1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
writeback_in_progress(struct backing_dev_info * bdi)67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 EXPORT_SYMBOL(writeback_in_progress);
72
inode_to_bdi(struct inode * inode)73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75 struct super_block *sb = inode->i_sb;
76
77 if (strcmp(sb->s_type->name, "bdev") == 0)
78 return inode->i_mapping->backing_dev_info;
79
80 return sb->s_bdi;
81 }
82
wb_inode(struct list_head * head)83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85 return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /*
89 * Include the creation of the trace points after defining the
90 * wb_writeback_work structure and inline functions so that the definition
91 * remains local to this file.
92 */
93 #define CREATE_TRACE_POINTS
94 #include <trace/events/writeback.h>
95
96 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
bdi_wakeup_flusher(struct backing_dev_info * bdi)97 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
98 {
99 if (bdi->wb.task) {
100 wake_up_process(bdi->wb.task);
101 } else {
102 /*
103 * The bdi thread isn't there, wake up the forker thread which
104 * will create and run it.
105 */
106 wake_up_process(default_backing_dev_info.wb.task);
107 }
108 }
109
bdi_queue_work(struct backing_dev_info * bdi,struct wb_writeback_work * work)110 static void bdi_queue_work(struct backing_dev_info *bdi,
111 struct wb_writeback_work *work)
112 {
113 trace_writeback_queue(bdi, work);
114
115 spin_lock_bh(&bdi->wb_lock);
116 list_add_tail(&work->list, &bdi->work_list);
117 if (!bdi->wb.task)
118 trace_writeback_nothread(bdi, work);
119 bdi_wakeup_flusher(bdi);
120 spin_unlock_bh(&bdi->wb_lock);
121 }
122
123 static void
__bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,bool range_cyclic,enum wb_reason reason)124 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
125 bool range_cyclic, enum wb_reason reason)
126 {
127 struct wb_writeback_work *work;
128
129 /*
130 * This is WB_SYNC_NONE writeback, so if allocation fails just
131 * wakeup the thread for old dirty data writeback
132 */
133 work = kzalloc(sizeof(*work), GFP_ATOMIC);
134 if (!work) {
135 if (bdi->wb.task) {
136 trace_writeback_nowork(bdi);
137 wake_up_process(bdi->wb.task);
138 }
139 return;
140 }
141
142 work->sync_mode = WB_SYNC_NONE;
143 work->nr_pages = nr_pages;
144 work->range_cyclic = range_cyclic;
145 work->reason = reason;
146
147 bdi_queue_work(bdi, work);
148 }
149
150 /**
151 * bdi_start_writeback - start writeback
152 * @bdi: the backing device to write from
153 * @nr_pages: the number of pages to write
154 * @reason: reason why some writeback work was initiated
155 *
156 * Description:
157 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
158 * started when this function returns, we make no guarantees on
159 * completion. Caller need not hold sb s_umount semaphore.
160 *
161 */
bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,enum wb_reason reason)162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
163 enum wb_reason reason)
164 {
165 __bdi_start_writeback(bdi, nr_pages, true, reason);
166 }
167
168 /**
169 * bdi_start_background_writeback - start background writeback
170 * @bdi: the backing device to write from
171 *
172 * Description:
173 * This makes sure WB_SYNC_NONE background writeback happens. When
174 * this function returns, it is only guaranteed that for given BDI
175 * some IO is happening if we are over background dirty threshold.
176 * Caller need not hold sb s_umount semaphore.
177 */
bdi_start_background_writeback(struct backing_dev_info * bdi)178 void bdi_start_background_writeback(struct backing_dev_info *bdi)
179 {
180 /*
181 * We just wake up the flusher thread. It will perform background
182 * writeback as soon as there is no other work to do.
183 */
184 trace_writeback_wake_background(bdi);
185 spin_lock_bh(&bdi->wb_lock);
186 bdi_wakeup_flusher(bdi);
187 spin_unlock_bh(&bdi->wb_lock);
188 }
189
190 /*
191 * Remove the inode from the writeback list it is on.
192 */
inode_wb_list_del(struct inode * inode)193 void inode_wb_list_del(struct inode *inode)
194 {
195 struct backing_dev_info *bdi = inode_to_bdi(inode);
196
197 spin_lock(&bdi->wb.list_lock);
198 list_del_init(&inode->i_wb_list);
199 spin_unlock(&bdi->wb.list_lock);
200 }
201
202 /*
203 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
204 * furthest end of its superblock's dirty-inode list.
205 *
206 * Before stamping the inode's ->dirtied_when, we check to see whether it is
207 * already the most-recently-dirtied inode on the b_dirty list. If that is
208 * the case then the inode must have been redirtied while it was being written
209 * out and we don't reset its dirtied_when.
210 */
redirty_tail(struct inode * inode,struct bdi_writeback * wb)211 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
212 {
213 assert_spin_locked(&wb->list_lock);
214 if (!list_empty(&wb->b_dirty)) {
215 struct inode *tail;
216
217 tail = wb_inode(wb->b_dirty.next);
218 if (time_before(inode->dirtied_when, tail->dirtied_when))
219 inode->dirtied_when = jiffies;
220 }
221 list_move(&inode->i_wb_list, &wb->b_dirty);
222 }
223
224 /*
225 * requeue inode for re-scanning after bdi->b_io list is exhausted.
226 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)227 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
228 {
229 assert_spin_locked(&wb->list_lock);
230 list_move(&inode->i_wb_list, &wb->b_more_io);
231 }
232
inode_sync_complete(struct inode * inode)233 static void inode_sync_complete(struct inode *inode)
234 {
235 /*
236 * Prevent speculative execution through
237 * spin_unlock(&wb->list_lock);
238 */
239
240 smp_mb();
241 wake_up_bit(&inode->i_state, __I_SYNC);
242 }
243
inode_dirtied_after(struct inode * inode,unsigned long t)244 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
245 {
246 bool ret = time_after(inode->dirtied_when, t);
247 #ifndef CONFIG_64BIT
248 /*
249 * For inodes being constantly redirtied, dirtied_when can get stuck.
250 * It _appears_ to be in the future, but is actually in distant past.
251 * This test is necessary to prevent such wrapped-around relative times
252 * from permanently stopping the whole bdi writeback.
253 */
254 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
255 #endif
256 return ret;
257 }
258
259 /*
260 * Move expired (dirtied after work->older_than_this) dirty inodes from
261 * @delaying_queue to @dispatch_queue.
262 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,struct wb_writeback_work * work)263 static int move_expired_inodes(struct list_head *delaying_queue,
264 struct list_head *dispatch_queue,
265 struct wb_writeback_work *work)
266 {
267 LIST_HEAD(tmp);
268 struct list_head *pos, *node;
269 struct super_block *sb = NULL;
270 struct inode *inode;
271 int do_sb_sort = 0;
272 int moved = 0;
273
274 while (!list_empty(delaying_queue)) {
275 inode = wb_inode(delaying_queue->prev);
276 if (work->older_than_this &&
277 inode_dirtied_after(inode, *work->older_than_this))
278 break;
279 if (sb && sb != inode->i_sb)
280 do_sb_sort = 1;
281 sb = inode->i_sb;
282 list_move(&inode->i_wb_list, &tmp);
283 moved++;
284 }
285
286 /* just one sb in list, splice to dispatch_queue and we're done */
287 if (!do_sb_sort) {
288 list_splice(&tmp, dispatch_queue);
289 goto out;
290 }
291
292 /* Move inodes from one superblock together */
293 while (!list_empty(&tmp)) {
294 sb = wb_inode(tmp.prev)->i_sb;
295 list_for_each_prev_safe(pos, node, &tmp) {
296 inode = wb_inode(pos);
297 if (inode->i_sb == sb)
298 list_move(&inode->i_wb_list, dispatch_queue);
299 }
300 }
301 out:
302 return moved;
303 }
304
305 /*
306 * Queue all expired dirty inodes for io, eldest first.
307 * Before
308 * newly dirtied b_dirty b_io b_more_io
309 * =============> gf edc BA
310 * After
311 * newly dirtied b_dirty b_io b_more_io
312 * =============> g fBAedc
313 * |
314 * +--> dequeue for IO
315 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)316 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
317 {
318 int moved;
319 assert_spin_locked(&wb->list_lock);
320 list_splice_init(&wb->b_more_io, &wb->b_io);
321 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
322 trace_writeback_queue_io(wb, work, moved);
323 }
324
write_inode(struct inode * inode,struct writeback_control * wbc)325 static int write_inode(struct inode *inode, struct writeback_control *wbc)
326 {
327 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
328 return inode->i_sb->s_op->write_inode(inode, wbc);
329 return 0;
330 }
331
332 /*
333 * Wait for writeback on an inode to complete.
334 */
inode_wait_for_writeback(struct inode * inode,struct bdi_writeback * wb)335 static void inode_wait_for_writeback(struct inode *inode,
336 struct bdi_writeback *wb)
337 {
338 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
339 wait_queue_head_t *wqh;
340
341 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
342 while (inode->i_state & I_SYNC) {
343 spin_unlock(&inode->i_lock);
344 spin_unlock(&wb->list_lock);
345 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
346 spin_lock(&wb->list_lock);
347 spin_lock(&inode->i_lock);
348 }
349 }
350
351 /*
352 * Write out an inode's dirty pages. Called under wb->list_lock and
353 * inode->i_lock. Either the caller has an active reference on the inode or
354 * the inode has I_WILL_FREE set.
355 *
356 * If `wait' is set, wait on the writeout.
357 *
358 * The whole writeout design is quite complex and fragile. We want to avoid
359 * starvation of particular inodes when others are being redirtied, prevent
360 * livelocks, etc.
361 */
362 static int
writeback_single_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)363 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
364 struct writeback_control *wbc)
365 {
366 struct address_space *mapping = inode->i_mapping;
367 long nr_to_write = wbc->nr_to_write;
368 unsigned dirty;
369 int ret;
370
371 assert_spin_locked(&wb->list_lock);
372 assert_spin_locked(&inode->i_lock);
373
374 if (!atomic_read(&inode->i_count))
375 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
376 else
377 WARN_ON(inode->i_state & I_WILL_FREE);
378
379 if (inode->i_state & I_SYNC) {
380 /*
381 * If this inode is locked for writeback and we are not doing
382 * writeback-for-data-integrity, move it to b_more_io so that
383 * writeback can proceed with the other inodes on s_io.
384 *
385 * We'll have another go at writing back this inode when we
386 * completed a full scan of b_io.
387 */
388 if (wbc->sync_mode != WB_SYNC_ALL) {
389 requeue_io(inode, wb);
390 trace_writeback_single_inode_requeue(inode, wbc,
391 nr_to_write);
392 return 0;
393 }
394
395 /*
396 * It's a data-integrity sync. We must wait.
397 */
398 inode_wait_for_writeback(inode, wb);
399 }
400
401 BUG_ON(inode->i_state & I_SYNC);
402
403 /* Set I_SYNC, reset I_DIRTY_PAGES */
404 inode->i_state |= I_SYNC;
405 inode->i_state &= ~I_DIRTY_PAGES;
406 spin_unlock(&inode->i_lock);
407 spin_unlock(&wb->list_lock);
408
409 ret = do_writepages(mapping, wbc);
410
411 /*
412 * Make sure to wait on the data before writing out the metadata.
413 * This is important for filesystems that modify metadata on data
414 * I/O completion.
415 */
416 if (wbc->sync_mode == WB_SYNC_ALL) {
417 int err = filemap_fdatawait(mapping);
418 if (ret == 0)
419 ret = err;
420 }
421
422 /*
423 * Some filesystems may redirty the inode during the writeback
424 * due to delalloc, clear dirty metadata flags right before
425 * write_inode()
426 */
427 spin_lock(&inode->i_lock);
428 dirty = inode->i_state & I_DIRTY;
429 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
430 spin_unlock(&inode->i_lock);
431 /* Don't write the inode if only I_DIRTY_PAGES was set */
432 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
433 int err = write_inode(inode, wbc);
434 if (ret == 0)
435 ret = err;
436 }
437
438 spin_lock(&wb->list_lock);
439 spin_lock(&inode->i_lock);
440 inode->i_state &= ~I_SYNC;
441 if (!(inode->i_state & I_FREEING)) {
442 /*
443 * Sync livelock prevention. Each inode is tagged and synced in
444 * one shot. If still dirty, it will be redirty_tail()'ed below.
445 * Update the dirty time to prevent enqueue and sync it again.
446 */
447 if ((inode->i_state & I_DIRTY) &&
448 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
449 inode->dirtied_when = jiffies;
450
451 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
452 /*
453 * We didn't write back all the pages. nfs_writepages()
454 * sometimes bales out without doing anything.
455 */
456 inode->i_state |= I_DIRTY_PAGES;
457 if (wbc->nr_to_write <= 0) {
458 /*
459 * slice used up: queue for next turn
460 */
461 requeue_io(inode, wb);
462 } else {
463 /*
464 * Writeback blocked by something other than
465 * congestion. Delay the inode for some time to
466 * avoid spinning on the CPU (100% iowait)
467 * retrying writeback of the dirty page/inode
468 * that cannot be performed immediately.
469 */
470 redirty_tail(inode, wb);
471 }
472 } else if (inode->i_state & I_DIRTY) {
473 /*
474 * Filesystems can dirty the inode during writeback
475 * operations, such as delayed allocation during
476 * submission or metadata updates after data IO
477 * completion.
478 */
479 redirty_tail(inode, wb);
480 } else {
481 /*
482 * The inode is clean. At this point we either have
483 * a reference to the inode or it's on it's way out.
484 * No need to add it back to the LRU.
485 */
486 list_del_init(&inode->i_wb_list);
487 }
488 }
489 inode_sync_complete(inode);
490 trace_writeback_single_inode(inode, wbc, nr_to_write);
491 return ret;
492 }
493
writeback_chunk_size(struct backing_dev_info * bdi,struct wb_writeback_work * work)494 static long writeback_chunk_size(struct backing_dev_info *bdi,
495 struct wb_writeback_work *work)
496 {
497 long pages;
498
499 /*
500 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
501 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
502 * here avoids calling into writeback_inodes_wb() more than once.
503 *
504 * The intended call sequence for WB_SYNC_ALL writeback is:
505 *
506 * wb_writeback()
507 * writeback_sb_inodes() <== called only once
508 * write_cache_pages() <== called once for each inode
509 * (quickly) tag currently dirty pages
510 * (maybe slowly) sync all tagged pages
511 */
512 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
513 pages = LONG_MAX;
514 else {
515 pages = min(bdi->avg_write_bandwidth / 2,
516 global_dirty_limit / DIRTY_SCOPE);
517 pages = min(pages, work->nr_pages);
518 pages = round_down(pages + MIN_WRITEBACK_PAGES,
519 MIN_WRITEBACK_PAGES);
520 }
521
522 return pages;
523 }
524
525 /*
526 * Write a portion of b_io inodes which belong to @sb.
527 *
528 * If @only_this_sb is true, then find and write all such
529 * inodes. Otherwise write only ones which go sequentially
530 * in reverse order.
531 *
532 * Return the number of pages and/or inodes written.
533 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)534 static long writeback_sb_inodes(struct super_block *sb,
535 struct bdi_writeback *wb,
536 struct wb_writeback_work *work)
537 {
538 struct writeback_control wbc = {
539 .sync_mode = work->sync_mode,
540 .tagged_writepages = work->tagged_writepages,
541 .for_kupdate = work->for_kupdate,
542 .for_background = work->for_background,
543 .range_cyclic = work->range_cyclic,
544 .range_start = 0,
545 .range_end = LLONG_MAX,
546 };
547 unsigned long start_time = jiffies;
548 long write_chunk;
549 long wrote = 0; /* count both pages and inodes */
550
551 while (!list_empty(&wb->b_io)) {
552 struct inode *inode = wb_inode(wb->b_io.prev);
553
554 if (inode->i_sb != sb) {
555 if (work->sb) {
556 /*
557 * We only want to write back data for this
558 * superblock, move all inodes not belonging
559 * to it back onto the dirty list.
560 */
561 redirty_tail(inode, wb);
562 continue;
563 }
564
565 /*
566 * The inode belongs to a different superblock.
567 * Bounce back to the caller to unpin this and
568 * pin the next superblock.
569 */
570 break;
571 }
572
573 /*
574 * Don't bother with new inodes or inodes beeing freed, first
575 * kind does not need peridic writeout yet, and for the latter
576 * kind writeout is handled by the freer.
577 */
578 spin_lock(&inode->i_lock);
579 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
580 spin_unlock(&inode->i_lock);
581 redirty_tail(inode, wb);
582 continue;
583 }
584 __iget(inode);
585 write_chunk = writeback_chunk_size(wb->bdi, work);
586 wbc.nr_to_write = write_chunk;
587 wbc.pages_skipped = 0;
588
589 writeback_single_inode(inode, wb, &wbc);
590
591 work->nr_pages -= write_chunk - wbc.nr_to_write;
592 wrote += write_chunk - wbc.nr_to_write;
593 if (!(inode->i_state & I_DIRTY))
594 wrote++;
595 if (wbc.pages_skipped) {
596 /*
597 * writeback is not making progress due to locked
598 * buffers. Skip this inode for now.
599 */
600 redirty_tail(inode, wb);
601 }
602 spin_unlock(&inode->i_lock);
603 spin_unlock(&wb->list_lock);
604 iput(inode);
605 cond_resched();
606 spin_lock(&wb->list_lock);
607 /*
608 * bail out to wb_writeback() often enough to check
609 * background threshold and other termination conditions.
610 */
611 if (wrote) {
612 if (time_is_before_jiffies(start_time + HZ / 10UL))
613 break;
614 if (work->nr_pages <= 0)
615 break;
616 }
617 }
618 return wrote;
619 }
620
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)621 static long __writeback_inodes_wb(struct bdi_writeback *wb,
622 struct wb_writeback_work *work)
623 {
624 unsigned long start_time = jiffies;
625 long wrote = 0;
626
627 while (!list_empty(&wb->b_io)) {
628 struct inode *inode = wb_inode(wb->b_io.prev);
629 struct super_block *sb = inode->i_sb;
630
631 if (!grab_super_passive(sb)) {
632 /*
633 * grab_super_passive() may fail consistently due to
634 * s_umount being grabbed by someone else. Don't use
635 * requeue_io() to avoid busy retrying the inode/sb.
636 */
637 redirty_tail(inode, wb);
638 continue;
639 }
640 wrote += writeback_sb_inodes(sb, wb, work);
641 drop_super(sb);
642
643 /* refer to the same tests at the end of writeback_sb_inodes */
644 if (wrote) {
645 if (time_is_before_jiffies(start_time + HZ / 10UL))
646 break;
647 if (work->nr_pages <= 0)
648 break;
649 }
650 }
651 /* Leave any unwritten inodes on b_io */
652 return wrote;
653 }
654
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)655 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
656 enum wb_reason reason)
657 {
658 struct wb_writeback_work work = {
659 .nr_pages = nr_pages,
660 .sync_mode = WB_SYNC_NONE,
661 .range_cyclic = 1,
662 .reason = reason,
663 };
664
665 spin_lock(&wb->list_lock);
666 if (list_empty(&wb->b_io))
667 queue_io(wb, &work);
668 __writeback_inodes_wb(wb, &work);
669 spin_unlock(&wb->list_lock);
670
671 return nr_pages - work.nr_pages;
672 }
673
over_bground_thresh(struct backing_dev_info * bdi)674 static bool over_bground_thresh(struct backing_dev_info *bdi)
675 {
676 unsigned long background_thresh, dirty_thresh;
677
678 global_dirty_limits(&background_thresh, &dirty_thresh);
679
680 if (global_page_state(NR_FILE_DIRTY) +
681 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
682 return true;
683
684 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
685 bdi_dirty_limit(bdi, background_thresh))
686 return true;
687
688 return false;
689 }
690
691 /*
692 * Called under wb->list_lock. If there are multiple wb per bdi,
693 * only the flusher working on the first wb should do it.
694 */
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)695 static void wb_update_bandwidth(struct bdi_writeback *wb,
696 unsigned long start_time)
697 {
698 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
699 }
700
701 /*
702 * Explicit flushing or periodic writeback of "old" data.
703 *
704 * Define "old": the first time one of an inode's pages is dirtied, we mark the
705 * dirtying-time in the inode's address_space. So this periodic writeback code
706 * just walks the superblock inode list, writing back any inodes which are
707 * older than a specific point in time.
708 *
709 * Try to run once per dirty_writeback_interval. But if a writeback event
710 * takes longer than a dirty_writeback_interval interval, then leave a
711 * one-second gap.
712 *
713 * older_than_this takes precedence over nr_to_write. So we'll only write back
714 * all dirty pages if they are all attached to "old" mappings.
715 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)716 static long wb_writeback(struct bdi_writeback *wb,
717 struct wb_writeback_work *work)
718 {
719 unsigned long wb_start = jiffies;
720 long nr_pages = work->nr_pages;
721 unsigned long oldest_jif;
722 struct inode *inode;
723 long progress;
724
725 oldest_jif = jiffies;
726 work->older_than_this = &oldest_jif;
727
728 spin_lock(&wb->list_lock);
729 for (;;) {
730 /*
731 * Stop writeback when nr_pages has been consumed
732 */
733 if (work->nr_pages <= 0)
734 break;
735
736 /*
737 * Background writeout and kupdate-style writeback may
738 * run forever. Stop them if there is other work to do
739 * so that e.g. sync can proceed. They'll be restarted
740 * after the other works are all done.
741 */
742 if ((work->for_background || work->for_kupdate) &&
743 !list_empty(&wb->bdi->work_list))
744 break;
745
746 /*
747 * For background writeout, stop when we are below the
748 * background dirty threshold
749 */
750 if (work->for_background && !over_bground_thresh(wb->bdi))
751 break;
752
753 /*
754 * Kupdate and background works are special and we want to
755 * include all inodes that need writing. Livelock avoidance is
756 * handled by these works yielding to any other work so we are
757 * safe.
758 */
759 if (work->for_kupdate) {
760 oldest_jif = jiffies -
761 msecs_to_jiffies(dirty_expire_interval * 10);
762 } else if (work->for_background)
763 oldest_jif = jiffies;
764
765 trace_writeback_start(wb->bdi, work);
766 if (list_empty(&wb->b_io))
767 queue_io(wb, work);
768 if (work->sb)
769 progress = writeback_sb_inodes(work->sb, wb, work);
770 else
771 progress = __writeback_inodes_wb(wb, work);
772 trace_writeback_written(wb->bdi, work);
773
774 wb_update_bandwidth(wb, wb_start);
775
776 /*
777 * Did we write something? Try for more
778 *
779 * Dirty inodes are moved to b_io for writeback in batches.
780 * The completion of the current batch does not necessarily
781 * mean the overall work is done. So we keep looping as long
782 * as made some progress on cleaning pages or inodes.
783 */
784 if (progress)
785 continue;
786 /*
787 * No more inodes for IO, bail
788 */
789 if (list_empty(&wb->b_more_io))
790 break;
791 /*
792 * Nothing written. Wait for some inode to
793 * become available for writeback. Otherwise
794 * we'll just busyloop.
795 */
796 if (!list_empty(&wb->b_more_io)) {
797 trace_writeback_wait(wb->bdi, work);
798 inode = wb_inode(wb->b_more_io.prev);
799 spin_lock(&inode->i_lock);
800 inode_wait_for_writeback(inode, wb);
801 spin_unlock(&inode->i_lock);
802 }
803 }
804 spin_unlock(&wb->list_lock);
805
806 return nr_pages - work->nr_pages;
807 }
808
809 /*
810 * Return the next wb_writeback_work struct that hasn't been processed yet.
811 */
812 static struct wb_writeback_work *
get_next_work_item(struct backing_dev_info * bdi)813 get_next_work_item(struct backing_dev_info *bdi)
814 {
815 struct wb_writeback_work *work = NULL;
816
817 spin_lock_bh(&bdi->wb_lock);
818 if (!list_empty(&bdi->work_list)) {
819 work = list_entry(bdi->work_list.next,
820 struct wb_writeback_work, list);
821 list_del_init(&work->list);
822 }
823 spin_unlock_bh(&bdi->wb_lock);
824 return work;
825 }
826
827 /*
828 * Add in the number of potentially dirty inodes, because each inode
829 * write can dirty pagecache in the underlying blockdev.
830 */
get_nr_dirty_pages(void)831 static unsigned long get_nr_dirty_pages(void)
832 {
833 return global_page_state(NR_FILE_DIRTY) +
834 global_page_state(NR_UNSTABLE_NFS) +
835 get_nr_dirty_inodes();
836 }
837
wb_check_background_flush(struct bdi_writeback * wb)838 static long wb_check_background_flush(struct bdi_writeback *wb)
839 {
840 if (over_bground_thresh(wb->bdi)) {
841
842 struct wb_writeback_work work = {
843 .nr_pages = LONG_MAX,
844 .sync_mode = WB_SYNC_NONE,
845 .for_background = 1,
846 .range_cyclic = 1,
847 .reason = WB_REASON_BACKGROUND,
848 };
849
850 return wb_writeback(wb, &work);
851 }
852
853 return 0;
854 }
855
wb_check_old_data_flush(struct bdi_writeback * wb)856 static long wb_check_old_data_flush(struct bdi_writeback *wb)
857 {
858 unsigned long expired;
859 long nr_pages;
860
861 /*
862 * When set to zero, disable periodic writeback
863 */
864 if (!dirty_writeback_interval)
865 return 0;
866
867 expired = wb->last_old_flush +
868 msecs_to_jiffies(dirty_writeback_interval * 10);
869 if (time_before(jiffies, expired))
870 return 0;
871
872 wb->last_old_flush = jiffies;
873 nr_pages = get_nr_dirty_pages();
874
875 if (nr_pages) {
876 struct wb_writeback_work work = {
877 .nr_pages = nr_pages,
878 .sync_mode = WB_SYNC_NONE,
879 .for_kupdate = 1,
880 .range_cyclic = 1,
881 .reason = WB_REASON_PERIODIC,
882 };
883
884 return wb_writeback(wb, &work);
885 }
886
887 return 0;
888 }
889
890 /*
891 * Retrieve work items and do the writeback they describe
892 */
wb_do_writeback(struct bdi_writeback * wb,int force_wait)893 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
894 {
895 struct backing_dev_info *bdi = wb->bdi;
896 struct wb_writeback_work *work;
897 long wrote = 0;
898
899 set_bit(BDI_writeback_running, &wb->bdi->state);
900 while ((work = get_next_work_item(bdi)) != NULL) {
901 /*
902 * Override sync mode, in case we must wait for completion
903 * because this thread is exiting now.
904 */
905 if (force_wait)
906 work->sync_mode = WB_SYNC_ALL;
907
908 trace_writeback_exec(bdi, work);
909
910 wrote += wb_writeback(wb, work);
911
912 /*
913 * Notify the caller of completion if this is a synchronous
914 * work item, otherwise just free it.
915 */
916 if (work->done)
917 complete(work->done);
918 else
919 kfree(work);
920 }
921
922 /*
923 * Check for periodic writeback, kupdated() style
924 */
925 wrote += wb_check_old_data_flush(wb);
926 wrote += wb_check_background_flush(wb);
927 clear_bit(BDI_writeback_running, &wb->bdi->state);
928
929 return wrote;
930 }
931
932 /*
933 * Handle writeback of dirty data for the device backed by this bdi. Also
934 * wakes up periodically and does kupdated style flushing.
935 */
bdi_writeback_thread(void * data)936 int bdi_writeback_thread(void *data)
937 {
938 struct bdi_writeback *wb = data;
939 struct backing_dev_info *bdi = wb->bdi;
940 long pages_written;
941
942 current->flags |= PF_SWAPWRITE;
943 set_freezable();
944 wb->last_active = jiffies;
945
946 /*
947 * Our parent may run at a different priority, just set us to normal
948 */
949 set_user_nice(current, 0);
950
951 trace_writeback_thread_start(bdi);
952
953 while (!kthread_freezable_should_stop(NULL)) {
954 /*
955 * Remove own delayed wake-up timer, since we are already awake
956 * and we'll take care of the preriodic write-back.
957 */
958 del_timer(&wb->wakeup_timer);
959
960 pages_written = wb_do_writeback(wb, 0);
961
962 trace_writeback_pages_written(pages_written);
963
964 if (pages_written)
965 wb->last_active = jiffies;
966
967 set_current_state(TASK_INTERRUPTIBLE);
968 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
969 __set_current_state(TASK_RUNNING);
970 continue;
971 }
972
973 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
974 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
975 else {
976 /*
977 * We have nothing to do, so can go sleep without any
978 * timeout and save power. When a work is queued or
979 * something is made dirty - we will be woken up.
980 */
981 schedule();
982 }
983 }
984
985 /* Flush any work that raced with us exiting */
986 if (!list_empty(&bdi->work_list))
987 wb_do_writeback(wb, 1);
988
989 trace_writeback_thread_stop(bdi);
990 return 0;
991 }
992
993
994 /*
995 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
996 * the whole world.
997 */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)998 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
999 {
1000 struct backing_dev_info *bdi;
1001
1002 if (!nr_pages) {
1003 nr_pages = global_page_state(NR_FILE_DIRTY) +
1004 global_page_state(NR_UNSTABLE_NFS);
1005 }
1006
1007 rcu_read_lock();
1008 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1009 if (!bdi_has_dirty_io(bdi))
1010 continue;
1011 __bdi_start_writeback(bdi, nr_pages, false, reason);
1012 }
1013 rcu_read_unlock();
1014 }
1015
block_dump___mark_inode_dirty(struct inode * inode)1016 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1017 {
1018 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1019 struct dentry *dentry;
1020 const char *name = "?";
1021
1022 dentry = d_find_alias(inode);
1023 if (dentry) {
1024 spin_lock(&dentry->d_lock);
1025 name = (const char *) dentry->d_name.name;
1026 }
1027 printk(KERN_DEBUG
1028 "%s(%d): dirtied inode %lu (%s) on %s\n",
1029 current->comm, task_pid_nr(current), inode->i_ino,
1030 name, inode->i_sb->s_id);
1031 if (dentry) {
1032 spin_unlock(&dentry->d_lock);
1033 dput(dentry);
1034 }
1035 }
1036 }
1037
1038 /**
1039 * __mark_inode_dirty - internal function
1040 * @inode: inode to mark
1041 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1042 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1043 * mark_inode_dirty_sync.
1044 *
1045 * Put the inode on the super block's dirty list.
1046 *
1047 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1048 * dirty list only if it is hashed or if it refers to a blockdev.
1049 * If it was not hashed, it will never be added to the dirty list
1050 * even if it is later hashed, as it will have been marked dirty already.
1051 *
1052 * In short, make sure you hash any inodes _before_ you start marking
1053 * them dirty.
1054 *
1055 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1056 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1057 * the kernel-internal blockdev inode represents the dirtying time of the
1058 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1059 * page->mapping->host, so the page-dirtying time is recorded in the internal
1060 * blockdev inode.
1061 */
__mark_inode_dirty(struct inode * inode,int flags)1062 void __mark_inode_dirty(struct inode *inode, int flags)
1063 {
1064 struct super_block *sb = inode->i_sb;
1065 struct backing_dev_info *bdi = NULL;
1066
1067 /*
1068 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1069 * dirty the inode itself
1070 */
1071 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1072 if (sb->s_op->dirty_inode)
1073 sb->s_op->dirty_inode(inode, flags);
1074 }
1075
1076 /*
1077 * make sure that changes are seen by all cpus before we test i_state
1078 * -- mikulas
1079 */
1080 smp_mb();
1081
1082 /* avoid the locking if we can */
1083 if ((inode->i_state & flags) == flags)
1084 return;
1085
1086 if (unlikely(block_dump))
1087 block_dump___mark_inode_dirty(inode);
1088
1089 spin_lock(&inode->i_lock);
1090 if ((inode->i_state & flags) != flags) {
1091 const int was_dirty = inode->i_state & I_DIRTY;
1092
1093 inode->i_state |= flags;
1094
1095 /*
1096 * If the inode is being synced, just update its dirty state.
1097 * The unlocker will place the inode on the appropriate
1098 * superblock list, based upon its state.
1099 */
1100 if (inode->i_state & I_SYNC)
1101 goto out_unlock_inode;
1102
1103 /*
1104 * Only add valid (hashed) inodes to the superblock's
1105 * dirty list. Add blockdev inodes as well.
1106 */
1107 if (!S_ISBLK(inode->i_mode)) {
1108 if (inode_unhashed(inode))
1109 goto out_unlock_inode;
1110 }
1111 if (inode->i_state & I_FREEING)
1112 goto out_unlock_inode;
1113
1114 /*
1115 * If the inode was already on b_dirty/b_io/b_more_io, don't
1116 * reposition it (that would break b_dirty time-ordering).
1117 */
1118 if (!was_dirty) {
1119 bool wakeup_bdi = false;
1120 bdi = inode_to_bdi(inode);
1121
1122 if (bdi_cap_writeback_dirty(bdi)) {
1123 WARN(!test_bit(BDI_registered, &bdi->state),
1124 "bdi-%s not registered\n", bdi->name);
1125
1126 /*
1127 * If this is the first dirty inode for this
1128 * bdi, we have to wake-up the corresponding
1129 * bdi thread to make sure background
1130 * write-back happens later.
1131 */
1132 if (!wb_has_dirty_io(&bdi->wb))
1133 wakeup_bdi = true;
1134 }
1135
1136 spin_unlock(&inode->i_lock);
1137 spin_lock(&bdi->wb.list_lock);
1138 inode->dirtied_when = jiffies;
1139 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1140 spin_unlock(&bdi->wb.list_lock);
1141
1142 if (wakeup_bdi)
1143 bdi_wakeup_thread_delayed(bdi);
1144 return;
1145 }
1146 }
1147 out_unlock_inode:
1148 spin_unlock(&inode->i_lock);
1149
1150 }
1151 EXPORT_SYMBOL(__mark_inode_dirty);
1152
wait_sb_inodes(struct super_block * sb)1153 static void wait_sb_inodes(struct super_block *sb)
1154 {
1155 struct inode *inode, *old_inode = NULL;
1156
1157 /*
1158 * We need to be protected against the filesystem going from
1159 * r/o to r/w or vice versa.
1160 */
1161 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1162
1163 spin_lock(&inode_sb_list_lock);
1164
1165 /*
1166 * Data integrity sync. Must wait for all pages under writeback,
1167 * because there may have been pages dirtied before our sync
1168 * call, but which had writeout started before we write it out.
1169 * In which case, the inode may not be on the dirty list, but
1170 * we still have to wait for that writeout.
1171 */
1172 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1173 struct address_space *mapping = inode->i_mapping;
1174
1175 spin_lock(&inode->i_lock);
1176 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1177 (mapping->nrpages == 0)) {
1178 spin_unlock(&inode->i_lock);
1179 continue;
1180 }
1181 __iget(inode);
1182 spin_unlock(&inode->i_lock);
1183 spin_unlock(&inode_sb_list_lock);
1184
1185 /*
1186 * We hold a reference to 'inode' so it couldn't have been
1187 * removed from s_inodes list while we dropped the
1188 * inode_sb_list_lock. We cannot iput the inode now as we can
1189 * be holding the last reference and we cannot iput it under
1190 * inode_sb_list_lock. So we keep the reference and iput it
1191 * later.
1192 */
1193 iput(old_inode);
1194 old_inode = inode;
1195
1196 filemap_fdatawait(mapping);
1197
1198 cond_resched();
1199
1200 spin_lock(&inode_sb_list_lock);
1201 }
1202 spin_unlock(&inode_sb_list_lock);
1203 iput(old_inode);
1204 }
1205
1206 /**
1207 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1208 * @sb: the superblock
1209 * @nr: the number of pages to write
1210 * @reason: reason why some writeback work initiated
1211 *
1212 * Start writeback on some inodes on this super_block. No guarantees are made
1213 * on how many (if any) will be written, and this function does not wait
1214 * for IO completion of submitted IO.
1215 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)1216 void writeback_inodes_sb_nr(struct super_block *sb,
1217 unsigned long nr,
1218 enum wb_reason reason)
1219 {
1220 DECLARE_COMPLETION_ONSTACK(done);
1221 struct wb_writeback_work work = {
1222 .sb = sb,
1223 .sync_mode = WB_SYNC_NONE,
1224 .tagged_writepages = 1,
1225 .done = &done,
1226 .nr_pages = nr,
1227 .reason = reason,
1228 };
1229
1230 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1231 bdi_queue_work(sb->s_bdi, &work);
1232 wait_for_completion(&done);
1233 }
1234 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1235
1236 /**
1237 * writeback_inodes_sb - writeback dirty inodes from given super_block
1238 * @sb: the superblock
1239 * @reason: reason why some writeback work was initiated
1240 *
1241 * Start writeback on some inodes on this super_block. No guarantees are made
1242 * on how many (if any) will be written, and this function does not wait
1243 * for IO completion of submitted IO.
1244 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)1245 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1246 {
1247 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb);
1250
1251 /**
1252 * writeback_inodes_sb_if_idle - start writeback if none underway
1253 * @sb: the superblock
1254 * @reason: reason why some writeback work was initiated
1255 *
1256 * Invoke writeback_inodes_sb if no writeback is currently underway.
1257 * Returns 1 if writeback was started, 0 if not.
1258 */
writeback_inodes_sb_if_idle(struct super_block * sb,enum wb_reason reason)1259 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1260 {
1261 if (!writeback_in_progress(sb->s_bdi)) {
1262 down_read(&sb->s_umount);
1263 writeback_inodes_sb(sb, reason);
1264 up_read(&sb->s_umount);
1265 return 1;
1266 } else
1267 return 0;
1268 }
1269 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1270
1271 /**
1272 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1273 * @sb: the superblock
1274 * @nr: the number of pages to write
1275 * @reason: reason why some writeback work was initiated
1276 *
1277 * Invoke writeback_inodes_sb if no writeback is currently underway.
1278 * Returns 1 if writeback was started, 0 if not.
1279 */
writeback_inodes_sb_nr_if_idle(struct super_block * sb,unsigned long nr,enum wb_reason reason)1280 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1281 unsigned long nr,
1282 enum wb_reason reason)
1283 {
1284 if (!writeback_in_progress(sb->s_bdi)) {
1285 down_read(&sb->s_umount);
1286 writeback_inodes_sb_nr(sb, nr, reason);
1287 up_read(&sb->s_umount);
1288 return 1;
1289 } else
1290 return 0;
1291 }
1292 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1293
1294 /**
1295 * sync_inodes_sb - sync sb inode pages
1296 * @sb: the superblock
1297 *
1298 * This function writes and waits on any dirty inode belonging to this
1299 * super_block.
1300 */
sync_inodes_sb(struct super_block * sb)1301 void sync_inodes_sb(struct super_block *sb)
1302 {
1303 DECLARE_COMPLETION_ONSTACK(done);
1304 struct wb_writeback_work work = {
1305 .sb = sb,
1306 .sync_mode = WB_SYNC_ALL,
1307 .nr_pages = LONG_MAX,
1308 .range_cyclic = 0,
1309 .done = &done,
1310 .reason = WB_REASON_SYNC,
1311 };
1312
1313 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1314
1315 bdi_queue_work(sb->s_bdi, &work);
1316 wait_for_completion(&done);
1317
1318 wait_sb_inodes(sb);
1319 }
1320 EXPORT_SYMBOL(sync_inodes_sb);
1321
1322 /**
1323 * write_inode_now - write an inode to disk
1324 * @inode: inode to write to disk
1325 * @sync: whether the write should be synchronous or not
1326 *
1327 * This function commits an inode to disk immediately if it is dirty. This is
1328 * primarily needed by knfsd.
1329 *
1330 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1331 */
write_inode_now(struct inode * inode,int sync)1332 int write_inode_now(struct inode *inode, int sync)
1333 {
1334 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1335 int ret;
1336 struct writeback_control wbc = {
1337 .nr_to_write = LONG_MAX,
1338 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1339 .range_start = 0,
1340 .range_end = LLONG_MAX,
1341 };
1342
1343 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1344 wbc.nr_to_write = 0;
1345
1346 might_sleep();
1347 spin_lock(&wb->list_lock);
1348 spin_lock(&inode->i_lock);
1349 ret = writeback_single_inode(inode, wb, &wbc);
1350 spin_unlock(&inode->i_lock);
1351 spin_unlock(&wb->list_lock);
1352 return ret;
1353 }
1354 EXPORT_SYMBOL(write_inode_now);
1355
1356 /**
1357 * sync_inode - write an inode and its pages to disk.
1358 * @inode: the inode to sync
1359 * @wbc: controls the writeback mode
1360 *
1361 * sync_inode() will write an inode and its pages to disk. It will also
1362 * correctly update the inode on its superblock's dirty inode lists and will
1363 * update inode->i_state.
1364 *
1365 * The caller must have a ref on the inode.
1366 */
sync_inode(struct inode * inode,struct writeback_control * wbc)1367 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1368 {
1369 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1370 int ret;
1371
1372 spin_lock(&wb->list_lock);
1373 spin_lock(&inode->i_lock);
1374 ret = writeback_single_inode(inode, wb, wbc);
1375 spin_unlock(&inode->i_lock);
1376 spin_unlock(&wb->list_lock);
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(sync_inode);
1380
1381 /**
1382 * sync_inode_metadata - write an inode to disk
1383 * @inode: the inode to sync
1384 * @wait: wait for I/O to complete.
1385 *
1386 * Write an inode to disk and adjust its dirty state after completion.
1387 *
1388 * Note: only writes the actual inode, no associated data or other metadata.
1389 */
sync_inode_metadata(struct inode * inode,int wait)1390 int sync_inode_metadata(struct inode *inode, int wait)
1391 {
1392 struct writeback_control wbc = {
1393 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1394 .nr_to_write = 0, /* metadata-only */
1395 };
1396
1397 return sync_inode(inode, &wbc);
1398 }
1399 EXPORT_SYMBOL(sync_inode_metadata);
1400