1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41 };
42
43 enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54 };
55
56 struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59 };
60
61 #ifdef CONFIG_MEMCG
62
63 #define MEM_CGROUP_ID_SHIFT 16
64 #define MEM_CGROUP_ID_MAX USHRT_MAX
65
66 struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69 };
70
71 /*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77 enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81 };
82
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85
86 struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90 };
91
92 /*
93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94 * shrinkers, which have elements charged to this memcg.
95 */
96 struct shrinker_info {
97 struct rcu_head rcu;
98 atomic_long_t *nr_deferred;
99 unsigned long *map;
100 };
101
102 struct lruvec_stats_percpu {
103 /* Local (CPU and cgroup) state */
104 long state[NR_VM_NODE_STAT_ITEMS];
105
106 /* Delta calculation for lockless upward propagation */
107 long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109
110 struct lruvec_stats {
111 /* Aggregated (CPU and subtree) state */
112 long state[NR_VM_NODE_STAT_ITEMS];
113
114 /* Pending child counts during tree propagation */
115 long state_pending[NR_VM_NODE_STAT_ITEMS];
116 };
117
118 /*
119 * per-node information in memory controller.
120 */
121 struct mem_cgroup_per_node {
122 struct lruvec lruvec;
123
124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
125 struct lruvec_stats lruvec_stats;
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter;
130
131 struct shrinker_info __rcu *shrinker_info;
132
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 /* use container_of */
139 };
140
141 struct mem_cgroup_threshold {
142 struct eventfd_ctx *eventfd;
143 unsigned long threshold;
144 };
145
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 /* An array index points to threshold just below or equal to usage. */
149 int current_threshold;
150 /* Size of entries[] */
151 unsigned int size;
152 /* Array of thresholds */
153 struct mem_cgroup_threshold entries[];
154 };
155
156 struct mem_cgroup_thresholds {
157 /* Primary thresholds array */
158 struct mem_cgroup_threshold_ary *primary;
159 /*
160 * Spare threshold array.
161 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 * It must be able to store at least primary->size - 1 entries.
163 */
164 struct mem_cgroup_threshold_ary *spare;
165 };
166
167 /*
168 * Remember four most recent foreign writebacks with dirty pages in this
169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
170 * one in a given round, we're likely to catch it later if it keeps
171 * foreign-dirtying, so a fairly low count should be enough.
172 *
173 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174 */
175 #define MEMCG_CGWB_FRN_CNT 4
176
177 struct memcg_cgwb_frn {
178 u64 bdi_id; /* bdi->id of the foreign inode */
179 int memcg_id; /* memcg->css.id of foreign inode */
180 u64 at; /* jiffies_64 at the time of dirtying */
181 struct wb_completion done; /* tracks in-flight foreign writebacks */
182 };
183
184 /*
185 * Bucket for arbitrarily byte-sized objects charged to a memory
186 * cgroup. The bucket can be reparented in one piece when the cgroup
187 * is destroyed, without having to round up the individual references
188 * of all live memory objects in the wild.
189 */
190 struct obj_cgroup {
191 struct percpu_ref refcnt;
192 struct mem_cgroup *memcg;
193 atomic_t nr_charged_bytes;
194 union {
195 struct list_head list; /* protected by objcg_lock */
196 struct rcu_head rcu;
197 };
198 };
199
200 /*
201 * The memory controller data structure. The memory controller controls both
202 * page cache and RSS per cgroup. We would eventually like to provide
203 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204 * to help the administrator determine what knobs to tune.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208
209 /* Private memcg ID. Used to ID objects that outlive the cgroup */
210 struct mem_cgroup_id id;
211
212 /* Accounted resources */
213 struct page_counter memory; /* Both v1 & v2 */
214
215 union {
216 struct page_counter swap; /* v2 only */
217 struct page_counter memsw; /* v1 only */
218 };
219
220 /* Legacy consumer-oriented counters */
221 struct page_counter kmem; /* v1 only */
222 struct page_counter tcpmem; /* v1 only */
223
224 /* Range enforcement for interrupt charges */
225 struct work_struct high_work;
226
227 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 unsigned long zswap_max;
229 #endif
230
231 unsigned long soft_limit;
232
233 /* vmpressure notifications */
234 struct vmpressure vmpressure;
235
236 /*
237 * Should the OOM killer kill all belonging tasks, had it kill one?
238 */
239 bool oom_group;
240
241 /* protected by memcg_oom_lock */
242 bool oom_lock;
243 int under_oom;
244
245 int swappiness;
246 /* OOM-Killer disable */
247 int oom_kill_disable;
248
249 /* memory.events and memory.events.local */
250 struct cgroup_file events_file;
251 struct cgroup_file events_local_file;
252
253 /* handle for "memory.swap.events" */
254 struct cgroup_file swap_events_file;
255
256 /* protect arrays of thresholds */
257 struct mutex thresholds_lock;
258
259 /* thresholds for memory usage. RCU-protected */
260 struct mem_cgroup_thresholds thresholds;
261
262 /* thresholds for mem+swap usage. RCU-protected */
263 struct mem_cgroup_thresholds memsw_thresholds;
264
265 /* For oom notifier event fd */
266 struct list_head oom_notify;
267
268 /*
269 * Should we move charges of a task when a task is moved into this
270 * mem_cgroup ? And what type of charges should we move ?
271 */
272 unsigned long move_charge_at_immigrate;
273 /* taken only while moving_account > 0 */
274 spinlock_t move_lock;
275 unsigned long move_lock_flags;
276
277 CACHELINE_PADDING(_pad1_);
278
279 /* memory.stat */
280 struct memcg_vmstats *vmstats;
281
282 /* memory.events */
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285
286 unsigned long socket_pressure;
287
288 /* Legacy tcp memory accounting */
289 bool tcpmem_active;
290 int tcpmem_pressure;
291
292 #ifdef CONFIG_MEMCG_KMEM
293 int kmemcg_id;
294 struct obj_cgroup __rcu *objcg;
295 /* list of inherited objcgs, protected by objcg_lock */
296 struct list_head objcg_list;
297 #endif
298
299 CACHELINE_PADDING(_pad2_);
300
301 /*
302 * set > 0 if pages under this cgroup are moving to other cgroup.
303 */
304 atomic_t moving_account;
305 struct task_struct *move_lock_task;
306
307 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308
309 #ifdef CONFIG_CGROUP_WRITEBACK
310 struct list_head cgwb_list;
311 struct wb_domain cgwb_domain;
312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313 #endif
314
315 /* List of events which userspace want to receive */
316 struct list_head event_list;
317 spinlock_t event_list_lock;
318
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 struct deferred_split deferred_split_queue;
321 #endif
322
323 #ifdef CONFIG_LRU_GEN
324 /* per-memcg mm_struct list */
325 struct lru_gen_mm_list mm_list;
326 #endif
327
328 struct mem_cgroup_per_node *nodeinfo[];
329 };
330
331 /*
332 * size of first charge trial.
333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334 * workload.
335 */
336 #define MEMCG_CHARGE_BATCH 64U
337
338 extern struct mem_cgroup *root_mem_cgroup;
339
340 enum page_memcg_data_flags {
341 /* page->memcg_data is a pointer to an objcgs vector */
342 MEMCG_DATA_OBJCGS = (1UL << 0),
343 /* page has been accounted as a non-slab kernel page */
344 MEMCG_DATA_KMEM = (1UL << 1),
345 /* the next bit after the last actual flag */
346 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
347 };
348
349 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350
351 static inline bool folio_memcg_kmem(struct folio *folio);
352
353 /*
354 * After the initialization objcg->memcg is always pointing at
355 * a valid memcg, but can be atomically swapped to the parent memcg.
356 *
357 * The caller must ensure that the returned memcg won't be released:
358 * e.g. acquire the rcu_read_lock or css_set_lock.
359 */
obj_cgroup_memcg(struct obj_cgroup * objcg)360 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361 {
362 return READ_ONCE(objcg->memcg);
363 }
364
365 /*
366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367 * @folio: Pointer to the folio.
368 *
369 * Returns a pointer to the memory cgroup associated with the folio,
370 * or NULL. This function assumes that the folio is known to have a
371 * proper memory cgroup pointer. It's not safe to call this function
372 * against some type of folios, e.g. slab folios or ex-slab folios or
373 * kmem folios.
374 */
__folio_memcg(struct folio * folio)375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 unsigned long memcg_data = folio->memcg_data;
378
379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382
383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385
386 /*
387 * __folio_objcg - get the object cgroup associated with a kmem folio.
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the object cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper object cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * LRU folios.
395 */
__folio_objcg(struct folio * folio)396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403
404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406
407 /*
408 * folio_memcg - Get the memory cgroup associated with a folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the memory cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper memory cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios.
415 *
416 * For a non-kmem folio any of the following ensures folio and memcg binding
417 * stability:
418 *
419 * - the folio lock
420 * - LRU isolation
421 * - lock_page_memcg()
422 * - exclusive reference
423 * - mem_cgroup_trylock_pages()
424 *
425 * For a kmem folio a caller should hold an rcu read lock to protect memcg
426 * associated with a kmem folio from being released.
427 */
folio_memcg(struct folio * folio)428 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429 {
430 if (folio_memcg_kmem(folio))
431 return obj_cgroup_memcg(__folio_objcg(folio));
432 return __folio_memcg(folio);
433 }
434
page_memcg(struct page * page)435 static inline struct mem_cgroup *page_memcg(struct page *page)
436 {
437 return folio_memcg(page_folio(page));
438 }
439
440 /**
441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442 * @folio: Pointer to the folio.
443 *
444 * This function assumes that the folio is known to have a
445 * proper memory cgroup pointer. It's not safe to call this function
446 * against some type of folios, e.g. slab folios or ex-slab folios.
447 *
448 * Return: A pointer to the memory cgroup associated with the folio,
449 * or NULL.
450 */
folio_memcg_rcu(struct folio * folio)451 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452 {
453 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454
455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 WARN_ON_ONCE(!rcu_read_lock_held());
457
458 if (memcg_data & MEMCG_DATA_KMEM) {
459 struct obj_cgroup *objcg;
460
461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 return obj_cgroup_memcg(objcg);
463 }
464
465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467
468 /*
469 * page_memcg_check - get the memory cgroup associated with a page
470 * @page: a pointer to the page struct
471 *
472 * Returns a pointer to the memory cgroup associated with the page,
473 * or NULL. This function unlike page_memcg() can take any page
474 * as an argument. It has to be used in cases when it's not known if a page
475 * has an associated memory cgroup pointer or an object cgroups vector or
476 * an object cgroup.
477 *
478 * For a non-kmem page any of the following ensures page and memcg binding
479 * stability:
480 *
481 * - the page lock
482 * - LRU isolation
483 * - lock_page_memcg()
484 * - exclusive reference
485 * - mem_cgroup_trylock_pages()
486 *
487 * For a kmem page a caller should hold an rcu read lock to protect memcg
488 * associated with a kmem page from being released.
489 */
page_memcg_check(struct page * page)490 static inline struct mem_cgroup *page_memcg_check(struct page *page)
491 {
492 /*
493 * Because page->memcg_data might be changed asynchronously
494 * for slab pages, READ_ONCE() should be used here.
495 */
496 unsigned long memcg_data = READ_ONCE(page->memcg_data);
497
498 if (memcg_data & MEMCG_DATA_OBJCGS)
499 return NULL;
500
501 if (memcg_data & MEMCG_DATA_KMEM) {
502 struct obj_cgroup *objcg;
503
504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 return obj_cgroup_memcg(objcg);
506 }
507
508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 }
510
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)511 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
512 {
513 struct mem_cgroup *memcg;
514
515 rcu_read_lock();
516 retry:
517 memcg = obj_cgroup_memcg(objcg);
518 if (unlikely(!css_tryget(&memcg->css)))
519 goto retry;
520 rcu_read_unlock();
521
522 return memcg;
523 }
524
525 #ifdef CONFIG_MEMCG_KMEM
526 /*
527 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
528 * @folio: Pointer to the folio.
529 *
530 * Checks if the folio has MemcgKmem flag set. The caller must ensure
531 * that the folio has an associated memory cgroup. It's not safe to call
532 * this function against some types of folios, e.g. slab folios.
533 */
folio_memcg_kmem(struct folio * folio)534 static inline bool folio_memcg_kmem(struct folio *folio)
535 {
536 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
537 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
538 return folio->memcg_data & MEMCG_DATA_KMEM;
539 }
540
541
542 #else
folio_memcg_kmem(struct folio * folio)543 static inline bool folio_memcg_kmem(struct folio *folio)
544 {
545 return false;
546 }
547
548 #endif
549
PageMemcgKmem(struct page * page)550 static inline bool PageMemcgKmem(struct page *page)
551 {
552 return folio_memcg_kmem(page_folio(page));
553 }
554
mem_cgroup_is_root(struct mem_cgroup * memcg)555 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
556 {
557 return (memcg == root_mem_cgroup);
558 }
559
mem_cgroup_disabled(void)560 static inline bool mem_cgroup_disabled(void)
561 {
562 return !cgroup_subsys_enabled(memory_cgrp_subsys);
563 }
564
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)565 static inline void mem_cgroup_protection(struct mem_cgroup *root,
566 struct mem_cgroup *memcg,
567 unsigned long *min,
568 unsigned long *low)
569 {
570 *min = *low = 0;
571
572 if (mem_cgroup_disabled())
573 return;
574
575 /*
576 * There is no reclaim protection applied to a targeted reclaim.
577 * We are special casing this specific case here because
578 * mem_cgroup_protected calculation is not robust enough to keep
579 * the protection invariant for calculated effective values for
580 * parallel reclaimers with different reclaim target. This is
581 * especially a problem for tail memcgs (as they have pages on LRU)
582 * which would want to have effective values 0 for targeted reclaim
583 * but a different value for external reclaim.
584 *
585 * Example
586 * Let's have global and A's reclaim in parallel:
587 * |
588 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
589 * |\
590 * | C (low = 1G, usage = 2.5G)
591 * B (low = 1G, usage = 0.5G)
592 *
593 * For the global reclaim
594 * A.elow = A.low
595 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
596 * C.elow = min(C.usage, C.low)
597 *
598 * With the effective values resetting we have A reclaim
599 * A.elow = 0
600 * B.elow = B.low
601 * C.elow = C.low
602 *
603 * If the global reclaim races with A's reclaim then
604 * B.elow = C.elow = 0 because children_low_usage > A.elow)
605 * is possible and reclaiming B would be violating the protection.
606 *
607 */
608 if (root == memcg)
609 return;
610
611 *min = READ_ONCE(memcg->memory.emin);
612 *low = READ_ONCE(memcg->memory.elow);
613 }
614
615 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
616 struct mem_cgroup *memcg);
617
mem_cgroup_supports_protection(struct mem_cgroup * memcg)618 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
619 {
620 /*
621 * The root memcg doesn't account charges, and doesn't support
622 * protection.
623 */
624 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
625
626 }
627
mem_cgroup_below_low(struct mem_cgroup * memcg)628 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
629 {
630 if (!mem_cgroup_supports_protection(memcg))
631 return false;
632
633 return READ_ONCE(memcg->memory.elow) >=
634 page_counter_read(&memcg->memory);
635 }
636
mem_cgroup_below_min(struct mem_cgroup * memcg)637 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
638 {
639 if (!mem_cgroup_supports_protection(memcg))
640 return false;
641
642 return READ_ONCE(memcg->memory.emin) >=
643 page_counter_read(&memcg->memory);
644 }
645
646 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
647
648 /**
649 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
650 * @folio: Folio to charge.
651 * @mm: mm context of the allocating task.
652 * @gfp: Reclaim mode.
653 *
654 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
655 * pages according to @gfp if necessary. If @mm is NULL, try to
656 * charge to the active memcg.
657 *
658 * Do not use this for folios allocated for swapin.
659 *
660 * Return: 0 on success. Otherwise, an error code is returned.
661 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)662 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
663 gfp_t gfp)
664 {
665 if (mem_cgroup_disabled())
666 return 0;
667 return __mem_cgroup_charge(folio, mm, gfp);
668 }
669
670 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
671 gfp_t gfp, swp_entry_t entry);
672 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
673
674 void __mem_cgroup_uncharge(struct folio *folio);
675
676 /**
677 * mem_cgroup_uncharge - Uncharge a folio.
678 * @folio: Folio to uncharge.
679 *
680 * Uncharge a folio previously charged with mem_cgroup_charge().
681 */
mem_cgroup_uncharge(struct folio * folio)682 static inline void mem_cgroup_uncharge(struct folio *folio)
683 {
684 if (mem_cgroup_disabled())
685 return;
686 __mem_cgroup_uncharge(folio);
687 }
688
689 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)690 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
691 {
692 if (mem_cgroup_disabled())
693 return;
694 __mem_cgroup_uncharge_list(page_list);
695 }
696
697 void mem_cgroup_migrate(struct folio *old, struct folio *new);
698
699 /**
700 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
701 * @memcg: memcg of the wanted lruvec
702 * @pgdat: pglist_data
703 *
704 * Returns the lru list vector holding pages for a given @memcg &
705 * @pgdat combination. This can be the node lruvec, if the memory
706 * controller is disabled.
707 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)708 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
709 struct pglist_data *pgdat)
710 {
711 struct mem_cgroup_per_node *mz;
712 struct lruvec *lruvec;
713
714 if (mem_cgroup_disabled()) {
715 lruvec = &pgdat->__lruvec;
716 goto out;
717 }
718
719 if (!memcg)
720 memcg = root_mem_cgroup;
721
722 mz = memcg->nodeinfo[pgdat->node_id];
723 lruvec = &mz->lruvec;
724 out:
725 /*
726 * Since a node can be onlined after the mem_cgroup was created,
727 * we have to be prepared to initialize lruvec->pgdat here;
728 * and if offlined then reonlined, we need to reinitialize it.
729 */
730 if (unlikely(lruvec->pgdat != pgdat))
731 lruvec->pgdat = pgdat;
732 return lruvec;
733 }
734
735 /**
736 * folio_lruvec - return lruvec for isolating/putting an LRU folio
737 * @folio: Pointer to the folio.
738 *
739 * This function relies on folio->mem_cgroup being stable.
740 */
folio_lruvec(struct folio * folio)741 static inline struct lruvec *folio_lruvec(struct folio *folio)
742 {
743 struct mem_cgroup *memcg = folio_memcg(folio);
744
745 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
746 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
747 }
748
749 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
750
751 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
752
753 struct lruvec *folio_lruvec_lock(struct folio *folio);
754 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
755 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
756 unsigned long *flags);
757
758 #ifdef CONFIG_DEBUG_VM
759 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
760 #else
761 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)762 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
763 {
764 }
765 #endif
766
767 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)768 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
769 return css ? container_of(css, struct mem_cgroup, css) : NULL;
770 }
771
obj_cgroup_tryget(struct obj_cgroup * objcg)772 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
773 {
774 return percpu_ref_tryget(&objcg->refcnt);
775 }
776
obj_cgroup_get(struct obj_cgroup * objcg)777 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
778 {
779 percpu_ref_get(&objcg->refcnt);
780 }
781
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)782 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
783 unsigned long nr)
784 {
785 percpu_ref_get_many(&objcg->refcnt, nr);
786 }
787
obj_cgroup_put(struct obj_cgroup * objcg)788 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
789 {
790 percpu_ref_put(&objcg->refcnt);
791 }
792
mem_cgroup_put(struct mem_cgroup * memcg)793 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
794 {
795 if (memcg)
796 css_put(&memcg->css);
797 }
798
799 #define mem_cgroup_from_counter(counter, member) \
800 container_of(counter, struct mem_cgroup, member)
801
802 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
803 struct mem_cgroup *,
804 struct mem_cgroup_reclaim_cookie *);
805 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
806 int mem_cgroup_scan_tasks(struct mem_cgroup *,
807 int (*)(struct task_struct *, void *), void *);
808
mem_cgroup_id(struct mem_cgroup * memcg)809 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
810 {
811 if (mem_cgroup_disabled())
812 return 0;
813
814 return memcg->id.id;
815 }
816 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
817
818 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)819 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
820 {
821 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
822 }
823
824 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
825 #endif
826
mem_cgroup_from_seq(struct seq_file * m)827 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
828 {
829 return mem_cgroup_from_css(seq_css(m));
830 }
831
lruvec_memcg(struct lruvec * lruvec)832 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
833 {
834 struct mem_cgroup_per_node *mz;
835
836 if (mem_cgroup_disabled())
837 return NULL;
838
839 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
840 return mz->memcg;
841 }
842
843 /**
844 * parent_mem_cgroup - find the accounting parent of a memcg
845 * @memcg: memcg whose parent to find
846 *
847 * Returns the parent memcg, or NULL if this is the root or the memory
848 * controller is in legacy no-hierarchy mode.
849 */
parent_mem_cgroup(struct mem_cgroup * memcg)850 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
851 {
852 return mem_cgroup_from_css(memcg->css.parent);
853 }
854
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)855 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
856 struct mem_cgroup *root)
857 {
858 if (root == memcg)
859 return true;
860 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
861 }
862
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)863 static inline bool mm_match_cgroup(struct mm_struct *mm,
864 struct mem_cgroup *memcg)
865 {
866 struct mem_cgroup *task_memcg;
867 bool match = false;
868
869 rcu_read_lock();
870 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (task_memcg)
872 match = mem_cgroup_is_descendant(task_memcg, memcg);
873 rcu_read_unlock();
874 return match;
875 }
876
877 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
878 ino_t page_cgroup_ino(struct page *page);
879
mem_cgroup_online(struct mem_cgroup * memcg)880 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
881 {
882 if (mem_cgroup_disabled())
883 return true;
884 return !!(memcg->css.flags & CSS_ONLINE);
885 }
886
887 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
888 int zid, int nr_pages);
889
890 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)891 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
892 enum lru_list lru, int zone_idx)
893 {
894 struct mem_cgroup_per_node *mz;
895
896 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
897 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
898 }
899
900 void mem_cgroup_handle_over_high(void);
901
902 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
903
904 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
905
906 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
907 struct task_struct *p);
908
909 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
910
mem_cgroup_enter_user_fault(void)911 static inline void mem_cgroup_enter_user_fault(void)
912 {
913 WARN_ON(current->in_user_fault);
914 current->in_user_fault = 1;
915 }
916
mem_cgroup_exit_user_fault(void)917 static inline void mem_cgroup_exit_user_fault(void)
918 {
919 WARN_ON(!current->in_user_fault);
920 current->in_user_fault = 0;
921 }
922
task_in_memcg_oom(struct task_struct * p)923 static inline bool task_in_memcg_oom(struct task_struct *p)
924 {
925 return p->memcg_in_oom;
926 }
927
928 bool mem_cgroup_oom_synchronize(bool wait);
929 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
930 struct mem_cgroup *oom_domain);
931 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
932
933 void folio_memcg_lock(struct folio *folio);
934 void folio_memcg_unlock(struct folio *folio);
935 void lock_page_memcg(struct page *page);
936 void unlock_page_memcg(struct page *page);
937
938 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
939
940 /* try to stablize folio_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)941 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
942 {
943 rcu_read_lock();
944
945 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
946 return true;
947
948 rcu_read_unlock();
949 return false;
950 }
951
mem_cgroup_unlock_pages(void)952 static inline void mem_cgroup_unlock_pages(void)
953 {
954 rcu_read_unlock();
955 }
956
957 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)958 static inline void mod_memcg_state(struct mem_cgroup *memcg,
959 int idx, int val)
960 {
961 unsigned long flags;
962
963 local_irq_save(flags);
964 __mod_memcg_state(memcg, idx, val);
965 local_irq_restore(flags);
966 }
967
mod_memcg_page_state(struct page * page,int idx,int val)968 static inline void mod_memcg_page_state(struct page *page,
969 int idx, int val)
970 {
971 struct mem_cgroup *memcg;
972
973 if (mem_cgroup_disabled())
974 return;
975
976 rcu_read_lock();
977 memcg = page_memcg(page);
978 if (memcg)
979 mod_memcg_state(memcg, idx, val);
980 rcu_read_unlock();
981 }
982
983 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
984
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)985 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
986 enum node_stat_item idx)
987 {
988 struct mem_cgroup_per_node *pn;
989 long x;
990
991 if (mem_cgroup_disabled())
992 return node_page_state(lruvec_pgdat(lruvec), idx);
993
994 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995 x = READ_ONCE(pn->lruvec_stats.state[idx]);
996 #ifdef CONFIG_SMP
997 if (x < 0)
998 x = 0;
999 #endif
1000 return x;
1001 }
1002
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1003 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1004 enum node_stat_item idx)
1005 {
1006 struct mem_cgroup_per_node *pn;
1007 long x = 0;
1008 int cpu;
1009
1010 if (mem_cgroup_disabled())
1011 return node_page_state(lruvec_pgdat(lruvec), idx);
1012
1013 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1014 for_each_possible_cpu(cpu)
1015 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1016 #ifdef CONFIG_SMP
1017 if (x < 0)
1018 x = 0;
1019 #endif
1020 return x;
1021 }
1022
1023 void mem_cgroup_flush_stats(void);
1024 void mem_cgroup_flush_stats_delayed(void);
1025
1026 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1027 int val);
1028 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1029
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1030 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1031 int val)
1032 {
1033 unsigned long flags;
1034
1035 local_irq_save(flags);
1036 __mod_lruvec_kmem_state(p, idx, val);
1037 local_irq_restore(flags);
1038 }
1039
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1040 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1041 enum node_stat_item idx, int val)
1042 {
1043 unsigned long flags;
1044
1045 local_irq_save(flags);
1046 __mod_memcg_lruvec_state(lruvec, idx, val);
1047 local_irq_restore(flags);
1048 }
1049
1050 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1051 unsigned long count);
1052
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1053 static inline void count_memcg_events(struct mem_cgroup *memcg,
1054 enum vm_event_item idx,
1055 unsigned long count)
1056 {
1057 unsigned long flags;
1058
1059 local_irq_save(flags);
1060 __count_memcg_events(memcg, idx, count);
1061 local_irq_restore(flags);
1062 }
1063
count_memcg_page_event(struct page * page,enum vm_event_item idx)1064 static inline void count_memcg_page_event(struct page *page,
1065 enum vm_event_item idx)
1066 {
1067 struct mem_cgroup *memcg = page_memcg(page);
1068
1069 if (memcg)
1070 count_memcg_events(memcg, idx, 1);
1071 }
1072
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1073 static inline void count_memcg_folio_events(struct folio *folio,
1074 enum vm_event_item idx, unsigned long nr)
1075 {
1076 struct mem_cgroup *memcg = folio_memcg(folio);
1077
1078 if (memcg)
1079 count_memcg_events(memcg, idx, nr);
1080 }
1081
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1082 static inline void count_memcg_event_mm(struct mm_struct *mm,
1083 enum vm_event_item idx)
1084 {
1085 struct mem_cgroup *memcg;
1086
1087 if (mem_cgroup_disabled())
1088 return;
1089
1090 rcu_read_lock();
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (likely(memcg))
1093 count_memcg_events(memcg, idx, 1);
1094 rcu_read_unlock();
1095 }
1096
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1097 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1098 enum memcg_memory_event event)
1099 {
1100 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1101 event == MEMCG_SWAP_FAIL;
1102
1103 atomic_long_inc(&memcg->memory_events_local[event]);
1104 if (!swap_event)
1105 cgroup_file_notify(&memcg->events_local_file);
1106
1107 do {
1108 atomic_long_inc(&memcg->memory_events[event]);
1109 if (swap_event)
1110 cgroup_file_notify(&memcg->swap_events_file);
1111 else
1112 cgroup_file_notify(&memcg->events_file);
1113
1114 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1115 break;
1116 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1117 break;
1118 } while ((memcg = parent_mem_cgroup(memcg)) &&
1119 !mem_cgroup_is_root(memcg));
1120 }
1121
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1122 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1123 enum memcg_memory_event event)
1124 {
1125 struct mem_cgroup *memcg;
1126
1127 if (mem_cgroup_disabled())
1128 return;
1129
1130 rcu_read_lock();
1131 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1132 if (likely(memcg))
1133 memcg_memory_event(memcg, event);
1134 rcu_read_unlock();
1135 }
1136
1137 void split_page_memcg(struct page *head, unsigned int nr);
1138
1139 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1140 gfp_t gfp_mask,
1141 unsigned long *total_scanned);
1142
1143 #else /* CONFIG_MEMCG */
1144
1145 #define MEM_CGROUP_ID_SHIFT 0
1146 #define MEM_CGROUP_ID_MAX 0
1147
folio_memcg(struct folio * folio)1148 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1149 {
1150 return NULL;
1151 }
1152
page_memcg(struct page * page)1153 static inline struct mem_cgroup *page_memcg(struct page *page)
1154 {
1155 return NULL;
1156 }
1157
folio_memcg_rcu(struct folio * folio)1158 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1159 {
1160 WARN_ON_ONCE(!rcu_read_lock_held());
1161 return NULL;
1162 }
1163
page_memcg_check(struct page * page)1164 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1165 {
1166 return NULL;
1167 }
1168
folio_memcg_kmem(struct folio * folio)1169 static inline bool folio_memcg_kmem(struct folio *folio)
1170 {
1171 return false;
1172 }
1173
PageMemcgKmem(struct page * page)1174 static inline bool PageMemcgKmem(struct page *page)
1175 {
1176 return false;
1177 }
1178
mem_cgroup_is_root(struct mem_cgroup * memcg)1179 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1180 {
1181 return true;
1182 }
1183
mem_cgroup_disabled(void)1184 static inline bool mem_cgroup_disabled(void)
1185 {
1186 return true;
1187 }
1188
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1189 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1190 enum memcg_memory_event event)
1191 {
1192 }
1193
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1194 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1195 enum memcg_memory_event event)
1196 {
1197 }
1198
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1199 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1200 struct mem_cgroup *memcg,
1201 unsigned long *min,
1202 unsigned long *low)
1203 {
1204 *min = *low = 0;
1205 }
1206
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1207 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1208 struct mem_cgroup *memcg)
1209 {
1210 }
1211
mem_cgroup_below_low(struct mem_cgroup * memcg)1212 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1213 {
1214 return false;
1215 }
1216
mem_cgroup_below_min(struct mem_cgroup * memcg)1217 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1218 {
1219 return false;
1220 }
1221
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1222 static inline int mem_cgroup_charge(struct folio *folio,
1223 struct mm_struct *mm, gfp_t gfp)
1224 {
1225 return 0;
1226 }
1227
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1228 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1229 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1230 {
1231 return 0;
1232 }
1233
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1234 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1235 {
1236 }
1237
mem_cgroup_uncharge(struct folio * folio)1238 static inline void mem_cgroup_uncharge(struct folio *folio)
1239 {
1240 }
1241
mem_cgroup_uncharge_list(struct list_head * page_list)1242 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1243 {
1244 }
1245
mem_cgroup_migrate(struct folio * old,struct folio * new)1246 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1247 {
1248 }
1249
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1250 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1251 struct pglist_data *pgdat)
1252 {
1253 return &pgdat->__lruvec;
1254 }
1255
folio_lruvec(struct folio * folio)1256 static inline struct lruvec *folio_lruvec(struct folio *folio)
1257 {
1258 struct pglist_data *pgdat = folio_pgdat(folio);
1259 return &pgdat->__lruvec;
1260 }
1261
1262 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1263 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1264 {
1265 }
1266
parent_mem_cgroup(struct mem_cgroup * memcg)1267 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1268 {
1269 return NULL;
1270 }
1271
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1272 static inline bool mm_match_cgroup(struct mm_struct *mm,
1273 struct mem_cgroup *memcg)
1274 {
1275 return true;
1276 }
1277
get_mem_cgroup_from_mm(struct mm_struct * mm)1278 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1279 {
1280 return NULL;
1281 }
1282
1283 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1284 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1285 {
1286 return NULL;
1287 }
1288
obj_cgroup_put(struct obj_cgroup * objcg)1289 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1290 {
1291 }
1292
mem_cgroup_put(struct mem_cgroup * memcg)1293 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1294 {
1295 }
1296
folio_lruvec_lock(struct folio * folio)1297 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1298 {
1299 struct pglist_data *pgdat = folio_pgdat(folio);
1300
1301 spin_lock(&pgdat->__lruvec.lru_lock);
1302 return &pgdat->__lruvec;
1303 }
1304
folio_lruvec_lock_irq(struct folio * folio)1305 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1306 {
1307 struct pglist_data *pgdat = folio_pgdat(folio);
1308
1309 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1310 return &pgdat->__lruvec;
1311 }
1312
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1313 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1314 unsigned long *flagsp)
1315 {
1316 struct pglist_data *pgdat = folio_pgdat(folio);
1317
1318 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1319 return &pgdat->__lruvec;
1320 }
1321
1322 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1323 mem_cgroup_iter(struct mem_cgroup *root,
1324 struct mem_cgroup *prev,
1325 struct mem_cgroup_reclaim_cookie *reclaim)
1326 {
1327 return NULL;
1328 }
1329
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1330 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1331 struct mem_cgroup *prev)
1332 {
1333 }
1334
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1335 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1336 int (*fn)(struct task_struct *, void *), void *arg)
1337 {
1338 return 0;
1339 }
1340
mem_cgroup_id(struct mem_cgroup * memcg)1341 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1342 {
1343 return 0;
1344 }
1345
mem_cgroup_from_id(unsigned short id)1346 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1347 {
1348 WARN_ON_ONCE(id);
1349 /* XXX: This should always return root_mem_cgroup */
1350 return NULL;
1351 }
1352
1353 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1354 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1355 {
1356 return 0;
1357 }
1358
mem_cgroup_get_from_ino(unsigned long ino)1359 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1360 {
1361 return NULL;
1362 }
1363 #endif
1364
mem_cgroup_from_seq(struct seq_file * m)1365 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1366 {
1367 return NULL;
1368 }
1369
lruvec_memcg(struct lruvec * lruvec)1370 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1371 {
1372 return NULL;
1373 }
1374
mem_cgroup_online(struct mem_cgroup * memcg)1375 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1376 {
1377 return true;
1378 }
1379
1380 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1381 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1382 enum lru_list lru, int zone_idx)
1383 {
1384 return 0;
1385 }
1386
mem_cgroup_get_max(struct mem_cgroup * memcg)1387 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1388 {
1389 return 0;
1390 }
1391
mem_cgroup_size(struct mem_cgroup * memcg)1392 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1393 {
1394 return 0;
1395 }
1396
1397 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1398 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1399 {
1400 }
1401
1402 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1403 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1404 {
1405 }
1406
lock_page_memcg(struct page * page)1407 static inline void lock_page_memcg(struct page *page)
1408 {
1409 }
1410
unlock_page_memcg(struct page * page)1411 static inline void unlock_page_memcg(struct page *page)
1412 {
1413 }
1414
folio_memcg_lock(struct folio * folio)1415 static inline void folio_memcg_lock(struct folio *folio)
1416 {
1417 }
1418
folio_memcg_unlock(struct folio * folio)1419 static inline void folio_memcg_unlock(struct folio *folio)
1420 {
1421 }
1422
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1423 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1424 {
1425 /* to match folio_memcg_rcu() */
1426 rcu_read_lock();
1427 return true;
1428 }
1429
mem_cgroup_unlock_pages(void)1430 static inline void mem_cgroup_unlock_pages(void)
1431 {
1432 rcu_read_unlock();
1433 }
1434
mem_cgroup_handle_over_high(void)1435 static inline void mem_cgroup_handle_over_high(void)
1436 {
1437 }
1438
mem_cgroup_enter_user_fault(void)1439 static inline void mem_cgroup_enter_user_fault(void)
1440 {
1441 }
1442
mem_cgroup_exit_user_fault(void)1443 static inline void mem_cgroup_exit_user_fault(void)
1444 {
1445 }
1446
task_in_memcg_oom(struct task_struct * p)1447 static inline bool task_in_memcg_oom(struct task_struct *p)
1448 {
1449 return false;
1450 }
1451
mem_cgroup_oom_synchronize(bool wait)1452 static inline bool mem_cgroup_oom_synchronize(bool wait)
1453 {
1454 return false;
1455 }
1456
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1457 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1458 struct task_struct *victim, struct mem_cgroup *oom_domain)
1459 {
1460 return NULL;
1461 }
1462
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1463 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1464 {
1465 }
1466
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1467 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1468 int idx,
1469 int nr)
1470 {
1471 }
1472
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1473 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1474 int idx,
1475 int nr)
1476 {
1477 }
1478
mod_memcg_page_state(struct page * page,int idx,int val)1479 static inline void mod_memcg_page_state(struct page *page,
1480 int idx, int val)
1481 {
1482 }
1483
memcg_page_state(struct mem_cgroup * memcg,int idx)1484 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1485 {
1486 return 0;
1487 }
1488
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1489 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1490 enum node_stat_item idx)
1491 {
1492 return node_page_state(lruvec_pgdat(lruvec), idx);
1493 }
1494
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1495 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1496 enum node_stat_item idx)
1497 {
1498 return node_page_state(lruvec_pgdat(lruvec), idx);
1499 }
1500
mem_cgroup_flush_stats(void)1501 static inline void mem_cgroup_flush_stats(void)
1502 {
1503 }
1504
mem_cgroup_flush_stats_delayed(void)1505 static inline void mem_cgroup_flush_stats_delayed(void)
1506 {
1507 }
1508
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1509 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1510 enum node_stat_item idx, int val)
1511 {
1512 }
1513
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1514 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1515 int val)
1516 {
1517 struct page *page = virt_to_head_page(p);
1518
1519 __mod_node_page_state(page_pgdat(page), idx, val);
1520 }
1521
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1522 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1523 int val)
1524 {
1525 struct page *page = virt_to_head_page(p);
1526
1527 mod_node_page_state(page_pgdat(page), idx, val);
1528 }
1529
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1530 static inline void count_memcg_events(struct mem_cgroup *memcg,
1531 enum vm_event_item idx,
1532 unsigned long count)
1533 {
1534 }
1535
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1536 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1537 enum vm_event_item idx,
1538 unsigned long count)
1539 {
1540 }
1541
count_memcg_page_event(struct page * page,int idx)1542 static inline void count_memcg_page_event(struct page *page,
1543 int idx)
1544 {
1545 }
1546
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1547 static inline void count_memcg_folio_events(struct folio *folio,
1548 enum vm_event_item idx, unsigned long nr)
1549 {
1550 }
1551
1552 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1553 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1554 {
1555 }
1556
split_page_memcg(struct page * head,unsigned int nr)1557 static inline void split_page_memcg(struct page *head, unsigned int nr)
1558 {
1559 }
1560
1561 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1562 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1563 gfp_t gfp_mask,
1564 unsigned long *total_scanned)
1565 {
1566 return 0;
1567 }
1568 #endif /* CONFIG_MEMCG */
1569
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1570 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1571 {
1572 __mod_lruvec_kmem_state(p, idx, 1);
1573 }
1574
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1575 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1576 {
1577 __mod_lruvec_kmem_state(p, idx, -1);
1578 }
1579
parent_lruvec(struct lruvec * lruvec)1580 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1581 {
1582 struct mem_cgroup *memcg;
1583
1584 memcg = lruvec_memcg(lruvec);
1585 if (!memcg)
1586 return NULL;
1587 memcg = parent_mem_cgroup(memcg);
1588 if (!memcg)
1589 return NULL;
1590 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1591 }
1592
unlock_page_lruvec(struct lruvec * lruvec)1593 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1594 {
1595 spin_unlock(&lruvec->lru_lock);
1596 }
1597
unlock_page_lruvec_irq(struct lruvec * lruvec)1598 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1599 {
1600 spin_unlock_irq(&lruvec->lru_lock);
1601 }
1602
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1603 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1604 unsigned long flags)
1605 {
1606 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1607 }
1608
1609 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1610 static inline bool folio_matches_lruvec(struct folio *folio,
1611 struct lruvec *lruvec)
1612 {
1613 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1614 lruvec_memcg(lruvec) == folio_memcg(folio);
1615 }
1616
1617 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1618 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1619 struct lruvec *locked_lruvec)
1620 {
1621 if (locked_lruvec) {
1622 if (folio_matches_lruvec(folio, locked_lruvec))
1623 return locked_lruvec;
1624
1625 unlock_page_lruvec_irq(locked_lruvec);
1626 }
1627
1628 return folio_lruvec_lock_irq(folio);
1629 }
1630
1631 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1632 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1633 struct lruvec *locked_lruvec, unsigned long *flags)
1634 {
1635 if (locked_lruvec) {
1636 if (folio_matches_lruvec(folio, locked_lruvec))
1637 return locked_lruvec;
1638
1639 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1640 }
1641
1642 return folio_lruvec_lock_irqsave(folio, flags);
1643 }
1644
1645 #ifdef CONFIG_CGROUP_WRITEBACK
1646
1647 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1648 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1649 unsigned long *pheadroom, unsigned long *pdirty,
1650 unsigned long *pwriteback);
1651
1652 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1653 struct bdi_writeback *wb);
1654
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1655 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1656 struct bdi_writeback *wb)
1657 {
1658 if (mem_cgroup_disabled())
1659 return;
1660
1661 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1662 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1663 }
1664
1665 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1666
1667 #else /* CONFIG_CGROUP_WRITEBACK */
1668
mem_cgroup_wb_domain(struct bdi_writeback * wb)1669 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1670 {
1671 return NULL;
1672 }
1673
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1674 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1675 unsigned long *pfilepages,
1676 unsigned long *pheadroom,
1677 unsigned long *pdirty,
1678 unsigned long *pwriteback)
1679 {
1680 }
1681
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1682 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1683 struct bdi_writeback *wb)
1684 {
1685 }
1686
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1687 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1688 {
1689 }
1690
1691 #endif /* CONFIG_CGROUP_WRITEBACK */
1692
1693 struct sock;
1694 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1695 gfp_t gfp_mask);
1696 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1697 #ifdef CONFIG_MEMCG
1698 extern struct static_key_false memcg_sockets_enabled_key;
1699 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1700 void mem_cgroup_sk_alloc(struct sock *sk);
1701 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1702 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1703 {
1704 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1705 return true;
1706 do {
1707 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1708 return true;
1709 } while ((memcg = parent_mem_cgroup(memcg)));
1710 return false;
1711 }
1712
1713 int alloc_shrinker_info(struct mem_cgroup *memcg);
1714 void free_shrinker_info(struct mem_cgroup *memcg);
1715 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1716 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1717 #else
1718 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1719 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1720 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1721 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1722 {
1723 return false;
1724 }
1725
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1726 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1727 int nid, int shrinker_id)
1728 {
1729 }
1730 #endif
1731
1732 #ifdef CONFIG_MEMCG_KMEM
1733 bool mem_cgroup_kmem_disabled(void);
1734 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1735 void __memcg_kmem_uncharge_page(struct page *page, int order);
1736
1737 struct obj_cgroup *get_obj_cgroup_from_current(void);
1738 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1739
1740 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1741 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1742
1743 extern struct static_key_false memcg_kmem_enabled_key;
1744
memcg_kmem_enabled(void)1745 static inline bool memcg_kmem_enabled(void)
1746 {
1747 return static_branch_likely(&memcg_kmem_enabled_key);
1748 }
1749
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1750 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1751 int order)
1752 {
1753 if (memcg_kmem_enabled())
1754 return __memcg_kmem_charge_page(page, gfp, order);
1755 return 0;
1756 }
1757
memcg_kmem_uncharge_page(struct page * page,int order)1758 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1759 {
1760 if (memcg_kmem_enabled())
1761 __memcg_kmem_uncharge_page(page, order);
1762 }
1763
1764 /*
1765 * A helper for accessing memcg's kmem_id, used for getting
1766 * corresponding LRU lists.
1767 */
memcg_kmem_id(struct mem_cgroup * memcg)1768 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1769 {
1770 return memcg ? memcg->kmemcg_id : -1;
1771 }
1772
1773 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1774 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1775
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1776 static inline void count_objcg_event(struct obj_cgroup *objcg,
1777 enum vm_event_item idx)
1778 {
1779 struct mem_cgroup *memcg;
1780
1781 if (!memcg_kmem_enabled())
1782 return;
1783
1784 rcu_read_lock();
1785 memcg = obj_cgroup_memcg(objcg);
1786 count_memcg_events(memcg, idx, 1);
1787 rcu_read_unlock();
1788 }
1789
1790 #else
mem_cgroup_kmem_disabled(void)1791 static inline bool mem_cgroup_kmem_disabled(void)
1792 {
1793 return true;
1794 }
1795
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1796 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1797 int order)
1798 {
1799 return 0;
1800 }
1801
memcg_kmem_uncharge_page(struct page * page,int order)1802 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1803 {
1804 }
1805
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1806 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1807 int order)
1808 {
1809 return 0;
1810 }
1811
__memcg_kmem_uncharge_page(struct page * page,int order)1812 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1813 {
1814 }
1815
get_obj_cgroup_from_page(struct page * page)1816 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1817 {
1818 return NULL;
1819 }
1820
memcg_kmem_enabled(void)1821 static inline bool memcg_kmem_enabled(void)
1822 {
1823 return false;
1824 }
1825
memcg_kmem_id(struct mem_cgroup * memcg)1826 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1827 {
1828 return -1;
1829 }
1830
mem_cgroup_from_obj(void * p)1831 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1832 {
1833 return NULL;
1834 }
1835
mem_cgroup_from_slab_obj(void * p)1836 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1837 {
1838 return NULL;
1839 }
1840
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1841 static inline void count_objcg_event(struct obj_cgroup *objcg,
1842 enum vm_event_item idx)
1843 {
1844 }
1845
1846 #endif /* CONFIG_MEMCG_KMEM */
1847
1848 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1849 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1850 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1851 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1852 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1853 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1854 {
1855 return true;
1856 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1857 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1858 size_t size)
1859 {
1860 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1861 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1862 size_t size)
1863 {
1864 }
1865 #endif
1866
1867 #endif /* _LINUX_MEMCONTROL_H */
1868