1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41 };
42
43 enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54 };
55
56 struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59 };
60
61 #ifdef CONFIG_MEMCG
62
63 #define MEM_CGROUP_ID_SHIFT 16
64 #define MEM_CGROUP_ID_MAX USHRT_MAX
65
66 struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69 };
70
71 /*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77 enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81 };
82
83 struct memcg_vmstats_percpu {
84 /* Local (CPU and cgroup) page state & events */
85 long state[MEMCG_NR_STAT];
86 unsigned long events[NR_VM_EVENT_ITEMS];
87
88 /* Delta calculation for lockless upward propagation */
89 long state_prev[MEMCG_NR_STAT];
90 unsigned long events_prev[NR_VM_EVENT_ITEMS];
91
92 /* Cgroup1: threshold notifications & softlimit tree updates */
93 unsigned long nr_page_events;
94 unsigned long targets[MEM_CGROUP_NTARGETS];
95 };
96
97 struct memcg_vmstats {
98 /* Aggregated (CPU and subtree) page state & events */
99 long state[MEMCG_NR_STAT];
100 unsigned long events[NR_VM_EVENT_ITEMS];
101
102 /* Pending child counts during tree propagation */
103 long state_pending[MEMCG_NR_STAT];
104 unsigned long events_pending[NR_VM_EVENT_ITEMS];
105 };
106
107 struct mem_cgroup_reclaim_iter {
108 struct mem_cgroup *position;
109 /* scan generation, increased every round-trip */
110 unsigned int generation;
111 };
112
113 /*
114 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
115 * shrinkers, which have elements charged to this memcg.
116 */
117 struct shrinker_info {
118 struct rcu_head rcu;
119 atomic_long_t *nr_deferred;
120 unsigned long *map;
121 };
122
123 struct lruvec_stats_percpu {
124 /* Local (CPU and cgroup) state */
125 long state[NR_VM_NODE_STAT_ITEMS];
126
127 /* Delta calculation for lockless upward propagation */
128 long state_prev[NR_VM_NODE_STAT_ITEMS];
129 };
130
131 struct lruvec_stats {
132 /* Aggregated (CPU and subtree) state */
133 long state[NR_VM_NODE_STAT_ITEMS];
134
135 /* Pending child counts during tree propagation */
136 long state_pending[NR_VM_NODE_STAT_ITEMS];
137 };
138
139 /*
140 * per-node information in memory controller.
141 */
142 struct mem_cgroup_per_node {
143 struct lruvec lruvec;
144
145 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
146 struct lruvec_stats lruvec_stats;
147
148 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
149
150 struct mem_cgroup_reclaim_iter iter;
151
152 struct shrinker_info __rcu *shrinker_info;
153
154 struct rb_node tree_node; /* RB tree node */
155 unsigned long usage_in_excess;/* Set to the value by which */
156 /* the soft limit is exceeded*/
157 bool on_tree;
158 struct mem_cgroup *memcg; /* Back pointer, we cannot */
159 /* use container_of */
160 };
161
162 struct mem_cgroup_threshold {
163 struct eventfd_ctx *eventfd;
164 unsigned long threshold;
165 };
166
167 /* For threshold */
168 struct mem_cgroup_threshold_ary {
169 /* An array index points to threshold just below or equal to usage. */
170 int current_threshold;
171 /* Size of entries[] */
172 unsigned int size;
173 /* Array of thresholds */
174 struct mem_cgroup_threshold entries[];
175 };
176
177 struct mem_cgroup_thresholds {
178 /* Primary thresholds array */
179 struct mem_cgroup_threshold_ary *primary;
180 /*
181 * Spare threshold array.
182 * This is needed to make mem_cgroup_unregister_event() "never fail".
183 * It must be able to store at least primary->size - 1 entries.
184 */
185 struct mem_cgroup_threshold_ary *spare;
186 };
187
188 #if defined(CONFIG_SMP)
189 struct memcg_padding {
190 char x[0];
191 } ____cacheline_internodealigned_in_smp;
192 #define MEMCG_PADDING(name) struct memcg_padding name
193 #else
194 #define MEMCG_PADDING(name)
195 #endif
196
197 /*
198 * Remember four most recent foreign writebacks with dirty pages in this
199 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
200 * one in a given round, we're likely to catch it later if it keeps
201 * foreign-dirtying, so a fairly low count should be enough.
202 *
203 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
204 */
205 #define MEMCG_CGWB_FRN_CNT 4
206
207 struct memcg_cgwb_frn {
208 u64 bdi_id; /* bdi->id of the foreign inode */
209 int memcg_id; /* memcg->css.id of foreign inode */
210 u64 at; /* jiffies_64 at the time of dirtying */
211 struct wb_completion done; /* tracks in-flight foreign writebacks */
212 };
213
214 /*
215 * Bucket for arbitrarily byte-sized objects charged to a memory
216 * cgroup. The bucket can be reparented in one piece when the cgroup
217 * is destroyed, without having to round up the individual references
218 * of all live memory objects in the wild.
219 */
220 struct obj_cgroup {
221 struct percpu_ref refcnt;
222 struct mem_cgroup *memcg;
223 atomic_t nr_charged_bytes;
224 union {
225 struct list_head list; /* protected by objcg_lock */
226 struct rcu_head rcu;
227 };
228 };
229
230 /*
231 * The memory controller data structure. The memory controller controls both
232 * page cache and RSS per cgroup. We would eventually like to provide
233 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
234 * to help the administrator determine what knobs to tune.
235 */
236 struct mem_cgroup {
237 struct cgroup_subsys_state css;
238
239 /* Private memcg ID. Used to ID objects that outlive the cgroup */
240 struct mem_cgroup_id id;
241
242 /* Accounted resources */
243 struct page_counter memory; /* Both v1 & v2 */
244
245 union {
246 struct page_counter swap; /* v2 only */
247 struct page_counter memsw; /* v1 only */
248 };
249
250 /* Legacy consumer-oriented counters */
251 struct page_counter kmem; /* v1 only */
252 struct page_counter tcpmem; /* v1 only */
253
254 /* Range enforcement for interrupt charges */
255 struct work_struct high_work;
256
257 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
258 unsigned long zswap_max;
259 #endif
260
261 unsigned long soft_limit;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 /*
267 * Should the OOM killer kill all belonging tasks, had it kill one?
268 */
269 bool oom_group;
270
271 /* protected by memcg_oom_lock */
272 bool oom_lock;
273 int under_oom;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* memory.events and memory.events.local */
280 struct cgroup_file events_file;
281 struct cgroup_file events_local_file;
282
283 /* handle for "memory.swap.events" */
284 struct cgroup_file swap_events_file;
285
286 /* protect arrays of thresholds */
287 struct mutex thresholds_lock;
288
289 /* thresholds for memory usage. RCU-protected */
290 struct mem_cgroup_thresholds thresholds;
291
292 /* thresholds for mem+swap usage. RCU-protected */
293 struct mem_cgroup_thresholds memsw_thresholds;
294
295 /* For oom notifier event fd */
296 struct list_head oom_notify;
297
298 /*
299 * Should we move charges of a task when a task is moved into this
300 * mem_cgroup ? And what type of charges should we move ?
301 */
302 unsigned long move_charge_at_immigrate;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 unsigned long move_lock_flags;
306
307 MEMCG_PADDING(_pad1_);
308
309 /* memory.stat */
310 struct memcg_vmstats vmstats;
311
312 /* memory.events */
313 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
314 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
315
316 unsigned long socket_pressure;
317
318 /* Legacy tcp memory accounting */
319 bool tcpmem_active;
320 int tcpmem_pressure;
321
322 #ifdef CONFIG_MEMCG_KMEM
323 int kmemcg_id;
324 struct obj_cgroup __rcu *objcg;
325 /* list of inherited objcgs, protected by objcg_lock */
326 struct list_head objcg_list;
327 #endif
328
329 MEMCG_PADDING(_pad2_);
330
331 /*
332 * set > 0 if pages under this cgroup are moving to other cgroup.
333 */
334 atomic_t moving_account;
335 struct task_struct *move_lock_task;
336
337 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
338
339 #ifdef CONFIG_CGROUP_WRITEBACK
340 struct list_head cgwb_list;
341 struct wb_domain cgwb_domain;
342 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
343 #endif
344
345 /* List of events which userspace want to receive */
346 struct list_head event_list;
347 spinlock_t event_list_lock;
348
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 struct deferred_split deferred_split_queue;
351 #endif
352
353 struct mem_cgroup_per_node *nodeinfo[];
354 };
355
356 /*
357 * size of first charge trial. "32" comes from vmscan.c's magic value.
358 * TODO: maybe necessary to use big numbers in big irons.
359 */
360 #define MEMCG_CHARGE_BATCH 32U
361
362 extern struct mem_cgroup *root_mem_cgroup;
363
364 enum page_memcg_data_flags {
365 /* page->memcg_data is a pointer to an objcgs vector */
366 MEMCG_DATA_OBJCGS = (1UL << 0),
367 /* page has been accounted as a non-slab kernel page */
368 MEMCG_DATA_KMEM = (1UL << 1),
369 /* the next bit after the last actual flag */
370 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
371 };
372
373 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
374
375 static inline bool folio_memcg_kmem(struct folio *folio);
376
377 /*
378 * After the initialization objcg->memcg is always pointing at
379 * a valid memcg, but can be atomically swapped to the parent memcg.
380 *
381 * The caller must ensure that the returned memcg won't be released:
382 * e.g. acquire the rcu_read_lock or css_set_lock.
383 */
obj_cgroup_memcg(struct obj_cgroup * objcg)384 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
385 {
386 return READ_ONCE(objcg->memcg);
387 }
388
389 /*
390 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
391 * @folio: Pointer to the folio.
392 *
393 * Returns a pointer to the memory cgroup associated with the folio,
394 * or NULL. This function assumes that the folio is known to have a
395 * proper memory cgroup pointer. It's not safe to call this function
396 * against some type of folios, e.g. slab folios or ex-slab folios or
397 * kmem folios.
398 */
__folio_memcg(struct folio * folio)399 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
400 {
401 unsigned long memcg_data = folio->memcg_data;
402
403 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
404 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
405 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
406
407 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
408 }
409
410 /*
411 * __folio_objcg - get the object cgroup associated with a kmem folio.
412 * @folio: Pointer to the folio.
413 *
414 * Returns a pointer to the object cgroup associated with the folio,
415 * or NULL. This function assumes that the folio is known to have a
416 * proper object cgroup pointer. It's not safe to call this function
417 * against some type of folios, e.g. slab folios or ex-slab folios or
418 * LRU folios.
419 */
__folio_objcg(struct folio * folio)420 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
421 {
422 unsigned long memcg_data = folio->memcg_data;
423
424 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
425 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
426 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
427
428 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
429 }
430
431 /*
432 * folio_memcg - Get the memory cgroup associated with a folio.
433 * @folio: Pointer to the folio.
434 *
435 * Returns a pointer to the memory cgroup associated with the folio,
436 * or NULL. This function assumes that the folio is known to have a
437 * proper memory cgroup pointer. It's not safe to call this function
438 * against some type of folios, e.g. slab folios or ex-slab folios.
439 *
440 * For a non-kmem folio any of the following ensures folio and memcg binding
441 * stability:
442 *
443 * - the folio lock
444 * - LRU isolation
445 * - lock_page_memcg()
446 * - exclusive reference
447 *
448 * For a kmem folio a caller should hold an rcu read lock to protect memcg
449 * associated with a kmem folio from being released.
450 */
folio_memcg(struct folio * folio)451 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
452 {
453 if (folio_memcg_kmem(folio))
454 return obj_cgroup_memcg(__folio_objcg(folio));
455 return __folio_memcg(folio);
456 }
457
page_memcg(struct page * page)458 static inline struct mem_cgroup *page_memcg(struct page *page)
459 {
460 return folio_memcg(page_folio(page));
461 }
462
463 /**
464 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
465 * @folio: Pointer to the folio.
466 *
467 * This function assumes that the folio is known to have a
468 * proper memory cgroup pointer. It's not safe to call this function
469 * against some type of folios, e.g. slab folios or ex-slab folios.
470 *
471 * Return: A pointer to the memory cgroup associated with the folio,
472 * or NULL.
473 */
folio_memcg_rcu(struct folio * folio)474 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
475 {
476 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
477
478 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
479 WARN_ON_ONCE(!rcu_read_lock_held());
480
481 if (memcg_data & MEMCG_DATA_KMEM) {
482 struct obj_cgroup *objcg;
483
484 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
485 return obj_cgroup_memcg(objcg);
486 }
487
488 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
489 }
490
491 /*
492 * page_memcg_check - get the memory cgroup associated with a page
493 * @page: a pointer to the page struct
494 *
495 * Returns a pointer to the memory cgroup associated with the page,
496 * or NULL. This function unlike page_memcg() can take any page
497 * as an argument. It has to be used in cases when it's not known if a page
498 * has an associated memory cgroup pointer or an object cgroups vector or
499 * an object cgroup.
500 *
501 * For a non-kmem page any of the following ensures page and memcg binding
502 * stability:
503 *
504 * - the page lock
505 * - LRU isolation
506 * - lock_page_memcg()
507 * - exclusive reference
508 *
509 * For a kmem page a caller should hold an rcu read lock to protect memcg
510 * associated with a kmem page from being released.
511 */
page_memcg_check(struct page * page)512 static inline struct mem_cgroup *page_memcg_check(struct page *page)
513 {
514 /*
515 * Because page->memcg_data might be changed asynchronously
516 * for slab pages, READ_ONCE() should be used here.
517 */
518 unsigned long memcg_data = READ_ONCE(page->memcg_data);
519
520 if (memcg_data & MEMCG_DATA_OBJCGS)
521 return NULL;
522
523 if (memcg_data & MEMCG_DATA_KMEM) {
524 struct obj_cgroup *objcg;
525
526 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
527 return obj_cgroup_memcg(objcg);
528 }
529
530 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
531 }
532
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)533 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
534 {
535 struct mem_cgroup *memcg;
536
537 rcu_read_lock();
538 retry:
539 memcg = obj_cgroup_memcg(objcg);
540 if (unlikely(!css_tryget(&memcg->css)))
541 goto retry;
542 rcu_read_unlock();
543
544 return memcg;
545 }
546
547 #ifdef CONFIG_MEMCG_KMEM
548 /*
549 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
550 * @folio: Pointer to the folio.
551 *
552 * Checks if the folio has MemcgKmem flag set. The caller must ensure
553 * that the folio has an associated memory cgroup. It's not safe to call
554 * this function against some types of folios, e.g. slab folios.
555 */
folio_memcg_kmem(struct folio * folio)556 static inline bool folio_memcg_kmem(struct folio *folio)
557 {
558 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
559 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
560 return folio->memcg_data & MEMCG_DATA_KMEM;
561 }
562
563
564 #else
folio_memcg_kmem(struct folio * folio)565 static inline bool folio_memcg_kmem(struct folio *folio)
566 {
567 return false;
568 }
569
570 #endif
571
PageMemcgKmem(struct page * page)572 static inline bool PageMemcgKmem(struct page *page)
573 {
574 return folio_memcg_kmem(page_folio(page));
575 }
576
mem_cgroup_is_root(struct mem_cgroup * memcg)577 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
578 {
579 return (memcg == root_mem_cgroup);
580 }
581
mem_cgroup_disabled(void)582 static inline bool mem_cgroup_disabled(void)
583 {
584 return !cgroup_subsys_enabled(memory_cgrp_subsys);
585 }
586
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)587 static inline void mem_cgroup_protection(struct mem_cgroup *root,
588 struct mem_cgroup *memcg,
589 unsigned long *min,
590 unsigned long *low)
591 {
592 *min = *low = 0;
593
594 if (mem_cgroup_disabled())
595 return;
596
597 /*
598 * There is no reclaim protection applied to a targeted reclaim.
599 * We are special casing this specific case here because
600 * mem_cgroup_protected calculation is not robust enough to keep
601 * the protection invariant for calculated effective values for
602 * parallel reclaimers with different reclaim target. This is
603 * especially a problem for tail memcgs (as they have pages on LRU)
604 * which would want to have effective values 0 for targeted reclaim
605 * but a different value for external reclaim.
606 *
607 * Example
608 * Let's have global and A's reclaim in parallel:
609 * |
610 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
611 * |\
612 * | C (low = 1G, usage = 2.5G)
613 * B (low = 1G, usage = 0.5G)
614 *
615 * For the global reclaim
616 * A.elow = A.low
617 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
618 * C.elow = min(C.usage, C.low)
619 *
620 * With the effective values resetting we have A reclaim
621 * A.elow = 0
622 * B.elow = B.low
623 * C.elow = C.low
624 *
625 * If the global reclaim races with A's reclaim then
626 * B.elow = C.elow = 0 because children_low_usage > A.elow)
627 * is possible and reclaiming B would be violating the protection.
628 *
629 */
630 if (root == memcg)
631 return;
632
633 *min = READ_ONCE(memcg->memory.emin);
634 *low = READ_ONCE(memcg->memory.elow);
635 }
636
637 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
638 struct mem_cgroup *memcg);
639
mem_cgroup_supports_protection(struct mem_cgroup * memcg)640 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
641 {
642 /*
643 * The root memcg doesn't account charges, and doesn't support
644 * protection.
645 */
646 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
647
648 }
649
mem_cgroup_below_low(struct mem_cgroup * memcg)650 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
651 {
652 if (!mem_cgroup_supports_protection(memcg))
653 return false;
654
655 return READ_ONCE(memcg->memory.elow) >=
656 page_counter_read(&memcg->memory);
657 }
658
mem_cgroup_below_min(struct mem_cgroup * memcg)659 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
660 {
661 if (!mem_cgroup_supports_protection(memcg))
662 return false;
663
664 return READ_ONCE(memcg->memory.emin) >=
665 page_counter_read(&memcg->memory);
666 }
667
668 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
669
670 /**
671 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
672 * @folio: Folio to charge.
673 * @mm: mm context of the allocating task.
674 * @gfp: Reclaim mode.
675 *
676 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
677 * pages according to @gfp if necessary. If @mm is NULL, try to
678 * charge to the active memcg.
679 *
680 * Do not use this for folios allocated for swapin.
681 *
682 * Return: 0 on success. Otherwise, an error code is returned.
683 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)684 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
685 gfp_t gfp)
686 {
687 if (mem_cgroup_disabled())
688 return 0;
689 return __mem_cgroup_charge(folio, mm, gfp);
690 }
691
692 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
693 gfp_t gfp, swp_entry_t entry);
694 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
695
696 void __mem_cgroup_uncharge(struct folio *folio);
697
698 /**
699 * mem_cgroup_uncharge - Uncharge a folio.
700 * @folio: Folio to uncharge.
701 *
702 * Uncharge a folio previously charged with mem_cgroup_charge().
703 */
mem_cgroup_uncharge(struct folio * folio)704 static inline void mem_cgroup_uncharge(struct folio *folio)
705 {
706 if (mem_cgroup_disabled())
707 return;
708 __mem_cgroup_uncharge(folio);
709 }
710
711 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)712 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
713 {
714 if (mem_cgroup_disabled())
715 return;
716 __mem_cgroup_uncharge_list(page_list);
717 }
718
719 void mem_cgroup_migrate(struct folio *old, struct folio *new);
720
721 /**
722 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
723 * @memcg: memcg of the wanted lruvec
724 * @pgdat: pglist_data
725 *
726 * Returns the lru list vector holding pages for a given @memcg &
727 * @pgdat combination. This can be the node lruvec, if the memory
728 * controller is disabled.
729 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)730 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
731 struct pglist_data *pgdat)
732 {
733 struct mem_cgroup_per_node *mz;
734 struct lruvec *lruvec;
735
736 if (mem_cgroup_disabled()) {
737 lruvec = &pgdat->__lruvec;
738 goto out;
739 }
740
741 if (!memcg)
742 memcg = root_mem_cgroup;
743
744 mz = memcg->nodeinfo[pgdat->node_id];
745 lruvec = &mz->lruvec;
746 out:
747 /*
748 * Since a node can be onlined after the mem_cgroup was created,
749 * we have to be prepared to initialize lruvec->pgdat here;
750 * and if offlined then reonlined, we need to reinitialize it.
751 */
752 if (unlikely(lruvec->pgdat != pgdat))
753 lruvec->pgdat = pgdat;
754 return lruvec;
755 }
756
757 /**
758 * folio_lruvec - return lruvec for isolating/putting an LRU folio
759 * @folio: Pointer to the folio.
760 *
761 * This function relies on folio->mem_cgroup being stable.
762 */
folio_lruvec(struct folio * folio)763 static inline struct lruvec *folio_lruvec(struct folio *folio)
764 {
765 struct mem_cgroup *memcg = folio_memcg(folio);
766
767 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
768 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
769 }
770
771 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
772
773 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
774
775 struct lruvec *folio_lruvec_lock(struct folio *folio);
776 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
777 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
778 unsigned long *flags);
779
780 #ifdef CONFIG_DEBUG_VM
781 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
782 #else
783 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)784 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
785 {
786 }
787 #endif
788
789 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)790 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
791 return css ? container_of(css, struct mem_cgroup, css) : NULL;
792 }
793
obj_cgroup_tryget(struct obj_cgroup * objcg)794 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
795 {
796 return percpu_ref_tryget(&objcg->refcnt);
797 }
798
obj_cgroup_get(struct obj_cgroup * objcg)799 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
800 {
801 percpu_ref_get(&objcg->refcnt);
802 }
803
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)804 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
805 unsigned long nr)
806 {
807 percpu_ref_get_many(&objcg->refcnt, nr);
808 }
809
obj_cgroup_put(struct obj_cgroup * objcg)810 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
811 {
812 percpu_ref_put(&objcg->refcnt);
813 }
814
mem_cgroup_put(struct mem_cgroup * memcg)815 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
816 {
817 if (memcg)
818 css_put(&memcg->css);
819 }
820
821 #define mem_cgroup_from_counter(counter, member) \
822 container_of(counter, struct mem_cgroup, member)
823
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
825 struct mem_cgroup *,
826 struct mem_cgroup_reclaim_cookie *);
827 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
828 int mem_cgroup_scan_tasks(struct mem_cgroup *,
829 int (*)(struct task_struct *, void *), void *);
830
mem_cgroup_id(struct mem_cgroup * memcg)831 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
832 {
833 if (mem_cgroup_disabled())
834 return 0;
835
836 return memcg->id.id;
837 }
838 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
839
mem_cgroup_from_seq(struct seq_file * m)840 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
841 {
842 return mem_cgroup_from_css(seq_css(m));
843 }
844
lruvec_memcg(struct lruvec * lruvec)845 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
846 {
847 struct mem_cgroup_per_node *mz;
848
849 if (mem_cgroup_disabled())
850 return NULL;
851
852 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
853 return mz->memcg;
854 }
855
856 /**
857 * parent_mem_cgroup - find the accounting parent of a memcg
858 * @memcg: memcg whose parent to find
859 *
860 * Returns the parent memcg, or NULL if this is the root or the memory
861 * controller is in legacy no-hierarchy mode.
862 */
parent_mem_cgroup(struct mem_cgroup * memcg)863 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
864 {
865 return mem_cgroup_from_css(memcg->css.parent);
866 }
867
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)868 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
869 struct mem_cgroup *root)
870 {
871 if (root == memcg)
872 return true;
873 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
874 }
875
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)876 static inline bool mm_match_cgroup(struct mm_struct *mm,
877 struct mem_cgroup *memcg)
878 {
879 struct mem_cgroup *task_memcg;
880 bool match = false;
881
882 rcu_read_lock();
883 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
884 if (task_memcg)
885 match = mem_cgroup_is_descendant(task_memcg, memcg);
886 rcu_read_unlock();
887 return match;
888 }
889
890 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
891 ino_t page_cgroup_ino(struct page *page);
892
mem_cgroup_online(struct mem_cgroup * memcg)893 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
894 {
895 if (mem_cgroup_disabled())
896 return true;
897 return !!(memcg->css.flags & CSS_ONLINE);
898 }
899
900 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
901 int zid, int nr_pages);
902
903 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)904 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
905 enum lru_list lru, int zone_idx)
906 {
907 struct mem_cgroup_per_node *mz;
908
909 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
910 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
911 }
912
913 void mem_cgroup_handle_over_high(void);
914
915 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
916
917 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
918
919 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
920 struct task_struct *p);
921
922 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
923
mem_cgroup_enter_user_fault(void)924 static inline void mem_cgroup_enter_user_fault(void)
925 {
926 WARN_ON(current->in_user_fault);
927 current->in_user_fault = 1;
928 }
929
mem_cgroup_exit_user_fault(void)930 static inline void mem_cgroup_exit_user_fault(void)
931 {
932 WARN_ON(!current->in_user_fault);
933 current->in_user_fault = 0;
934 }
935
task_in_memcg_oom(struct task_struct * p)936 static inline bool task_in_memcg_oom(struct task_struct *p)
937 {
938 return p->memcg_in_oom;
939 }
940
941 bool mem_cgroup_oom_synchronize(bool wait);
942 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
943 struct mem_cgroup *oom_domain);
944 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
945
946 void folio_memcg_lock(struct folio *folio);
947 void folio_memcg_unlock(struct folio *folio);
948 void lock_page_memcg(struct page *page);
949 void unlock_page_memcg(struct page *page);
950
951 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
952
953 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)954 static inline void mod_memcg_state(struct mem_cgroup *memcg,
955 int idx, int val)
956 {
957 unsigned long flags;
958
959 local_irq_save(flags);
960 __mod_memcg_state(memcg, idx, val);
961 local_irq_restore(flags);
962 }
963
mod_memcg_page_state(struct page * page,int idx,int val)964 static inline void mod_memcg_page_state(struct page *page,
965 int idx, int val)
966 {
967 struct mem_cgroup *memcg;
968
969 if (mem_cgroup_disabled())
970 return;
971
972 rcu_read_lock();
973 memcg = page_memcg(page);
974 if (memcg)
975 mod_memcg_state(memcg, idx, val);
976 rcu_read_unlock();
977 }
978
memcg_page_state(struct mem_cgroup * memcg,int idx)979 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
980 {
981 long x = READ_ONCE(memcg->vmstats.state[idx]);
982 #ifdef CONFIG_SMP
983 if (x < 0)
984 x = 0;
985 #endif
986 return x;
987 }
988
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)989 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
990 enum node_stat_item idx)
991 {
992 struct mem_cgroup_per_node *pn;
993 long x;
994
995 if (mem_cgroup_disabled())
996 return node_page_state(lruvec_pgdat(lruvec), idx);
997
998 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
999 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1000 #ifdef CONFIG_SMP
1001 if (x < 0)
1002 x = 0;
1003 #endif
1004 return x;
1005 }
1006
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1007 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1008 enum node_stat_item idx)
1009 {
1010 struct mem_cgroup_per_node *pn;
1011 long x = 0;
1012 int cpu;
1013
1014 if (mem_cgroup_disabled())
1015 return node_page_state(lruvec_pgdat(lruvec), idx);
1016
1017 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1018 for_each_possible_cpu(cpu)
1019 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1020 #ifdef CONFIG_SMP
1021 if (x < 0)
1022 x = 0;
1023 #endif
1024 return x;
1025 }
1026
1027 void mem_cgroup_flush_stats(void);
1028 void mem_cgroup_flush_stats_delayed(void);
1029
1030 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1031 int val);
1032 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1033
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1034 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1035 int val)
1036 {
1037 unsigned long flags;
1038
1039 local_irq_save(flags);
1040 __mod_lruvec_kmem_state(p, idx, val);
1041 local_irq_restore(flags);
1042 }
1043
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1044 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1045 enum node_stat_item idx, int val)
1046 {
1047 unsigned long flags;
1048
1049 local_irq_save(flags);
1050 __mod_memcg_lruvec_state(lruvec, idx, val);
1051 local_irq_restore(flags);
1052 }
1053
1054 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1055 unsigned long count);
1056
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1057 static inline void count_memcg_events(struct mem_cgroup *memcg,
1058 enum vm_event_item idx,
1059 unsigned long count)
1060 {
1061 unsigned long flags;
1062
1063 local_irq_save(flags);
1064 __count_memcg_events(memcg, idx, count);
1065 local_irq_restore(flags);
1066 }
1067
count_memcg_page_event(struct page * page,enum vm_event_item idx)1068 static inline void count_memcg_page_event(struct page *page,
1069 enum vm_event_item idx)
1070 {
1071 struct mem_cgroup *memcg = page_memcg(page);
1072
1073 if (memcg)
1074 count_memcg_events(memcg, idx, 1);
1075 }
1076
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1077 static inline void count_memcg_folio_events(struct folio *folio,
1078 enum vm_event_item idx, unsigned long nr)
1079 {
1080 struct mem_cgroup *memcg = folio_memcg(folio);
1081
1082 if (memcg)
1083 count_memcg_events(memcg, idx, nr);
1084 }
1085
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1086 static inline void count_memcg_event_mm(struct mm_struct *mm,
1087 enum vm_event_item idx)
1088 {
1089 struct mem_cgroup *memcg;
1090
1091 if (mem_cgroup_disabled())
1092 return;
1093
1094 rcu_read_lock();
1095 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1096 if (likely(memcg))
1097 count_memcg_events(memcg, idx, 1);
1098 rcu_read_unlock();
1099 }
1100
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1101 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1102 enum memcg_memory_event event)
1103 {
1104 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1105 event == MEMCG_SWAP_FAIL;
1106
1107 atomic_long_inc(&memcg->memory_events_local[event]);
1108 if (!swap_event)
1109 cgroup_file_notify(&memcg->events_local_file);
1110
1111 do {
1112 atomic_long_inc(&memcg->memory_events[event]);
1113 if (swap_event)
1114 cgroup_file_notify(&memcg->swap_events_file);
1115 else
1116 cgroup_file_notify(&memcg->events_file);
1117
1118 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1119 break;
1120 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1121 break;
1122 } while ((memcg = parent_mem_cgroup(memcg)) &&
1123 !mem_cgroup_is_root(memcg));
1124 }
1125
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1126 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1127 enum memcg_memory_event event)
1128 {
1129 struct mem_cgroup *memcg;
1130
1131 if (mem_cgroup_disabled())
1132 return;
1133
1134 rcu_read_lock();
1135 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1136 if (likely(memcg))
1137 memcg_memory_event(memcg, event);
1138 rcu_read_unlock();
1139 }
1140
1141 void split_page_memcg(struct page *head, unsigned int nr);
1142
1143 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1144 gfp_t gfp_mask,
1145 unsigned long *total_scanned);
1146
1147 #else /* CONFIG_MEMCG */
1148
1149 #define MEM_CGROUP_ID_SHIFT 0
1150 #define MEM_CGROUP_ID_MAX 0
1151
folio_memcg(struct folio * folio)1152 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1153 {
1154 return NULL;
1155 }
1156
page_memcg(struct page * page)1157 static inline struct mem_cgroup *page_memcg(struct page *page)
1158 {
1159 return NULL;
1160 }
1161
folio_memcg_rcu(struct folio * folio)1162 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1163 {
1164 WARN_ON_ONCE(!rcu_read_lock_held());
1165 return NULL;
1166 }
1167
page_memcg_check(struct page * page)1168 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1169 {
1170 return NULL;
1171 }
1172
folio_memcg_kmem(struct folio * folio)1173 static inline bool folio_memcg_kmem(struct folio *folio)
1174 {
1175 return false;
1176 }
1177
PageMemcgKmem(struct page * page)1178 static inline bool PageMemcgKmem(struct page *page)
1179 {
1180 return false;
1181 }
1182
mem_cgroup_is_root(struct mem_cgroup * memcg)1183 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1184 {
1185 return true;
1186 }
1187
mem_cgroup_disabled(void)1188 static inline bool mem_cgroup_disabled(void)
1189 {
1190 return true;
1191 }
1192
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1193 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1194 enum memcg_memory_event event)
1195 {
1196 }
1197
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1198 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1199 enum memcg_memory_event event)
1200 {
1201 }
1202
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1203 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1204 struct mem_cgroup *memcg,
1205 unsigned long *min,
1206 unsigned long *low)
1207 {
1208 *min = *low = 0;
1209 }
1210
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1211 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1212 struct mem_cgroup *memcg)
1213 {
1214 }
1215
mem_cgroup_below_low(struct mem_cgroup * memcg)1216 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1217 {
1218 return false;
1219 }
1220
mem_cgroup_below_min(struct mem_cgroup * memcg)1221 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1222 {
1223 return false;
1224 }
1225
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1226 static inline int mem_cgroup_charge(struct folio *folio,
1227 struct mm_struct *mm, gfp_t gfp)
1228 {
1229 return 0;
1230 }
1231
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1232 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1233 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1234 {
1235 return 0;
1236 }
1237
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1238 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1239 {
1240 }
1241
mem_cgroup_uncharge(struct folio * folio)1242 static inline void mem_cgroup_uncharge(struct folio *folio)
1243 {
1244 }
1245
mem_cgroup_uncharge_list(struct list_head * page_list)1246 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1247 {
1248 }
1249
mem_cgroup_migrate(struct folio * old,struct folio * new)1250 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1251 {
1252 }
1253
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1254 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1255 struct pglist_data *pgdat)
1256 {
1257 return &pgdat->__lruvec;
1258 }
1259
folio_lruvec(struct folio * folio)1260 static inline struct lruvec *folio_lruvec(struct folio *folio)
1261 {
1262 struct pglist_data *pgdat = folio_pgdat(folio);
1263 return &pgdat->__lruvec;
1264 }
1265
1266 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1267 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1268 {
1269 }
1270
parent_mem_cgroup(struct mem_cgroup * memcg)1271 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1272 {
1273 return NULL;
1274 }
1275
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1276 static inline bool mm_match_cgroup(struct mm_struct *mm,
1277 struct mem_cgroup *memcg)
1278 {
1279 return true;
1280 }
1281
get_mem_cgroup_from_mm(struct mm_struct * mm)1282 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1283 {
1284 return NULL;
1285 }
1286
1287 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1288 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1289 {
1290 return NULL;
1291 }
1292
obj_cgroup_put(struct obj_cgroup * objcg)1293 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1294 {
1295 }
1296
mem_cgroup_put(struct mem_cgroup * memcg)1297 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1298 {
1299 }
1300
folio_lruvec_lock(struct folio * folio)1301 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1302 {
1303 struct pglist_data *pgdat = folio_pgdat(folio);
1304
1305 spin_lock(&pgdat->__lruvec.lru_lock);
1306 return &pgdat->__lruvec;
1307 }
1308
folio_lruvec_lock_irq(struct folio * folio)1309 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1310 {
1311 struct pglist_data *pgdat = folio_pgdat(folio);
1312
1313 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1314 return &pgdat->__lruvec;
1315 }
1316
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1317 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1318 unsigned long *flagsp)
1319 {
1320 struct pglist_data *pgdat = folio_pgdat(folio);
1321
1322 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1323 return &pgdat->__lruvec;
1324 }
1325
1326 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1327 mem_cgroup_iter(struct mem_cgroup *root,
1328 struct mem_cgroup *prev,
1329 struct mem_cgroup_reclaim_cookie *reclaim)
1330 {
1331 return NULL;
1332 }
1333
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1334 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1335 struct mem_cgroup *prev)
1336 {
1337 }
1338
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1339 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1340 int (*fn)(struct task_struct *, void *), void *arg)
1341 {
1342 return 0;
1343 }
1344
mem_cgroup_id(struct mem_cgroup * memcg)1345 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1346 {
1347 return 0;
1348 }
1349
mem_cgroup_from_id(unsigned short id)1350 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1351 {
1352 WARN_ON_ONCE(id);
1353 /* XXX: This should always return root_mem_cgroup */
1354 return NULL;
1355 }
1356
mem_cgroup_from_seq(struct seq_file * m)1357 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1358 {
1359 return NULL;
1360 }
1361
lruvec_memcg(struct lruvec * lruvec)1362 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1363 {
1364 return NULL;
1365 }
1366
mem_cgroup_online(struct mem_cgroup * memcg)1367 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1368 {
1369 return true;
1370 }
1371
1372 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1373 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1374 enum lru_list lru, int zone_idx)
1375 {
1376 return 0;
1377 }
1378
mem_cgroup_get_max(struct mem_cgroup * memcg)1379 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1380 {
1381 return 0;
1382 }
1383
mem_cgroup_size(struct mem_cgroup * memcg)1384 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1385 {
1386 return 0;
1387 }
1388
1389 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1390 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1391 {
1392 }
1393
1394 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1395 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1396 {
1397 }
1398
lock_page_memcg(struct page * page)1399 static inline void lock_page_memcg(struct page *page)
1400 {
1401 }
1402
unlock_page_memcg(struct page * page)1403 static inline void unlock_page_memcg(struct page *page)
1404 {
1405 }
1406
folio_memcg_lock(struct folio * folio)1407 static inline void folio_memcg_lock(struct folio *folio)
1408 {
1409 }
1410
folio_memcg_unlock(struct folio * folio)1411 static inline void folio_memcg_unlock(struct folio *folio)
1412 {
1413 }
1414
mem_cgroup_handle_over_high(void)1415 static inline void mem_cgroup_handle_over_high(void)
1416 {
1417 }
1418
mem_cgroup_enter_user_fault(void)1419 static inline void mem_cgroup_enter_user_fault(void)
1420 {
1421 }
1422
mem_cgroup_exit_user_fault(void)1423 static inline void mem_cgroup_exit_user_fault(void)
1424 {
1425 }
1426
task_in_memcg_oom(struct task_struct * p)1427 static inline bool task_in_memcg_oom(struct task_struct *p)
1428 {
1429 return false;
1430 }
1431
mem_cgroup_oom_synchronize(bool wait)1432 static inline bool mem_cgroup_oom_synchronize(bool wait)
1433 {
1434 return false;
1435 }
1436
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1437 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1438 struct task_struct *victim, struct mem_cgroup *oom_domain)
1439 {
1440 return NULL;
1441 }
1442
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1443 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1444 {
1445 }
1446
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1447 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1448 int idx,
1449 int nr)
1450 {
1451 }
1452
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1453 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1454 int idx,
1455 int nr)
1456 {
1457 }
1458
mod_memcg_page_state(struct page * page,int idx,int val)1459 static inline void mod_memcg_page_state(struct page *page,
1460 int idx, int val)
1461 {
1462 }
1463
memcg_page_state(struct mem_cgroup * memcg,int idx)1464 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1465 {
1466 return 0;
1467 }
1468
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1469 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1470 enum node_stat_item idx)
1471 {
1472 return node_page_state(lruvec_pgdat(lruvec), idx);
1473 }
1474
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1475 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1476 enum node_stat_item idx)
1477 {
1478 return node_page_state(lruvec_pgdat(lruvec), idx);
1479 }
1480
mem_cgroup_flush_stats(void)1481 static inline void mem_cgroup_flush_stats(void)
1482 {
1483 }
1484
mem_cgroup_flush_stats_delayed(void)1485 static inline void mem_cgroup_flush_stats_delayed(void)
1486 {
1487 }
1488
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1489 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1490 enum node_stat_item idx, int val)
1491 {
1492 }
1493
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1494 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1495 int val)
1496 {
1497 struct page *page = virt_to_head_page(p);
1498
1499 __mod_node_page_state(page_pgdat(page), idx, val);
1500 }
1501
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1502 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1503 int val)
1504 {
1505 struct page *page = virt_to_head_page(p);
1506
1507 mod_node_page_state(page_pgdat(page), idx, val);
1508 }
1509
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1510 static inline void count_memcg_events(struct mem_cgroup *memcg,
1511 enum vm_event_item idx,
1512 unsigned long count)
1513 {
1514 }
1515
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1516 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1517 enum vm_event_item idx,
1518 unsigned long count)
1519 {
1520 }
1521
count_memcg_page_event(struct page * page,int idx)1522 static inline void count_memcg_page_event(struct page *page,
1523 int idx)
1524 {
1525 }
1526
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1527 static inline void count_memcg_folio_events(struct folio *folio,
1528 enum vm_event_item idx, unsigned long nr)
1529 {
1530 }
1531
1532 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1533 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1534 {
1535 }
1536
split_page_memcg(struct page * head,unsigned int nr)1537 static inline void split_page_memcg(struct page *head, unsigned int nr)
1538 {
1539 }
1540
1541 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1542 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1543 gfp_t gfp_mask,
1544 unsigned long *total_scanned)
1545 {
1546 return 0;
1547 }
1548 #endif /* CONFIG_MEMCG */
1549
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1550 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1551 {
1552 __mod_lruvec_kmem_state(p, idx, 1);
1553 }
1554
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1555 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1556 {
1557 __mod_lruvec_kmem_state(p, idx, -1);
1558 }
1559
parent_lruvec(struct lruvec * lruvec)1560 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1561 {
1562 struct mem_cgroup *memcg;
1563
1564 memcg = lruvec_memcg(lruvec);
1565 if (!memcg)
1566 return NULL;
1567 memcg = parent_mem_cgroup(memcg);
1568 if (!memcg)
1569 return NULL;
1570 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1571 }
1572
unlock_page_lruvec(struct lruvec * lruvec)1573 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1574 {
1575 spin_unlock(&lruvec->lru_lock);
1576 }
1577
unlock_page_lruvec_irq(struct lruvec * lruvec)1578 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1579 {
1580 spin_unlock_irq(&lruvec->lru_lock);
1581 }
1582
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1583 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1584 unsigned long flags)
1585 {
1586 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1587 }
1588
1589 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1590 static inline bool folio_matches_lruvec(struct folio *folio,
1591 struct lruvec *lruvec)
1592 {
1593 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1594 lruvec_memcg(lruvec) == folio_memcg(folio);
1595 }
1596
1597 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1598 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1599 struct lruvec *locked_lruvec)
1600 {
1601 if (locked_lruvec) {
1602 if (folio_matches_lruvec(folio, locked_lruvec))
1603 return locked_lruvec;
1604
1605 unlock_page_lruvec_irq(locked_lruvec);
1606 }
1607
1608 return folio_lruvec_lock_irq(folio);
1609 }
1610
1611 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1612 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1613 struct lruvec *locked_lruvec, unsigned long *flags)
1614 {
1615 if (locked_lruvec) {
1616 if (folio_matches_lruvec(folio, locked_lruvec))
1617 return locked_lruvec;
1618
1619 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1620 }
1621
1622 return folio_lruvec_lock_irqsave(folio, flags);
1623 }
1624
1625 #ifdef CONFIG_CGROUP_WRITEBACK
1626
1627 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1628 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1629 unsigned long *pheadroom, unsigned long *pdirty,
1630 unsigned long *pwriteback);
1631
1632 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1633 struct bdi_writeback *wb);
1634
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1635 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1636 struct bdi_writeback *wb)
1637 {
1638 if (mem_cgroup_disabled())
1639 return;
1640
1641 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1642 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1643 }
1644
1645 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1646
1647 #else /* CONFIG_CGROUP_WRITEBACK */
1648
mem_cgroup_wb_domain(struct bdi_writeback * wb)1649 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1650 {
1651 return NULL;
1652 }
1653
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1654 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1655 unsigned long *pfilepages,
1656 unsigned long *pheadroom,
1657 unsigned long *pdirty,
1658 unsigned long *pwriteback)
1659 {
1660 }
1661
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1662 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1663 struct bdi_writeback *wb)
1664 {
1665 }
1666
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1667 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1668 {
1669 }
1670
1671 #endif /* CONFIG_CGROUP_WRITEBACK */
1672
1673 struct sock;
1674 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1675 gfp_t gfp_mask);
1676 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1677 #ifdef CONFIG_MEMCG
1678 extern struct static_key_false memcg_sockets_enabled_key;
1679 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1680 void mem_cgroup_sk_alloc(struct sock *sk);
1681 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1682 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1683 {
1684 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1685 return true;
1686 do {
1687 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1688 return true;
1689 } while ((memcg = parent_mem_cgroup(memcg)));
1690 return false;
1691 }
1692
1693 int alloc_shrinker_info(struct mem_cgroup *memcg);
1694 void free_shrinker_info(struct mem_cgroup *memcg);
1695 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1696 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1697 #else
1698 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1699 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1700 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1701 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1702 {
1703 return false;
1704 }
1705
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1706 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1707 int nid, int shrinker_id)
1708 {
1709 }
1710 #endif
1711
1712 #ifdef CONFIG_MEMCG_KMEM
1713 bool mem_cgroup_kmem_disabled(void);
1714 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1715 void __memcg_kmem_uncharge_page(struct page *page, int order);
1716
1717 struct obj_cgroup *get_obj_cgroup_from_current(void);
1718 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1719
1720 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1721 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1722
1723 extern struct static_key_false memcg_kmem_enabled_key;
1724
memcg_kmem_enabled(void)1725 static inline bool memcg_kmem_enabled(void)
1726 {
1727 return static_branch_likely(&memcg_kmem_enabled_key);
1728 }
1729
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1730 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1731 int order)
1732 {
1733 if (memcg_kmem_enabled())
1734 return __memcg_kmem_charge_page(page, gfp, order);
1735 return 0;
1736 }
1737
memcg_kmem_uncharge_page(struct page * page,int order)1738 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1739 {
1740 if (memcg_kmem_enabled())
1741 __memcg_kmem_uncharge_page(page, order);
1742 }
1743
1744 /*
1745 * A helper for accessing memcg's kmem_id, used for getting
1746 * corresponding LRU lists.
1747 */
memcg_kmem_id(struct mem_cgroup * memcg)1748 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1749 {
1750 return memcg ? memcg->kmemcg_id : -1;
1751 }
1752
1753 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1754
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1755 static inline void count_objcg_event(struct obj_cgroup *objcg,
1756 enum vm_event_item idx)
1757 {
1758 struct mem_cgroup *memcg;
1759
1760 if (mem_cgroup_kmem_disabled())
1761 return;
1762
1763 rcu_read_lock();
1764 memcg = obj_cgroup_memcg(objcg);
1765 count_memcg_events(memcg, idx, 1);
1766 rcu_read_unlock();
1767 }
1768
1769 #else
mem_cgroup_kmem_disabled(void)1770 static inline bool mem_cgroup_kmem_disabled(void)
1771 {
1772 return true;
1773 }
1774
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1775 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1776 int order)
1777 {
1778 return 0;
1779 }
1780
memcg_kmem_uncharge_page(struct page * page,int order)1781 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1782 {
1783 }
1784
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1785 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1786 int order)
1787 {
1788 return 0;
1789 }
1790
__memcg_kmem_uncharge_page(struct page * page,int order)1791 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1792 {
1793 }
1794
get_obj_cgroup_from_page(struct page * page)1795 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1796 {
1797 return NULL;
1798 }
1799
memcg_kmem_enabled(void)1800 static inline bool memcg_kmem_enabled(void)
1801 {
1802 return false;
1803 }
1804
memcg_kmem_id(struct mem_cgroup * memcg)1805 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1806 {
1807 return -1;
1808 }
1809
mem_cgroup_from_obj(void * p)1810 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1811 {
1812 return NULL;
1813 }
1814
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1815 static inline void count_objcg_event(struct obj_cgroup *objcg,
1816 enum vm_event_item idx)
1817 {
1818 }
1819
1820 #endif /* CONFIG_MEMCG_KMEM */
1821
1822 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1823 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1824 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1825 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1826 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1827 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1828 {
1829 return true;
1830 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1831 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1832 size_t size)
1833 {
1834 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1835 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1836 size_t size)
1837 {
1838 }
1839 #endif
1840
1841 #endif /* _LINUX_MEMCONTROL_H */
1842