1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * OS Noise Tracer: computes the OS Noise suffered by a running thread.
4 * Timerlat Tracer: measures the wakeup latency of a timer triggered IRQ and thread.
5 *
6 * Based on "hwlat_detector" tracer by:
7 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
8 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
9 * With feedback from Clark Williams <williams@redhat.com>
10 *
11 * And also based on the rtsl tracer presented on:
12 * DE OLIVEIRA, Daniel Bristot, et al. Demystifying the real-time linux
13 * scheduling latency. In: 32nd Euromicro Conference on Real-Time Systems
14 * (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2020.
15 *
16 * Copyright (C) 2021 Daniel Bristot de Oliveira, Red Hat, Inc. <bristot@redhat.com>
17 */
18
19 #include <linux/kthread.h>
20 #include <linux/tracefs.h>
21 #include <linux/uaccess.h>
22 #include <linux/cpumask.h>
23 #include <linux/delay.h>
24 #include <linux/sched/clock.h>
25 #include <uapi/linux/sched/types.h>
26 #include <linux/sched.h>
27 #include "trace.h"
28
29 #ifdef CONFIG_X86_LOCAL_APIC
30 #include <asm/trace/irq_vectors.h>
31 #undef TRACE_INCLUDE_PATH
32 #undef TRACE_INCLUDE_FILE
33 #endif /* CONFIG_X86_LOCAL_APIC */
34
35 #include <trace/events/irq.h>
36 #include <trace/events/sched.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/osnoise.h>
40
41 /*
42 * Default values.
43 */
44 #define BANNER "osnoise: "
45 #define DEFAULT_SAMPLE_PERIOD 1000000 /* 1s */
46 #define DEFAULT_SAMPLE_RUNTIME 1000000 /* 1s */
47
48 #define DEFAULT_TIMERLAT_PERIOD 1000 /* 1ms */
49 #define DEFAULT_TIMERLAT_PRIO 95 /* FIFO 95 */
50
51 /*
52 * trace_array of the enabled osnoise/timerlat instances.
53 */
54 struct osnoise_instance {
55 struct list_head list;
56 struct trace_array *tr;
57 };
58
59 static struct list_head osnoise_instances;
60
osnoise_has_registered_instances(void)61 static bool osnoise_has_registered_instances(void)
62 {
63 return !!list_first_or_null_rcu(&osnoise_instances,
64 struct osnoise_instance,
65 list);
66 }
67
68 /*
69 * osnoise_instance_registered - check if a tr is already registered
70 */
osnoise_instance_registered(struct trace_array * tr)71 static int osnoise_instance_registered(struct trace_array *tr)
72 {
73 struct osnoise_instance *inst;
74 int found = 0;
75
76 rcu_read_lock();
77 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
78 if (inst->tr == tr)
79 found = 1;
80 }
81 rcu_read_unlock();
82
83 return found;
84 }
85
86 /*
87 * osnoise_register_instance - register a new trace instance
88 *
89 * Register a trace_array *tr in the list of instances running
90 * osnoise/timerlat tracers.
91 */
osnoise_register_instance(struct trace_array * tr)92 static int osnoise_register_instance(struct trace_array *tr)
93 {
94 struct osnoise_instance *inst;
95
96 /*
97 * register/unregister serialization is provided by trace's
98 * trace_types_lock.
99 */
100 lockdep_assert_held(&trace_types_lock);
101
102 inst = kmalloc(sizeof(*inst), GFP_KERNEL);
103 if (!inst)
104 return -ENOMEM;
105
106 INIT_LIST_HEAD_RCU(&inst->list);
107 inst->tr = tr;
108 list_add_tail_rcu(&inst->list, &osnoise_instances);
109
110 return 0;
111 }
112
113 /*
114 * osnoise_unregister_instance - unregister a registered trace instance
115 *
116 * Remove the trace_array *tr from the list of instances running
117 * osnoise/timerlat tracers.
118 */
osnoise_unregister_instance(struct trace_array * tr)119 static void osnoise_unregister_instance(struct trace_array *tr)
120 {
121 struct osnoise_instance *inst;
122 int found = 0;
123
124 /*
125 * register/unregister serialization is provided by trace's
126 * trace_types_lock.
127 */
128 lockdep_assert_held(&trace_types_lock);
129
130 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
131 if (inst->tr == tr) {
132 list_del_rcu(&inst->list);
133 found = 1;
134 break;
135 }
136 }
137
138 if (!found)
139 return;
140
141 kvfree_rcu(inst);
142 }
143
144 /*
145 * NMI runtime info.
146 */
147 struct osn_nmi {
148 u64 count;
149 u64 delta_start;
150 };
151
152 /*
153 * IRQ runtime info.
154 */
155 struct osn_irq {
156 u64 count;
157 u64 arrival_time;
158 u64 delta_start;
159 };
160
161 #define IRQ_CONTEXT 0
162 #define THREAD_CONTEXT 1
163 /*
164 * sofirq runtime info.
165 */
166 struct osn_softirq {
167 u64 count;
168 u64 arrival_time;
169 u64 delta_start;
170 };
171
172 /*
173 * thread runtime info.
174 */
175 struct osn_thread {
176 u64 count;
177 u64 arrival_time;
178 u64 delta_start;
179 };
180
181 /*
182 * Runtime information: this structure saves the runtime information used by
183 * one sampling thread.
184 */
185 struct osnoise_variables {
186 struct task_struct *kthread;
187 bool sampling;
188 pid_t pid;
189 struct osn_nmi nmi;
190 struct osn_irq irq;
191 struct osn_softirq softirq;
192 struct osn_thread thread;
193 local_t int_counter;
194 };
195
196 /*
197 * Per-cpu runtime information.
198 */
199 DEFINE_PER_CPU(struct osnoise_variables, per_cpu_osnoise_var);
200
201 /*
202 * this_cpu_osn_var - Return the per-cpu osnoise_variables on its relative CPU
203 */
this_cpu_osn_var(void)204 static inline struct osnoise_variables *this_cpu_osn_var(void)
205 {
206 return this_cpu_ptr(&per_cpu_osnoise_var);
207 }
208
209 #ifdef CONFIG_TIMERLAT_TRACER
210 /*
211 * Runtime information for the timer mode.
212 */
213 struct timerlat_variables {
214 struct task_struct *kthread;
215 struct hrtimer timer;
216 u64 rel_period;
217 u64 abs_period;
218 bool tracing_thread;
219 u64 count;
220 };
221
222 DEFINE_PER_CPU(struct timerlat_variables, per_cpu_timerlat_var);
223
224 /*
225 * this_cpu_tmr_var - Return the per-cpu timerlat_variables on its relative CPU
226 */
this_cpu_tmr_var(void)227 static inline struct timerlat_variables *this_cpu_tmr_var(void)
228 {
229 return this_cpu_ptr(&per_cpu_timerlat_var);
230 }
231
232 /*
233 * tlat_var_reset - Reset the values of the given timerlat_variables
234 */
tlat_var_reset(void)235 static inline void tlat_var_reset(void)
236 {
237 struct timerlat_variables *tlat_var;
238 int cpu;
239 /*
240 * So far, all the values are initialized as 0, so
241 * zeroing the structure is perfect.
242 */
243 for_each_cpu(cpu, cpu_online_mask) {
244 tlat_var = per_cpu_ptr(&per_cpu_timerlat_var, cpu);
245 memset(tlat_var, 0, sizeof(*tlat_var));
246 }
247 }
248 #else /* CONFIG_TIMERLAT_TRACER */
249 #define tlat_var_reset() do {} while (0)
250 #endif /* CONFIG_TIMERLAT_TRACER */
251
252 /*
253 * osn_var_reset - Reset the values of the given osnoise_variables
254 */
osn_var_reset(void)255 static inline void osn_var_reset(void)
256 {
257 struct osnoise_variables *osn_var;
258 int cpu;
259
260 /*
261 * So far, all the values are initialized as 0, so
262 * zeroing the structure is perfect.
263 */
264 for_each_cpu(cpu, cpu_online_mask) {
265 osn_var = per_cpu_ptr(&per_cpu_osnoise_var, cpu);
266 memset(osn_var, 0, sizeof(*osn_var));
267 }
268 }
269
270 /*
271 * osn_var_reset_all - Reset the value of all per-cpu osnoise_variables
272 */
osn_var_reset_all(void)273 static inline void osn_var_reset_all(void)
274 {
275 osn_var_reset();
276 tlat_var_reset();
277 }
278
279 /*
280 * Tells NMIs to call back to the osnoise tracer to record timestamps.
281 */
282 bool trace_osnoise_callback_enabled;
283
284 /*
285 * osnoise sample structure definition. Used to store the statistics of a
286 * sample run.
287 */
288 struct osnoise_sample {
289 u64 runtime; /* runtime */
290 u64 noise; /* noise */
291 u64 max_sample; /* max single noise sample */
292 int hw_count; /* # HW (incl. hypervisor) interference */
293 int nmi_count; /* # NMIs during this sample */
294 int irq_count; /* # IRQs during this sample */
295 int softirq_count; /* # softirqs during this sample */
296 int thread_count; /* # threads during this sample */
297 };
298
299 #ifdef CONFIG_TIMERLAT_TRACER
300 /*
301 * timerlat sample structure definition. Used to store the statistics of
302 * a sample run.
303 */
304 struct timerlat_sample {
305 u64 timer_latency; /* timer_latency */
306 unsigned int seqnum; /* unique sequence */
307 int context; /* timer context */
308 };
309 #endif
310
311 /*
312 * Protect the interface.
313 */
314 struct mutex interface_lock;
315
316 /*
317 * Tracer data.
318 */
319 static struct osnoise_data {
320 u64 sample_period; /* total sampling period */
321 u64 sample_runtime; /* active sampling portion of period */
322 u64 stop_tracing; /* stop trace in the internal operation (loop/irq) */
323 u64 stop_tracing_total; /* stop trace in the final operation (report/thread) */
324 #ifdef CONFIG_TIMERLAT_TRACER
325 u64 timerlat_period; /* timerlat period */
326 u64 print_stack; /* print IRQ stack if total > */
327 int timerlat_tracer; /* timerlat tracer */
328 #endif
329 bool tainted; /* infor users and developers about a problem */
330 } osnoise_data = {
331 .sample_period = DEFAULT_SAMPLE_PERIOD,
332 .sample_runtime = DEFAULT_SAMPLE_RUNTIME,
333 .stop_tracing = 0,
334 .stop_tracing_total = 0,
335 #ifdef CONFIG_TIMERLAT_TRACER
336 .print_stack = 0,
337 .timerlat_period = DEFAULT_TIMERLAT_PERIOD,
338 .timerlat_tracer = 0,
339 #endif
340 };
341
342 #ifdef CONFIG_TIMERLAT_TRACER
timerlat_enabled(void)343 static inline bool timerlat_enabled(void)
344 {
345 return osnoise_data.timerlat_tracer;
346 }
347
timerlat_softirq_exit(struct osnoise_variables * osn_var)348 static inline int timerlat_softirq_exit(struct osnoise_variables *osn_var)
349 {
350 struct timerlat_variables *tlat_var = this_cpu_tmr_var();
351 /*
352 * If the timerlat is enabled, but the irq handler did
353 * not run yet enabling timerlat_tracer, do not trace.
354 */
355 if (!tlat_var->tracing_thread) {
356 osn_var->softirq.arrival_time = 0;
357 osn_var->softirq.delta_start = 0;
358 return 0;
359 }
360 return 1;
361 }
362
timerlat_thread_exit(struct osnoise_variables * osn_var)363 static inline int timerlat_thread_exit(struct osnoise_variables *osn_var)
364 {
365 struct timerlat_variables *tlat_var = this_cpu_tmr_var();
366 /*
367 * If the timerlat is enabled, but the irq handler did
368 * not run yet enabling timerlat_tracer, do not trace.
369 */
370 if (!tlat_var->tracing_thread) {
371 osn_var->thread.delta_start = 0;
372 osn_var->thread.arrival_time = 0;
373 return 0;
374 }
375 return 1;
376 }
377 #else /* CONFIG_TIMERLAT_TRACER */
timerlat_enabled(void)378 static inline bool timerlat_enabled(void)
379 {
380 return false;
381 }
382
timerlat_softirq_exit(struct osnoise_variables * osn_var)383 static inline int timerlat_softirq_exit(struct osnoise_variables *osn_var)
384 {
385 return 1;
386 }
timerlat_thread_exit(struct osnoise_variables * osn_var)387 static inline int timerlat_thread_exit(struct osnoise_variables *osn_var)
388 {
389 return 1;
390 }
391 #endif
392
393 #ifdef CONFIG_PREEMPT_RT
394 /*
395 * Print the osnoise header info.
396 */
print_osnoise_headers(struct seq_file * s)397 static void print_osnoise_headers(struct seq_file *s)
398 {
399 if (osnoise_data.tainted)
400 seq_puts(s, "# osnoise is tainted!\n");
401
402 seq_puts(s, "# _-------=> irqs-off\n");
403 seq_puts(s, "# / _------=> need-resched\n");
404 seq_puts(s, "# | / _-----=> need-resched-lazy\n");
405 seq_puts(s, "# || / _----=> hardirq/softirq\n");
406 seq_puts(s, "# ||| / _---=> preempt-depth\n");
407 seq_puts(s, "# |||| / _--=> preempt-lazy-depth\n");
408 seq_puts(s, "# ||||| / _-=> migrate-disable\n");
409
410 seq_puts(s, "# |||||| / ");
411 seq_puts(s, " MAX\n");
412
413 seq_puts(s, "# ||||| / ");
414 seq_puts(s, " SINGLE Interference counters:\n");
415
416 seq_puts(s, "# ||||||| RUNTIME ");
417 seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n");
418
419 seq_puts(s, "# TASK-PID CPU# ||||||| TIMESTAMP IN US ");
420 seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n");
421
422 seq_puts(s, "# | | | ||||||| | | ");
423 seq_puts(s, " | | | | | | | |\n");
424 }
425 #else /* CONFIG_PREEMPT_RT */
print_osnoise_headers(struct seq_file * s)426 static void print_osnoise_headers(struct seq_file *s)
427 {
428 if (osnoise_data.tainted)
429 seq_puts(s, "# osnoise is tainted!\n");
430
431 seq_puts(s, "# _-----=> irqs-off\n");
432 seq_puts(s, "# / _----=> need-resched\n");
433 seq_puts(s, "# | / _---=> hardirq/softirq\n");
434 seq_puts(s, "# || / _--=> preempt-depth\n");
435 seq_puts(s, "# ||| / _-=> migrate-disable ");
436 seq_puts(s, " MAX\n");
437 seq_puts(s, "# |||| / delay ");
438 seq_puts(s, " SINGLE Interference counters:\n");
439
440 seq_puts(s, "# ||||| RUNTIME ");
441 seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n");
442
443 seq_puts(s, "# TASK-PID CPU# ||||| TIMESTAMP IN US ");
444 seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n");
445
446 seq_puts(s, "# | | | ||||| | | ");
447 seq_puts(s, " | | | | | | | |\n");
448 }
449 #endif /* CONFIG_PREEMPT_RT */
450
451 /*
452 * osnoise_taint - report an osnoise error.
453 */
454 #define osnoise_taint(msg) ({ \
455 struct osnoise_instance *inst; \
456 struct trace_buffer *buffer; \
457 \
458 rcu_read_lock(); \
459 list_for_each_entry_rcu(inst, &osnoise_instances, list) { \
460 buffer = inst->tr->array_buffer.buffer; \
461 trace_array_printk_buf(buffer, _THIS_IP_, msg); \
462 } \
463 rcu_read_unlock(); \
464 osnoise_data.tainted = true; \
465 })
466
467 /*
468 * Record an osnoise_sample into the tracer buffer.
469 */
470 static void
__trace_osnoise_sample(struct osnoise_sample * sample,struct trace_buffer * buffer)471 __trace_osnoise_sample(struct osnoise_sample *sample, struct trace_buffer *buffer)
472 {
473 struct trace_event_call *call = &event_osnoise;
474 struct ring_buffer_event *event;
475 struct osnoise_entry *entry;
476
477 event = trace_buffer_lock_reserve(buffer, TRACE_OSNOISE, sizeof(*entry),
478 tracing_gen_ctx());
479 if (!event)
480 return;
481 entry = ring_buffer_event_data(event);
482 entry->runtime = sample->runtime;
483 entry->noise = sample->noise;
484 entry->max_sample = sample->max_sample;
485 entry->hw_count = sample->hw_count;
486 entry->nmi_count = sample->nmi_count;
487 entry->irq_count = sample->irq_count;
488 entry->softirq_count = sample->softirq_count;
489 entry->thread_count = sample->thread_count;
490
491 if (!call_filter_check_discard(call, entry, buffer, event))
492 trace_buffer_unlock_commit_nostack(buffer, event);
493 }
494
495 /*
496 * Record an osnoise_sample on all osnoise instances.
497 */
trace_osnoise_sample(struct osnoise_sample * sample)498 static void trace_osnoise_sample(struct osnoise_sample *sample)
499 {
500 struct osnoise_instance *inst;
501 struct trace_buffer *buffer;
502
503 rcu_read_lock();
504 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
505 buffer = inst->tr->array_buffer.buffer;
506 __trace_osnoise_sample(sample, buffer);
507 }
508 rcu_read_unlock();
509 }
510
511 #ifdef CONFIG_TIMERLAT_TRACER
512 /*
513 * Print the timerlat header info.
514 */
515 #ifdef CONFIG_PREEMPT_RT
print_timerlat_headers(struct seq_file * s)516 static void print_timerlat_headers(struct seq_file *s)
517 {
518 seq_puts(s, "# _-------=> irqs-off\n");
519 seq_puts(s, "# / _------=> need-resched\n");
520 seq_puts(s, "# | / _-----=> need-resched-lazy\n");
521 seq_puts(s, "# || / _----=> hardirq/softirq\n");
522 seq_puts(s, "# ||| / _---=> preempt-depth\n");
523 seq_puts(s, "# |||| / _--=> preempt-lazy-depth\n");
524 seq_puts(s, "# ||||| / _-=> migrate-disable\n");
525 seq_puts(s, "# |||||| /\n");
526 seq_puts(s, "# ||||||| ACTIVATION\n");
527 seq_puts(s, "# TASK-PID CPU# ||||||| TIMESTAMP ID ");
528 seq_puts(s, " CONTEXT LATENCY\n");
529 seq_puts(s, "# | | | ||||||| | | ");
530 seq_puts(s, " | |\n");
531 }
532 #else /* CONFIG_PREEMPT_RT */
print_timerlat_headers(struct seq_file * s)533 static void print_timerlat_headers(struct seq_file *s)
534 {
535 seq_puts(s, "# _-----=> irqs-off\n");
536 seq_puts(s, "# / _----=> need-resched\n");
537 seq_puts(s, "# | / _---=> hardirq/softirq\n");
538 seq_puts(s, "# || / _--=> preempt-depth\n");
539 seq_puts(s, "# ||| / _-=> migrate-disable\n");
540 seq_puts(s, "# |||| / delay\n");
541 seq_puts(s, "# ||||| ACTIVATION\n");
542 seq_puts(s, "# TASK-PID CPU# ||||| TIMESTAMP ID ");
543 seq_puts(s, " CONTEXT LATENCY\n");
544 seq_puts(s, "# | | | ||||| | | ");
545 seq_puts(s, " | |\n");
546 }
547 #endif /* CONFIG_PREEMPT_RT */
548
549 static void
__trace_timerlat_sample(struct timerlat_sample * sample,struct trace_buffer * buffer)550 __trace_timerlat_sample(struct timerlat_sample *sample, struct trace_buffer *buffer)
551 {
552 struct trace_event_call *call = &event_osnoise;
553 struct ring_buffer_event *event;
554 struct timerlat_entry *entry;
555
556 event = trace_buffer_lock_reserve(buffer, TRACE_TIMERLAT, sizeof(*entry),
557 tracing_gen_ctx());
558 if (!event)
559 return;
560 entry = ring_buffer_event_data(event);
561 entry->seqnum = sample->seqnum;
562 entry->context = sample->context;
563 entry->timer_latency = sample->timer_latency;
564
565 if (!call_filter_check_discard(call, entry, buffer, event))
566 trace_buffer_unlock_commit_nostack(buffer, event);
567 }
568
569 /*
570 * Record an timerlat_sample into the tracer buffer.
571 */
trace_timerlat_sample(struct timerlat_sample * sample)572 static void trace_timerlat_sample(struct timerlat_sample *sample)
573 {
574 struct osnoise_instance *inst;
575 struct trace_buffer *buffer;
576
577 rcu_read_lock();
578 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
579 buffer = inst->tr->array_buffer.buffer;
580 __trace_timerlat_sample(sample, buffer);
581 }
582 rcu_read_unlock();
583 }
584
585 #ifdef CONFIG_STACKTRACE
586
587 #define MAX_CALLS 256
588
589 /*
590 * Stack trace will take place only at IRQ level, so, no need
591 * to control nesting here.
592 */
593 struct trace_stack {
594 int stack_size;
595 int nr_entries;
596 unsigned long calls[MAX_CALLS];
597 };
598
599 static DEFINE_PER_CPU(struct trace_stack, trace_stack);
600
601 /*
602 * timerlat_save_stack - save a stack trace without printing
603 *
604 * Save the current stack trace without printing. The
605 * stack will be printed later, after the end of the measurement.
606 */
timerlat_save_stack(int skip)607 static void timerlat_save_stack(int skip)
608 {
609 unsigned int size, nr_entries;
610 struct trace_stack *fstack;
611
612 fstack = this_cpu_ptr(&trace_stack);
613
614 size = ARRAY_SIZE(fstack->calls);
615
616 nr_entries = stack_trace_save(fstack->calls, size, skip);
617
618 fstack->stack_size = nr_entries * sizeof(unsigned long);
619 fstack->nr_entries = nr_entries;
620
621 return;
622
623 }
624
625 static void
__timerlat_dump_stack(struct trace_buffer * buffer,struct trace_stack * fstack,unsigned int size)626 __timerlat_dump_stack(struct trace_buffer *buffer, struct trace_stack *fstack, unsigned int size)
627 {
628 struct trace_event_call *call = &event_osnoise;
629 struct ring_buffer_event *event;
630 struct stack_entry *entry;
631
632 event = trace_buffer_lock_reserve(buffer, TRACE_STACK, sizeof(*entry) + size,
633 tracing_gen_ctx());
634 if (!event)
635 return;
636
637 entry = ring_buffer_event_data(event);
638
639 memcpy(&entry->caller, fstack->calls, size);
640 entry->size = fstack->nr_entries;
641
642 if (!call_filter_check_discard(call, entry, buffer, event))
643 trace_buffer_unlock_commit_nostack(buffer, event);
644 }
645
646 /*
647 * timerlat_dump_stack - dump a stack trace previously saved
648 */
timerlat_dump_stack(u64 latency)649 static void timerlat_dump_stack(u64 latency)
650 {
651 struct osnoise_instance *inst;
652 struct trace_buffer *buffer;
653 struct trace_stack *fstack;
654 unsigned int size;
655
656 /*
657 * trace only if latency > print_stack config, if enabled.
658 */
659 if (!osnoise_data.print_stack || osnoise_data.print_stack > latency)
660 return;
661
662 preempt_disable_notrace();
663 fstack = this_cpu_ptr(&trace_stack);
664 size = fstack->stack_size;
665
666 rcu_read_lock();
667 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
668 buffer = inst->tr->array_buffer.buffer;
669 __timerlat_dump_stack(buffer, fstack, size);
670
671 }
672 rcu_read_unlock();
673 preempt_enable_notrace();
674 }
675 #else /* CONFIG_STACKTRACE */
676 #define timerlat_dump_stack(u64 latency) do {} while (0)
677 #define timerlat_save_stack(a) do {} while (0)
678 #endif /* CONFIG_STACKTRACE */
679 #endif /* CONFIG_TIMERLAT_TRACER */
680
681 /*
682 * Macros to encapsulate the time capturing infrastructure.
683 */
684 #define time_get() trace_clock_local()
685 #define time_to_us(x) div_u64(x, 1000)
686 #define time_sub(a, b) ((a) - (b))
687
688 /*
689 * cond_move_irq_delta_start - Forward the delta_start of a running IRQ
690 *
691 * If an IRQ is preempted by an NMI, its delta_start is pushed forward
692 * to discount the NMI interference.
693 *
694 * See get_int_safe_duration().
695 */
696 static inline void
cond_move_irq_delta_start(struct osnoise_variables * osn_var,u64 duration)697 cond_move_irq_delta_start(struct osnoise_variables *osn_var, u64 duration)
698 {
699 if (osn_var->irq.delta_start)
700 osn_var->irq.delta_start += duration;
701 }
702
703 #ifndef CONFIG_PREEMPT_RT
704 /*
705 * cond_move_softirq_delta_start - Forward the delta_start of a running softirq.
706 *
707 * If a softirq is preempted by an IRQ or NMI, its delta_start is pushed
708 * forward to discount the interference.
709 *
710 * See get_int_safe_duration().
711 */
712 static inline void
cond_move_softirq_delta_start(struct osnoise_variables * osn_var,u64 duration)713 cond_move_softirq_delta_start(struct osnoise_variables *osn_var, u64 duration)
714 {
715 if (osn_var->softirq.delta_start)
716 osn_var->softirq.delta_start += duration;
717 }
718 #else /* CONFIG_PREEMPT_RT */
719 #define cond_move_softirq_delta_start(osn_var, duration) do {} while (0)
720 #endif
721
722 /*
723 * cond_move_thread_delta_start - Forward the delta_start of a running thread
724 *
725 * If a noisy thread is preempted by an softirq, IRQ or NMI, its delta_start
726 * is pushed forward to discount the interference.
727 *
728 * See get_int_safe_duration().
729 */
730 static inline void
cond_move_thread_delta_start(struct osnoise_variables * osn_var,u64 duration)731 cond_move_thread_delta_start(struct osnoise_variables *osn_var, u64 duration)
732 {
733 if (osn_var->thread.delta_start)
734 osn_var->thread.delta_start += duration;
735 }
736
737 /*
738 * get_int_safe_duration - Get the duration of a window
739 *
740 * The irq, softirq and thread varaibles need to have its duration without
741 * the interference from higher priority interrupts. Instead of keeping a
742 * variable to discount the interrupt interference from these variables, the
743 * starting time of these variables are pushed forward with the interrupt's
744 * duration. In this way, a single variable is used to:
745 *
746 * - Know if a given window is being measured.
747 * - Account its duration.
748 * - Discount the interference.
749 *
750 * To avoid getting inconsistent values, e.g.,:
751 *
752 * now = time_get()
753 * ---> interrupt!
754 * delta_start -= int duration;
755 * <---
756 * duration = now - delta_start;
757 *
758 * result: negative duration if the variable duration before the
759 * interrupt was smaller than the interrupt execution.
760 *
761 * A counter of interrupts is used. If the counter increased, try
762 * to capture an interference safe duration.
763 */
764 static inline s64
get_int_safe_duration(struct osnoise_variables * osn_var,u64 * delta_start)765 get_int_safe_duration(struct osnoise_variables *osn_var, u64 *delta_start)
766 {
767 u64 int_counter, now;
768 s64 duration;
769
770 do {
771 int_counter = local_read(&osn_var->int_counter);
772 /* synchronize with interrupts */
773 barrier();
774
775 now = time_get();
776 duration = (now - *delta_start);
777
778 /* synchronize with interrupts */
779 barrier();
780 } while (int_counter != local_read(&osn_var->int_counter));
781
782 /*
783 * This is an evidence of race conditions that cause
784 * a value to be "discounted" too much.
785 */
786 if (duration < 0)
787 osnoise_taint("Negative duration!\n");
788
789 *delta_start = 0;
790
791 return duration;
792 }
793
794 /*
795 *
796 * set_int_safe_time - Save the current time on *time, aware of interference
797 *
798 * Get the time, taking into consideration a possible interference from
799 * higher priority interrupts.
800 *
801 * See get_int_safe_duration() for an explanation.
802 */
803 static u64
set_int_safe_time(struct osnoise_variables * osn_var,u64 * time)804 set_int_safe_time(struct osnoise_variables *osn_var, u64 *time)
805 {
806 u64 int_counter;
807
808 do {
809 int_counter = local_read(&osn_var->int_counter);
810 /* synchronize with interrupts */
811 barrier();
812
813 *time = time_get();
814
815 /* synchronize with interrupts */
816 barrier();
817 } while (int_counter != local_read(&osn_var->int_counter));
818
819 return int_counter;
820 }
821
822 #ifdef CONFIG_TIMERLAT_TRACER
823 /*
824 * copy_int_safe_time - Copy *src into *desc aware of interference
825 */
826 static u64
copy_int_safe_time(struct osnoise_variables * osn_var,u64 * dst,u64 * src)827 copy_int_safe_time(struct osnoise_variables *osn_var, u64 *dst, u64 *src)
828 {
829 u64 int_counter;
830
831 do {
832 int_counter = local_read(&osn_var->int_counter);
833 /* synchronize with interrupts */
834 barrier();
835
836 *dst = *src;
837
838 /* synchronize with interrupts */
839 barrier();
840 } while (int_counter != local_read(&osn_var->int_counter));
841
842 return int_counter;
843 }
844 #endif /* CONFIG_TIMERLAT_TRACER */
845
846 /*
847 * trace_osnoise_callback - NMI entry/exit callback
848 *
849 * This function is called at the entry and exit NMI code. The bool enter
850 * distinguishes between either case. This function is used to note a NMI
851 * occurrence, compute the noise caused by the NMI, and to remove the noise
852 * it is potentially causing on other interference variables.
853 */
trace_osnoise_callback(bool enter)854 void trace_osnoise_callback(bool enter)
855 {
856 struct osnoise_variables *osn_var = this_cpu_osn_var();
857 u64 duration;
858
859 if (!osn_var->sampling)
860 return;
861
862 /*
863 * Currently trace_clock_local() calls sched_clock() and the
864 * generic version is not NMI safe.
865 */
866 if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
867 if (enter) {
868 osn_var->nmi.delta_start = time_get();
869 local_inc(&osn_var->int_counter);
870 } else {
871 duration = time_get() - osn_var->nmi.delta_start;
872
873 trace_nmi_noise(osn_var->nmi.delta_start, duration);
874
875 cond_move_irq_delta_start(osn_var, duration);
876 cond_move_softirq_delta_start(osn_var, duration);
877 cond_move_thread_delta_start(osn_var, duration);
878 }
879 }
880
881 if (enter)
882 osn_var->nmi.count++;
883 }
884
885 /*
886 * osnoise_trace_irq_entry - Note the starting of an IRQ
887 *
888 * Save the starting time of an IRQ. As IRQs are non-preemptive to other IRQs,
889 * it is safe to use a single variable (ons_var->irq) to save the statistics.
890 * The arrival_time is used to report... the arrival time. The delta_start
891 * is used to compute the duration at the IRQ exit handler. See
892 * cond_move_irq_delta_start().
893 */
osnoise_trace_irq_entry(int id)894 void osnoise_trace_irq_entry(int id)
895 {
896 struct osnoise_variables *osn_var = this_cpu_osn_var();
897
898 if (!osn_var->sampling)
899 return;
900 /*
901 * This value will be used in the report, but not to compute
902 * the execution time, so it is safe to get it unsafe.
903 */
904 osn_var->irq.arrival_time = time_get();
905 set_int_safe_time(osn_var, &osn_var->irq.delta_start);
906 osn_var->irq.count++;
907
908 local_inc(&osn_var->int_counter);
909 }
910
911 /*
912 * osnoise_irq_exit - Note the end of an IRQ, sava data and trace
913 *
914 * Computes the duration of the IRQ noise, and trace it. Also discounts the
915 * interference from other sources of noise could be currently being accounted.
916 */
osnoise_trace_irq_exit(int id,const char * desc)917 void osnoise_trace_irq_exit(int id, const char *desc)
918 {
919 struct osnoise_variables *osn_var = this_cpu_osn_var();
920 int duration;
921
922 if (!osn_var->sampling)
923 return;
924
925 duration = get_int_safe_duration(osn_var, &osn_var->irq.delta_start);
926 trace_irq_noise(id, desc, osn_var->irq.arrival_time, duration);
927 osn_var->irq.arrival_time = 0;
928 cond_move_softirq_delta_start(osn_var, duration);
929 cond_move_thread_delta_start(osn_var, duration);
930 }
931
932 /*
933 * trace_irqentry_callback - Callback to the irq:irq_entry traceevent
934 *
935 * Used to note the starting of an IRQ occurece.
936 */
trace_irqentry_callback(void * data,int irq,struct irqaction * action)937 static void trace_irqentry_callback(void *data, int irq,
938 struct irqaction *action)
939 {
940 osnoise_trace_irq_entry(irq);
941 }
942
943 /*
944 * trace_irqexit_callback - Callback to the irq:irq_exit traceevent
945 *
946 * Used to note the end of an IRQ occurece.
947 */
trace_irqexit_callback(void * data,int irq,struct irqaction * action,int ret)948 static void trace_irqexit_callback(void *data, int irq,
949 struct irqaction *action, int ret)
950 {
951 osnoise_trace_irq_exit(irq, action->name);
952 }
953
954 /*
955 * arch specific register function.
956 */
osnoise_arch_register(void)957 int __weak osnoise_arch_register(void)
958 {
959 return 0;
960 }
961
962 /*
963 * arch specific unregister function.
964 */
osnoise_arch_unregister(void)965 void __weak osnoise_arch_unregister(void)
966 {
967 return;
968 }
969
970 /*
971 * hook_irq_events - Hook IRQ handling events
972 *
973 * This function hooks the IRQ related callbacks to the respective trace
974 * events.
975 */
hook_irq_events(void)976 static int hook_irq_events(void)
977 {
978 int ret;
979
980 ret = register_trace_irq_handler_entry(trace_irqentry_callback, NULL);
981 if (ret)
982 goto out_err;
983
984 ret = register_trace_irq_handler_exit(trace_irqexit_callback, NULL);
985 if (ret)
986 goto out_unregister_entry;
987
988 ret = osnoise_arch_register();
989 if (ret)
990 goto out_irq_exit;
991
992 return 0;
993
994 out_irq_exit:
995 unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL);
996 out_unregister_entry:
997 unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL);
998 out_err:
999 return -EINVAL;
1000 }
1001
1002 /*
1003 * unhook_irq_events - Unhook IRQ handling events
1004 *
1005 * This function unhooks the IRQ related callbacks to the respective trace
1006 * events.
1007 */
unhook_irq_events(void)1008 static void unhook_irq_events(void)
1009 {
1010 osnoise_arch_unregister();
1011 unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL);
1012 unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL);
1013 }
1014
1015 #ifndef CONFIG_PREEMPT_RT
1016 /*
1017 * trace_softirq_entry_callback - Note the starting of a softirq
1018 *
1019 * Save the starting time of a softirq. As softirqs are non-preemptive to
1020 * other softirqs, it is safe to use a single variable (ons_var->softirq)
1021 * to save the statistics. The arrival_time is used to report... the
1022 * arrival time. The delta_start is used to compute the duration at the
1023 * softirq exit handler. See cond_move_softirq_delta_start().
1024 */
trace_softirq_entry_callback(void * data,unsigned int vec_nr)1025 static void trace_softirq_entry_callback(void *data, unsigned int vec_nr)
1026 {
1027 struct osnoise_variables *osn_var = this_cpu_osn_var();
1028
1029 if (!osn_var->sampling)
1030 return;
1031 /*
1032 * This value will be used in the report, but not to compute
1033 * the execution time, so it is safe to get it unsafe.
1034 */
1035 osn_var->softirq.arrival_time = time_get();
1036 set_int_safe_time(osn_var, &osn_var->softirq.delta_start);
1037 osn_var->softirq.count++;
1038
1039 local_inc(&osn_var->int_counter);
1040 }
1041
1042 /*
1043 * trace_softirq_exit_callback - Note the end of an softirq
1044 *
1045 * Computes the duration of the softirq noise, and trace it. Also discounts the
1046 * interference from other sources of noise could be currently being accounted.
1047 */
trace_softirq_exit_callback(void * data,unsigned int vec_nr)1048 static void trace_softirq_exit_callback(void *data, unsigned int vec_nr)
1049 {
1050 struct osnoise_variables *osn_var = this_cpu_osn_var();
1051 int duration;
1052
1053 if (!osn_var->sampling)
1054 return;
1055
1056 if (unlikely(timerlat_enabled()))
1057 if (!timerlat_softirq_exit(osn_var))
1058 return;
1059
1060 duration = get_int_safe_duration(osn_var, &osn_var->softirq.delta_start);
1061 trace_softirq_noise(vec_nr, osn_var->softirq.arrival_time, duration);
1062 cond_move_thread_delta_start(osn_var, duration);
1063 osn_var->softirq.arrival_time = 0;
1064 }
1065
1066 /*
1067 * hook_softirq_events - Hook softirq handling events
1068 *
1069 * This function hooks the softirq related callbacks to the respective trace
1070 * events.
1071 */
hook_softirq_events(void)1072 static int hook_softirq_events(void)
1073 {
1074 int ret;
1075
1076 ret = register_trace_softirq_entry(trace_softirq_entry_callback, NULL);
1077 if (ret)
1078 goto out_err;
1079
1080 ret = register_trace_softirq_exit(trace_softirq_exit_callback, NULL);
1081 if (ret)
1082 goto out_unreg_entry;
1083
1084 return 0;
1085
1086 out_unreg_entry:
1087 unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL);
1088 out_err:
1089 return -EINVAL;
1090 }
1091
1092 /*
1093 * unhook_softirq_events - Unhook softirq handling events
1094 *
1095 * This function hooks the softirq related callbacks to the respective trace
1096 * events.
1097 */
unhook_softirq_events(void)1098 static void unhook_softirq_events(void)
1099 {
1100 unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL);
1101 unregister_trace_softirq_exit(trace_softirq_exit_callback, NULL);
1102 }
1103 #else /* CONFIG_PREEMPT_RT */
1104 /*
1105 * softirq are threads on the PREEMPT_RT mode.
1106 */
hook_softirq_events(void)1107 static int hook_softirq_events(void)
1108 {
1109 return 0;
1110 }
unhook_softirq_events(void)1111 static void unhook_softirq_events(void)
1112 {
1113 }
1114 #endif
1115
1116 /*
1117 * thread_entry - Record the starting of a thread noise window
1118 *
1119 * It saves the context switch time for a noisy thread, and increments
1120 * the interference counters.
1121 */
1122 static void
thread_entry(struct osnoise_variables * osn_var,struct task_struct * t)1123 thread_entry(struct osnoise_variables *osn_var, struct task_struct *t)
1124 {
1125 if (!osn_var->sampling)
1126 return;
1127 /*
1128 * The arrival time will be used in the report, but not to compute
1129 * the execution time, so it is safe to get it unsafe.
1130 */
1131 osn_var->thread.arrival_time = time_get();
1132
1133 set_int_safe_time(osn_var, &osn_var->thread.delta_start);
1134
1135 osn_var->thread.count++;
1136 local_inc(&osn_var->int_counter);
1137 }
1138
1139 /*
1140 * thread_exit - Report the end of a thread noise window
1141 *
1142 * It computes the total noise from a thread, tracing if needed.
1143 */
1144 static void
thread_exit(struct osnoise_variables * osn_var,struct task_struct * t)1145 thread_exit(struct osnoise_variables *osn_var, struct task_struct *t)
1146 {
1147 int duration;
1148
1149 if (!osn_var->sampling)
1150 return;
1151
1152 if (unlikely(timerlat_enabled()))
1153 if (!timerlat_thread_exit(osn_var))
1154 return;
1155
1156 duration = get_int_safe_duration(osn_var, &osn_var->thread.delta_start);
1157
1158 trace_thread_noise(t, osn_var->thread.arrival_time, duration);
1159
1160 osn_var->thread.arrival_time = 0;
1161 }
1162
1163 /*
1164 * trace_sched_switch - sched:sched_switch trace event handler
1165 *
1166 * This function is hooked to the sched:sched_switch trace event, and it is
1167 * used to record the beginning and to report the end of a thread noise window.
1168 */
1169 static void
trace_sched_switch_callback(void * data,bool preempt,struct task_struct * p,struct task_struct * n,unsigned int prev_state)1170 trace_sched_switch_callback(void *data, bool preempt,
1171 struct task_struct *p,
1172 struct task_struct *n,
1173 unsigned int prev_state)
1174 {
1175 struct osnoise_variables *osn_var = this_cpu_osn_var();
1176
1177 if (p->pid != osn_var->pid)
1178 thread_exit(osn_var, p);
1179
1180 if (n->pid != osn_var->pid)
1181 thread_entry(osn_var, n);
1182 }
1183
1184 /*
1185 * hook_thread_events - Hook the insturmentation for thread noise
1186 *
1187 * Hook the osnoise tracer callbacks to handle the noise from other
1188 * threads on the necessary kernel events.
1189 */
hook_thread_events(void)1190 static int hook_thread_events(void)
1191 {
1192 int ret;
1193
1194 ret = register_trace_sched_switch(trace_sched_switch_callback, NULL);
1195 if (ret)
1196 return -EINVAL;
1197
1198 return 0;
1199 }
1200
1201 /*
1202 * unhook_thread_events - *nhook the insturmentation for thread noise
1203 *
1204 * Unook the osnoise tracer callbacks to handle the noise from other
1205 * threads on the necessary kernel events.
1206 */
unhook_thread_events(void)1207 static void unhook_thread_events(void)
1208 {
1209 unregister_trace_sched_switch(trace_sched_switch_callback, NULL);
1210 }
1211
1212 /*
1213 * save_osn_sample_stats - Save the osnoise_sample statistics
1214 *
1215 * Save the osnoise_sample statistics before the sampling phase. These
1216 * values will be used later to compute the diff betwneen the statistics
1217 * before and after the osnoise sampling.
1218 */
1219 static void
save_osn_sample_stats(struct osnoise_variables * osn_var,struct osnoise_sample * s)1220 save_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s)
1221 {
1222 s->nmi_count = osn_var->nmi.count;
1223 s->irq_count = osn_var->irq.count;
1224 s->softirq_count = osn_var->softirq.count;
1225 s->thread_count = osn_var->thread.count;
1226 }
1227
1228 /*
1229 * diff_osn_sample_stats - Compute the osnoise_sample statistics
1230 *
1231 * After a sample period, compute the difference on the osnoise_sample
1232 * statistics. The struct osnoise_sample *s contains the statistics saved via
1233 * save_osn_sample_stats() before the osnoise sampling.
1234 */
1235 static void
diff_osn_sample_stats(struct osnoise_variables * osn_var,struct osnoise_sample * s)1236 diff_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s)
1237 {
1238 s->nmi_count = osn_var->nmi.count - s->nmi_count;
1239 s->irq_count = osn_var->irq.count - s->irq_count;
1240 s->softirq_count = osn_var->softirq.count - s->softirq_count;
1241 s->thread_count = osn_var->thread.count - s->thread_count;
1242 }
1243
1244 /*
1245 * osnoise_stop_tracing - Stop tracing and the tracer.
1246 */
osnoise_stop_tracing(void)1247 static __always_inline void osnoise_stop_tracing(void)
1248 {
1249 struct osnoise_instance *inst;
1250 struct trace_array *tr;
1251
1252 rcu_read_lock();
1253 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
1254 tr = inst->tr;
1255 trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_,
1256 "stop tracing hit on cpu %d\n", smp_processor_id());
1257
1258 tracer_tracing_off(tr);
1259 }
1260 rcu_read_unlock();
1261 }
1262
1263 /*
1264 * notify_new_max_latency - Notify a new max latency via fsnotify interface.
1265 */
notify_new_max_latency(u64 latency)1266 static void notify_new_max_latency(u64 latency)
1267 {
1268 struct osnoise_instance *inst;
1269 struct trace_array *tr;
1270
1271 rcu_read_lock();
1272 list_for_each_entry_rcu(inst, &osnoise_instances, list) {
1273 tr = inst->tr;
1274 if (tr->max_latency < latency) {
1275 tr->max_latency = latency;
1276 latency_fsnotify(tr);
1277 }
1278 }
1279 rcu_read_unlock();
1280 }
1281
1282 /*
1283 * run_osnoise - Sample the time and look for osnoise
1284 *
1285 * Used to capture the time, looking for potential osnoise latency repeatedly.
1286 * Different from hwlat_detector, it is called with preemption and interrupts
1287 * enabled. This allows irqs, softirqs and threads to run, interfering on the
1288 * osnoise sampling thread, as they would do with a regular thread.
1289 */
run_osnoise(void)1290 static int run_osnoise(void)
1291 {
1292 struct osnoise_variables *osn_var = this_cpu_osn_var();
1293 u64 start, sample, last_sample;
1294 u64 last_int_count, int_count;
1295 s64 noise = 0, max_noise = 0;
1296 s64 total, last_total = 0;
1297 struct osnoise_sample s;
1298 unsigned int threshold;
1299 u64 runtime, stop_in;
1300 u64 sum_noise = 0;
1301 int hw_count = 0;
1302 int ret = -1;
1303
1304 /*
1305 * Considers the current thread as the workload.
1306 */
1307 osn_var->pid = current->pid;
1308
1309 /*
1310 * Save the current stats for the diff
1311 */
1312 save_osn_sample_stats(osn_var, &s);
1313
1314 /*
1315 * if threshold is 0, use the default value of 5 us.
1316 */
1317 threshold = tracing_thresh ? : 5000;
1318
1319 /*
1320 * Make sure NMIs see sampling first
1321 */
1322 osn_var->sampling = true;
1323 barrier();
1324
1325 /*
1326 * Transform the *_us config to nanoseconds to avoid the
1327 * division on the main loop.
1328 */
1329 runtime = osnoise_data.sample_runtime * NSEC_PER_USEC;
1330 stop_in = osnoise_data.stop_tracing * NSEC_PER_USEC;
1331
1332 /*
1333 * Start timestemp
1334 */
1335 start = time_get();
1336
1337 /*
1338 * "previous" loop.
1339 */
1340 last_int_count = set_int_safe_time(osn_var, &last_sample);
1341
1342 do {
1343 /*
1344 * Get sample!
1345 */
1346 int_count = set_int_safe_time(osn_var, &sample);
1347
1348 noise = time_sub(sample, last_sample);
1349
1350 /*
1351 * This shouldn't happen.
1352 */
1353 if (noise < 0) {
1354 osnoise_taint("negative noise!");
1355 goto out;
1356 }
1357
1358 /*
1359 * Sample runtime.
1360 */
1361 total = time_sub(sample, start);
1362
1363 /*
1364 * Check for possible overflows.
1365 */
1366 if (total < last_total) {
1367 osnoise_taint("total overflow!");
1368 break;
1369 }
1370
1371 last_total = total;
1372
1373 if (noise >= threshold) {
1374 int interference = int_count - last_int_count;
1375
1376 if (noise > max_noise)
1377 max_noise = noise;
1378
1379 if (!interference)
1380 hw_count++;
1381
1382 sum_noise += noise;
1383
1384 trace_sample_threshold(last_sample, noise, interference);
1385
1386 if (osnoise_data.stop_tracing)
1387 if (noise > stop_in)
1388 osnoise_stop_tracing();
1389 }
1390
1391 /*
1392 * In some cases, notably when running on a nohz_full CPU with
1393 * a stopped tick PREEMPT_RCU has no way to account for QSs.
1394 * This will eventually cause unwarranted noise as PREEMPT_RCU
1395 * will force preemption as the means of ending the current
1396 * grace period. We avoid this problem by calling
1397 * rcu_momentary_dyntick_idle(), which performs a zero duration
1398 * EQS allowing PREEMPT_RCU to end the current grace period.
1399 * This call shouldn't be wrapped inside an RCU critical
1400 * section.
1401 *
1402 * Note that in non PREEMPT_RCU kernels QSs are handled through
1403 * cond_resched()
1404 */
1405 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
1406 local_irq_disable();
1407 rcu_momentary_dyntick_idle();
1408 local_irq_enable();
1409 }
1410
1411 /*
1412 * For the non-preemptive kernel config: let threads runs, if
1413 * they so wish.
1414 */
1415 cond_resched();
1416
1417 last_sample = sample;
1418 last_int_count = int_count;
1419
1420 } while (total < runtime && !kthread_should_stop());
1421
1422 /*
1423 * Finish the above in the view for interrupts.
1424 */
1425 barrier();
1426
1427 osn_var->sampling = false;
1428
1429 /*
1430 * Make sure sampling data is no longer updated.
1431 */
1432 barrier();
1433
1434 /*
1435 * Save noise info.
1436 */
1437 s.noise = time_to_us(sum_noise);
1438 s.runtime = time_to_us(total);
1439 s.max_sample = time_to_us(max_noise);
1440 s.hw_count = hw_count;
1441
1442 /* Save interference stats info */
1443 diff_osn_sample_stats(osn_var, &s);
1444
1445 trace_osnoise_sample(&s);
1446
1447 notify_new_max_latency(max_noise);
1448
1449 if (osnoise_data.stop_tracing_total)
1450 if (s.noise > osnoise_data.stop_tracing_total)
1451 osnoise_stop_tracing();
1452
1453 return 0;
1454 out:
1455 return ret;
1456 }
1457
1458 static struct cpumask osnoise_cpumask;
1459 static struct cpumask save_cpumask;
1460
1461 /*
1462 * osnoise_sleep - sleep until the next period
1463 */
osnoise_sleep(void)1464 static void osnoise_sleep(void)
1465 {
1466 u64 interval;
1467 ktime_t wake_time;
1468
1469 mutex_lock(&interface_lock);
1470 interval = osnoise_data.sample_period - osnoise_data.sample_runtime;
1471 mutex_unlock(&interface_lock);
1472
1473 /*
1474 * differently from hwlat_detector, the osnoise tracer can run
1475 * without a pause because preemption is on.
1476 */
1477 if (!interval) {
1478 /* Let synchronize_rcu_tasks() make progress */
1479 cond_resched_tasks_rcu_qs();
1480 return;
1481 }
1482
1483 wake_time = ktime_add_us(ktime_get(), interval);
1484 __set_current_state(TASK_INTERRUPTIBLE);
1485
1486 while (schedule_hrtimeout_range(&wake_time, 0, HRTIMER_MODE_ABS)) {
1487 if (kthread_should_stop())
1488 break;
1489 }
1490 }
1491
1492 /*
1493 * osnoise_main - The osnoise detection kernel thread
1494 *
1495 * Calls run_osnoise() function to measure the osnoise for the configured runtime,
1496 * every period.
1497 */
osnoise_main(void * data)1498 static int osnoise_main(void *data)
1499 {
1500
1501 while (!kthread_should_stop()) {
1502 run_osnoise();
1503 osnoise_sleep();
1504 }
1505
1506 return 0;
1507 }
1508
1509 #ifdef CONFIG_TIMERLAT_TRACER
1510 /*
1511 * timerlat_irq - hrtimer handler for timerlat.
1512 */
timerlat_irq(struct hrtimer * timer)1513 static enum hrtimer_restart timerlat_irq(struct hrtimer *timer)
1514 {
1515 struct osnoise_variables *osn_var = this_cpu_osn_var();
1516 struct timerlat_variables *tlat;
1517 struct timerlat_sample s;
1518 u64 now;
1519 u64 diff;
1520
1521 /*
1522 * I am not sure if the timer was armed for this CPU. So, get
1523 * the timerlat struct from the timer itself, not from this
1524 * CPU.
1525 */
1526 tlat = container_of(timer, struct timerlat_variables, timer);
1527
1528 now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer));
1529
1530 /*
1531 * Enable the osnoise: events for thread an softirq.
1532 */
1533 tlat->tracing_thread = true;
1534
1535 osn_var->thread.arrival_time = time_get();
1536
1537 /*
1538 * A hardirq is running: the timer IRQ. It is for sure preempting
1539 * a thread, and potentially preempting a softirq.
1540 *
1541 * At this point, it is not interesting to know the duration of the
1542 * preempted thread (and maybe softirq), but how much time they will
1543 * delay the beginning of the execution of the timer thread.
1544 *
1545 * To get the correct (net) delay added by the softirq, its delta_start
1546 * is set as the IRQ one. In this way, at the return of the IRQ, the delta
1547 * start of the sofitrq will be zeroed, accounting then only the time
1548 * after that.
1549 *
1550 * The thread follows the same principle. However, if a softirq is
1551 * running, the thread needs to receive the softirq delta_start. The
1552 * reason being is that the softirq will be the last to be unfolded,
1553 * resseting the thread delay to zero.
1554 *
1555 * The PREEMPT_RT is a special case, though. As softirqs run as threads
1556 * on RT, moving the thread is enough.
1557 */
1558 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && osn_var->softirq.delta_start) {
1559 copy_int_safe_time(osn_var, &osn_var->thread.delta_start,
1560 &osn_var->softirq.delta_start);
1561
1562 copy_int_safe_time(osn_var, &osn_var->softirq.delta_start,
1563 &osn_var->irq.delta_start);
1564 } else {
1565 copy_int_safe_time(osn_var, &osn_var->thread.delta_start,
1566 &osn_var->irq.delta_start);
1567 }
1568
1569 /*
1570 * Compute the current time with the expected time.
1571 */
1572 diff = now - tlat->abs_period;
1573
1574 tlat->count++;
1575 s.seqnum = tlat->count;
1576 s.timer_latency = diff;
1577 s.context = IRQ_CONTEXT;
1578
1579 trace_timerlat_sample(&s);
1580
1581 if (osnoise_data.stop_tracing) {
1582 if (time_to_us(diff) >= osnoise_data.stop_tracing) {
1583
1584 /*
1585 * At this point, if stop_tracing is set and <= print_stack,
1586 * print_stack is set and would be printed in the thread handler.
1587 *
1588 * Thus, print the stack trace as it is helpful to define the
1589 * root cause of an IRQ latency.
1590 */
1591 if (osnoise_data.stop_tracing <= osnoise_data.print_stack) {
1592 timerlat_save_stack(0);
1593 timerlat_dump_stack(time_to_us(diff));
1594 }
1595
1596 osnoise_stop_tracing();
1597 notify_new_max_latency(diff);
1598
1599 return HRTIMER_NORESTART;
1600 }
1601 }
1602
1603 wake_up_process(tlat->kthread);
1604
1605 if (osnoise_data.print_stack)
1606 timerlat_save_stack(0);
1607
1608 return HRTIMER_NORESTART;
1609 }
1610
1611 /*
1612 * wait_next_period - Wait for the next period for timerlat
1613 */
wait_next_period(struct timerlat_variables * tlat)1614 static int wait_next_period(struct timerlat_variables *tlat)
1615 {
1616 ktime_t next_abs_period, now;
1617 u64 rel_period = osnoise_data.timerlat_period * 1000;
1618
1619 now = hrtimer_cb_get_time(&tlat->timer);
1620 next_abs_period = ns_to_ktime(tlat->abs_period + rel_period);
1621
1622 /*
1623 * Save the next abs_period.
1624 */
1625 tlat->abs_period = (u64) ktime_to_ns(next_abs_period);
1626
1627 /*
1628 * If the new abs_period is in the past, skip the activation.
1629 */
1630 while (ktime_compare(now, next_abs_period) > 0) {
1631 next_abs_period = ns_to_ktime(tlat->abs_period + rel_period);
1632 tlat->abs_period = (u64) ktime_to_ns(next_abs_period);
1633 }
1634
1635 set_current_state(TASK_INTERRUPTIBLE);
1636
1637 hrtimer_start(&tlat->timer, next_abs_period, HRTIMER_MODE_ABS_PINNED_HARD);
1638 schedule();
1639 return 1;
1640 }
1641
1642 /*
1643 * timerlat_main- Timerlat main
1644 */
timerlat_main(void * data)1645 static int timerlat_main(void *data)
1646 {
1647 struct osnoise_variables *osn_var = this_cpu_osn_var();
1648 struct timerlat_variables *tlat = this_cpu_tmr_var();
1649 struct timerlat_sample s;
1650 struct sched_param sp;
1651 u64 now, diff;
1652
1653 /*
1654 * Make the thread RT, that is how cyclictest is usually used.
1655 */
1656 sp.sched_priority = DEFAULT_TIMERLAT_PRIO;
1657 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1658
1659 tlat->count = 0;
1660 tlat->tracing_thread = false;
1661
1662 hrtimer_init(&tlat->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1663 tlat->timer.function = timerlat_irq;
1664 tlat->kthread = current;
1665 osn_var->pid = current->pid;
1666 /*
1667 * Anotate the arrival time.
1668 */
1669 tlat->abs_period = hrtimer_cb_get_time(&tlat->timer);
1670
1671 wait_next_period(tlat);
1672
1673 osn_var->sampling = 1;
1674
1675 while (!kthread_should_stop()) {
1676 now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer));
1677 diff = now - tlat->abs_period;
1678
1679 s.seqnum = tlat->count;
1680 s.timer_latency = diff;
1681 s.context = THREAD_CONTEXT;
1682
1683 trace_timerlat_sample(&s);
1684
1685 timerlat_dump_stack(time_to_us(diff));
1686
1687 tlat->tracing_thread = false;
1688 if (osnoise_data.stop_tracing_total)
1689 if (time_to_us(diff) >= osnoise_data.stop_tracing_total)
1690 osnoise_stop_tracing();
1691
1692 wait_next_period(tlat);
1693 }
1694
1695 hrtimer_cancel(&tlat->timer);
1696 return 0;
1697 }
1698 #else /* CONFIG_TIMERLAT_TRACER */
timerlat_main(void * data)1699 static int timerlat_main(void *data)
1700 {
1701 return 0;
1702 }
1703 #endif /* CONFIG_TIMERLAT_TRACER */
1704
1705 /*
1706 * stop_kthread - stop a workload thread
1707 */
stop_kthread(unsigned int cpu)1708 static void stop_kthread(unsigned int cpu)
1709 {
1710 struct task_struct *kthread;
1711
1712 kthread = per_cpu(per_cpu_osnoise_var, cpu).kthread;
1713 if (kthread)
1714 kthread_stop(kthread);
1715 per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL;
1716 }
1717
1718 /*
1719 * stop_per_cpu_kthread - Stop per-cpu threads
1720 *
1721 * Stop the osnoise sampling htread. Use this on unload and at system
1722 * shutdown.
1723 */
stop_per_cpu_kthreads(void)1724 static void stop_per_cpu_kthreads(void)
1725 {
1726 int cpu;
1727
1728 cpus_read_lock();
1729
1730 for_each_online_cpu(cpu)
1731 stop_kthread(cpu);
1732
1733 cpus_read_unlock();
1734 }
1735
1736 /*
1737 * start_kthread - Start a workload tread
1738 */
start_kthread(unsigned int cpu)1739 static int start_kthread(unsigned int cpu)
1740 {
1741 struct task_struct *kthread;
1742 void *main = osnoise_main;
1743 char comm[24];
1744
1745 if (timerlat_enabled()) {
1746 snprintf(comm, 24, "timerlat/%d", cpu);
1747 main = timerlat_main;
1748 } else {
1749 snprintf(comm, 24, "osnoise/%d", cpu);
1750 }
1751
1752 kthread = kthread_run_on_cpu(main, NULL, cpu, comm);
1753
1754 if (IS_ERR(kthread)) {
1755 pr_err(BANNER "could not start sampling thread\n");
1756 stop_per_cpu_kthreads();
1757 return -ENOMEM;
1758 }
1759
1760 per_cpu(per_cpu_osnoise_var, cpu).kthread = kthread;
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * start_per_cpu_kthread - Kick off per-cpu osnoise sampling kthreads
1767 *
1768 * This starts the kernel thread that will look for osnoise on many
1769 * cpus.
1770 */
start_per_cpu_kthreads(void)1771 static int start_per_cpu_kthreads(void)
1772 {
1773 struct cpumask *current_mask = &save_cpumask;
1774 int retval = 0;
1775 int cpu;
1776
1777 cpus_read_lock();
1778 /*
1779 * Run only on online CPUs in which osnoise is allowed to run.
1780 */
1781 cpumask_and(current_mask, cpu_online_mask, &osnoise_cpumask);
1782
1783 for_each_possible_cpu(cpu)
1784 per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL;
1785
1786 for_each_cpu(cpu, current_mask) {
1787 retval = start_kthread(cpu);
1788 if (retval) {
1789 stop_per_cpu_kthreads();
1790 break;
1791 }
1792 }
1793
1794 cpus_read_unlock();
1795
1796 return retval;
1797 }
1798
1799 #ifdef CONFIG_HOTPLUG_CPU
osnoise_hotplug_workfn(struct work_struct * dummy)1800 static void osnoise_hotplug_workfn(struct work_struct *dummy)
1801 {
1802 unsigned int cpu = smp_processor_id();
1803
1804 mutex_lock(&trace_types_lock);
1805
1806 if (!osnoise_has_registered_instances())
1807 goto out_unlock_trace;
1808
1809 mutex_lock(&interface_lock);
1810 cpus_read_lock();
1811
1812 if (!cpumask_test_cpu(cpu, &osnoise_cpumask))
1813 goto out_unlock;
1814
1815 start_kthread(cpu);
1816
1817 out_unlock:
1818 cpus_read_unlock();
1819 mutex_unlock(&interface_lock);
1820 out_unlock_trace:
1821 mutex_unlock(&trace_types_lock);
1822 }
1823
1824 static DECLARE_WORK(osnoise_hotplug_work, osnoise_hotplug_workfn);
1825
1826 /*
1827 * osnoise_cpu_init - CPU hotplug online callback function
1828 */
osnoise_cpu_init(unsigned int cpu)1829 static int osnoise_cpu_init(unsigned int cpu)
1830 {
1831 schedule_work_on(cpu, &osnoise_hotplug_work);
1832 return 0;
1833 }
1834
1835 /*
1836 * osnoise_cpu_die - CPU hotplug offline callback function
1837 */
osnoise_cpu_die(unsigned int cpu)1838 static int osnoise_cpu_die(unsigned int cpu)
1839 {
1840 stop_kthread(cpu);
1841 return 0;
1842 }
1843
osnoise_init_hotplug_support(void)1844 static void osnoise_init_hotplug_support(void)
1845 {
1846 int ret;
1847
1848 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/osnoise:online",
1849 osnoise_cpu_init, osnoise_cpu_die);
1850 if (ret < 0)
1851 pr_warn(BANNER "Error to init cpu hotplug support\n");
1852
1853 return;
1854 }
1855 #else /* CONFIG_HOTPLUG_CPU */
osnoise_init_hotplug_support(void)1856 static void osnoise_init_hotplug_support(void)
1857 {
1858 return;
1859 }
1860 #endif /* CONFIG_HOTPLUG_CPU */
1861
1862 /*
1863 * osnoise_cpus_read - Read function for reading the "cpus" file
1864 * @filp: The active open file structure
1865 * @ubuf: The userspace provided buffer to read value into
1866 * @cnt: The maximum number of bytes to read
1867 * @ppos: The current "file" position
1868 *
1869 * Prints the "cpus" output into the user-provided buffer.
1870 */
1871 static ssize_t
osnoise_cpus_read(struct file * filp,char __user * ubuf,size_t count,loff_t * ppos)1872 osnoise_cpus_read(struct file *filp, char __user *ubuf, size_t count,
1873 loff_t *ppos)
1874 {
1875 char *mask_str;
1876 int len;
1877
1878 mutex_lock(&interface_lock);
1879
1880 len = snprintf(NULL, 0, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask)) + 1;
1881 mask_str = kmalloc(len, GFP_KERNEL);
1882 if (!mask_str) {
1883 count = -ENOMEM;
1884 goto out_unlock;
1885 }
1886
1887 len = snprintf(mask_str, len, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask));
1888 if (len >= count) {
1889 count = -EINVAL;
1890 goto out_free;
1891 }
1892
1893 count = simple_read_from_buffer(ubuf, count, ppos, mask_str, len);
1894
1895 out_free:
1896 kfree(mask_str);
1897 out_unlock:
1898 mutex_unlock(&interface_lock);
1899
1900 return count;
1901 }
1902
1903 /*
1904 * osnoise_cpus_write - Write function for "cpus" entry
1905 * @filp: The active open file structure
1906 * @ubuf: The user buffer that contains the value to write
1907 * @cnt: The maximum number of bytes to write to "file"
1908 * @ppos: The current position in @file
1909 *
1910 * This function provides a write implementation for the "cpus"
1911 * interface to the osnoise trace. By default, it lists all CPUs,
1912 * in this way, allowing osnoise threads to run on any online CPU
1913 * of the system. It serves to restrict the execution of osnoise to the
1914 * set of CPUs writing via this interface. Why not use "tracing_cpumask"?
1915 * Because the user might be interested in tracing what is running on
1916 * other CPUs. For instance, one might run osnoise in one HT CPU
1917 * while observing what is running on the sibling HT CPU.
1918 */
1919 static ssize_t
osnoise_cpus_write(struct file * filp,const char __user * ubuf,size_t count,loff_t * ppos)1920 osnoise_cpus_write(struct file *filp, const char __user *ubuf, size_t count,
1921 loff_t *ppos)
1922 {
1923 cpumask_var_t osnoise_cpumask_new;
1924 int running, err;
1925 char buf[256];
1926
1927 if (count >= 256)
1928 return -EINVAL;
1929
1930 if (copy_from_user(buf, ubuf, count))
1931 return -EFAULT;
1932
1933 if (!zalloc_cpumask_var(&osnoise_cpumask_new, GFP_KERNEL))
1934 return -ENOMEM;
1935
1936 err = cpulist_parse(buf, osnoise_cpumask_new);
1937 if (err)
1938 goto err_free;
1939
1940 /*
1941 * trace_types_lock is taken to avoid concurrency on start/stop.
1942 */
1943 mutex_lock(&trace_types_lock);
1944 running = osnoise_has_registered_instances();
1945 if (running)
1946 stop_per_cpu_kthreads();
1947
1948 mutex_lock(&interface_lock);
1949 /*
1950 * osnoise_cpumask is read by CPU hotplug operations.
1951 */
1952 cpus_read_lock();
1953
1954 cpumask_copy(&osnoise_cpumask, osnoise_cpumask_new);
1955
1956 cpus_read_unlock();
1957 mutex_unlock(&interface_lock);
1958
1959 if (running)
1960 start_per_cpu_kthreads();
1961 mutex_unlock(&trace_types_lock);
1962
1963 free_cpumask_var(osnoise_cpumask_new);
1964 return count;
1965
1966 err_free:
1967 free_cpumask_var(osnoise_cpumask_new);
1968
1969 return err;
1970 }
1971
1972 /*
1973 * osnoise/runtime_us: cannot be greater than the period.
1974 */
1975 static struct trace_min_max_param osnoise_runtime = {
1976 .lock = &interface_lock,
1977 .val = &osnoise_data.sample_runtime,
1978 .max = &osnoise_data.sample_period,
1979 .min = NULL,
1980 };
1981
1982 /*
1983 * osnoise/period_us: cannot be smaller than the runtime.
1984 */
1985 static struct trace_min_max_param osnoise_period = {
1986 .lock = &interface_lock,
1987 .val = &osnoise_data.sample_period,
1988 .max = NULL,
1989 .min = &osnoise_data.sample_runtime,
1990 };
1991
1992 /*
1993 * osnoise/stop_tracing_us: no limit.
1994 */
1995 static struct trace_min_max_param osnoise_stop_tracing_in = {
1996 .lock = &interface_lock,
1997 .val = &osnoise_data.stop_tracing,
1998 .max = NULL,
1999 .min = NULL,
2000 };
2001
2002 /*
2003 * osnoise/stop_tracing_total_us: no limit.
2004 */
2005 static struct trace_min_max_param osnoise_stop_tracing_total = {
2006 .lock = &interface_lock,
2007 .val = &osnoise_data.stop_tracing_total,
2008 .max = NULL,
2009 .min = NULL,
2010 };
2011
2012 #ifdef CONFIG_TIMERLAT_TRACER
2013 /*
2014 * osnoise/print_stack: print the stacktrace of the IRQ handler if the total
2015 * latency is higher than val.
2016 */
2017 static struct trace_min_max_param osnoise_print_stack = {
2018 .lock = &interface_lock,
2019 .val = &osnoise_data.print_stack,
2020 .max = NULL,
2021 .min = NULL,
2022 };
2023
2024 /*
2025 * osnoise/timerlat_period: min 100 us, max 1 s
2026 */
2027 u64 timerlat_min_period = 100;
2028 u64 timerlat_max_period = 1000000;
2029 static struct trace_min_max_param timerlat_period = {
2030 .lock = &interface_lock,
2031 .val = &osnoise_data.timerlat_period,
2032 .max = &timerlat_max_period,
2033 .min = &timerlat_min_period,
2034 };
2035 #endif
2036
2037 static const struct file_operations cpus_fops = {
2038 .open = tracing_open_generic,
2039 .read = osnoise_cpus_read,
2040 .write = osnoise_cpus_write,
2041 .llseek = generic_file_llseek,
2042 };
2043
2044 #ifdef CONFIG_TIMERLAT_TRACER
2045 #ifdef CONFIG_STACKTRACE
init_timerlat_stack_tracefs(struct dentry * top_dir)2046 static int init_timerlat_stack_tracefs(struct dentry *top_dir)
2047 {
2048 struct dentry *tmp;
2049
2050 tmp = tracefs_create_file("print_stack", TRACE_MODE_WRITE, top_dir,
2051 &osnoise_print_stack, &trace_min_max_fops);
2052 if (!tmp)
2053 return -ENOMEM;
2054
2055 return 0;
2056 }
2057 #else /* CONFIG_STACKTRACE */
init_timerlat_stack_tracefs(struct dentry * top_dir)2058 static int init_timerlat_stack_tracefs(struct dentry *top_dir)
2059 {
2060 return 0;
2061 }
2062 #endif /* CONFIG_STACKTRACE */
2063
2064 /*
2065 * init_timerlat_tracefs - A function to initialize the timerlat interface files
2066 */
init_timerlat_tracefs(struct dentry * top_dir)2067 static int init_timerlat_tracefs(struct dentry *top_dir)
2068 {
2069 struct dentry *tmp;
2070
2071 tmp = tracefs_create_file("timerlat_period_us", TRACE_MODE_WRITE, top_dir,
2072 &timerlat_period, &trace_min_max_fops);
2073 if (!tmp)
2074 return -ENOMEM;
2075
2076 return init_timerlat_stack_tracefs(top_dir);
2077 }
2078 #else /* CONFIG_TIMERLAT_TRACER */
init_timerlat_tracefs(struct dentry * top_dir)2079 static int init_timerlat_tracefs(struct dentry *top_dir)
2080 {
2081 return 0;
2082 }
2083 #endif /* CONFIG_TIMERLAT_TRACER */
2084
2085 /*
2086 * init_tracefs - A function to initialize the tracefs interface files
2087 *
2088 * This function creates entries in tracefs for "osnoise" and "timerlat".
2089 * It creates these directories in the tracing directory, and within that
2090 * directory the use can change and view the configs.
2091 */
init_tracefs(void)2092 static int init_tracefs(void)
2093 {
2094 struct dentry *top_dir;
2095 struct dentry *tmp;
2096 int ret;
2097
2098 ret = tracing_init_dentry();
2099 if (ret)
2100 return -ENOMEM;
2101
2102 top_dir = tracefs_create_dir("osnoise", NULL);
2103 if (!top_dir)
2104 return 0;
2105
2106 tmp = tracefs_create_file("period_us", TRACE_MODE_WRITE, top_dir,
2107 &osnoise_period, &trace_min_max_fops);
2108 if (!tmp)
2109 goto err;
2110
2111 tmp = tracefs_create_file("runtime_us", TRACE_MODE_WRITE, top_dir,
2112 &osnoise_runtime, &trace_min_max_fops);
2113 if (!tmp)
2114 goto err;
2115
2116 tmp = tracefs_create_file("stop_tracing_us", TRACE_MODE_WRITE, top_dir,
2117 &osnoise_stop_tracing_in, &trace_min_max_fops);
2118 if (!tmp)
2119 goto err;
2120
2121 tmp = tracefs_create_file("stop_tracing_total_us", TRACE_MODE_WRITE, top_dir,
2122 &osnoise_stop_tracing_total, &trace_min_max_fops);
2123 if (!tmp)
2124 goto err;
2125
2126 tmp = trace_create_file("cpus", TRACE_MODE_WRITE, top_dir, NULL, &cpus_fops);
2127 if (!tmp)
2128 goto err;
2129
2130 ret = init_timerlat_tracefs(top_dir);
2131 if (ret)
2132 goto err;
2133
2134 return 0;
2135
2136 err:
2137 tracefs_remove(top_dir);
2138 return -ENOMEM;
2139 }
2140
osnoise_hook_events(void)2141 static int osnoise_hook_events(void)
2142 {
2143 int retval;
2144
2145 /*
2146 * Trace is already hooked, we are re-enabling from
2147 * a stop_tracing_*.
2148 */
2149 if (trace_osnoise_callback_enabled)
2150 return 0;
2151
2152 retval = hook_irq_events();
2153 if (retval)
2154 return -EINVAL;
2155
2156 retval = hook_softirq_events();
2157 if (retval)
2158 goto out_unhook_irq;
2159
2160 retval = hook_thread_events();
2161 /*
2162 * All fine!
2163 */
2164 if (!retval)
2165 return 0;
2166
2167 unhook_softirq_events();
2168 out_unhook_irq:
2169 unhook_irq_events();
2170 return -EINVAL;
2171 }
2172
osnoise_unhook_events(void)2173 static void osnoise_unhook_events(void)
2174 {
2175 unhook_thread_events();
2176 unhook_softirq_events();
2177 unhook_irq_events();
2178 }
2179
2180 /*
2181 * osnoise_workload_start - start the workload and hook to events
2182 */
osnoise_workload_start(void)2183 static int osnoise_workload_start(void)
2184 {
2185 int retval;
2186
2187 /*
2188 * Instances need to be registered after calling workload
2189 * start. Hence, if there is already an instance, the
2190 * workload was already registered. Otherwise, this
2191 * code is on the way to register the first instance,
2192 * and the workload will start.
2193 */
2194 if (osnoise_has_registered_instances())
2195 return 0;
2196
2197 osn_var_reset_all();
2198
2199 retval = osnoise_hook_events();
2200 if (retval)
2201 return retval;
2202
2203 /*
2204 * Make sure that ftrace_nmi_enter/exit() see reset values
2205 * before enabling trace_osnoise_callback_enabled.
2206 */
2207 barrier();
2208 trace_osnoise_callback_enabled = true;
2209
2210 retval = start_per_cpu_kthreads();
2211 if (retval) {
2212 trace_osnoise_callback_enabled = false;
2213 /*
2214 * Make sure that ftrace_nmi_enter/exit() see
2215 * trace_osnoise_callback_enabled as false before continuing.
2216 */
2217 barrier();
2218
2219 osnoise_unhook_events();
2220 return retval;
2221 }
2222
2223 return 0;
2224 }
2225
2226 /*
2227 * osnoise_workload_stop - stop the workload and unhook the events
2228 */
osnoise_workload_stop(void)2229 static void osnoise_workload_stop(void)
2230 {
2231 /*
2232 * Instances need to be unregistered before calling
2233 * stop. Hence, if there is a registered instance, more
2234 * than one instance is running, and the workload will not
2235 * yet stop. Otherwise, this code is on the way to disable
2236 * the last instance, and the workload can stop.
2237 */
2238 if (osnoise_has_registered_instances())
2239 return;
2240
2241 /*
2242 * If callbacks were already disabled in a previous stop
2243 * call, there is no need to disable then again.
2244 *
2245 * For instance, this happens when tracing is stopped via:
2246 * echo 0 > tracing_on
2247 * echo nop > current_tracer.
2248 */
2249 if (!trace_osnoise_callback_enabled)
2250 return;
2251
2252 trace_osnoise_callback_enabled = false;
2253 /*
2254 * Make sure that ftrace_nmi_enter/exit() see
2255 * trace_osnoise_callback_enabled as false before continuing.
2256 */
2257 barrier();
2258
2259 stop_per_cpu_kthreads();
2260
2261 osnoise_unhook_events();
2262 }
2263
osnoise_tracer_start(struct trace_array * tr)2264 static void osnoise_tracer_start(struct trace_array *tr)
2265 {
2266 int retval;
2267
2268 /*
2269 * If the instance is already registered, there is no need to
2270 * register it again.
2271 */
2272 if (osnoise_instance_registered(tr))
2273 return;
2274
2275 retval = osnoise_workload_start();
2276 if (retval)
2277 pr_err(BANNER "Error starting osnoise tracer\n");
2278
2279 osnoise_register_instance(tr);
2280 }
2281
osnoise_tracer_stop(struct trace_array * tr)2282 static void osnoise_tracer_stop(struct trace_array *tr)
2283 {
2284 osnoise_unregister_instance(tr);
2285 osnoise_workload_stop();
2286 }
2287
osnoise_tracer_init(struct trace_array * tr)2288 static int osnoise_tracer_init(struct trace_array *tr)
2289 {
2290 /*
2291 * Only allow osnoise tracer if timerlat tracer is not running
2292 * already.
2293 */
2294 if (timerlat_enabled())
2295 return -EBUSY;
2296
2297 tr->max_latency = 0;
2298
2299 osnoise_tracer_start(tr);
2300 return 0;
2301 }
2302
osnoise_tracer_reset(struct trace_array * tr)2303 static void osnoise_tracer_reset(struct trace_array *tr)
2304 {
2305 osnoise_tracer_stop(tr);
2306 }
2307
2308 static struct tracer osnoise_tracer __read_mostly = {
2309 .name = "osnoise",
2310 .init = osnoise_tracer_init,
2311 .reset = osnoise_tracer_reset,
2312 .start = osnoise_tracer_start,
2313 .stop = osnoise_tracer_stop,
2314 .print_header = print_osnoise_headers,
2315 .allow_instances = true,
2316 };
2317
2318 #ifdef CONFIG_TIMERLAT_TRACER
timerlat_tracer_start(struct trace_array * tr)2319 static void timerlat_tracer_start(struct trace_array *tr)
2320 {
2321 int retval;
2322
2323 /*
2324 * If the instance is already registered, there is no need to
2325 * register it again.
2326 */
2327 if (osnoise_instance_registered(tr))
2328 return;
2329
2330 retval = osnoise_workload_start();
2331 if (retval)
2332 pr_err(BANNER "Error starting timerlat tracer\n");
2333
2334 osnoise_register_instance(tr);
2335
2336 return;
2337 }
2338
timerlat_tracer_stop(struct trace_array * tr)2339 static void timerlat_tracer_stop(struct trace_array *tr)
2340 {
2341 int cpu;
2342
2343 osnoise_unregister_instance(tr);
2344
2345 /*
2346 * Instruct the threads to stop only if this is the last instance.
2347 */
2348 if (!osnoise_has_registered_instances()) {
2349 for_each_online_cpu(cpu)
2350 per_cpu(per_cpu_osnoise_var, cpu).sampling = 0;
2351 }
2352
2353 osnoise_workload_stop();
2354 }
2355
timerlat_tracer_init(struct trace_array * tr)2356 static int timerlat_tracer_init(struct trace_array *tr)
2357 {
2358 /*
2359 * Only allow timerlat tracer if osnoise tracer is not running already.
2360 */
2361 if (osnoise_has_registered_instances() && !osnoise_data.timerlat_tracer)
2362 return -EBUSY;
2363
2364 /*
2365 * If this is the first instance, set timerlat_tracer to block
2366 * osnoise tracer start.
2367 */
2368 if (!osnoise_has_registered_instances())
2369 osnoise_data.timerlat_tracer = 1;
2370
2371 tr->max_latency = 0;
2372 timerlat_tracer_start(tr);
2373
2374 return 0;
2375 }
2376
timerlat_tracer_reset(struct trace_array * tr)2377 static void timerlat_tracer_reset(struct trace_array *tr)
2378 {
2379 timerlat_tracer_stop(tr);
2380
2381 /*
2382 * If this is the last instance, reset timerlat_tracer allowing
2383 * osnoise to be started.
2384 */
2385 if (!osnoise_has_registered_instances())
2386 osnoise_data.timerlat_tracer = 0;
2387 }
2388
2389 static struct tracer timerlat_tracer __read_mostly = {
2390 .name = "timerlat",
2391 .init = timerlat_tracer_init,
2392 .reset = timerlat_tracer_reset,
2393 .start = timerlat_tracer_start,
2394 .stop = timerlat_tracer_stop,
2395 .print_header = print_timerlat_headers,
2396 .allow_instances = true,
2397 };
2398
init_timerlat_tracer(void)2399 __init static int init_timerlat_tracer(void)
2400 {
2401 return register_tracer(&timerlat_tracer);
2402 }
2403 #else /* CONFIG_TIMERLAT_TRACER */
init_timerlat_tracer(void)2404 __init static int init_timerlat_tracer(void)
2405 {
2406 return 0;
2407 }
2408 #endif /* CONFIG_TIMERLAT_TRACER */
2409
init_osnoise_tracer(void)2410 __init static int init_osnoise_tracer(void)
2411 {
2412 int ret;
2413
2414 mutex_init(&interface_lock);
2415
2416 cpumask_copy(&osnoise_cpumask, cpu_all_mask);
2417
2418 ret = register_tracer(&osnoise_tracer);
2419 if (ret) {
2420 pr_err(BANNER "Error registering osnoise!\n");
2421 return ret;
2422 }
2423
2424 ret = init_timerlat_tracer();
2425 if (ret) {
2426 pr_err(BANNER "Error registering timerlat!\n");
2427 return ret;
2428 }
2429
2430 osnoise_init_hotplug_support();
2431
2432 INIT_LIST_HEAD_RCU(&osnoise_instances);
2433
2434 init_tracefs();
2435
2436 return 0;
2437 }
2438 late_initcall(init_osnoise_tracer);
2439