1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 
31 #define REG(reg)\
32 	optc1->tg_regs->reg
33 
34 #define CTX \
35 	optc1->base.ctx
36 
37 #undef FN
38 #define FN(reg_name, field_name) \
39 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
40 
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42 
43 /**
44 * apply_front_porch_workaround  TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
apply_front_porch_workaround(struct dc_crtc_timing * timing)49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 	if (timing->flags.INTERLACE == 1) {
52 		if (timing->v_front_porch < 2)
53 			timing->v_front_porch = 2;
54 	} else {
55 		if (timing->v_front_porch < 1)
56 			timing->v_front_porch = 1;
57 	}
58 }
59 
optc1_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width)60 void optc1_program_global_sync(
61 		struct timing_generator *optc,
62 		int vready_offset,
63 		int vstartup_start,
64 		int vupdate_offset,
65 		int vupdate_width)
66 {
67 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
68 
69 	optc1->vready_offset = vready_offset;
70 	optc1->vstartup_start = vstartup_start;
71 	optc1->vupdate_offset = vupdate_offset;
72 	optc1->vupdate_width = vupdate_width;
73 
74 	if (optc1->vstartup_start == 0) {
75 		BREAK_TO_DEBUGGER();
76 		return;
77 	}
78 
79 	REG_SET(OTG_VSTARTUP_PARAM, 0,
80 		VSTARTUP_START, optc1->vstartup_start);
81 
82 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 			VUPDATE_OFFSET, optc1->vupdate_offset,
84 			VUPDATE_WIDTH, optc1->vupdate_width);
85 
86 	REG_SET(OTG_VREADY_PARAM, 0,
87 			VREADY_OFFSET, optc1->vready_offset);
88 }
89 
optc1_disable_stereo(struct timing_generator * optc)90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
93 
94 	REG_SET(OTG_STEREO_CONTROL, 0,
95 		OTG_STEREO_EN, 0);
96 
97 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 		OTG_3D_STRUCTURE_EN, 0,
99 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101 
optc1_setup_vertical_interrupt0(struct timing_generator * optc,uint32_t start_line,uint32_t end_line)102 void optc1_setup_vertical_interrupt0(
103 		struct timing_generator *optc,
104 		uint32_t start_line,
105 		uint32_t end_line)
106 {
107 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108 
109 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113 
optc1_setup_vertical_interrupt1(struct timing_generator * optc,uint32_t start_line)114 void optc1_setup_vertical_interrupt1(
115 		struct timing_generator *optc,
116 		uint32_t start_line)
117 {
118 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
119 
120 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123 
optc1_setup_vertical_interrupt2(struct timing_generator * optc,uint32_t start_line)124 void optc1_setup_vertical_interrupt2(
125 		struct timing_generator *optc,
126 		uint32_t start_line)
127 {
128 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
129 
130 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133 
134 /**
135  * program_timing_generator   used by mode timing set
136  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137  * Including SYNC. Call BIOS command table to program Timings.
138  */
optc1_program_timing(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)139 void optc1_program_timing(
140 	struct timing_generator *optc,
141 	const struct dc_crtc_timing *dc_crtc_timing,
142 	int vready_offset,
143 	int vstartup_start,
144 	int vupdate_offset,
145 	int vupdate_width,
146 	const enum signal_type signal,
147 	bool use_vbios)
148 {
149 	struct dc_crtc_timing patched_crtc_timing;
150 	uint32_t asic_blank_end;
151 	uint32_t asic_blank_start;
152 	uint32_t v_total;
153 	uint32_t v_sync_end;
154 	uint32_t h_sync_polarity, v_sync_polarity;
155 	uint32_t start_point = 0;
156 	uint32_t field_num = 0;
157 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
158 
159 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
160 
161 	optc1->signal = signal;
162 	optc1->vready_offset = vready_offset;
163 	optc1->vstartup_start = vstartup_start;
164 	optc1->vupdate_offset = vupdate_offset;
165 	optc1->vupdate_width = vupdate_width;
166 	patched_crtc_timing = *dc_crtc_timing;
167 	apply_front_porch_workaround(&patched_crtc_timing);
168 
169 	/* Load horizontal timing */
170 
171 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
172 	REG_SET(OTG_H_TOTAL, 0,
173 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
174 
175 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
176 	REG_UPDATE_2(OTG_H_SYNC_A,
177 			OTG_H_SYNC_A_START, 0,
178 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
179 
180 	/* blank_start = line end - front porch */
181 	asic_blank_start = patched_crtc_timing.h_total -
182 			patched_crtc_timing.h_front_porch;
183 
184 	/* blank_end = blank_start - active */
185 	asic_blank_end = asic_blank_start -
186 			patched_crtc_timing.h_border_right -
187 			patched_crtc_timing.h_addressable -
188 			patched_crtc_timing.h_border_left;
189 
190 	REG_UPDATE_2(OTG_H_BLANK_START_END,
191 			OTG_H_BLANK_START, asic_blank_start,
192 			OTG_H_BLANK_END, asic_blank_end);
193 
194 	/* h_sync polarity */
195 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
196 			0 : 1;
197 
198 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
199 			OTG_H_SYNC_A_POL, h_sync_polarity);
200 
201 	v_total = patched_crtc_timing.v_total - 1;
202 
203 	REG_SET(OTG_V_TOTAL, 0,
204 			OTG_V_TOTAL, v_total);
205 
206 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
207 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
208 	 */
209 	REG_SET(OTG_V_TOTAL_MAX, 0,
210 		OTG_V_TOTAL_MAX, v_total);
211 	REG_SET(OTG_V_TOTAL_MIN, 0,
212 		OTG_V_TOTAL_MIN, v_total);
213 
214 	/* v_sync_start = 0, v_sync_end = v_sync_width */
215 	v_sync_end = patched_crtc_timing.v_sync_width;
216 
217 	REG_UPDATE_2(OTG_V_SYNC_A,
218 			OTG_V_SYNC_A_START, 0,
219 			OTG_V_SYNC_A_END, v_sync_end);
220 
221 	/* blank_start = frame end - front porch */
222 	asic_blank_start = patched_crtc_timing.v_total -
223 			patched_crtc_timing.v_front_porch;
224 
225 	/* blank_end = blank_start - active */
226 	asic_blank_end = asic_blank_start -
227 			patched_crtc_timing.v_border_bottom -
228 			patched_crtc_timing.v_addressable -
229 			patched_crtc_timing.v_border_top;
230 
231 	REG_UPDATE_2(OTG_V_BLANK_START_END,
232 			OTG_V_BLANK_START, asic_blank_start,
233 			OTG_V_BLANK_END, asic_blank_end);
234 
235 	/* v_sync polarity */
236 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
237 			0 : 1;
238 
239 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
240 		OTG_V_SYNC_A_POL, v_sync_polarity);
241 
242 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
243 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
244 			optc1->signal == SIGNAL_TYPE_EDP) {
245 		start_point = 1;
246 		if (patched_crtc_timing.flags.INTERLACE == 1)
247 			field_num = 1;
248 	}
249 
250 	/* Interlace */
251 	if (REG(OTG_INTERLACE_CONTROL)) {
252 		if (patched_crtc_timing.flags.INTERLACE == 1)
253 			REG_UPDATE(OTG_INTERLACE_CONTROL,
254 					OTG_INTERLACE_ENABLE, 1);
255 		else
256 			REG_UPDATE(OTG_INTERLACE_CONTROL,
257 					OTG_INTERLACE_ENABLE, 0);
258 	}
259 
260 	/* VTG enable set to 0 first VInit */
261 	REG_UPDATE(CONTROL,
262 			VTG0_ENABLE, 0);
263 
264 	/* original code is using VTG offset to address OTG reg, seems wrong */
265 	REG_UPDATE_2(OTG_CONTROL,
266 			OTG_START_POINT_CNTL, start_point,
267 			OTG_FIELD_NUMBER_CNTL, field_num);
268 
269 	optc->funcs->program_global_sync(optc,
270 			vready_offset,
271 			vstartup_start,
272 			vupdate_offset,
273 			vupdate_width);
274 
275 	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
276 
277 	/* TODO
278 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
279 	 * program_horz_count_by_2
280 	 * for DVI 30bpp mode, 0 otherwise
281 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
282 	 */
283 
284 	/* Enable stereo - only when we need to pack 3D frame. Other types
285 	 * of stereo handled in explicit call
286 	 */
287 
288 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
289 		h_div = H_TIMING_DIV_BY2;
290 
291 	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
292 		uint32_t data_fmt = 0;
293 
294 		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
295 			data_fmt = 1;
296 		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
297 			data_fmt = 2;
298 
299 		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
300 	}
301 
302 	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
303 		if (optc1->opp_count == 4)
304 			h_div = H_TIMING_DIV_BY4;
305 
306 		REG_UPDATE(OTG_H_TIMING_CNTL,
307 		OTG_H_TIMING_DIV_MODE, h_div);
308 	} else {
309 		REG_UPDATE(OTG_H_TIMING_CNTL,
310 		OTG_H_TIMING_DIV_BY2, h_div);
311 	}
312 }
313 
optc1_set_vtg_params(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,bool program_fp2)314 void optc1_set_vtg_params(struct timing_generator *optc,
315 		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
316 {
317 	struct dc_crtc_timing patched_crtc_timing;
318 	uint32_t asic_blank_end;
319 	uint32_t v_init;
320 	uint32_t v_fp2 = 0;
321 	int32_t vertical_line_start;
322 
323 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
324 
325 	patched_crtc_timing = *dc_crtc_timing;
326 	apply_front_porch_workaround(&patched_crtc_timing);
327 
328 	/* VCOUNT_INIT is the start of blank */
329 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
330 
331 	/* end of blank = v_init - active */
332 	asic_blank_end = v_init -
333 			patched_crtc_timing.v_border_bottom -
334 			patched_crtc_timing.v_addressable -
335 			patched_crtc_timing.v_border_top;
336 
337 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
338 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
339 	if (vertical_line_start < 0)
340 		v_fp2 = -vertical_line_start;
341 
342 	/* Interlace */
343 	if (REG(OTG_INTERLACE_CONTROL)) {
344 		if (patched_crtc_timing.flags.INTERLACE == 1) {
345 			v_init = v_init / 2;
346 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
347 				v_fp2 = v_fp2 / 2;
348 		}
349 	}
350 
351 	if (program_fp2)
352 		REG_UPDATE_2(CONTROL,
353 				VTG0_FP2, v_fp2,
354 				VTG0_VCOUNT_INIT, v_init);
355 	else
356 		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
357 }
358 
optc1_set_blank_data_double_buffer(struct timing_generator * optc,bool enable)359 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
360 {
361 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
362 
363 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
364 
365 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
366 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
367 }
368 
369 /**
370  * optc1_set_timing_double_buffer() - DRR double buffering control
371  *
372  * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
373  * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
374  *
375  * Options: any time,  start of frame, dp start of frame (range timing)
376  */
optc1_set_timing_double_buffer(struct timing_generator * optc,bool enable)377 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
378 {
379 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
380 	uint32_t mode = enable ? 2 : 0;
381 
382 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
383 		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
384 }
385 
386 /**
387  * unblank_crtc
388  * Call ASIC Control Object to UnBlank CRTC.
389  */
optc1_unblank_crtc(struct timing_generator * optc)390 static void optc1_unblank_crtc(struct timing_generator *optc)
391 {
392 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
393 
394 	REG_UPDATE_2(OTG_BLANK_CONTROL,
395 			OTG_BLANK_DATA_EN, 0,
396 			OTG_BLANK_DE_MODE, 0);
397 
398 	/* W/A for automated testing
399 	 * Automated testing will fail underflow test as there
400 	 * sporadic underflows which occur during the optc blank
401 	 * sequence.  As a w/a, clear underflow on unblank.
402 	 * This prevents the failure, but will not mask actual
403 	 * underflow that affect real use cases.
404 	 */
405 	optc1_clear_optc_underflow(optc);
406 }
407 
408 /**
409  * blank_crtc
410  * Call ASIC Control Object to Blank CRTC.
411  */
412 
optc1_blank_crtc(struct timing_generator * optc)413 static void optc1_blank_crtc(struct timing_generator *optc)
414 {
415 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
416 
417 	REG_UPDATE_2(OTG_BLANK_CONTROL,
418 			OTG_BLANK_DATA_EN, 1,
419 			OTG_BLANK_DE_MODE, 0);
420 
421 	optc1_set_blank_data_double_buffer(optc, false);
422 }
423 
optc1_set_blank(struct timing_generator * optc,bool enable_blanking)424 void optc1_set_blank(struct timing_generator *optc,
425 		bool enable_blanking)
426 {
427 	if (enable_blanking)
428 		optc1_blank_crtc(optc);
429 	else
430 		optc1_unblank_crtc(optc);
431 }
432 
optc1_is_blanked(struct timing_generator * optc)433 bool optc1_is_blanked(struct timing_generator *optc)
434 {
435 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
436 	uint32_t blank_en;
437 	uint32_t blank_state;
438 
439 	REG_GET_2(OTG_BLANK_CONTROL,
440 			OTG_BLANK_DATA_EN, &blank_en,
441 			OTG_CURRENT_BLANK_STATE, &blank_state);
442 
443 	return blank_en && blank_state;
444 }
445 
optc1_enable_optc_clock(struct timing_generator * optc,bool enable)446 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
447 {
448 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
449 
450 	if (enable) {
451 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
452 				OPTC_INPUT_CLK_EN, 1,
453 				OPTC_INPUT_CLK_GATE_DIS, 1);
454 
455 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
456 				OPTC_INPUT_CLK_ON, 1,
457 				1, 1000);
458 
459 		/* Enable clock */
460 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
461 				OTG_CLOCK_EN, 1,
462 				OTG_CLOCK_GATE_DIS, 1);
463 		REG_WAIT(OTG_CLOCK_CONTROL,
464 				OTG_CLOCK_ON, 1,
465 				1, 1000);
466 	} else  {
467 
468 		//last chance to clear underflow, otherwise, it will always there due to clock is off.
469 		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
470 			optc->funcs->clear_optc_underflow(optc);
471 
472 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
473 				OTG_CLOCK_GATE_DIS, 0,
474 				OTG_CLOCK_EN, 0);
475 
476 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
477 				OPTC_INPUT_CLK_GATE_DIS, 0,
478 				OPTC_INPUT_CLK_EN, 0);
479 	}
480 }
481 
482 /**
483  * Enable CRTC
484  * Enable CRTC - call ASIC Control Object to enable Timing generator.
485  */
optc1_enable_crtc(struct timing_generator * optc)486 static bool optc1_enable_crtc(struct timing_generator *optc)
487 {
488 	/* TODO FPGA wait for answer
489 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
490 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
491 	 */
492 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
493 
494 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
495 	 * OPP and OPTC should 1:1 mapping
496 	 */
497 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
498 			OPTC_SRC_SEL, optc->inst);
499 
500 	/* VTG enable first is for HW workaround */
501 	REG_UPDATE(CONTROL,
502 			VTG0_ENABLE, 1);
503 
504 	REG_SEQ_START();
505 
506 	/* Enable CRTC */
507 	REG_UPDATE_2(OTG_CONTROL,
508 			OTG_DISABLE_POINT_CNTL, 3,
509 			OTG_MASTER_EN, 1);
510 
511 	REG_SEQ_SUBMIT();
512 	REG_SEQ_WAIT_DONE();
513 
514 	return true;
515 }
516 
517 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
optc1_disable_crtc(struct timing_generator * optc)518 bool optc1_disable_crtc(struct timing_generator *optc)
519 {
520 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
521 
522 	/* disable otg request until end of the first line
523 	 * in the vertical blank region
524 	 */
525 	REG_UPDATE_2(OTG_CONTROL,
526 			OTG_DISABLE_POINT_CNTL, 3,
527 			OTG_MASTER_EN, 0);
528 
529 	REG_UPDATE(CONTROL,
530 			VTG0_ENABLE, 0);
531 
532 	/* CRTC disabled, so disable  clock. */
533 	REG_WAIT(OTG_CLOCK_CONTROL,
534 			OTG_BUSY, 0,
535 			1, 100000);
536 
537 	return true;
538 }
539 
540 
optc1_program_blank_color(struct timing_generator * optc,const struct tg_color * black_color)541 void optc1_program_blank_color(
542 		struct timing_generator *optc,
543 		const struct tg_color *black_color)
544 {
545 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
546 
547 	REG_SET_3(OTG_BLACK_COLOR, 0,
548 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
549 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
550 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
551 }
552 
optc1_validate_timing(struct timing_generator * optc,const struct dc_crtc_timing * timing)553 bool optc1_validate_timing(
554 	struct timing_generator *optc,
555 	const struct dc_crtc_timing *timing)
556 {
557 	uint32_t v_blank;
558 	uint32_t h_blank;
559 	uint32_t min_v_blank;
560 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
561 
562 	ASSERT(timing != NULL);
563 
564 	v_blank = (timing->v_total - timing->v_addressable -
565 					timing->v_border_top - timing->v_border_bottom);
566 
567 	h_blank = (timing->h_total - timing->h_addressable -
568 		timing->h_border_right -
569 		timing->h_border_left);
570 
571 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
572 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
573 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
574 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
575 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
576 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
577 		return false;
578 
579 	/* Temporarily blocking interlacing mode until it's supported */
580 	if (timing->flags.INTERLACE == 1)
581 		return false;
582 
583 	/* Check maximum number of pixels supported by Timing Generator
584 	 * (Currently will never fail, in order to fail needs display which
585 	 * needs more than 8192 horizontal and
586 	 * more than 8192 vertical total pixels)
587 	 */
588 	if (timing->h_total > optc1->max_h_total ||
589 		timing->v_total > optc1->max_v_total)
590 		return false;
591 
592 
593 	if (h_blank < optc1->min_h_blank)
594 		return false;
595 
596 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
597 		 timing->v_sync_width  < optc1->min_v_sync_width)
598 		return false;
599 
600 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
601 
602 	if (v_blank < min_v_blank)
603 		return false;
604 
605 	return true;
606 
607 }
608 
609 /*
610  * get_vblank_counter
611  *
612  * @brief
613  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
614  * holds the counter of frames.
615  *
616  * @param
617  * struct timing_generator *optc - [in] timing generator which controls the
618  * desired CRTC
619  *
620  * @return
621  * Counter of frames, which should equal to number of vblanks.
622  */
optc1_get_vblank_counter(struct timing_generator * optc)623 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
624 {
625 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
626 	uint32_t frame_count;
627 
628 	REG_GET(OTG_STATUS_FRAME_COUNT,
629 		OTG_FRAME_COUNT, &frame_count);
630 
631 	return frame_count;
632 }
633 
optc1_lock(struct timing_generator * optc)634 void optc1_lock(struct timing_generator *optc)
635 {
636 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
637 	uint32_t regval = 0;
638 
639 	regval = REG_READ(OTG_CONTROL);
640 
641 	/* otg is not running, do not need to be locked */
642 	if ((regval & 0x1) == 0x0)
643 		return;
644 
645 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
646 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
647 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
648 			OTG_MASTER_UPDATE_LOCK, 1);
649 
650 	/* Should be fast, status does not update on maximus */
651 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
652 
653 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
654 				UPDATE_LOCK_STATUS, 1,
655 				1, 10);
656 	}
657 }
658 
optc1_unlock(struct timing_generator * optc)659 void optc1_unlock(struct timing_generator *optc)
660 {
661 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
662 
663 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
664 			OTG_MASTER_UPDATE_LOCK, 0);
665 }
666 
optc1_is_locked(struct timing_generator * optc)667 bool optc1_is_locked(struct timing_generator *optc)
668 {
669 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
670 	uint32_t locked;
671 
672 	REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
673 
674 	return (locked == 1);
675 }
676 
optc1_get_position(struct timing_generator * optc,struct crtc_position * position)677 void optc1_get_position(struct timing_generator *optc,
678 		struct crtc_position *position)
679 {
680 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
681 
682 	REG_GET_2(OTG_STATUS_POSITION,
683 			OTG_HORZ_COUNT, &position->horizontal_count,
684 			OTG_VERT_COUNT, &position->vertical_count);
685 
686 	REG_GET(OTG_NOM_VERT_POSITION,
687 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
688 }
689 
optc1_is_counter_moving(struct timing_generator * optc)690 bool optc1_is_counter_moving(struct timing_generator *optc)
691 {
692 	struct crtc_position position1, position2;
693 
694 	optc->funcs->get_position(optc, &position1);
695 	optc->funcs->get_position(optc, &position2);
696 
697 	if (position1.horizontal_count == position2.horizontal_count &&
698 		position1.vertical_count == position2.vertical_count)
699 		return false;
700 	else
701 		return true;
702 }
703 
optc1_did_triggered_reset_occur(struct timing_generator * optc)704 bool optc1_did_triggered_reset_occur(
705 	struct timing_generator *optc)
706 {
707 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
708 	uint32_t occurred_force, occurred_vsync;
709 
710 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
711 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
712 
713 	REG_GET(OTG_VERT_SYNC_CONTROL,
714 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
715 
716 	return occurred_vsync != 0 || occurred_force != 0;
717 }
718 
optc1_disable_reset_trigger(struct timing_generator * optc)719 void optc1_disable_reset_trigger(struct timing_generator *optc)
720 {
721 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
722 
723 	REG_WRITE(OTG_TRIGA_CNTL, 0);
724 
725 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
726 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
727 
728 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
729 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
730 }
731 
optc1_enable_reset_trigger(struct timing_generator * optc,int source_tg_inst)732 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
733 {
734 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
735 	uint32_t falling_edge;
736 
737 	REG_GET(OTG_V_SYNC_A_CNTL,
738 			OTG_V_SYNC_A_POL, &falling_edge);
739 
740 	if (falling_edge)
741 		REG_SET_3(OTG_TRIGA_CNTL, 0,
742 				/* vsync signal from selected OTG pipe based
743 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
744 				 */
745 				OTG_TRIGA_SOURCE_SELECT, 20,
746 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
747 				/* always detect falling edge */
748 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
749 	else
750 		REG_SET_3(OTG_TRIGA_CNTL, 0,
751 				/* vsync signal from selected OTG pipe based
752 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
753 				 */
754 				OTG_TRIGA_SOURCE_SELECT, 20,
755 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
756 				/* always detect rising edge */
757 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
758 
759 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
760 			/* force H count to H_TOTAL and V count to V_TOTAL in
761 			 * progressive mode and V_TOTAL-1 in interlaced mode
762 			 */
763 			OTG_FORCE_COUNT_NOW_MODE, 2);
764 }
765 
optc1_enable_crtc_reset(struct timing_generator * optc,int source_tg_inst,struct crtc_trigger_info * crtc_tp)766 void optc1_enable_crtc_reset(
767 		struct timing_generator *optc,
768 		int source_tg_inst,
769 		struct crtc_trigger_info *crtc_tp)
770 {
771 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
772 	uint32_t falling_edge = 0;
773 	uint32_t rising_edge = 0;
774 
775 	switch (crtc_tp->event) {
776 
777 	case CRTC_EVENT_VSYNC_RISING:
778 		rising_edge = 1;
779 		break;
780 
781 	case CRTC_EVENT_VSYNC_FALLING:
782 		falling_edge = 1;
783 		break;
784 	}
785 
786 	REG_SET_4(OTG_TRIGA_CNTL, 0,
787 		 /* vsync signal from selected OTG pipe based
788 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
789 		  */
790 		  OTG_TRIGA_SOURCE_SELECT, 20,
791 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
792 		  /* always detect falling edge */
793 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
794 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
795 
796 	switch (crtc_tp->delay) {
797 	case TRIGGER_DELAY_NEXT_LINE:
798 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
799 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
800 		break;
801 	case TRIGGER_DELAY_NEXT_PIXEL:
802 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
803 			/* force H count to H_TOTAL and V count to V_TOTAL in
804 			 * progressive mode and V_TOTAL-1 in interlaced mode
805 			 */
806 			OTG_FORCE_COUNT_NOW_MODE, 2);
807 		break;
808 	}
809 }
810 
optc1_wait_for_state(struct timing_generator * optc,enum crtc_state state)811 void optc1_wait_for_state(struct timing_generator *optc,
812 		enum crtc_state state)
813 {
814 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
815 
816 	switch (state) {
817 	case CRTC_STATE_VBLANK:
818 		REG_WAIT(OTG_STATUS,
819 				OTG_V_BLANK, 1,
820 				1, 100000); /* 1 vupdate at 10hz */
821 		break;
822 
823 	case CRTC_STATE_VACTIVE:
824 		REG_WAIT(OTG_STATUS,
825 				OTG_V_ACTIVE_DISP, 1,
826 				1, 100000); /* 1 vupdate at 10hz */
827 		break;
828 
829 	default:
830 		break;
831 	}
832 }
833 
optc1_set_early_control(struct timing_generator * optc,uint32_t early_cntl)834 void optc1_set_early_control(
835 	struct timing_generator *optc,
836 	uint32_t early_cntl)
837 {
838 	/* asic design change, do not need this control
839 	 * empty for share caller logic
840 	 */
841 }
842 
843 
optc1_set_static_screen_control(struct timing_generator * optc,uint32_t event_triggers,uint32_t num_frames)844 void optc1_set_static_screen_control(
845 	struct timing_generator *optc,
846 	uint32_t event_triggers,
847 	uint32_t num_frames)
848 {
849 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
850 
851 	// By register spec, it only takes 8 bit value
852 	if (num_frames > 0xFF)
853 		num_frames = 0xFF;
854 
855 	/* Bit 8 is no longer applicable in RV for PSR case,
856 	 * set bit 8 to 0 if given
857 	 */
858 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
859 			!= 0)
860 		event_triggers = event_triggers &
861 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
862 
863 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
864 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
865 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
866 }
867 
optc1_setup_manual_trigger(struct timing_generator * optc)868 static void optc1_setup_manual_trigger(struct timing_generator *optc)
869 {
870 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
871 
872 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
873 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
874 
875 	REG_SET_8(OTG_TRIGA_CNTL, 0,
876 			OTG_TRIGA_SOURCE_SELECT, 22,
877 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
878 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
879 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
880 			OTG_TRIGA_POLARITY_SELECT, 0,
881 			OTG_TRIGA_FREQUENCY_SELECT, 0,
882 			OTG_TRIGA_DELAY, 0,
883 			OTG_TRIGA_CLEAR, 1);
884 }
885 
optc1_program_manual_trigger(struct timing_generator * optc)886 static void optc1_program_manual_trigger(struct timing_generator *optc)
887 {
888 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
889 
890 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
891 			MANUAL_FLOW_CONTROL, 1);
892 
893 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
894 			MANUAL_FLOW_CONTROL, 0);
895 }
896 
897 
898 /**
899  *****************************************************************************
900  *  Function: set_drr
901  *
902  *  @brief
903  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
904  *
905  *****************************************************************************
906  */
optc1_set_drr(struct timing_generator * optc,const struct drr_params * params)907 void optc1_set_drr(
908 	struct timing_generator *optc,
909 	const struct drr_params *params)
910 {
911 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
912 
913 	if (params != NULL &&
914 		params->vertical_total_max > 0 &&
915 		params->vertical_total_min > 0) {
916 
917 		if (params->vertical_total_mid != 0) {
918 
919 			REG_SET(OTG_V_TOTAL_MID, 0,
920 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
921 
922 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
923 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
924 					OTG_VTOTAL_MID_FRAME_NUM,
925 					(uint8_t)params->vertical_total_mid_frame_num);
926 
927 		}
928 
929 		REG_SET(OTG_V_TOTAL_MAX, 0,
930 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
931 
932 		REG_SET(OTG_V_TOTAL_MIN, 0,
933 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
934 
935 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
936 				OTG_V_TOTAL_MIN_SEL, 1,
937 				OTG_V_TOTAL_MAX_SEL, 1,
938 				OTG_FORCE_LOCK_ON_EVENT, 0,
939 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
940 				OTG_SET_V_TOTAL_MIN_MASK, 0);
941 
942 		// Setup manual flow control for EOF via TRIG_A
943 		optc->funcs->setup_manual_trigger(optc);
944 
945 	} else {
946 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
947 				OTG_SET_V_TOTAL_MIN_MASK, 0,
948 				OTG_V_TOTAL_MIN_SEL, 0,
949 				OTG_V_TOTAL_MAX_SEL, 0,
950 				OTG_FORCE_LOCK_ON_EVENT, 0);
951 
952 		REG_SET(OTG_V_TOTAL_MIN, 0,
953 			OTG_V_TOTAL_MIN, 0);
954 
955 		REG_SET(OTG_V_TOTAL_MAX, 0,
956 			OTG_V_TOTAL_MAX, 0);
957 	}
958 }
959 
optc1_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)960 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
961 {
962 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
963 
964 	REG_SET(OTG_V_TOTAL_MAX, 0,
965 		OTG_V_TOTAL_MAX, vtotal_max);
966 
967 	REG_SET(OTG_V_TOTAL_MIN, 0,
968 		OTG_V_TOTAL_MIN, vtotal_min);
969 }
970 
optc1_set_test_pattern(struct timing_generator * optc,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)971 static void optc1_set_test_pattern(
972 	struct timing_generator *optc,
973 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
974 	 * because this is not DP-specific (which is probably somewhere in DP
975 	 * encoder) */
976 	enum controller_dp_test_pattern test_pattern,
977 	enum dc_color_depth color_depth)
978 {
979 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
980 	enum test_pattern_color_format bit_depth;
981 	enum test_pattern_dyn_range dyn_range;
982 	enum test_pattern_mode mode;
983 	uint32_t pattern_mask;
984 	uint32_t pattern_data;
985 	/* color ramp generator mixes 16-bits color */
986 	uint32_t src_bpc = 16;
987 	/* requested bpc */
988 	uint32_t dst_bpc;
989 	uint32_t index;
990 	/* RGB values of the color bars.
991 	 * Produce two RGB colors: RGB0 - white (all Fs)
992 	 * and RGB1 - black (all 0s)
993 	 * (three RGB components for two colors)
994 	 */
995 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
996 						0x0000, 0x0000};
997 	/* dest color (converted to the specified color format) */
998 	uint16_t dst_color[6];
999 	uint32_t inc_base;
1000 
1001 	/* translate to bit depth */
1002 	switch (color_depth) {
1003 	case COLOR_DEPTH_666:
1004 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1005 	break;
1006 	case COLOR_DEPTH_888:
1007 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1008 	break;
1009 	case COLOR_DEPTH_101010:
1010 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1011 	break;
1012 	case COLOR_DEPTH_121212:
1013 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1014 	break;
1015 	default:
1016 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1017 	break;
1018 	}
1019 
1020 	switch (test_pattern) {
1021 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1022 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1023 	{
1024 		dyn_range = (test_pattern ==
1025 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1026 				TEST_PATTERN_DYN_RANGE_CEA :
1027 				TEST_PATTERN_DYN_RANGE_VESA);
1028 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1029 
1030 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1031 				OTG_TEST_PATTERN_VRES, 6,
1032 				OTG_TEST_PATTERN_HRES, 6);
1033 
1034 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1035 				OTG_TEST_PATTERN_EN, 1,
1036 				OTG_TEST_PATTERN_MODE, mode,
1037 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1038 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1039 	}
1040 	break;
1041 
1042 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1043 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1044 	{
1045 		mode = (test_pattern ==
1046 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1047 			TEST_PATTERN_MODE_VERTICALBARS :
1048 			TEST_PATTERN_MODE_HORIZONTALBARS);
1049 
1050 		switch (bit_depth) {
1051 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1052 			dst_bpc = 6;
1053 		break;
1054 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1055 			dst_bpc = 8;
1056 		break;
1057 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1058 			dst_bpc = 10;
1059 		break;
1060 		default:
1061 			dst_bpc = 8;
1062 		break;
1063 		}
1064 
1065 		/* adjust color to the required colorFormat */
1066 		for (index = 0; index < 6; index++) {
1067 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1068 			 * (srcBpc - dstBpc);
1069 			 */
1070 			dst_color[index] =
1071 				src_color[index] >> (src_bpc - dst_bpc);
1072 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1073 		 * lowest 6 are hardwired to ZERO
1074 		 * color bits should be left aligned aligned to MSB
1075 		 * XXXXXXXXXX000000 for 10 bit,
1076 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1077 		 */
1078 			dst_color[index] <<= (16 - dst_bpc);
1079 		}
1080 
1081 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1082 
1083 		/* We have to write the mask before data, similar to pipeline.
1084 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1085 		 * and RGB1 to be cyan,
1086 		 * we need to make 7 writes:
1087 		 * MASK   DATA
1088 		 * 000001 00000000 00000000                     set mask to R0
1089 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1090 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1091 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1092 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1093 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1094 		 * 100000 11111111 00000000     B1 255, 0xFF00
1095 		 *
1096 		 * we will make a loop of 6 in which we prepare the mask,
1097 		 * then write, then prepare the color for next write.
1098 		 * first iteration will write mask only,
1099 		 * but each next iteration color prepared in
1100 		 * previous iteration will be written within new mask,
1101 		 * the last component will written separately,
1102 		 * mask is not changing between 6th and 7th write
1103 		 * and color will be prepared by last iteration
1104 		 */
1105 
1106 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1107 		 * is B1, G1, R1, B0, G0, R0
1108 		 */
1109 		pattern_data = 0;
1110 		for (index = 0; index < 6; index++) {
1111 			/* prepare color mask, first write PATTERN_DATA
1112 			 * will have all zeros
1113 			 */
1114 			pattern_mask = (1 << index);
1115 
1116 			/* write color component */
1117 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1118 					OTG_TEST_PATTERN_MASK, pattern_mask,
1119 					OTG_TEST_PATTERN_DATA, pattern_data);
1120 
1121 			/* prepare next color component,
1122 			 * will be written in the next iteration
1123 			 */
1124 			pattern_data = dst_color[index];
1125 		}
1126 		/* write last color component,
1127 		 * it's been already prepared in the loop
1128 		 */
1129 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1130 				OTG_TEST_PATTERN_MASK, pattern_mask,
1131 				OTG_TEST_PATTERN_DATA, pattern_data);
1132 
1133 		/* enable test pattern */
1134 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1135 				OTG_TEST_PATTERN_EN, 1,
1136 				OTG_TEST_PATTERN_MODE, mode,
1137 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1138 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1139 	}
1140 	break;
1141 
1142 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1143 	{
1144 		mode = (bit_depth ==
1145 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1146 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1147 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1148 
1149 		switch (bit_depth) {
1150 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1151 			dst_bpc = 6;
1152 		break;
1153 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1154 			dst_bpc = 8;
1155 		break;
1156 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1157 			dst_bpc = 10;
1158 		break;
1159 		default:
1160 			dst_bpc = 8;
1161 		break;
1162 		}
1163 
1164 		/* increment for the first ramp for one color gradation
1165 		 * 1 gradation for 6-bit color is 2^10
1166 		 * gradations in 16-bit color
1167 		 */
1168 		inc_base = (src_bpc - dst_bpc);
1169 
1170 		switch (bit_depth) {
1171 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1172 		{
1173 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1174 					OTG_TEST_PATTERN_INC0, inc_base,
1175 					OTG_TEST_PATTERN_INC1, 0,
1176 					OTG_TEST_PATTERN_HRES, 6,
1177 					OTG_TEST_PATTERN_VRES, 6,
1178 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1179 		}
1180 		break;
1181 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1182 		{
1183 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1184 					OTG_TEST_PATTERN_INC0, inc_base,
1185 					OTG_TEST_PATTERN_INC1, 0,
1186 					OTG_TEST_PATTERN_HRES, 8,
1187 					OTG_TEST_PATTERN_VRES, 6,
1188 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1189 		}
1190 		break;
1191 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1192 		{
1193 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1194 					OTG_TEST_PATTERN_INC0, inc_base,
1195 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1196 					OTG_TEST_PATTERN_HRES, 8,
1197 					OTG_TEST_PATTERN_VRES, 5,
1198 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1199 		}
1200 		break;
1201 		default:
1202 		break;
1203 		}
1204 
1205 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1206 
1207 		/* enable test pattern */
1208 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1209 
1210 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1211 				OTG_TEST_PATTERN_EN, 1,
1212 				OTG_TEST_PATTERN_MODE, mode,
1213 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1214 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1215 	}
1216 	break;
1217 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1218 	{
1219 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1220 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1221 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1222 	}
1223 	break;
1224 	default:
1225 		break;
1226 
1227 	}
1228 }
1229 
optc1_get_crtc_scanoutpos(struct timing_generator * optc,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)1230 void optc1_get_crtc_scanoutpos(
1231 	struct timing_generator *optc,
1232 	uint32_t *v_blank_start,
1233 	uint32_t *v_blank_end,
1234 	uint32_t *h_position,
1235 	uint32_t *v_position)
1236 {
1237 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1238 	struct crtc_position position;
1239 
1240 	REG_GET_2(OTG_V_BLANK_START_END,
1241 			OTG_V_BLANK_START, v_blank_start,
1242 			OTG_V_BLANK_END, v_blank_end);
1243 
1244 	optc1_get_position(optc, &position);
1245 
1246 	*h_position = position.horizontal_count;
1247 	*v_position = position.vertical_count;
1248 }
1249 
optc1_enable_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1250 static void optc1_enable_stereo(struct timing_generator *optc,
1251 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1252 {
1253 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1254 
1255 	if (flags) {
1256 		uint32_t stereo_en;
1257 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1258 
1259 		if (flags->PROGRAM_STEREO)
1260 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1261 				OTG_STEREO_EN, stereo_en,
1262 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1263 				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1264 
1265 		if (flags->PROGRAM_POLARITY)
1266 			REG_UPDATE(OTG_STEREO_CONTROL,
1267 				OTG_STEREO_EYE_FLAG_POLARITY,
1268 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1269 
1270 		if (flags->DISABLE_STEREO_DP_SYNC)
1271 			REG_UPDATE(OTG_STEREO_CONTROL,
1272 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1273 
1274 		if (flags->PROGRAM_STEREO)
1275 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1276 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1277 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1278 
1279 	}
1280 }
1281 
optc1_program_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1282 void optc1_program_stereo(struct timing_generator *optc,
1283 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1284 {
1285 	if (flags->PROGRAM_STEREO)
1286 		optc1_enable_stereo(optc, timing, flags);
1287 	else
1288 		optc1_disable_stereo(optc);
1289 }
1290 
1291 
optc1_is_stereo_left_eye(struct timing_generator * optc)1292 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1293 {
1294 	bool ret = false;
1295 	uint32_t left_eye = 0;
1296 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1297 
1298 	REG_GET(OTG_STEREO_STATUS,
1299 		OTG_STEREO_CURRENT_EYE, &left_eye);
1300 	if (left_eye == 1)
1301 		ret = true;
1302 	else
1303 		ret = false;
1304 
1305 	return ret;
1306 }
1307 
optc1_get_hw_timing(struct timing_generator * tg,struct dc_crtc_timing * hw_crtc_timing)1308 bool optc1_get_hw_timing(struct timing_generator *tg,
1309 		struct dc_crtc_timing *hw_crtc_timing)
1310 {
1311 	struct dcn_otg_state s = {0};
1312 
1313 	if (tg == NULL || hw_crtc_timing == NULL)
1314 		return false;
1315 
1316 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1317 
1318 	hw_crtc_timing->h_total = s.h_total + 1;
1319 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1320 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1321 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1322 
1323 	hw_crtc_timing->v_total = s.v_total + 1;
1324 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1325 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1326 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1327 
1328 	return true;
1329 }
1330 
1331 
optc1_read_otg_state(struct optc * optc1,struct dcn_otg_state * s)1332 void optc1_read_otg_state(struct optc *optc1,
1333 		struct dcn_otg_state *s)
1334 {
1335 	REG_GET(OTG_CONTROL,
1336 			OTG_MASTER_EN, &s->otg_enabled);
1337 
1338 	REG_GET_2(OTG_V_BLANK_START_END,
1339 			OTG_V_BLANK_START, &s->v_blank_start,
1340 			OTG_V_BLANK_END, &s->v_blank_end);
1341 
1342 	REG_GET(OTG_V_SYNC_A_CNTL,
1343 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1344 
1345 	REG_GET(OTG_V_TOTAL,
1346 			OTG_V_TOTAL, &s->v_total);
1347 
1348 	REG_GET(OTG_V_TOTAL_MAX,
1349 			OTG_V_TOTAL_MAX, &s->v_total_max);
1350 
1351 	REG_GET(OTG_V_TOTAL_MIN,
1352 			OTG_V_TOTAL_MIN, &s->v_total_min);
1353 
1354 	REG_GET(OTG_V_TOTAL_CONTROL,
1355 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1356 
1357 	REG_GET(OTG_V_TOTAL_CONTROL,
1358 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1359 
1360 	REG_GET_2(OTG_V_SYNC_A,
1361 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1362 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1363 
1364 	REG_GET_2(OTG_H_BLANK_START_END,
1365 			OTG_H_BLANK_START, &s->h_blank_start,
1366 			OTG_H_BLANK_END, &s->h_blank_end);
1367 
1368 	REG_GET_2(OTG_H_SYNC_A,
1369 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1370 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1371 
1372 	REG_GET(OTG_H_SYNC_A_CNTL,
1373 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1374 
1375 	REG_GET(OTG_H_TOTAL,
1376 			OTG_H_TOTAL, &s->h_total);
1377 
1378 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1379 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1380 
1381 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1382 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1383 
1384 	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1385 			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1386 }
1387 
optc1_get_otg_active_size(struct timing_generator * optc,uint32_t * otg_active_width,uint32_t * otg_active_height)1388 bool optc1_get_otg_active_size(struct timing_generator *optc,
1389 		uint32_t *otg_active_width,
1390 		uint32_t *otg_active_height)
1391 {
1392 	uint32_t otg_enabled;
1393 	uint32_t v_blank_start;
1394 	uint32_t v_blank_end;
1395 	uint32_t h_blank_start;
1396 	uint32_t h_blank_end;
1397 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1398 
1399 
1400 	REG_GET(OTG_CONTROL,
1401 			OTG_MASTER_EN, &otg_enabled);
1402 
1403 	if (otg_enabled == 0)
1404 		return false;
1405 
1406 	REG_GET_2(OTG_V_BLANK_START_END,
1407 			OTG_V_BLANK_START, &v_blank_start,
1408 			OTG_V_BLANK_END, &v_blank_end);
1409 
1410 	REG_GET_2(OTG_H_BLANK_START_END,
1411 			OTG_H_BLANK_START, &h_blank_start,
1412 			OTG_H_BLANK_END, &h_blank_end);
1413 
1414 	*otg_active_width = v_blank_start - v_blank_end;
1415 	*otg_active_height = h_blank_start - h_blank_end;
1416 	return true;
1417 }
1418 
optc1_clear_optc_underflow(struct timing_generator * optc)1419 void optc1_clear_optc_underflow(struct timing_generator *optc)
1420 {
1421 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1422 
1423 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1424 }
1425 
optc1_tg_init(struct timing_generator * optc)1426 void optc1_tg_init(struct timing_generator *optc)
1427 {
1428 	optc1_set_blank_data_double_buffer(optc, true);
1429 	optc1_set_timing_double_buffer(optc, true);
1430 	optc1_clear_optc_underflow(optc);
1431 }
1432 
optc1_is_tg_enabled(struct timing_generator * optc)1433 bool optc1_is_tg_enabled(struct timing_generator *optc)
1434 {
1435 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1436 	uint32_t otg_enabled = 0;
1437 
1438 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1439 
1440 	return (otg_enabled != 0);
1441 
1442 }
1443 
optc1_is_optc_underflow_occurred(struct timing_generator * optc)1444 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1445 {
1446 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1447 	uint32_t underflow_occurred = 0;
1448 
1449 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1450 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1451 			&underflow_occurred);
1452 
1453 	return (underflow_occurred == 1);
1454 }
1455 
optc1_configure_crc(struct timing_generator * optc,const struct crc_params * params)1456 bool optc1_configure_crc(struct timing_generator *optc,
1457 			  const struct crc_params *params)
1458 {
1459 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1460 
1461 	/* Cannot configure crc on a CRTC that is disabled */
1462 	if (!optc1_is_tg_enabled(optc))
1463 		return false;
1464 
1465 	REG_WRITE(OTG_CRC_CNTL, 0);
1466 
1467 	if (!params->enable)
1468 		return true;
1469 
1470 	/* Program frame boundaries */
1471 	/* Window A x axis start and end. */
1472 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1473 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1474 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1475 
1476 	/* Window A y axis start and end. */
1477 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1478 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1479 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1480 
1481 	/* Window B x axis start and end. */
1482 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1483 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1484 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1485 
1486 	/* Window B y axis start and end. */
1487 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1488 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1489 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1490 
1491 	/* Set crc mode and selection, and enable. Only using CRC0*/
1492 	REG_UPDATE_3(OTG_CRC_CNTL,
1493 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1494 			OTG_CRC0_SELECT, params->selection,
1495 			OTG_CRC_EN, 1);
1496 
1497 	return true;
1498 }
1499 
optc1_get_crc(struct timing_generator * optc,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1500 bool optc1_get_crc(struct timing_generator *optc,
1501 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1502 {
1503 	uint32_t field = 0;
1504 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1505 
1506 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1507 
1508 	/* Early return if CRC is not enabled for this CRTC */
1509 	if (!field)
1510 		return false;
1511 
1512 	REG_GET_2(OTG_CRC0_DATA_RG,
1513 			CRC0_R_CR, r_cr,
1514 			CRC0_G_Y, g_y);
1515 
1516 	REG_GET(OTG_CRC0_DATA_B,
1517 			CRC0_B_CB, b_cb);
1518 
1519 	return true;
1520 }
1521 
1522 static const struct timing_generator_funcs dcn10_tg_funcs = {
1523 		.validate_timing = optc1_validate_timing,
1524 		.program_timing = optc1_program_timing,
1525 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1526 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1527 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1528 		.program_global_sync = optc1_program_global_sync,
1529 		.enable_crtc = optc1_enable_crtc,
1530 		.disable_crtc = optc1_disable_crtc,
1531 		/* used by enable_timing_synchronization. Not need for FPGA */
1532 		.is_counter_moving = optc1_is_counter_moving,
1533 		.get_position = optc1_get_position,
1534 		.get_frame_count = optc1_get_vblank_counter,
1535 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1536 		.get_otg_active_size = optc1_get_otg_active_size,
1537 		.set_early_control = optc1_set_early_control,
1538 		/* used by enable_timing_synchronization. Not need for FPGA */
1539 		.wait_for_state = optc1_wait_for_state,
1540 		.set_blank = optc1_set_blank,
1541 		.is_blanked = optc1_is_blanked,
1542 		.set_blank_color = optc1_program_blank_color,
1543 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1544 		.enable_reset_trigger = optc1_enable_reset_trigger,
1545 		.enable_crtc_reset = optc1_enable_crtc_reset,
1546 		.disable_reset_trigger = optc1_disable_reset_trigger,
1547 		.lock = optc1_lock,
1548 		.is_locked = optc1_is_locked,
1549 		.unlock = optc1_unlock,
1550 		.enable_optc_clock = optc1_enable_optc_clock,
1551 		.set_drr = optc1_set_drr,
1552 		.get_last_used_drr_vtotal = NULL,
1553 		.set_static_screen_control = optc1_set_static_screen_control,
1554 		.set_test_pattern = optc1_set_test_pattern,
1555 		.program_stereo = optc1_program_stereo,
1556 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1557 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1558 		.tg_init = optc1_tg_init,
1559 		.is_tg_enabled = optc1_is_tg_enabled,
1560 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1561 		.clear_optc_underflow = optc1_clear_optc_underflow,
1562 		.get_crc = optc1_get_crc,
1563 		.configure_crc = optc1_configure_crc,
1564 		.set_vtg_params = optc1_set_vtg_params,
1565 		.program_manual_trigger = optc1_program_manual_trigger,
1566 		.setup_manual_trigger = optc1_setup_manual_trigger,
1567 		.get_hw_timing = optc1_get_hw_timing,
1568 };
1569 
dcn10_timing_generator_init(struct optc * optc1)1570 void dcn10_timing_generator_init(struct optc *optc1)
1571 {
1572 	optc1->base.funcs = &dcn10_tg_funcs;
1573 
1574 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1575 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1576 
1577 	optc1->min_h_blank = 32;
1578 	optc1->min_v_blank = 3;
1579 	optc1->min_v_blank_interlace = 5;
1580 	optc1->min_h_sync_width = 4;
1581 	optc1->min_v_sync_width = 1;
1582 }
1583 
1584 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1585  *
1586  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1587  *   containter rate.
1588  *
1589  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1590  *   halved to maintain the correct pixel rate.
1591  *
1592  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1593  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1594  *
1595  */
optc1_is_two_pixels_per_containter(const struct dc_crtc_timing * timing)1596 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1597 {
1598 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1599 
1600 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1601 			&& !timing->dsc_cfg.ycbcr422_simple);
1602 	return two_pix;
1603 }
1604 
1605