n");
434 seq_puts(s, "# ||| / _-=> migrate-disable ");
435 seq_puts(s, " MAX\n");
436 seq_puts(s, "# |||| / delay ");
437 seq_puts(s, " SINGLE Interference counters:\n");
438
439 seq_puts(s, "# ||||| RUNTIME ");
440 seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n");
441
442 seq_puts(s, "# TASK-PID CPU# ||||| TIMESTAMP IN US ");
443 seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n");
444
445 seq_puts(s, "# | | | ||||| | | ");
446 seq_puts(s, " | | | | | | | |\n");
447 }
448 #endif /* CONFIG_PREEMPT_RT */
449
450 /*
451 * osnoise_taint - report an osnoise error.
452 */
453 #define osnoise_taint(msg) ({ \
454 struct osnoise_instance *inst; \
455 struct trace_buffer *buffer; \
456 \
457 rcu_read_lock(); \
458 list_for_each_entry_rcu(inst, &osnoise_instances, list) { \
459 buffer = inst->tr->array_buffer.buffer; \
460 trace_array_printk_buf(buffer, _THIS_IP_, msg); \
461 } \
462 rcu_read_unlock(); \
463 osnoise_data.tainted = true; \
464 })
465
466 /*
467 * Record an osnoise_sample into the tracer buffer.
468 */
469 static void
__trace_osnoise_sample(struct osnoise_sample * sample,struct trace_buffer * buffer)470 __trace_osnoise_sample(struct osnoise_sample *sample, struct trace_buffer *buffer)
471 {
472 struct trace_event_call *call = &event_osnoise;
473 struct ring_buffer_event *event;
474 struct osnoise_entry *entry;
475
476 event = trace_buffer_lock_reserve(buffer, TRACE_OSNOISE, sizeof(*entry),
477 tracing_gen_ctx());
478 if (!event)
479 return;
480 entry = ring_buffer_event_data(event);
481 entry->runtime = sample->runtime;
482 entry->noise = sample->noise;
483 entry->max_sample = sample->max_sample;
484 entry->hw_count = sample->hw_count;
485 entry->nmi_count = sample->nmi_count;
486 entry->irq_count = sample->irq_count;
487 entry->softirq_count = sample->softirq_count;
488 entry->thread_count = sample->thread_count;
489
490 if (!call_filter_check_discard(call, entry, buffer, event))
491 trace_buffer_unlock_commit_nostack(buffer, event);
492 }
493
494 /*
495 * Record an osnoise_sample on all osnoise instances.
496 */
trace_osnoise_sample(struct osnoise_sample * sample)497 static void trace_osnoise_sample(struct osnoise_sample *sample)
498 {
499 struct osnoise_instance *inst;
500 struct trace_buffer *buffer;
501
502 rcu_read_lock();
503 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
504 buffer = inst->tr->array_buffer.buffer;
505 __trace_osnoise_sample(sample, buffer);
506 }
507 rcu_read_unlock();
508 }
509
510 #ifdef CONFIG_TIMERLAT_TRACER
511 /*
512 * Print the timerlat header info.
513 */
514 #ifdef CONFIG_PREEMPT_RT
print_timerlat_headers(struct seq_file * s)515 static void print_timerlat_headers(struct seq_file *s)
516 {
517 seq_puts(s, "# _-------=> irqs-off\n");
518 seq_puts(s, "# / _------=> need-resched\n");
519 seq_puts(s, "# | / _-----=> need-resched-lazy\n");
520 seq_puts(s, "# || / _----=> hardirq/softirq\n");
521 seq_puts(s, "# ||| / _---=> preempt-depth\n");
522 seq_puts(s, "# |||| / _--=> preempt-lazy-depth\n");
523 seq_puts(s, "# ||||| / _-=> migrate-disable\n");
524 seq_puts(s, "# |||||| /\n");
525 seq_puts(s, "# ||||||| ACTIVATION\n");
526 seq_puts(s, "# TASK-PID CPU# ||||||| TIMESTAMP ID ");
527 seq_puts(s, " CONTEXT LATENCY\n");
528 seq_puts(s, "# | | | ||||||| | | ");
529 seq_puts(s, " | |\n");
530 }
531 #else /* CONFIG_PREEMPT_RT */
print_timerlat_headers(struct seq_file * s)532 static void print_timerlat_headers(struct seq_file *s)
533 {
534 seq_puts(s, "# _-----=> irqs-off\n");
535 seq_puts(s, "# / _----=> need-resched\n");
536 seq_puts(s, "# | / _---=> hardirq/softirq\n");
537 seq_puts(s, "# || / _--=> preempt-depth\n");
538 seq_puts(s, "# ||| / _-=> migrate-disable\n");
539 seq_puts(s, "# |||| / delay\n");
540 seq_puts(s, "# ||||| ACTIVATION\n");
541 seq_puts(s, "# TASK-PID CPU# ||||| TIMESTAMP ID ");
542 seq_puts(s, " CONTEXT LATENCY\n");
543 seq_puts(s, "# | | | ||||| | | ");
544 seq_puts(s, " | |\n");
545 }
546 #endif /* CONFIG_PREEMPT_RT */
547
548 static void
__trace_timerlat_sample(struct timerlat_sample * sample,struct trace_buffer * buffer)549 __trace_timerlat_sample(struct timerlat_sample *sample, struct trace_buffer *buffer)
550 {
551 struct trace_event_call *call = &event_osnoise;
552 struct ring_buffer_event *event;
553 struct timerlat_entry *entry;
554
555 event = trace_buffer_lock_reserve(buffer, TRACE_TIMERLAT, sizeof(*entry),
556 tracing_gen_ctx());
557 if (!event)
558 return;
559 entry = ring_buffer_event_data(event);
560 entry->seqnum = sample->seqnum;
561 entry->context = sample->context;
562 entry->timer_latency = sample->timer_latency;
563
564 if (!call_filter_check_discard(call, entry, buffer, event))
565 trace_buffer_unlock_commit_nostack(buffer, event);
566 }
567
568 /*
569 * Record an timerlat_sample into the tracer buffer.
570 */
trace_timerlat_sample(struct timerlat_sample * sample)571 static void trace_timerlat_sample(struct timerlat_sample *sample)
572 {
573 struct osnoise_instance *inst;
574 struct trace_buffer *buffer;
575
576 rcu_read_lock();
577 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
578 buffer = inst->tr->array_buffer.buffer;
579 __trace_timerlat_sample(sample, buffer);
580 }
581 rcu_read_unlock();
582 }
583
584 #ifdef CONFIG_STACKTRACE
585
586 #define MAX_CALLS 256
587
588 /*
589 * Stack trace will take place only at IRQ level, so, no need
590 * to control nesting here.
591 */
592 struct trace_stack {
593 int stack_size;
594 int nr_entries;
595 unsigned long calls[MAX_CALLS];
596 };
597
598 static DEFINE_PER_CPU(struct trace_stack, trace_stack);
599
600 /*
601 * timerlat_save_stack - save a stack trace without printing
602 *
603 * Save the current stack trace without printing. The
604 * stack will be printed later, after the end of the measurement.
605 */
timerlat_save_stack(int skip)606 static void timerlat_save_stack(int skip)
607 {
608 unsigned int size, nr_entries;
609 struct trace_stack *fstack;
610
611 fstack = this_cpu_ptr(&trace_stack);
612
613 size = ARRAY_SIZE(fstack->calls);
614
615 nr_entries = stack_trace_save(fstack->calls, size, skip);
616
617 fstack->stack_size = nr_entries * sizeof(unsigned long);
618 fstack->nr_entries = nr_entries;
619
620 return;
621
622 }
623
624 static void
__timerlat_dump_stack(struct trace_buffer * buffer,struct trace_stack * fstack,unsigned int size)625 __timerlat_dump_stack(struct trace_buffer *buffer, struct trace_stack *fstack, unsigned int size)
626 {
627 struct trace_event_call *call = &event_osnoise;
628 struct ring_buffer_event *event;
629 struct stack_entry *entry;
630
631 event = trace_buffer_lock_reserve(buffer, TRACE_STACK, sizeof(*entry) + size,
632 tracing_gen_ctx());
633 if (!event)
634 return;
635
636 entry = ring_buffer_event_data(event);
637
638 memcpy(&entry->caller, fstack->calls, size);
639 entry->size = fstack->nr_entries;
640
641 if (!call_filter_check_discard(call, entry, buffer, event))
642 trace_buffer_unlock_commit_nostack(buffer, event);
643 }
644
645 /*
646 * timerlat_dump_stack - dump a stack trace previously saved
647 */
timerlat_dump_stack(u64 latency)648 static void timerlat_dump_stack(u64 latency)
649 {
650 struct osnoise_instance *inst;
651 struct trace_buffer *buffer;
652 struct trace_stack *fstack;
653 unsigned int size;
654
655 /*
656 * trace only if latency > print_stack config, if enabled.
657 */
658 if (!osnoise_data.print_stack || osnoise_data.print_stack > latency)
659 return;
660
661 preempt_disable_notrace();
662 fstack = this_cpu_ptr(&trace_stack);
663 size = fstack->stack_size;
664
665 rcu_read_lock();
666 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
667 buffer = inst->tr->array_buffer.buffer;
668 __timerlat_dump_stack(buffer, fstack, size);
669
670 }
671 rcu_read_unlock();
672 preempt_enable_notrace();
673 }
674 #else /* CONFIG_STACKTRACE */
675 #define timerlat_dump_stack(u64 latency) do {} while (0)
676 #define timerlat_save_stack(a) do {} while (0)
677 #endif /* CONFIG_STACKTRACE */
678 #endif /* CONFIG_TIMERLAT_TRACER */
679
680 /*
681 * Macros to encapsulate the time capturing infrastructure.
682 */
683 #define time_get() trace_clock_local()
684 #define time_to_us(x) div_u64(x, 1000)
685 #define time_sub(a, b) ((a) - (b))
686
687 /*
688 * cond_move_irq_delta_start - Forward the delta_start of a running IRQ
689 *
690 * If an IRQ is preempted by an NMI, its delta_start is pushed forward
691 * to discount the NMI interference.
692 *
693 * See get_int_safe_duration().
694 */
695 static inline void
cond_move_irq_delta_start(struct osnoise_variables * osn_var,u64 duration)696 cond_move_irq_delta_start(struct osnoise_variables *osn_var, u64 duration)
697 {
698 if (osn_var->irq.delta_start)
699 osn_var->irq.delta_start += duration;
700 }
701
702 #ifndef CONFIG_PREEMPT_RT
703 /*
704 * cond_move_softirq_delta_start - Forward the delta_start of a running softirq.
705 *
706 * If a softirq is preempted by an IRQ or NMI, its delta_start is pushed
707 * forward to discount the interference.
708 *
709 * See get_int_safe_duration().
710 */
711 static inline void
cond_move_softirq_delta_start(struct osnoise_variables * osn_var,u64 duration)712 cond_move_softirq_delta_start(struct osnoise_variables *osn_var, u64 duration)
713 {
714 if (osn_var->softirq.delta_start)
715 osn_var->softirq.delta_start += duration;
716 }
717 #else /* CONFIG_PREEMPT_RT */
718 #define cond_move_softirq_delta_start(osn_var, duration) do {} while (0)
719 #endif
720
721 /*
722 * cond_move_thread_delta_start - Forward the delta_start of a running thread
723 *
724 * If a noisy thread is preempted by an softirq, IRQ or NMI, its delta_start
725 * is pushed forward to discount the interference.
726 *
727 * See get_int_safe_duration().
728 */
729 static inline void
cond_move_thread_delta_start(struct osnoise_variables * osn_var,u64 duration)730 cond_move_thread_delta_start(struct osnoise_variables *osn_var, u64 duration)
731 {
732 if (osn_var->thread.delta_start)
733 osn_var->thread.delta_start += duration;
734 }
735
736 /*
737 * get_int_safe_duration - Get the duration of a window
738 *
739 * The irq, softirq and thread varaibles need to have its duration without
740 * the interference from higher priority interrupts. Instead of keeping a
741 * variable to discount the interrupt interference from these variables, the
742 * starting time of these variables are pushed forward with the interrupt's
743 * duration. In this way, a single variable is used to:
744 *
745 * - Know if a given window is being measured.
746 * - Account its duration.
747 * - Discount the interference.
748 *
749 * To avoid getting inconsistent values, e.g.,:
750 *
751 * now = time_get()
752 * ---> interrupt!
753 * delta_start -= int duration;
754 * <---
755 * duration = now - delta_start;
756 *
757 * result: negative duration if the variable duration before the
758 * interrupt was smaller than the interrupt execution.
759 *
760 * A counter of interrupts is used. If the counter increased, try
761 * to capture an interference safe duration.
762 */
763 static inline s64
get_int_safe_duration(struct osnoise_variables * osn_var,u64 * delta_start)764 get_int_safe_duration(struct osnoise_variables *osn_var, u64 *delta_start)
765 {
766 u64 int_counter, now;
767 s64 duration;
768
769 do {
770 int_counter = local_read(&osn_var->int_counter);
771 /* synchronize with interrupts */
772 barrier();
773
774 now = time_get();
775 duration = (now - *delta_start);
776
777 /* synchronize with interrupts */
778 barrier();
779 } while (int_counter != local_read(&osn_var->int_counter));
780
781 /*
782 * This is an evidence of race conditions that cause
783 * a value to be "discounted" too much.
784 */
785 if (duration < 0)
786 osnoise_taint("Negative duration!\n");
787
788 *delta_start = 0;
789
790 return duration;
791 }
792
793 /*
794 *
795 * set_int_safe_time - Save the current time on *time, aware of interference
796 *
797 * Get the time, taking into consideration a possible interference from
798 * higher priority interrupts.
799 *
800 * See get_int_safe_duration() for an explanation.
801 */
802 static u64
set_int_safe_time(struct osnoise_variables * osn_var,u64 * time)803 set_int_safe_time(struct osnoise_variables *osn_var, u64 *time)
804 {
805 u64 int_counter;
806
807 do {
808 int_counter = local_read(&osn_var->int_counter);
809 /* synchronize with interrupts */
810 barrier();
811
812 *time = time_get();
813
814 /* synchronize with interrupts */
815 barrier();
816 } while (int_counter != local_read(&osn_var->int_counter));
817
818 return int_counter;
819 }
820
821 #ifdef CONFIG_TIMERLAT_TRACER
822 /*
823 * copy_int_safe_time - Copy *src into *desc aware of interference
824 */
825 static u64
copy_int_safe_time(struct osnoise_variables * osn_var,u64 * dst,u64 * src)826 copy_int_safe_time(struct osnoise_variables *osn_var, u64 *dst, u64 *src)
827 {
828 u64 int_counter;
829
830 do {
831 int_counter = local_read(&osn_var->int_counter);
832 /* synchronize with interrupts */
833 barrier();
834
835 *dst = *src;
836
837 /* synchronize with interrupts */
838 barrier();
839 } while (int_counter != local_read(&osn_var->int_counter));
840
841 return int_counter;
842 }
843 #endif /* CONFIG_TIMERLAT_TRACER */
844
845 /*
846 * trace_osnoise_callback - NMI entry/exit callback
847 *
848 * This function is called at the entry and exit NMI code. The bool enter
849 * distinguishes between either case. This function is used to note a NMI
850 * occurrence, compute the noise caused by the NMI, and to remove the noise
851 * it is potentially causing on other interference variables.
852 */
trace_osnoise_callback(bool enter)853 void trace_osnoise_callback(bool enter)
854 {
855 struct osnoise_variables *osn_var = this_cpu_osn_var();
856 u64 duration;
857
858 if (!osn_var->sampling)
859 return;
860
861 /*
862 * Currently trace_clock_local() calls sched_clock() and the
863 * generic version is not NMI safe.
864 */
865 if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
866 if (enter) {
867 osn_var->nmi.delta_start = time_get();
868 local_inc(&osn_var->int_counter);
869 } else {
870 duration = time_get() - osn_var->nmi.delta_start;
871
872 trace_nmi_noise(osn_var->nmi.delta_start, duration);
873
874 cond_move_irq_delta_start(osn_var, duration);
875 cond_move_softirq_delta_start(osn_var, duration);
876 cond_move_thread_delta_start(osn_var, duration);
877 }
878 }
879
880 if (enter)
881 osn_var->nmi.count++;
882 }
883
884 /*
885 * osnoise_trace_irq_entry - Note the starting of an IRQ
886 *
887 * Save the starting time of an IRQ. As IRQs are non-preemptive to other IRQs,
888 * it is safe to use a single variable (ons_var->irq) to save the statistics.
889 * The arrival_time is used to report... the arrival time. The delta_start
890 * is used to compute the duration at the IRQ exit handler. See
891 * cond_move_irq_delta_start().
892 */
osnoise_trace_irq_entry(int id)893 void osnoise_trace_irq_entry(int id)
894 {
895 struct osnoise_variables *osn_var = this_cpu_osn_var();
896
897 if (!osn_var->sampling)
898 return;
899 /*
900 * This value will be used in the report, but not to compute
901 * the execution time, so it is safe to get it unsafe.
902 */
903 osn_var->irq.arrival_time = time_get();
904 set_int_safe_time(osn_var, &osn_var->irq.delta_start);
905 osn_var->irq.count++;
906
907 local_inc(&osn_var->int_counter);
908 }
909
910 /*
911 * osnoise_irq_exit - Note the end of an IRQ, sava data and trace
912 *
913 * Computes the duration of the IRQ noise, and trace it. Also discounts the
914 * interference from other sources of noise could be currently being accounted.
915 */
osnoise_trace_irq_exit(int id,const char * desc)916 void osnoise_trace_irq_exit(int id, const char *desc)
917 {
918 struct osnoise_variables *osn_var = this_cpu_osn_var();
919 s64 duration;
920
921 if (!osn_var->sampling)
922 return;
923
924 duration = get_int_safe_duration(osn_var, &osn_var->irq.delta_start);
925 trace_irq_noise(id, desc, osn_var->irq.arrival_time, duration);
926 osn_var->irq.arrival_time = 0;
927 cond_move_softirq_delta_start(osn_var, duration);
928 cond_move_thread_delta_start(osn_var, duration);
929 }
930
931 /*
932 * trace_irqentry_callback - Callback to the irq:irq_entry traceevent
933 *
934 * Used to note the starting of an IRQ occurece.
935 */
trace_irqentry_callback(void * data,int irq,struct irqaction * action)936 static void trace_irqentry_callback(void *data, int irq,
937 struct irqaction *action)
938 {
939 osnoise_trace_irq_entry(irq);
940 }
941
942 /*
943 * trace_irqexit_callback - Callback to the irq:irq_exit traceevent
944 *
945 * Used to note the end of an IRQ occurece.
946 */
trace_irqexit_callback(void * data,int irq,struct irqaction * action,int ret)947 static void trace_irqexit_callback(void *data, int irq,
948 struct irqaction *action, int ret)
949 {
950 osnoise_trace_irq_exit(irq, action->name);
951 }
952
953 /*
954 * arch specific register function.
955 */
osnoise_arch_register(void)956 int __weak osnoise_arch_register(void)
957 {
958 return 0;
959 }
960
961 /*
962 * arch specific unregister function.
963 */
osnoise_arch_unregister(void)964 void __weak osnoise_arch_unregister(void)
965 {
966 return;
967 }
968
969 /*
970 * hook_irq_events - Hook IRQ handling events
971 *
972 * This function hooks the IRQ related callbacks to the respective trace
973 * events.
974 */
hook_irq_events(void)975 static int hook_irq_events(void)
976 {
977 int ret;
978
979 ret = register_trace_irq_handler_entry(trace_irqentry_callback, NULL);
980 if (ret)
981 goto out_err;
982
983 ret = register_trace_irq_handler_exit(trace_irqexit_callback, NULL);
984 if (ret)
985 goto out_unregister_entry;
986
987 ret = osnoise_arch_register();
988 if (ret)
989 goto out_irq_exit;
990
991 return 0;
992
993 out_irq_exit:
994 unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL);
995 out_unregister_entry:
996 unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL);
997 out_err:
998 return -EINVAL;
999 }
1000
1001 /*
1002 * unhook_irq_events - Unhook IRQ handling events
1003 *
1004 * This function unhooks the IRQ related callbacks to the respective trace
1005 * events.
1006 */
unhook_irq_events(void)1007 static void unhook_irq_events(void)
1008 {
1009 osnoise_arch_unregister();
1010 unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL);
1011 unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL);
1012 }
1013
1014 #ifndef CONFIG_PREEMPT_RT
1015 /*
1016 * trace_softirq_entry_callback - Note the starting of a softirq
1017 *
1018 * Save the starting time of a softirq. As softirqs are non-preemptive to
1019 * other softirqs, it is safe to use a single variable (ons_var->softirq)
1020 * to save the statistics. The arrival_time is used to report... the
1021 * arrival time. The delta_start is used to compute the duration at the
1022 * softirq exit handler. See cond_move_softirq_delta_start().
1023 */
trace_softirq_entry_callback(void * data,unsigned int vec_nr)1024 static void trace_softirq_entry_callback(void *data, unsigned int vec_nr)
1025 {
1026 struct osnoise_variables *osn_var = this_cpu_osn_var();
1027
1028 if (!osn_var->sampling)
1029 return;
1030 /*
1031 * This value will be used in the report, but not to compute
1032 * the execution time, so it is safe to get it unsafe.
1033 */
1034 osn_var->softirq.arrival_time = time_get();
1035 set_int_safe_time(osn_var, &osn_var->softirq.delta_start);
1036 osn_var->softirq.count++;
1037
1038 local_inc(&osn_var->int_counter);
1039 }
1040
1041 /*
1042 * trace_softirq_exit_callback - Note the end of an softirq
1043 *
1044 * Computes the duration of the softirq noise, and trace it. Also discounts the
1045 * interference from other sources of noise could be currently being accounted.
1046 */
trace_softirq_exit_callback(void * data,unsigned int vec_nr)1047 static void trace_softirq_exit_callback(void *data, unsigned int vec_nr)
1048 {
1049 struct osnoise_variables *osn_var = this_cpu_osn_var();
1050 s64 duration;
1051
1052 if (!osn_var->sampling)
1053 return;
1054
1055 if (unlikely(timerlat_enabled()))
1056 if (!timerlat_softirq_exit(osn_var))
1057 return;
1058
1059 duration = get_int_safe_duration(osn_var, &osn_var->softirq.delta_start);
1060 trace_softirq_noise(vec_nr, osn_var->softirq.arrival_time, duration);
1061 cond_move_thread_delta_start(osn_var, duration);
1062 osn_var->softirq.arrival_time = 0;
1063 }
1064
1065 /*
1066 * hook_softirq_events - Hook softirq handling events
1067 *
1068 * This function hooks the softirq related callbacks to the respective trace
1069 * events.
1070 */
hook_softirq_events(void)1071 static int hook_softirq_events(void)
1072 {
1073 int ret;
1074
1075 ret = register_trace_softirq_entry(trace_softirq_entry_callback, NULL);
1076 if (ret)
1077 goto out_err;
1078
1079 ret = register_trace_softirq_exit(trace_softirq_exit_callback, NULL);
1080 if (ret)
1081 goto out_unreg_entry;
1082
1083 return 0;
1084
1085 out_unreg_entry:
1086 unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL);
1087 out_err:
1088 return -EINVAL;
1089 }
1090
1091 /*
1092 * unhook_softirq_events - Unhook softirq handling events
1093 *
1094 * This function hooks the softirq related callbacks to the respective trace
1095 * events.
1096 */
unhook_softirq_events(void)1097 static void unhook_softirq_events(void)
1098 {
1099 unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL);
1100 unregister_trace_softirq_exit(trace_softirq_exit_callback, NULL);
1101 }
1102 #else /* CONFIG_PREEMPT_RT */
1103 /*
1104 * softirq are threads on the PREEMPT_RT mode.
1105 */
hook_softirq_events(void)1106 static int hook_softirq_events(void)
1107 {
1108 return 0;
1109 }
unhook_softirq_events(void)1110 static void unhook_softirq_events(void)
1111 {
1112 }
1113 #endif
1114
1115 /*
1116 * thread_entry - Record the starting of a thread noise window
1117 *
1118 * It saves the context switch time for a noisy thread, and increments
1119 * the interference counters.
1120 */
1121 static void
thread_entry(struct osnoise_variables * osn_var,struct task_struct * t)1122 thread_entry(struct osnoise_variables *osn_var, struct task_struct *t)
1123 {
1124 if (!osn_var->sampling)
1125 return;
1126 /*
1127 * The arrival time will be used in the report, but not to compute
1128 * the execution time, so it is safe to get it unsafe.
1129 */
1130 osn_var->thread.arrival_time = time_get();
1131
1132 set_int_safe_time(osn_var, &osn_var->thread.delta_start);
1133
1134 osn_var->thread.count++;
1135 local_inc(&osn_var->int_counter);
1136 }
1137
1138 /*
1139 * thread_exit - Report the end of a thread noise window
1140 *
1141 * It computes the total noise from a thread, tracing if needed.
1142 */
1143 static void
thread_exit(struct osnoise_variables * osn_var,struct task_struct * t)1144 thread_exit(struct osnoise_variables *osn_var, struct task_struct *t)
1145 {
1146 s64 duration;
1147
1148 if (!osn_var->sampling)
1149 return;
1150
1151 if (unlikely(timerlat_enabled()))
1152 if (!timerlat_thread_exit(osn_var))
1153 return;
1154
1155 duration = get_int_safe_duration(osn_var, &osn_var->thread.delta_start);
1156
1157 trace_thread_noise(t, osn_var->thread.arrival_time, duration);
1158
1159 osn_var->thread.arrival_time = 0;
1160 }
1161
1162 /*
1163 * trace_sched_switch - sched:sched_switch trace event handler
1164 *
1165 * This function is hooked to the sched:sched_switch trace event, and it is
1166 * used to record the beginning and to report the end of a thread noise window.
1167 */
1168 static void
trace_sched_switch_callback(void * data,bool preempt,struct task_struct * p,struct task_struct * n,unsigned int prev_state)1169 trace_sched_switch_callback(void *data, bool preempt,
1170 struct task_struct *p,
1171 struct task_struct *n,
1172 unsigned int prev_state)
1173 {
1174 struct osnoise_variables *osn_var = this_cpu_osn_var();
1175
1176 if (p->pid != osn_var->pid)
1177 thread_exit(osn_var, p);
1178
1179 if (n->pid != osn_var->pid)
1180 thread_entry(osn_var, n);
1181 }
1182
1183 /*
1184 * hook_thread_events - Hook the insturmentation for thread noise
1185 *
1186 * Hook the osnoise tracer callbacks to handle the noise from other
1187 * threads on the necessary kernel events.
1188 */
hook_thread_events(void)1189 static int hook_thread_events(void)
1190 {
1191 int ret;
1192
1193 ret = register_trace_sched_switch(trace_sched_switch_callback, NULL);
1194 if (ret)
1195 return -EINVAL;
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * unhook_thread_events - *nhook the insturmentation for thread noise
1202 *
1203 * Unook the osnoise tracer callbacks to handle the noise from other
1204 * threads on the necessary kernel events.
1205 */
unhook_thread_events(void)1206 static void unhook_thread_events(void)
1207 {
1208 unregister_trace_sched_switch(trace_sched_switch_callback, NULL);
1209 }
1210
1211 /*
1212 * save_osn_sample_stats - Save the osnoise_sample statistics
1213 *
1214 * Save the osnoise_sample statistics before the sampling phase. These
1215 * values will be used later to compute the diff betwneen the statistics
1216 * before and after the osnoise sampling.
1217 */
1218 static void
save_osn_sample_stats(struct osnoise_variables * osn_var,struct osnoise_sample * s)1219 save_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s)
1220 {
1221 s->nmi_count = osn_var->nmi.count;
1222 s->irq_count = osn_var->irq.count;
1223 s->softirq_count = osn_var->softirq.count;
1224 s->thread_count = osn_var->thread.count;
1225 }
1226
1227 /*
1228 * diff_osn_sample_stats - Compute the osnoise_sample statistics
1229 *
1230 * After a sample period, compute the difference on the osnoise_sample
1231 * statistics. The struct osnoise_sample *s contains the statistics saved via
1232 * save_osn_sample_stats() before the osnoise sampling.
1233 */
1234 static void
diff_osn_sample_stats(struct osnoise_variables * osn_var,struct osnoise_sample * s)1235 diff_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s)
1236 {
1237 s->nmi_count = osn_var->nmi.count - s->nmi_count;
1238 s->irq_count = osn_var->irq.count - s->irq_count;
1239 s->softirq_count = osn_var->softirq.count - s->softirq_count;
1240 s->thread_count = osn_var->thread.count - s->thread_count;
1241 }
1242
1243 /*
1244 * osnoise_stop_tracing - Stop tracing and the tracer.
1245 */
osnoise_stop_tracing(void)1246 static __always_inline void osnoise_stop_tracing(void)
1247 {
1248 struct osnoise_instance *inst;
1249 struct trace_array *tr;
1250
1251 rcu_read_lock();
1252 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
1253 tr = inst->tr;
1254 trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_,
1255 "stop tracing hit on cpu %d\n", smp_processor_id());
1256
1257 tracer_tracing_off(tr);
1258 }
1259 rcu_read_unlock();
1260 }
1261
1262 /*
1263 * notify_new_max_latency - Notify a new max latency via fsnotify interface.
1264 */
notify_new_max_latency(u64 latency)1265 static void notify_new_max_latency(u64 latency)
1266 {
1267 struct osnoise_instance *inst;
1268 struct trace_array *tr;
1269
1270 rcu_read_lock();
1271 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
1272 tr = inst->tr;
1273 if (tr->max_latency < latency) {
1274 tr->max_latency = latency;
1275 latency_fsnotify(tr);
1276 }
1277 }
1278 rcu_read_unlock();
1279 }
1280
1281 /*
1282 * run_osnoise - Sample the time and look for osnoise
1283 *
1284 * Used to capture the time, looking for potential osnoise latency repeatedly.
1285 * Different from hwlat_detector, it is called with preemption and interrupts
1286 * enabled. This allows irqs, softirqs and threads to run, interfering on the
1287 * osnoise sampling thread, as they would do with a regular thread.
1288 */
run_osnoise(void)1289 static int run_osnoise(void)
1290 {
1291 struct osnoise_variables *osn_var = this_cpu_osn_var();
1292 u64 start, sample, last_sample;
1293 u64 last_int_count, int_count;
1294 s64 noise = 0, max_noise = 0;
1295 s64 total, last_total = 0;
1296 struct osnoise_sample s;
1297 unsigned int threshold;
1298 u64 runtime, stop_in;
1299 u64 sum_noise = 0;
1300 int hw_count = 0;
1301 int ret = -1;
1302
1303 /*
1304 * Considers the current thread as the workload.
1305 */
1306 osn_var->pid = current->pid;
1307
1308 /*
1309 * Save the current stats for the diff
1310 */
1311 save_osn_sample_stats(osn_var, &s);
1312
1313 /*
1314 * if threshold is 0, use the default value of 5 us.
1315 */
1316 threshold = tracing_thresh ? : 5000;
1317
1318 /*
1319 * Make sure NMIs see sampling first
1320 */
1321 osn_var->sampling = true;
1322 barrier();
1323
1324 /*
1325 * Transform the *_us config to nanoseconds to avoid the
1326 * division on the main loop.
1327 */
1328 runtime = osnoise_data.sample_runtime * NSEC_PER_USEC;
1329 stop_in = osnoise_data.stop_tracing * NSEC_PER_USEC;
1330
1331 /*
1332 * Start timestemp
1333 */
1334 start = time_get();
1335
1336 /*
1337 * "previous" loop.
1338 */
1339 last_int_count = set_int_safe_time(osn_var, &last_sample);
1340
1341 do {
1342 /*
1343 * Get sample!
1344 */
1345 int_count = set_int_safe_time(osn_var, &sample);
1346
1347 noise = time_sub(sample, last_sample);
1348
1349 /*
1350 * This shouldn't happen.
1351 */
1352 if (noise < 0) {
1353 osnoise_taint("negative noise!");
1354 goto out;
1355 }
1356
1357 /*
1358 * Sample runtime.
1359 */
1360 total = time_sub(sample, start);
1361
1362 /*
1363 * Check for possible overflows.
1364 */
1365 if (total < last_total) {
1366 osnoise_taint("total overflow!");
1367 break;
1368 }
1369
1370 last_total = total;
1371
1372 if (noise >= threshold) {
1373 int interference = int_count - last_int_count;
1374
1375 if (noise > max_noise)
1376 max_noise = noise;
1377
1378 if (!interference)
1379 hw_count++;
1380
1381 sum_noise += noise;
1382
1383 trace_sample_threshold(last_sample, noise, interference);
1384
1385 if (osnoise_data.stop_tracing)
1386 if (noise > stop_in)
1387 osnoise_stop_tracing();
1388 }
1389
1390 /*
1391 * In some cases, notably when running on a nohz_full CPU with
1392 * a stopped tick PREEMPT_RCU has no way to account for QSs.
1393 * This will eventually cause unwarranted noise as PREEMPT_RCU
1394 * will force preemption as the means of ending the current
1395 * grace period. We avoid this problem by calling
1396 * rcu_momentary_dyntick_idle(), which performs a zero duration
1397 * EQS allowing PREEMPT_RCU to end the current grace period.
1398 * This call shouldn't be wrapped inside an RCU critical
1399 * section.
1400 *
1401 * Note that in non PREEMPT_RCU kernels QSs are handled through
1402 * cond_resched()
1403 */
1404 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
1405 local_irq_disable();
1406 rcu_momentary_dyntick_idle();
1407 local_irq_enable();
1408 }
1409
1410 /*
1411 * For the non-preemptive kernel config: let threads runs, if
1412 * they so wish.
1413 */
1414 cond_resched();
1415
1416 last_sample = sample;
1417 last_int_count = int_count;
1418
1419 } while (total < runtime && !kthread_should_stop());
1420
1421 /*
1422 * Finish the above in the view for interrupts.
1423 */
1424 barrier();
1425
1426 osn_var->sampling = false;
1427
1428 /*
1429 * Make sure sampling data is no longer updated.
1430 */
1431 barrier();
1432
1433 /*
1434 * Save noise info.
1435 */
1436 s.noise = time_to_us(sum_noise);
1437 s.runtime = time_to_us(total);
1438 s.max_sample = time_to_us(max_noise);
1439 s.hw_count = hw_count;
1440
1441 /* Save interference stats info */
1442 diff_osn_sample_stats(osn_var, &s);
1443
1444 trace_osnoise_sample(&s);
1445
1446 notify_new_max_latency(max_noise);
1447
1448 if (osnoise_data.stop_tracing_total)
1449 if (s.noise > osnoise_data.stop_tracing_total)
1450 osnoise_stop_tracing();
1451
1452 return 0;
1453 out:
1454 return ret;
1455 }
1456
1457 static struct cpumask osnoise_cpumask;
1458 static struct cpumask save_cpumask;
1459
1460 /*
1461 * osnoise_sleep - sleep until the next period
1462 */
osnoise_sleep(void)1463 static void osnoise_sleep(void)
1464 {
1465 u64 interval;
1466 ktime_t wake_time;
1467
1468 mutex_lock(&interface_lock);
1469 interval = osnoise_data.sample_period - osnoise_data.sample_runtime;
1470 mutex_unlock(&interface_lock);
1471
1472 /*
1473 * differently from hwlat_detector, the osnoise tracer can run
1474 * without a pause because preemption is on.
1475 */
1476 if (!interval) {
1477 /* Let synchronize_rcu_tasks() make progress */
1478 cond_resched_tasks_rcu_qs();
1479 return;
1480 }
1481
1482 wake_time = ktime_add_us(ktime_get(), interval);
1483 __set_current_state(TASK_INTERRUPTIBLE);
1484
1485 while (schedule_hrtimeout_range(&wake_time, 0, HRTIMER_MODE_ABS)) {
1486 if (kthread_should_stop())
1487 break;
1488 }
1489 }
1490
1491 /*
1492 * osnoise_main - The osnoise detection kernel thread
1493 *
1494 * Calls run_osnoise() function to measure the osnoise for the configured runtime,
1495 * every period.
1496 */
osnoise_main(void * data)1497 static int osnoise_main(void *data)
1498 {
1499
1500 while (!kthread_should_stop()) {
1501 run_osnoise();
1502 osnoise_sleep();
1503 }
1504
1505 return 0;
1506 }
1507
1508 #ifdef CONFIG_TIMERLAT_TRACER
1509 /*
1510 * timerlat_irq - hrtimer handler for timerlat.
1511 */
timerlat_irq(struct hrtimer * timer)1512 static enum hrtimer_restart timerlat_irq(struct hrtimer *timer)
1513 {
1514 struct osnoise_variables *osn_var = this_cpu_osn_var();
1515 struct timerlat_variables *tlat;
1516 struct timerlat_sample s;
1517 u64 now;
1518 u64 diff;
1519
1520 /*
1521 * I am not sure if the timer was armed for this CPU. So, get
1522 * the timerlat struct from the timer itself, not from this
1523 * CPU.
1524 */
1525 tlat = container_of(timer, struct timerlat_variables, timer);
1526
1527 now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer));
1528
1529 /*
1530 * Enable the osnoise: events for thread an softirq.
1531 */
1532 tlat->tracing_thread = true;
1533
1534 osn_var->thread.arrival_time = time_get();
1535
1536 /*
1537 * A hardirq is running: the timer IRQ. It is for sure preempting
1538 * a thread, and potentially preempting a softirq.
1539 *
1540 * At this point, it is not interesting to know the duration of the
1541 * preempted thread (and maybe softirq), but how much time they will
1542 * delay the beginning of the execution of the timer thread.
1543 *
1544 * To get the correct (net) delay added by the softirq, its delta_start
1545 * is set as the IRQ one. In this way, at the return of the IRQ, the delta
1546 * start of the sofitrq will be zeroed, accounting then only the time
1547 * after that.
1548 *
1549 * The thread follows the same principle. However, if a softirq is
1550 * running, the thread needs to receive the softirq delta_start. The
1551 * reason being is that the softirq will be the last to be unfolded,
1552 * resseting the thread delay to zero.
1553 *
1554 * The PREEMPT_RT is a special case, though. As softirqs run as threads
1555 * on RT, moving the thread is enough.
1556 */
1557 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && osn_var->softirq.delta_start) {
1558 copy_int_safe_time(osn_var, &osn_var->thread.delta_start,
1559 &osn_var->softirq.delta_start);
1560
1561 copy_int_safe_time(osn_var, &osn_var->softirq.delta_start,
1562 &osn_var->irq.delta_start);
1563 } else {
1564 copy_int_safe_time(osn_var, &osn_var->thread.delta_start,
1565 &osn_var->irq.delta_start);
1566 }
1567
1568 /*
1569 * Compute the current time with the expected time.
1570 */
1571 diff = now - tlat->abs_period;
1572
1573 tlat->count++;
1574 s.seqnum = tlat->count;
1575 s.timer_latency = diff;
1576 s.context = IRQ_CONTEXT;
1577
1578 trace_timerlat_sample(&s);
1579
1580 if (osnoise_data.stop_tracing) {
1581 if (time_to_us(diff) >= osnoise_data.stop_tracing) {
1582
1583 /*
1584 * At this point, if stop_tracing is set and <= print_stack,
1585 * print_stack is set and would be printed in the thread handler.
1586 *
1587 * Thus, print the stack trace as it is helpful to define the
1588 * root cause of an IRQ latency.
1589 */
1590 if (osnoise_data.stop_tracing <= osnoise_data.print_stack) {
1591 timerlat_save_stack(0);
1592 timerlat_dump_stack(time_to_us(diff));
1593 }
1594
1595 osnoise_stop_tracing();
1596 notify_new_max_latency(diff);
1597
1598 return HRTIMER_NORESTART;
1599 }
1600 }
1601
1602 wake_up_process(tlat->kthread);
1603
1604 if (osnoise_data.print_stack)
1605 timerlat_save_stack(0);
1606
1607 return HRTIMER_NORESTART;
1608 }
1609
1610 /*
1611 * wait_next_period - Wait for the next period for timerlat
1612 */
wait_next_period(struct timerlat_variables * tlat)1613 static int wait_next_period(struct timerlat_variables *tlat)
1614 {
1615 ktime_t next_abs_period, now;
1616 u64 rel_period = osnoise_data.timerlat_period * 1000;
1617
1618 now = hrtimer_cb_get_time(&tlat->timer);
1619 next_abs_period = ns_to_ktime(tlat->abs_period + rel_period);
1620
1621 /*
1622 * Save the next abs_period.
1623 */
1624 tlat->abs_period = (u64) ktime_to_ns(next_abs_period);
1625
1626 /*
1627 * If the new abs_period is in the past, skip the activation.
1628 */
1629 while (ktime_compare(now, next_abs_period) > 0) {
1630 next_abs_period = ns_to_ktime(tlat->abs_period + rel_period);
1631 tlat->abs_period = (u64) ktime_to_ns(next_abs_period);
1632 }
1633
1634 set_current_state(TASK_INTERRUPTIBLE);
1635
1636 hrtimer_start(&tlat->timer, next_abs_period, HRTIMER_MODE_ABS_PINNED_HARD);
1637 schedule();
1638 return 1;
1639 }
1640
1641 /*
1642 * timerlat_main- Timerlat main
1643 */
timerlat_main(void * data)1644 static int timerlat_main(void *data)
1645 {
1646 struct osnoise_variables *osn_var = this_cpu_osn_var();
1647 struct timerlat_variables *tlat = this_cpu_tmr_var();
1648 struct timerlat_sample s;
1649 struct sched_param sp;
1650 u64 now, diff;
1651
1652 /*
1653 * Make the thread RT, that is how cyclictest is usually used.
1654 */
1655 sp.sched_priority = DEFAULT_TIMERLAT_PRIO;
1656 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1657
1658 tlat->count = 0;
1659 tlat->tracing_thread = false;
1660
1661 hrtimer_init(&tlat->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1662 tlat->timer.function = timerlat_irq;
1663 tlat->kthread = current;
1664 osn_var->pid = current->pid;
1665 /*
1666 * Anotate the arrival time.
1667 */
1668 tlat->abs_period = hrtimer_cb_get_time(&tlat->timer);
1669
1670 wait_next_period(tlat);
1671
1672 osn_var->sampling = 1;
1673
1674 while (!kthread_should_stop()) {
1675 now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer));
1676 diff = now - tlat->abs_period;
1677
1678 s.seqnum = tlat->count;
1679 s.timer_latency = diff;
1680 s.context = THREAD_CONTEXT;
1681
1682 trace_timerlat_sample(&s);
1683
1684 timerlat_dump_stack(time_to_us(diff));
1685
1686 tlat->tracing_thread = false;
1687 if (osnoise_data.stop_tracing_total)
1688 if (time_to_us(diff) >= osnoise_data.stop_tracing_total)
1689 osnoise_stop_tracing();
1690
1691 wait_next_period(tlat);
1692 }
1693
1694 hrtimer_cancel(&tlat->timer);
1695 return 0;
1696 }
1697 #else /* CONFIG_TIMERLAT_TRACER */
timerlat_main(void * data)1698 static int timerlat_main(void *data)
1699 {
1700 return 0;
1701 }
1702 #endif /* CONFIG_TIMERLAT_TRACER */
1703
1704 /*
1705 * stop_kthread - stop a workload thread
1706 */
stop_kthread(unsigned int cpu)1707 static void stop_kthread(unsigned int cpu)
1708 {
1709 struct task_struct *kthread;
1710
1711 kthread = per_cpu(per_cpu_osnoise_var, cpu).kthread;
1712 if (kthread)
1713 kthread_stop(kthread);
1714 per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL;
1715 }
1716
1717 /*
1718 * stop_per_cpu_kthread - Stop per-cpu threads
1719 *
1720 * Stop the osnoise sampling htread. Use this on unload and at system
1721 * shutdown.
1722 */
stop_per_cpu_kthreads(void)1723 static void stop_per_cpu_kthreads(void)
1724 {
1725 int cpu;
1726
1727 cpus_read_lock();
1728
1729 for_each_online_cpu(cpu)
1730 stop_kthread(cpu);
1731
1732 cpus_read_unlock();
1733 }
1734
1735 /*
1736 * start_kthread - Start a workload tread
1737 */
start_kthread(unsigned int cpu)1738 static int start_kthread(unsigned int cpu)
1739 {
1740 struct task_struct *kthread;
1741 void *main = osnoise_main;
1742 char comm[24];
1743
1744 if (timerlat_enabled()) {
1745 snprintf(comm, 24, "timerlat/%d", cpu);
1746 main = timerlat_main;
1747 } else {
1748 snprintf(comm, 24, "osnoise/%d", cpu);
1749 }
1750
1751 kthread = kthread_run_on_cpu(main, NULL, cpu, comm);
1752
1753 if (IS_ERR(kthread)) {
1754 pr_err(BANNER "could not start sampling thread\n");
1755 stop_per_cpu_kthreads();
1756 return -ENOMEM;
1757 }
1758
1759 per_cpu(per_cpu_osnoise_var, cpu).kthread = kthread;
1760
1761 return 0;
1762 }
1763
1764 /*
1765 * start_per_cpu_kthread - Kick off per-cpu osnoise sampling kthreads
1766 *
1767 * This starts the kernel thread that will look for osnoise on many
1768 * cpus.
1769 */
start_per_cpu_kthreads(void)1770 static int start_per_cpu_kthreads(void)
1771 {
1772 struct cpumask *current_mask = &save_cpumask;
1773 int retval = 0;
1774 int cpu;
1775
1776 cpus_read_lock();
1777 /*
1778 * Run only on online CPUs in which osnoise is allowed to run.
1779 */
1780 cpumask_and(current_mask, cpu_online_mask, &osnoise_cpumask);
1781
1782 for_each_possible_cpu(cpu)
1783 per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL;
1784
1785 for_each_cpu(cpu, current_mask) {
1786 retval = start_kthread(cpu);
1787 if (retval) {
1788 cpus_read_unlock();
1789 stop_per_cpu_kthreads();
1790 return retval;
1791 }
1792 }
1793
1794 cpus_read_unlock();
1795
1796 return retval;
1797 }
1798
1799 #ifdef CONFIG_HOTPLUG_CPU
osnoise_hotplug_workfn(struct work_struct * dummy)1800 static void osnoise_hotplug_workfn(struct work_struct *dummy)
1801 {
1802 unsigned int cpu = smp_processor_id();
1803
1804 mutex_lock(&trace_types_lock);
1805
1806 if (!osnoise_has_registered_instances())
1807 goto out_unlock_trace;
1808
1809 mutex_lock(&interface_lock);
1810 cpus_read_lock();
1811
1812 if (!cpumask_test_cpu(cpu, &osnoise_cpumask))
1813 goto out_unlock;
1814
1815 start_kthread(cpu);
1816
1817 out_unlock:
1818 cpus_read_unlock();
1819 mutex_unlock(&interface_lock);
1820 out_unlock_trace:
1821 mutex_unlock(&trace_types_lock);
1822 }
1823
1824 static DECLARE_WORK(osnoise_hotplug_work, osnoise_hotplug_workfn);
1825
1826 /*
1827 * osnoise_cpu_init - CPU hotplug online callback function
1828 */
osnoise_cpu_init(unsigned int cpu)1829 static int osnoise_cpu_init(unsigned int cpu)
1830 {
1831 schedule_work_on(cpu, &osnoise_hotplug_work);
1832 return 0;
1833 }
1834
1835 /*
1836 * osnoise_cpu_die - CPU hotplug offline callback function
1837 */
osnoise_cpu_die(unsigned int cpu)1838 static int osnoise_cpu_die(unsigned int cpu)
1839 {
1840 stop_kthread(cpu);
1841 return 0;
1842 }
1843
osnoise_init_hotplug_support(void)1844 static void osnoise_init_hotplug_support(void)
1845 {
1846 int ret;
1847
1848 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/osnoise:online",
1849 osnoise_cpu_init, osnoise_cpu_die);
1850 if (ret < 0)
1851 pr_warn(BANNER "Error to init cpu hotplug support\n");
1852
1853 return;
1854 }
1855 #else /* CONFIG_HOTPLUG_CPU */
osnoise_init_hotplug_support(void)1856 static void osnoise_init_hotplug_support(void)
1857 {
1858 return;
1859 }
1860 #endif /* CONFIG_HOTPLUG_CPU */
1861
1862 /*
1863 * osnoise_cpus_read - Read function for reading the "cpus" file
1864 * @filp: The active open file structure
1865 * @ubuf: The userspace provided buffer to read value into
1866 * @cnt: The maximum number of bytes to read
1867 * @ppos: The current "file" position
1868 *
1869 * Prints the "cpus" output into the user-provided buffer.
1870 */
1871 static ssize_t
osnoise_cpus_read(struct file * filp,char __user * ubuf,size_t count,loff_t * ppos)1872 osnoise_cpus_read(struct file *filp, char __user *ubuf, size_t count,
1873 loff_t *ppos)
1874 {
1875 char *mask_str;
1876 int len;
1877
1878 mutex_lock(&interface_lock);
1879
1880 len = snprintf(NULL, 0, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask)) + 1;
1881 mask_str = kmalloc(len, GFP_KERNEL);
1882 if (!mask_str) {
1883 count = -ENOMEM;
1884 goto out_unlock;
1885 }
1886
1887 len = snprintf(mask_str, len, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask));
1888 if (len >= count) {
1889 count = -EINVAL;
1890 goto out_free;
1891 }
1892
1893 count = simple_read_from_buffer(ubuf, count, ppos, mask_str, len);
1894
1895 out_free:
1896 kfree(mask_str);
1897 out_unlock:
1898 mutex_unlock(&interface_lock);
1899
1900 return count;
1901 }
1902
1903 /*
1904 * osnoise_cpus_write - Write function for "cpus" entry
1905 * @filp: The active open file structure
1906 * @ubuf: The user buffer that contains the value to write
1907 * @cnt: The maximum number of bytes to write to "file"
1908 * @ppos: The current position in @file
1909 *
1910 * This function provides a write implementation for the "cpus"
1911 * interface to the osnoise trace. By default, it lists all CPUs,
1912 * in this way, allowing osnoise threads to run on any online CPU
1913 * of the system. It serves to restrict the execution of osnoise to the
1914 * set of CPUs writing via this interface. Why not use "tracing_cpumask"?
1915 * Because the user might be interested in tracing what is running on
1916 * other CPUs. For instance, one might run osnoise in one HT CPU
1917 * while observing what is running on the sibling HT CPU.
1918 */
1919 static ssize_t
osnoise_cpus_write(struct file * filp,const char __user * ubuf,size_t count,loff_t * ppos)1920 osnoise_cpus_write(struct file *filp, const char __user *ubuf, size_t count,
1921 loff_t *ppos)
1922 {
1923 cpumask_var_t osnoise_cpumask_new;
1924 int running, err;
1925 char buf[256];
1926
1927 if (count >= 256)
1928 return -EINVAL;
1929
1930 if (copy_from_user(buf, ubuf, count))
1931 return -EFAULT;
1932
1933 if (!zalloc_cpumask_var(&osnoise_cpumask_new, GFP_KERNEL))
1934 return -ENOMEM;
1935
1936 err = cpulist_parse(buf, osnoise_cpumask_new);
1937 if (err)
1938 goto err_free;
1939
1940 /*
1941 * trace_types_lock is taken to avoid concurrency on start/stop.
1942 */
1943 mutex_lock(&trace_types_lock);
1944 running = osnoise_has_registered_instances();
1945 if (running)
1946 stop_per_cpu_kthreads();
1947
1948 mutex_lock(&interface_lock);
1949 /*
1950 * osnoise_cpumask is read by CPU hotplug operations.
1951 */
1952 cpus_read_lock();
1953
1954 cpumask_copy(&osnoise_cpumask, osnoise_cpumask_new);
1955
1956 cpus_read_unlock();
1957 mutex_unlock(&interface_lock);
1958
1959 if (running)
1960 start_per_cpu_kthreads();
1961 mutex_unlock(&trace_types_lock);
1962
1963 free_cpumask_var(osnoise_cpumask_new);
1964 return count;
1965
1966 err_free:
1967 free_cpumask_var(osnoise_cpumask_new);
1968
1969 return err;
1970 }
1971
1972 /*
1973 * osnoise/runtime_us: cannot be greater than the period.
1974 */
1975 static struct trace_min_max_param osnoise_runtime = {
1976 .lock = &interface_lock,
1977 .val = &osnoise_data.sample_runtime,
1978 .max = &osnoise_data.sample_period,
1979 .min = NULL,
1980 };
1981
1982 /*
1983 * osnoise/period_us: cannot be smaller than the runtime.
1984 */
1985 static struct trace_min_max_param osnoise_period = {
1986 .lock = &interface_lock,
1987 .val = &osnoise_data.sample_period,
1988 .max = NULL,
1989 .min = &osnoise_data.sample_runtime,
1990 };
1991
1992 /*
1993 * osnoise/stop_tracing_us: no limit.
1994 */
1995 static struct trace_min_max_param osnoise_stop_tracing_in = {
1996 .lock = &interface_lock,
1997 .val = &osnoise_data.stop_tracing,
1998 .max = NULL,
1999 .min = NULL,
2000 };
2001
2002 /*
2003 * osnoise/stop_tracing_total_us: no limit.
2004 */
2005 static struct trace_min_max_param osnoise_stop_tracing_total = {
2006 .lock = &interface_lock,
2007 .val = &osnoise_data.stop_tracing_total,
2008 .max = NULL,
2009 .min = NULL,
2010 };
2011
2012 #ifdef CONFIG_TIMERLAT_TRACER
2013 /*
2014 * osnoise/print_stack: print the stacktrace of the IRQ handler if the total
2015 * latency is higher than val.
2016 */
2017 static struct trace_min_max_param osnoise_print_stack = {
2018 .lock = &interface_lock,
2019 .val = &osnoise_data.print_stack,
2020 .max = NULL,
2021 .min = NULL,
2022 };
2023
2024 /*
2025 * osnoise/timerlat_period: min 100 us, max 1 s
2026 */
2027 u64 timerlat_min_period = 100;
2028 u64 timerlat_max_period = 1000000;
2029 static struct trace_min_max_param timerlat_period = {
2030 .lock = &interface_lock,
2031 .val = &osnoise_data.timerlat_period,
2032 .max = &timerlat_max_period,
2033 .min = &timerlat_min_period,
2034 };
2035 #endif
2036
2037 static const struct file_operations cpus_fops = {
2038 .open = tracing_open_generic,
2039 .read = osnoise_cpus_read,
2040 .write = osnoise_cpus_write,
2041 .llseek = generic_file_llseek,
2042 };
2043
2044 #ifdef CONFIG_TIMERLAT_TRACER
2045 #ifdef CONFIG_STACKTRACE
init_timerlat_stack_tracefs(struct dentry * top_dir)2046 static int init_timerlat_stack_tracefs(struct dentry *top_dir)
2047 {
2048 struct dentry *tmp;
2049
2050 tmp = tracefs_create_file("print_stack", TRACE_MODE_WRITE, top_dir,
2051 &osnoise_print_stack, &trace_min_max_fops);
2052 if (!tmp)
2053 return -ENOMEM;
2054
2055 return 0;
2056 }
2057 #else /* CONFIG_STACKTRACE */
init_timerlat_stack_tracefs(struct dentry * top_dir)2058 static int init_timerlat_stack_tracefs(struct dentry *top_dir)
2059 {
2060 return 0;
2061 }
2062 #endif /* CONFIG_STACKTRACE */
2063
2064 /*
2065 * init_timerlat_tracefs - A function to initialize the timerlat interface files
2066 */
init_timerlat_tracefs(struct dentry * top_dir)2067 static int init_timerlat_tracefs(struct dentry *top_dir)
2068 {
2069 struct dentry *tmp;
2070
2071 tmp = tracefs_create_file("timerlat_period_us", TRACE_MODE_WRITE, top_dir,
2072 &timerlat_period, &trace_min_max_fops);
2073 if (!tmp)
2074 return -ENOMEM;
2075
2076 return init_timerlat_stack_tracefs(top_dir);
2077 }
2078 #else /* CONFIG_TIMERLAT_TRACER */
init_timerlat_tracefs(struct dentry * top_dir)2079 static int init_timerlat_tracefs(struct dentry *top_dir)
2080 {
2081 return 0;
2082 }
2083 #endif /* CONFIG_TIMERLAT_TRACER */
2084
2085 /*
2086 * init_tracefs - A function to initialize the tracefs interface files
2087 *
2088 * This function creates entries in tracefs for "osnoise" and "timerlat".
2089 * It creates these directories in the tracing directory, and within that
2090 * directory the use can change and view the configs.
2091 */
init_tracefs(void)2092 static int init_tracefs(void)
2093 {
2094 struct dentry *top_dir;
2095 struct dentry *tmp;
2096 int ret;
2097
2098 ret = tracing_init_dentry();
2099 if (ret)
2100 return -ENOMEM;
2101
2102 top_dir = tracefs_create_dir("osnoise", NULL);
2103 if (!top_dir)
2104 return 0;
2105
2106 tmp = tracefs_create_file("period_us", TRACE_MODE_WRITE, top_dir,
2107 &osnoise_period, &trace_min_max_fops);
2108 if (!tmp)
2109 goto err;
2110
2111 tmp = tracefs_create_file("runtime_us", TRACE_MODE_WRITE, top_dir,
2112 &osnoise_runtime, &trace_min_max_fops);
2113 if (!tmp)
2114 goto err;
2115
2116 tmp = tracefs_create_file("stop_tracing_us", TRACE_MODE_WRITE, top_dir,
2117 &osnoise_stop_tracing_in, &trace_min_max_fops);
2118 if (!tmp)
2119 goto err;
2120
2121 tmp = tracefs_create_file("stop_tracing_total_us", TRACE_MODE_WRITE, top_dir,
2122 &osnoise_stop_tracing_total, &trace_min_max_fops);
2123 if (!tmp)
2124 goto err;
2125
2126 tmp = trace_create_file("cpus", TRACE_MODE_WRITE, top_dir, NULL, &cpus_fops);
2127 if (!tmp)
2128 goto err;
2129
2130 ret = init_timerlat_tracefs(top_dir);
2131 if (ret)
2132 goto err;
2133
2134 return 0;
2135
2136 err:
2137 tracefs_remove(top_dir);
2138 return -ENOMEM;
2139 }
2140
osnoise_hook_events(void)2141 static int osnoise_hook_events(void)
2142 {
2143 int retval;
2144
2145 /*
2146 * Trace is already hooked, we are re-enabling from
2147 * a stop_tracing_*.
2148 */
2149 if (trace_osnoise_callback_enabled)
2150 return 0;
2151
2152 retval = hook_irq_events();
2153 if (retval)
2154 return -EINVAL;
2155
2156 retval = hook_softirq_events();
2157 if (retval)
2158 goto out_unhook_irq;
2159
2160 retval = hook_thread_events();
2161 /*
2162 * All fine!
2163 */
2164 if (!retval)
2165 return 0;
2166
2167 unhook_softirq_events();
2168 out_unhook_irq:
2169 unhook_irq_events();
2170 return -EINVAL;
2171 }
2172
osnoise_unhook_events(void)2173 static void osnoise_unhook_events(void)
2174 {
2175 unhook_thread_events();
2176 unhook_softirq_events();
2177 unhook_irq_events();
2178 }
2179
2180 /*
2181 * osnoise_workload_start - start the workload and hook to events
2182 */
osnoise_workload_start(void)2183 static int osnoise_workload_start(void)
2184 {
2185 int retval;
2186
2187 /*
2188 * Instances need to be registered after calling workload
2189 * start. Hence, if there is already an instance, the
2190 * workload was already registered. Otherwise, this
2191 * code is on the way to register the first instance,
2192 * and the workload will start.
2193 */
2194 if (osnoise_has_registered_instances())
2195 return 0;
2196
2197 osn_var_reset_all();
2198
2199 retval = osnoise_hook_events();
2200 if (retval)
2201 return retval;
2202
2203 /*
2204 * Make sure that ftrace_nmi_enter/exit() see reset values
2205 * before enabling trace_osnoise_callback_enabled.
2206 */
2207 barrier();
2208 trace_osnoise_callback_enabled = true;
2209
2210 retval = start_per_cpu_kthreads();
2211 if (retval) {
2212 trace_osnoise_callback_enabled = false;
2213 /*
2214 * Make sure that ftrace_nmi_enter/exit() see
2215 * trace_osnoise_callback_enabled as false before continuing.
2216 */
2217 barrier();
2218
2219 osnoise_unhook_events();
2220 return retval;
2221 }
2222
2223 return 0;
2224 }
2225
2226 /*
2227 * osnoise_workload_stop - stop the workload and unhook the events
2228 */
osnoise_workload_stop(void)2229 static void osnoise_workload_stop(void)
2230 {
2231 /*
2232 * Instances need to be unregistered before calling
2233 * stop. Hence, if there is a registered instance, more
2234 * than one instance is running, and the workload will not
2235 * yet stop. Otherwise, this code is on the way to disable
2236 * the last instance, and the workload can stop.
2237 */
2238 if (osnoise_has_registered_instances())
2239 return;
2240
2241 /*
2242 * If callbacks were already disabled in a previous stop
2243 * call, there is no need to disable then again.
2244 *
2245 * For instance, this happens when tracing is stopped via:
2246 * echo 0 > tracing_on
2247 * echo nop > current_tracer.
2248 */
2249 if (!trace_osnoise_callback_enabled)
2250 return;
2251
2252 trace_osnoise_callback_enabled = false;
2253 /*
2254 * Make sure that ftrace_nmi_enter/exit() see
2255 * trace_osnoise_callback_enabled as false before continuing.
2256 */
2257 barrier();
2258
2259 stop_per_cpu_kthreads();
2260
2261 osnoise_unhook_events();
2262 }
2263
osnoise_tracer_start(struct trace_array * tr)2264 static void osnoise_tracer_start(struct trace_array *tr)
2265 {
2266 int retval;
2267
2268 /*
2269 * If the instance is already registered, there is no need to
2270 * register it again.
2271 */
2272 if (osnoise_instance_registered(tr))
2273 return;
2274
2275 retval = osnoise_workload_start();
2276 if (retval)
2277 pr_err(BANNER "Error starting osnoise tracer\n");
2278
2279 osnoise_register_instance(tr);
2280 }
2281
osnoise_tracer_stop(struct trace_array * tr)2282 static void osnoise_tracer_stop(struct trace_array *tr)
2283 {
2284 osnoise_unregister_instance(tr);
2285 osnoise_workload_stop();
2286 }
2287
osnoise_tracer_init(struct trace_array * tr)2288 static int osnoise_tracer_init(struct trace_array *tr)
2289 {
2290 /*
2291 * Only allow osnoise tracer if timerlat tracer is not running
2292 * already.
2293 */
2294 if (timerlat_enabled())
2295 return -EBUSY;
2296
2297 tr->max_latency = 0;
2298
2299 osnoise_tracer_start(tr);
2300 return 0;
2301 }
2302
osnoise_tracer_reset(struct trace_array * tr)2303 static void osnoise_tracer_reset(struct trace_array *tr)
2304 {
2305 osnoise_tracer_stop(tr);
2306 }
2307
2308 static struct tracer osnoise_tracer __read_mostly = {
2309 .name = "osnoise",
2310 .init = osnoise_tracer_init,
2311 .reset = osnoise_tracer_reset,
2312 .start = osnoise_tracer_start,
2313 .stop = osnoise_tracer_stop,
2314 .print_header = print_osnoise_headers,
2315 .allow_instances = true,
2316 };
2317
2318 #ifdef CONFIG_TIMERLAT_TRACER
timerlat_tracer_start(struct trace_array * tr)2319 static void timerlat_tracer_start(struct trace_array *tr)
2320 {
2321 int retval;
2322
2323 /*
2324 * If the instance is already registered, there is no need to
2325 * register it again.
2326 */
2327 if (osnoise_instance_registered(tr))
2328 return;
2329
2330 retval = osnoise_workload_start();
2331 if (retval)
2332 pr_err(BANNER "Error starting timerlat tracer\n");
2333
2334 osnoise_register_instance(tr);
2335
2336 return;
2337 }
2338
timerlat_tracer_stop(struct trace_array * tr)2339 static void timerlat_tracer_stop(struct trace_array *tr)
2340 {
2341 int cpu;
2342
2343 osnoise_unregister_instance(tr);
2344
2345 /*
2346 * Instruct the threads to stop only if this is the last instance.
2347 */
2348 if (!osnoise_has_registered_instances()) {
2349 for_each_online_cpu(cpu)
2350 per_cpu(per_cpu_osnoise_var, cpu).sampling = 0;
2351 }
2352
2353 osnoise_workload_stop();
2354 }
2355
timerlat_tracer_init(struct trace_array * tr)2356 static int timerlat_tracer_init(struct trace_array *tr)
2357 {
2358 /*
2359 * Only allow timerlat tracer if osnoise tracer is not running already.
2360 */
2361 if (osnoise_has_registered_instances() && !osnoise_data.timerlat_tracer)
2362 return -EBUSY;
2363
2364 /*
2365 * If this is the first instance, set timerlat_tracer to block
2366 * osnoise tracer start.
2367 */
2368 if (!osnoise_has_registered_instances())
2369 osnoise_data.timerlat_tracer = 1;
2370
2371 tr->max_latency = 0;
2372 timerlat_tracer_start(tr);
2373
2374 return 0;
2375 }
2376
timerlat_tracer_reset(struct trace_array * tr)2377 static void timerlat_tracer_reset(struct trace_array *tr)
2378 {
2379 timerlat_tracer_stop(tr);
2380
2381 /*
2382 * If this is the last instance, reset timerlat_tracer allowing
2383 * osnoise to be started.
2384 */
2385 if (!osnoise_has_registered_instances())
2386 osnoise_data.timerlat_tracer = 0;
2387 }
2388
2389 static struct tracer timerlat_tracer __read_mostly = {
2390 .name = "timerlat",
2391 .init = timerlat_tracer_init,
2392 .reset = timerlat_tracer_reset,
2393 .start = timerlat_tracer_start,
2394 .stop = timerlat_tracer_stop,
2395 .print_header = print_timerlat_headers,
2396 .allow_instances = true,
2397 };
2398
init_timerlat_tracer(void)2399 __init static int init_timerlat_tracer(void)
2400 {
2401 return register_tracer(&timerlat_tracer);
2402 }
2403 #else /* CONFIG_TIMERLAT_TRACER */
init_timerlat_tracer(void)2404 __init static int init_timerlat_tracer(void)
2405 {
2406 return 0;
2407 }
2408 #endif /* CONFIG_TIMERLAT_TRACER */
2409
init_osnoise_tracer(void)2410 __init static int init_osnoise_tracer(void)
2411 {
2412 int ret;
2413
2414 mutex_init(&interface_lock);
2415
2416 cpumask_copy(&osnoise_cpumask, cpu_all_mask);
2417
2418 ret = register_tracer(&osnoise_tracer);
2419 if (ret) {
2420 pr_err(BANNER "Error registering osnoise!\n");
2421 return ret;
2422 }
2423
2424 ret = init_timerlat_tracer();
2425 if (ret) {
2426 pr_err(BANNER "Error registering timerlat!\n");
2427 return ret;
2428 }
2429
2430 osnoise_init_hotplug_support();
2431
2432 INIT_LIST_HEAD_RCU(&osnoise_instances);
2433
2434 init_tracefs();
2435
2436 return 0;
2437 }
2438 late_initcall(init_osnoise_tracer);
2439