1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 EXPORT_SYMBOL(of_chosen);
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42
43 struct kset *of_kset;
44
45 /*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51 DEFINE_MUTEX(of_mutex);
52
53 /* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87 }
88
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 return NUMA_NO_NODE;
135 }
136 #endif
137
138 #define OF_PHANDLE_CACHE_BITS 7
139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
140
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
of_phandle_cache_hash(phandle handle)143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147
148 /*
149 * Caller must hold devtree_lock.
150 */
__of_phandle_cache_inv_entry(phandle handle)151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 u32 handle_hash;
154 struct device_node *np;
155
156 if (!handle)
157 return;
158
159 handle_hash = of_phandle_cache_hash(handle);
160
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
164 }
165
of_core_init(void)166 void __init of_core_init(void)
167 {
168 struct device_node *np;
169
170
171 /* Create the kset, and register existing nodes */
172 mutex_lock(&of_mutex);
173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 if (!of_kset) {
175 mutex_unlock(&of_mutex);
176 pr_err("failed to register existing nodes\n");
177 return;
178 }
179 for_each_of_allnodes(np) {
180 __of_attach_node_sysfs(np);
181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 }
184 mutex_unlock(&of_mutex);
185
186 /* Symlink in /proc as required by userspace ABI */
187 if (of_root)
188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190
__of_find_property(const struct device_node * np,const char * name,int * lenp)191 static struct property *__of_find_property(const struct device_node *np,
192 const char *name, int *lenp)
193 {
194 struct property *pp;
195
196 if (!np)
197 return NULL;
198
199 for (pp = np->properties; pp; pp = pp->next) {
200 if (of_prop_cmp(pp->name, name) == 0) {
201 if (lenp)
202 *lenp = pp->length;
203 break;
204 }
205 }
206
207 return pp;
208 }
209
of_find_property(const struct device_node * np,const char * name,int * lenp)210 struct property *of_find_property(const struct device_node *np,
211 const char *name,
212 int *lenp)
213 {
214 struct property *pp;
215 unsigned long flags;
216
217 raw_spin_lock_irqsave(&devtree_lock, flags);
218 pp = __of_find_property(np, name, lenp);
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
220
221 return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224
__of_find_all_nodes(struct device_node * prev)225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 struct device_node *np;
228 if (!prev) {
229 np = of_root;
230 } else if (prev->child) {
231 np = prev->child;
232 } else {
233 /* Walk back up looking for a sibling, or the end of the structure */
234 np = prev;
235 while (np->parent && !np->sibling)
236 np = np->parent;
237 np = np->sibling; /* Might be null at the end of the tree */
238 }
239 return np;
240 }
241
242 /**
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
246 *
247 * Return: A node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
of_find_all_nodes(struct device_node * prev)250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 struct device_node *np;
253 unsigned long flags;
254
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = __of_find_all_nodes(prev);
257 of_node_get(np);
258 of_node_put(prev);
259 raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263
264 /*
265 * Find a property with a given name for a given node
266 * and return the value.
267 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)268 const void *__of_get_property(const struct device_node *np,
269 const char *name, int *lenp)
270 {
271 struct property *pp = __of_find_property(np, name, lenp);
272
273 return pp ? pp->value : NULL;
274 }
275
276 /*
277 * Find a property with a given name for a given node
278 * and return the value.
279 */
of_get_property(const struct device_node * np,const char * name,int * lenp)280 const void *of_get_property(const struct device_node *np, const char *name,
281 int *lenp)
282 {
283 struct property *pp = of_find_property(np, name, lenp);
284
285 return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288
289 /**
290 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
291 *
292 * @cpun: CPU number(logical index) for which device node is required
293 * @thread: The local thread number to get the hardware ID for.
294 *
295 * Return: The hardware ID for the CPU node or ~0ULL if not found.
296 */
of_get_cpu_hwid(struct device_node * cpun,unsigned int thread)297 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
298 {
299 const __be32 *cell;
300 int ac, len;
301
302 ac = of_n_addr_cells(cpun);
303 cell = of_get_property(cpun, "reg", &len);
304 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
305 return ~0ULL;
306
307 cell += ac * thread;
308 return of_read_number(cell, ac);
309 }
310
311 /*
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313 *
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
316 *
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
321 *
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
324 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326 {
327 return (u32)phys_id == cpu;
328 }
329
330 /*
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
334 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 const char *prop_name, int cpu, unsigned int *thread)
337 {
338 const __be32 *cell;
339 int ac, prop_len, tid;
340 u64 hwid;
341
342 ac = of_n_addr_cells(cpun);
343 cell = of_get_property(cpun, prop_name, &prop_len);
344 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
345 return true;
346 if (!cell || !ac)
347 return false;
348 prop_len /= sizeof(*cell) * ac;
349 for (tid = 0; tid < prop_len; tid++) {
350 hwid = of_read_number(cell, ac);
351 if (arch_match_cpu_phys_id(cpu, hwid)) {
352 if (thread)
353 *thread = tid;
354 return true;
355 }
356 cell += ac;
357 }
358 return false;
359 }
360
361 /*
362 * arch_find_n_match_cpu_physical_id - See if the given device node is
363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
364 * else false. If 'thread' is non-NULL, the local thread number within the
365 * core is returned in it.
366 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 int cpu, unsigned int *thread)
369 {
370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 * for thread ids on PowerPC. If it doesn't exist fallback to
372 * standard "reg" property.
373 */
374 if (IS_ENABLED(CONFIG_PPC) &&
375 __of_find_n_match_cpu_property(cpun,
376 "ibm,ppc-interrupt-server#s",
377 cpu, thread))
378 return true;
379
380 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
381 }
382
383 /**
384 * of_get_cpu_node - Get device node associated with the given logical CPU
385 *
386 * @cpu: CPU number(logical index) for which device node is required
387 * @thread: if not NULL, local thread number within the physical core is
388 * returned
389 *
390 * The main purpose of this function is to retrieve the device node for the
391 * given logical CPU index. It should be used to initialize the of_node in
392 * cpu device. Once of_node in cpu device is populated, all the further
393 * references can use that instead.
394 *
395 * CPU logical to physical index mapping is architecture specific and is built
396 * before booting secondary cores. This function uses arch_match_cpu_phys_id
397 * which can be overridden by architecture specific implementation.
398 *
399 * Return: A node pointer for the logical cpu with refcount incremented, use
400 * of_node_put() on it when done. Returns NULL if not found.
401 */
of_get_cpu_node(int cpu,unsigned int * thread)402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
403 {
404 struct device_node *cpun;
405
406 for_each_of_cpu_node(cpun) {
407 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
408 return cpun;
409 }
410 return NULL;
411 }
412 EXPORT_SYMBOL(of_get_cpu_node);
413
414 /**
415 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
416 *
417 * @cpu_node: Pointer to the device_node for CPU.
418 *
419 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
420 * CPU is not found.
421 */
of_cpu_node_to_id(struct device_node * cpu_node)422 int of_cpu_node_to_id(struct device_node *cpu_node)
423 {
424 int cpu;
425 bool found = false;
426 struct device_node *np;
427
428 for_each_possible_cpu(cpu) {
429 np = of_cpu_device_node_get(cpu);
430 found = (cpu_node == np);
431 of_node_put(np);
432 if (found)
433 return cpu;
434 }
435
436 return -ENODEV;
437 }
438 EXPORT_SYMBOL(of_cpu_node_to_id);
439
440 /**
441 * of_get_cpu_state_node - Get CPU's idle state node at the given index
442 *
443 * @cpu_node: The device node for the CPU
444 * @index: The index in the list of the idle states
445 *
446 * Two generic methods can be used to describe a CPU's idle states, either via
447 * a flattened description through the "cpu-idle-states" binding or via the
448 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
449 * bindings. This function check for both and returns the idle state node for
450 * the requested index.
451 *
452 * Return: An idle state node if found at @index. The refcount is incremented
453 * for it, so call of_node_put() on it when done. Returns NULL if not found.
454 */
of_get_cpu_state_node(struct device_node * cpu_node,int index)455 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
456 int index)
457 {
458 struct of_phandle_args args;
459 int err;
460
461 err = of_parse_phandle_with_args(cpu_node, "power-domains",
462 "#power-domain-cells", 0, &args);
463 if (!err) {
464 struct device_node *state_node =
465 of_parse_phandle(args.np, "domain-idle-states", index);
466
467 of_node_put(args.np);
468 if (state_node)
469 return state_node;
470 }
471
472 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
473 }
474 EXPORT_SYMBOL(of_get_cpu_state_node);
475
476 /**
477 * __of_device_is_compatible() - Check if the node matches given constraints
478 * @device: pointer to node
479 * @compat: required compatible string, NULL or "" for any match
480 * @type: required device_type value, NULL or "" for any match
481 * @name: required node name, NULL or "" for any match
482 *
483 * Checks if the given @compat, @type and @name strings match the
484 * properties of the given @device. A constraints can be skipped by
485 * passing NULL or an empty string as the constraint.
486 *
487 * Returns 0 for no match, and a positive integer on match. The return
488 * value is a relative score with larger values indicating better
489 * matches. The score is weighted for the most specific compatible value
490 * to get the highest score. Matching type is next, followed by matching
491 * name. Practically speaking, this results in the following priority
492 * order for matches:
493 *
494 * 1. specific compatible && type && name
495 * 2. specific compatible && type
496 * 3. specific compatible && name
497 * 4. specific compatible
498 * 5. general compatible && type && name
499 * 6. general compatible && type
500 * 7. general compatible && name
501 * 8. general compatible
502 * 9. type && name
503 * 10. type
504 * 11. name
505 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)506 static int __of_device_is_compatible(const struct device_node *device,
507 const char *compat, const char *type, const char *name)
508 {
509 struct property *prop;
510 const char *cp;
511 int index = 0, score = 0;
512
513 /* Compatible match has highest priority */
514 if (compat && compat[0]) {
515 prop = __of_find_property(device, "compatible", NULL);
516 for (cp = of_prop_next_string(prop, NULL); cp;
517 cp = of_prop_next_string(prop, cp), index++) {
518 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
519 score = INT_MAX/2 - (index << 2);
520 break;
521 }
522 }
523 if (!score)
524 return 0;
525 }
526
527 /* Matching type is better than matching name */
528 if (type && type[0]) {
529 if (!__of_node_is_type(device, type))
530 return 0;
531 score += 2;
532 }
533
534 /* Matching name is a bit better than not */
535 if (name && name[0]) {
536 if (!of_node_name_eq(device, name))
537 return 0;
538 score++;
539 }
540
541 return score;
542 }
543
544 /** Checks if the given "compat" string matches one of the strings in
545 * the device's "compatible" property
546 */
of_device_is_compatible(const struct device_node * device,const char * compat)547 int of_device_is_compatible(const struct device_node *device,
548 const char *compat)
549 {
550 unsigned long flags;
551 int res;
552
553 raw_spin_lock_irqsave(&devtree_lock, flags);
554 res = __of_device_is_compatible(device, compat, NULL, NULL);
555 raw_spin_unlock_irqrestore(&devtree_lock, flags);
556 return res;
557 }
558 EXPORT_SYMBOL(of_device_is_compatible);
559
560 /** Checks if the device is compatible with any of the entries in
561 * a NULL terminated array of strings. Returns the best match
562 * score or 0.
563 */
of_device_compatible_match(struct device_node * device,const char * const * compat)564 int of_device_compatible_match(struct device_node *device,
565 const char *const *compat)
566 {
567 unsigned int tmp, score = 0;
568
569 if (!compat)
570 return 0;
571
572 while (*compat) {
573 tmp = of_device_is_compatible(device, *compat);
574 if (tmp > score)
575 score = tmp;
576 compat++;
577 }
578
579 return score;
580 }
581
582 /**
583 * of_machine_is_compatible - Test root of device tree for a given compatible value
584 * @compat: compatible string to look for in root node's compatible property.
585 *
586 * Return: A positive integer if the root node has the given value in its
587 * compatible property.
588 */
of_machine_is_compatible(const char * compat)589 int of_machine_is_compatible(const char *compat)
590 {
591 struct device_node *root;
592 int rc = 0;
593
594 root = of_find_node_by_path("/");
595 if (root) {
596 rc = of_device_is_compatible(root, compat);
597 of_node_put(root);
598 }
599 return rc;
600 }
601 EXPORT_SYMBOL(of_machine_is_compatible);
602
603 /**
604 * __of_device_is_available - check if a device is available for use
605 *
606 * @device: Node to check for availability, with locks already held
607 *
608 * Return: True if the status property is absent or set to "okay" or "ok",
609 * false otherwise
610 */
__of_device_is_available(const struct device_node * device)611 static bool __of_device_is_available(const struct device_node *device)
612 {
613 const char *status;
614 int statlen;
615
616 if (!device)
617 return false;
618
619 status = __of_get_property(device, "status", &statlen);
620 if (status == NULL)
621 return true;
622
623 if (statlen > 0) {
624 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
625 return true;
626 }
627
628 return false;
629 }
630
631 /**
632 * of_device_is_available - check if a device is available for use
633 *
634 * @device: Node to check for availability
635 *
636 * Return: True if the status property is absent or set to "okay" or "ok",
637 * false otherwise
638 */
of_device_is_available(const struct device_node * device)639 bool of_device_is_available(const struct device_node *device)
640 {
641 unsigned long flags;
642 bool res;
643
644 raw_spin_lock_irqsave(&devtree_lock, flags);
645 res = __of_device_is_available(device);
646 raw_spin_unlock_irqrestore(&devtree_lock, flags);
647 return res;
648
649 }
650 EXPORT_SYMBOL(of_device_is_available);
651
652 /**
653 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
654 *
655 * @device: Node to check status for, with locks already held
656 *
657 * Return: True if the status property is set to "fail" or "fail-..." (for any
658 * error code suffix), false otherwise
659 */
__of_device_is_fail(const struct device_node * device)660 static bool __of_device_is_fail(const struct device_node *device)
661 {
662 const char *status;
663
664 if (!device)
665 return false;
666
667 status = __of_get_property(device, "status", NULL);
668 if (status == NULL)
669 return false;
670
671 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
672 }
673
674 /**
675 * of_device_is_big_endian - check if a device has BE registers
676 *
677 * @device: Node to check for endianness
678 *
679 * Return: True if the device has a "big-endian" property, or if the kernel
680 * was compiled for BE *and* the device has a "native-endian" property.
681 * Returns false otherwise.
682 *
683 * Callers would nominally use ioread32be/iowrite32be if
684 * of_device_is_big_endian() == true, or readl/writel otherwise.
685 */
of_device_is_big_endian(const struct device_node * device)686 bool of_device_is_big_endian(const struct device_node *device)
687 {
688 if (of_property_read_bool(device, "big-endian"))
689 return true;
690 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
691 of_property_read_bool(device, "native-endian"))
692 return true;
693 return false;
694 }
695 EXPORT_SYMBOL(of_device_is_big_endian);
696
697 /**
698 * of_get_parent - Get a node's parent if any
699 * @node: Node to get parent
700 *
701 * Return: A node pointer with refcount incremented, use
702 * of_node_put() on it when done.
703 */
of_get_parent(const struct device_node * node)704 struct device_node *of_get_parent(const struct device_node *node)
705 {
706 struct device_node *np;
707 unsigned long flags;
708
709 if (!node)
710 return NULL;
711
712 raw_spin_lock_irqsave(&devtree_lock, flags);
713 np = of_node_get(node->parent);
714 raw_spin_unlock_irqrestore(&devtree_lock, flags);
715 return np;
716 }
717 EXPORT_SYMBOL(of_get_parent);
718
719 /**
720 * of_get_next_parent - Iterate to a node's parent
721 * @node: Node to get parent of
722 *
723 * This is like of_get_parent() except that it drops the
724 * refcount on the passed node, making it suitable for iterating
725 * through a node's parents.
726 *
727 * Return: A node pointer with refcount incremented, use
728 * of_node_put() on it when done.
729 */
of_get_next_parent(struct device_node * node)730 struct device_node *of_get_next_parent(struct device_node *node)
731 {
732 struct device_node *parent;
733 unsigned long flags;
734
735 if (!node)
736 return NULL;
737
738 raw_spin_lock_irqsave(&devtree_lock, flags);
739 parent = of_node_get(node->parent);
740 of_node_put(node);
741 raw_spin_unlock_irqrestore(&devtree_lock, flags);
742 return parent;
743 }
744 EXPORT_SYMBOL(of_get_next_parent);
745
__of_get_next_child(const struct device_node * node,struct device_node * prev)746 static struct device_node *__of_get_next_child(const struct device_node *node,
747 struct device_node *prev)
748 {
749 struct device_node *next;
750
751 if (!node)
752 return NULL;
753
754 next = prev ? prev->sibling : node->child;
755 of_node_get(next);
756 of_node_put(prev);
757 return next;
758 }
759 #define __for_each_child_of_node(parent, child) \
760 for (child = __of_get_next_child(parent, NULL); child != NULL; \
761 child = __of_get_next_child(parent, child))
762
763 /**
764 * of_get_next_child - Iterate a node childs
765 * @node: parent node
766 * @prev: previous child of the parent node, or NULL to get first
767 *
768 * Return: A node pointer with refcount incremented, use of_node_put() on
769 * it when done. Returns NULL when prev is the last child. Decrements the
770 * refcount of prev.
771 */
of_get_next_child(const struct device_node * node,struct device_node * prev)772 struct device_node *of_get_next_child(const struct device_node *node,
773 struct device_node *prev)
774 {
775 struct device_node *next;
776 unsigned long flags;
777
778 raw_spin_lock_irqsave(&devtree_lock, flags);
779 next = __of_get_next_child(node, prev);
780 raw_spin_unlock_irqrestore(&devtree_lock, flags);
781 return next;
782 }
783 EXPORT_SYMBOL(of_get_next_child);
784
785 /**
786 * of_get_next_available_child - Find the next available child node
787 * @node: parent node
788 * @prev: previous child of the parent node, or NULL to get first
789 *
790 * This function is like of_get_next_child(), except that it
791 * automatically skips any disabled nodes (i.e. status = "disabled").
792 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)793 struct device_node *of_get_next_available_child(const struct device_node *node,
794 struct device_node *prev)
795 {
796 struct device_node *next;
797 unsigned long flags;
798
799 if (!node)
800 return NULL;
801
802 raw_spin_lock_irqsave(&devtree_lock, flags);
803 next = prev ? prev->sibling : node->child;
804 for (; next; next = next->sibling) {
805 if (!__of_device_is_available(next))
806 continue;
807 if (of_node_get(next))
808 break;
809 }
810 of_node_put(prev);
811 raw_spin_unlock_irqrestore(&devtree_lock, flags);
812 return next;
813 }
814 EXPORT_SYMBOL(of_get_next_available_child);
815
816 /**
817 * of_get_next_cpu_node - Iterate on cpu nodes
818 * @prev: previous child of the /cpus node, or NULL to get first
819 *
820 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
821 * will be skipped.
822 *
823 * Return: A cpu node pointer with refcount incremented, use of_node_put()
824 * on it when done. Returns NULL when prev is the last child. Decrements
825 * the refcount of prev.
826 */
of_get_next_cpu_node(struct device_node * prev)827 struct device_node *of_get_next_cpu_node(struct device_node *prev)
828 {
829 struct device_node *next = NULL;
830 unsigned long flags;
831 struct device_node *node;
832
833 if (!prev)
834 node = of_find_node_by_path("/cpus");
835
836 raw_spin_lock_irqsave(&devtree_lock, flags);
837 if (prev)
838 next = prev->sibling;
839 else if (node) {
840 next = node->child;
841 of_node_put(node);
842 }
843 for (; next; next = next->sibling) {
844 if (__of_device_is_fail(next))
845 continue;
846 if (!(of_node_name_eq(next, "cpu") ||
847 __of_node_is_type(next, "cpu")))
848 continue;
849 if (of_node_get(next))
850 break;
851 }
852 of_node_put(prev);
853 raw_spin_unlock_irqrestore(&devtree_lock, flags);
854 return next;
855 }
856 EXPORT_SYMBOL(of_get_next_cpu_node);
857
858 /**
859 * of_get_compatible_child - Find compatible child node
860 * @parent: parent node
861 * @compatible: compatible string
862 *
863 * Lookup child node whose compatible property contains the given compatible
864 * string.
865 *
866 * Return: a node pointer with refcount incremented, use of_node_put() on it
867 * when done; or NULL if not found.
868 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)869 struct device_node *of_get_compatible_child(const struct device_node *parent,
870 const char *compatible)
871 {
872 struct device_node *child;
873
874 for_each_child_of_node(parent, child) {
875 if (of_device_is_compatible(child, compatible))
876 break;
877 }
878
879 return child;
880 }
881 EXPORT_SYMBOL(of_get_compatible_child);
882
883 /**
884 * of_get_child_by_name - Find the child node by name for a given parent
885 * @node: parent node
886 * @name: child name to look for.
887 *
888 * This function looks for child node for given matching name
889 *
890 * Return: A node pointer if found, with refcount incremented, use
891 * of_node_put() on it when done.
892 * Returns NULL if node is not found.
893 */
of_get_child_by_name(const struct device_node * node,const char * name)894 struct device_node *of_get_child_by_name(const struct device_node *node,
895 const char *name)
896 {
897 struct device_node *child;
898
899 for_each_child_of_node(node, child)
900 if (of_node_name_eq(child, name))
901 break;
902 return child;
903 }
904 EXPORT_SYMBOL(of_get_child_by_name);
905
__of_find_node_by_path(struct device_node * parent,const char * path)906 struct device_node *__of_find_node_by_path(struct device_node *parent,
907 const char *path)
908 {
909 struct device_node *child;
910 int len;
911
912 len = strcspn(path, "/:");
913 if (!len)
914 return NULL;
915
916 __for_each_child_of_node(parent, child) {
917 const char *name = kbasename(child->full_name);
918 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
919 return child;
920 }
921 return NULL;
922 }
923
__of_find_node_by_full_path(struct device_node * node,const char * path)924 struct device_node *__of_find_node_by_full_path(struct device_node *node,
925 const char *path)
926 {
927 const char *separator = strchr(path, ':');
928
929 while (node && *path == '/') {
930 struct device_node *tmp = node;
931
932 path++; /* Increment past '/' delimiter */
933 node = __of_find_node_by_path(node, path);
934 of_node_put(tmp);
935 path = strchrnul(path, '/');
936 if (separator && separator < path)
937 break;
938 }
939 return node;
940 }
941
942 /**
943 * of_find_node_opts_by_path - Find a node matching a full OF path
944 * @path: Either the full path to match, or if the path does not
945 * start with '/', the name of a property of the /aliases
946 * node (an alias). In the case of an alias, the node
947 * matching the alias' value will be returned.
948 * @opts: Address of a pointer into which to store the start of
949 * an options string appended to the end of the path with
950 * a ':' separator.
951 *
952 * Valid paths:
953 * * /foo/bar Full path
954 * * foo Valid alias
955 * * foo/bar Valid alias + relative path
956 *
957 * Return: A node pointer with refcount incremented, use
958 * of_node_put() on it when done.
959 */
of_find_node_opts_by_path(const char * path,const char ** opts)960 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
961 {
962 struct device_node *np = NULL;
963 struct property *pp;
964 unsigned long flags;
965 const char *separator = strchr(path, ':');
966
967 if (opts)
968 *opts = separator ? separator + 1 : NULL;
969
970 if (strcmp(path, "/") == 0)
971 return of_node_get(of_root);
972
973 /* The path could begin with an alias */
974 if (*path != '/') {
975 int len;
976 const char *p = separator;
977
978 if (!p)
979 p = strchrnul(path, '/');
980 len = p - path;
981
982 /* of_aliases must not be NULL */
983 if (!of_aliases)
984 return NULL;
985
986 for_each_property_of_node(of_aliases, pp) {
987 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
988 np = of_find_node_by_path(pp->value);
989 break;
990 }
991 }
992 if (!np)
993 return NULL;
994 path = p;
995 }
996
997 /* Step down the tree matching path components */
998 raw_spin_lock_irqsave(&devtree_lock, flags);
999 if (!np)
1000 np = of_node_get(of_root);
1001 np = __of_find_node_by_full_path(np, path);
1002 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1003 return np;
1004 }
1005 EXPORT_SYMBOL(of_find_node_opts_by_path);
1006
1007 /**
1008 * of_find_node_by_name - Find a node by its "name" property
1009 * @from: The node to start searching from or NULL; the node
1010 * you pass will not be searched, only the next one
1011 * will. Typically, you pass what the previous call
1012 * returned. of_node_put() will be called on @from.
1013 * @name: The name string to match against
1014 *
1015 * Return: A node pointer with refcount incremented, use
1016 * of_node_put() on it when done.
1017 */
of_find_node_by_name(struct device_node * from,const char * name)1018 struct device_node *of_find_node_by_name(struct device_node *from,
1019 const char *name)
1020 {
1021 struct device_node *np;
1022 unsigned long flags;
1023
1024 raw_spin_lock_irqsave(&devtree_lock, flags);
1025 for_each_of_allnodes_from(from, np)
1026 if (of_node_name_eq(np, name) && of_node_get(np))
1027 break;
1028 of_node_put(from);
1029 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1030 return np;
1031 }
1032 EXPORT_SYMBOL(of_find_node_by_name);
1033
1034 /**
1035 * of_find_node_by_type - Find a node by its "device_type" property
1036 * @from: The node to start searching from, or NULL to start searching
1037 * the entire device tree. The node you pass will not be
1038 * searched, only the next one will; typically, you pass
1039 * what the previous call returned. of_node_put() will be
1040 * called on from for you.
1041 * @type: The type string to match against
1042 *
1043 * Return: A node pointer with refcount incremented, use
1044 * of_node_put() on it when done.
1045 */
of_find_node_by_type(struct device_node * from,const char * type)1046 struct device_node *of_find_node_by_type(struct device_node *from,
1047 const char *type)
1048 {
1049 struct device_node *np;
1050 unsigned long flags;
1051
1052 raw_spin_lock_irqsave(&devtree_lock, flags);
1053 for_each_of_allnodes_from(from, np)
1054 if (__of_node_is_type(np, type) && of_node_get(np))
1055 break;
1056 of_node_put(from);
1057 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1058 return np;
1059 }
1060 EXPORT_SYMBOL(of_find_node_by_type);
1061
1062 /**
1063 * of_find_compatible_node - Find a node based on type and one of the
1064 * tokens in its "compatible" property
1065 * @from: The node to start searching from or NULL, the node
1066 * you pass will not be searched, only the next one
1067 * will; typically, you pass what the previous call
1068 * returned. of_node_put() will be called on it
1069 * @type: The type string to match "device_type" or NULL to ignore
1070 * @compatible: The string to match to one of the tokens in the device
1071 * "compatible" list.
1072 *
1073 * Return: A node pointer with refcount incremented, use
1074 * of_node_put() on it when done.
1075 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1076 struct device_node *of_find_compatible_node(struct device_node *from,
1077 const char *type, const char *compatible)
1078 {
1079 struct device_node *np;
1080 unsigned long flags;
1081
1082 raw_spin_lock_irqsave(&devtree_lock, flags);
1083 for_each_of_allnodes_from(from, np)
1084 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1085 of_node_get(np))
1086 break;
1087 of_node_put(from);
1088 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1089 return np;
1090 }
1091 EXPORT_SYMBOL(of_find_compatible_node);
1092
1093 /**
1094 * of_find_node_with_property - Find a node which has a property with
1095 * the given name.
1096 * @from: The node to start searching from or NULL, the node
1097 * you pass will not be searched, only the next one
1098 * will; typically, you pass what the previous call
1099 * returned. of_node_put() will be called on it
1100 * @prop_name: The name of the property to look for.
1101 *
1102 * Return: A node pointer with refcount incremented, use
1103 * of_node_put() on it when done.
1104 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1105 struct device_node *of_find_node_with_property(struct device_node *from,
1106 const char *prop_name)
1107 {
1108 struct device_node *np;
1109 struct property *pp;
1110 unsigned long flags;
1111
1112 raw_spin_lock_irqsave(&devtree_lock, flags);
1113 for_each_of_allnodes_from(from, np) {
1114 for (pp = np->properties; pp; pp = pp->next) {
1115 if (of_prop_cmp(pp->name, prop_name) == 0) {
1116 of_node_get(np);
1117 goto out;
1118 }
1119 }
1120 }
1121 out:
1122 of_node_put(from);
1123 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1124 return np;
1125 }
1126 EXPORT_SYMBOL(of_find_node_with_property);
1127
1128 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1129 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1130 const struct device_node *node)
1131 {
1132 const struct of_device_id *best_match = NULL;
1133 int score, best_score = 0;
1134
1135 if (!matches)
1136 return NULL;
1137
1138 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1139 score = __of_device_is_compatible(node, matches->compatible,
1140 matches->type, matches->name);
1141 if (score > best_score) {
1142 best_match = matches;
1143 best_score = score;
1144 }
1145 }
1146
1147 return best_match;
1148 }
1149
1150 /**
1151 * of_match_node - Tell if a device_node has a matching of_match structure
1152 * @matches: array of of device match structures to search in
1153 * @node: the of device structure to match against
1154 *
1155 * Low level utility function used by device matching.
1156 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1157 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1158 const struct device_node *node)
1159 {
1160 const struct of_device_id *match;
1161 unsigned long flags;
1162
1163 raw_spin_lock_irqsave(&devtree_lock, flags);
1164 match = __of_match_node(matches, node);
1165 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1166 return match;
1167 }
1168 EXPORT_SYMBOL(of_match_node);
1169
1170 /**
1171 * of_find_matching_node_and_match - Find a node based on an of_device_id
1172 * match table.
1173 * @from: The node to start searching from or NULL, the node
1174 * you pass will not be searched, only the next one
1175 * will; typically, you pass what the previous call
1176 * returned. of_node_put() will be called on it
1177 * @matches: array of of device match structures to search in
1178 * @match: Updated to point at the matches entry which matched
1179 *
1180 * Return: A node pointer with refcount incremented, use
1181 * of_node_put() on it when done.
1182 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1183 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1184 const struct of_device_id *matches,
1185 const struct of_device_id **match)
1186 {
1187 struct device_node *np;
1188 const struct of_device_id *m;
1189 unsigned long flags;
1190
1191 if (match)
1192 *match = NULL;
1193
1194 raw_spin_lock_irqsave(&devtree_lock, flags);
1195 for_each_of_allnodes_from(from, np) {
1196 m = __of_match_node(matches, np);
1197 if (m && of_node_get(np)) {
1198 if (match)
1199 *match = m;
1200 break;
1201 }
1202 }
1203 of_node_put(from);
1204 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1205 return np;
1206 }
1207 EXPORT_SYMBOL(of_find_matching_node_and_match);
1208
1209 /**
1210 * of_modalias_node - Lookup appropriate modalias for a device node
1211 * @node: pointer to a device tree node
1212 * @modalias: Pointer to buffer that modalias value will be copied into
1213 * @len: Length of modalias value
1214 *
1215 * Based on the value of the compatible property, this routine will attempt
1216 * to choose an appropriate modalias value for a particular device tree node.
1217 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1218 * from the first entry in the compatible list property.
1219 *
1220 * Return: This routine returns 0 on success, <0 on failure.
1221 */
of_modalias_node(struct device_node * node,char * modalias,int len)1222 int of_modalias_node(struct device_node *node, char *modalias, int len)
1223 {
1224 const char *compatible, *p;
1225 int cplen;
1226
1227 compatible = of_get_property(node, "compatible", &cplen);
1228 if (!compatible || strlen(compatible) > cplen)
1229 return -ENODEV;
1230 p = strchr(compatible, ',');
1231 strlcpy(modalias, p ? p + 1 : compatible, len);
1232 return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(of_modalias_node);
1235
1236 /**
1237 * of_find_node_by_phandle - Find a node given a phandle
1238 * @handle: phandle of the node to find
1239 *
1240 * Return: A node pointer with refcount incremented, use
1241 * of_node_put() on it when done.
1242 */
of_find_node_by_phandle(phandle handle)1243 struct device_node *of_find_node_by_phandle(phandle handle)
1244 {
1245 struct device_node *np = NULL;
1246 unsigned long flags;
1247 u32 handle_hash;
1248
1249 if (!handle)
1250 return NULL;
1251
1252 handle_hash = of_phandle_cache_hash(handle);
1253
1254 raw_spin_lock_irqsave(&devtree_lock, flags);
1255
1256 if (phandle_cache[handle_hash] &&
1257 handle == phandle_cache[handle_hash]->phandle)
1258 np = phandle_cache[handle_hash];
1259
1260 if (!np) {
1261 for_each_of_allnodes(np)
1262 if (np->phandle == handle &&
1263 !of_node_check_flag(np, OF_DETACHED)) {
1264 phandle_cache[handle_hash] = np;
1265 break;
1266 }
1267 }
1268
1269 of_node_get(np);
1270 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1271 return np;
1272 }
1273 EXPORT_SYMBOL(of_find_node_by_phandle);
1274
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1275 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1276 {
1277 int i;
1278 printk("%s %pOF", msg, args->np);
1279 for (i = 0; i < args->args_count; i++) {
1280 const char delim = i ? ',' : ':';
1281
1282 pr_cont("%c%08x", delim, args->args[i]);
1283 }
1284 pr_cont("\n");
1285 }
1286
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1287 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1288 const struct device_node *np,
1289 const char *list_name,
1290 const char *cells_name,
1291 int cell_count)
1292 {
1293 const __be32 *list;
1294 int size;
1295
1296 memset(it, 0, sizeof(*it));
1297
1298 /*
1299 * one of cell_count or cells_name must be provided to determine the
1300 * argument length.
1301 */
1302 if (cell_count < 0 && !cells_name)
1303 return -EINVAL;
1304
1305 list = of_get_property(np, list_name, &size);
1306 if (!list)
1307 return -ENOENT;
1308
1309 it->cells_name = cells_name;
1310 it->cell_count = cell_count;
1311 it->parent = np;
1312 it->list_end = list + size / sizeof(*list);
1313 it->phandle_end = list;
1314 it->cur = list;
1315
1316 return 0;
1317 }
1318 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1319
of_phandle_iterator_next(struct of_phandle_iterator * it)1320 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1321 {
1322 uint32_t count = 0;
1323
1324 if (it->node) {
1325 of_node_put(it->node);
1326 it->node = NULL;
1327 }
1328
1329 if (!it->cur || it->phandle_end >= it->list_end)
1330 return -ENOENT;
1331
1332 it->cur = it->phandle_end;
1333
1334 /* If phandle is 0, then it is an empty entry with no arguments. */
1335 it->phandle = be32_to_cpup(it->cur++);
1336
1337 if (it->phandle) {
1338
1339 /*
1340 * Find the provider node and parse the #*-cells property to
1341 * determine the argument length.
1342 */
1343 it->node = of_find_node_by_phandle(it->phandle);
1344
1345 if (it->cells_name) {
1346 if (!it->node) {
1347 pr_err("%pOF: could not find phandle %d\n",
1348 it->parent, it->phandle);
1349 goto err;
1350 }
1351
1352 if (of_property_read_u32(it->node, it->cells_name,
1353 &count)) {
1354 /*
1355 * If both cell_count and cells_name is given,
1356 * fall back to cell_count in absence
1357 * of the cells_name property
1358 */
1359 if (it->cell_count >= 0) {
1360 count = it->cell_count;
1361 } else {
1362 pr_err("%pOF: could not get %s for %pOF\n",
1363 it->parent,
1364 it->cells_name,
1365 it->node);
1366 goto err;
1367 }
1368 }
1369 } else {
1370 count = it->cell_count;
1371 }
1372
1373 /*
1374 * Make sure that the arguments actually fit in the remaining
1375 * property data length
1376 */
1377 if (it->cur + count > it->list_end) {
1378 if (it->cells_name)
1379 pr_err("%pOF: %s = %d found %td\n",
1380 it->parent, it->cells_name,
1381 count, it->list_end - it->cur);
1382 else
1383 pr_err("%pOF: phandle %s needs %d, found %td\n",
1384 it->parent, of_node_full_name(it->node),
1385 count, it->list_end - it->cur);
1386 goto err;
1387 }
1388 }
1389
1390 it->phandle_end = it->cur + count;
1391 it->cur_count = count;
1392
1393 return 0;
1394
1395 err:
1396 if (it->node) {
1397 of_node_put(it->node);
1398 it->node = NULL;
1399 }
1400
1401 return -EINVAL;
1402 }
1403 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1404
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1405 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1406 uint32_t *args,
1407 int size)
1408 {
1409 int i, count;
1410
1411 count = it->cur_count;
1412
1413 if (WARN_ON(size < count))
1414 count = size;
1415
1416 for (i = 0; i < count; i++)
1417 args[i] = be32_to_cpup(it->cur++);
1418
1419 return count;
1420 }
1421
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1422 int __of_parse_phandle_with_args(const struct device_node *np,
1423 const char *list_name,
1424 const char *cells_name,
1425 int cell_count, int index,
1426 struct of_phandle_args *out_args)
1427 {
1428 struct of_phandle_iterator it;
1429 int rc, cur_index = 0;
1430
1431 if (index < 0)
1432 return -EINVAL;
1433
1434 /* Loop over the phandles until all the requested entry is found */
1435 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1436 /*
1437 * All of the error cases bail out of the loop, so at
1438 * this point, the parsing is successful. If the requested
1439 * index matches, then fill the out_args structure and return,
1440 * or return -ENOENT for an empty entry.
1441 */
1442 rc = -ENOENT;
1443 if (cur_index == index) {
1444 if (!it.phandle)
1445 goto err;
1446
1447 if (out_args) {
1448 int c;
1449
1450 c = of_phandle_iterator_args(&it,
1451 out_args->args,
1452 MAX_PHANDLE_ARGS);
1453 out_args->np = it.node;
1454 out_args->args_count = c;
1455 } else {
1456 of_node_put(it.node);
1457 }
1458
1459 /* Found it! return success */
1460 return 0;
1461 }
1462
1463 cur_index++;
1464 }
1465
1466 /*
1467 * Unlock node before returning result; will be one of:
1468 * -ENOENT : index is for empty phandle
1469 * -EINVAL : parsing error on data
1470 */
1471
1472 err:
1473 of_node_put(it.node);
1474 return rc;
1475 }
1476 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1477
1478 /**
1479 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1480 * @np: pointer to a device tree node containing a list
1481 * @list_name: property name that contains a list
1482 * @stem_name: stem of property names that specify phandles' arguments count
1483 * @index: index of a phandle to parse out
1484 * @out_args: optional pointer to output arguments structure (will be filled)
1485 *
1486 * This function is useful to parse lists of phandles and their arguments.
1487 * Returns 0 on success and fills out_args, on error returns appropriate errno
1488 * value. The difference between this function and of_parse_phandle_with_args()
1489 * is that this API remaps a phandle if the node the phandle points to has
1490 * a <@stem_name>-map property.
1491 *
1492 * Caller is responsible to call of_node_put() on the returned out_args->np
1493 * pointer.
1494 *
1495 * Example::
1496 *
1497 * phandle1: node1 {
1498 * #list-cells = <2>;
1499 * };
1500 *
1501 * phandle2: node2 {
1502 * #list-cells = <1>;
1503 * };
1504 *
1505 * phandle3: node3 {
1506 * #list-cells = <1>;
1507 * list-map = <0 &phandle2 3>,
1508 * <1 &phandle2 2>,
1509 * <2 &phandle1 5 1>;
1510 * list-map-mask = <0x3>;
1511 * };
1512 *
1513 * node4 {
1514 * list = <&phandle1 1 2 &phandle3 0>;
1515 * };
1516 *
1517 * To get a device_node of the ``node2`` node you may call this:
1518 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1519 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1520 int of_parse_phandle_with_args_map(const struct device_node *np,
1521 const char *list_name,
1522 const char *stem_name,
1523 int index, struct of_phandle_args *out_args)
1524 {
1525 char *cells_name, *map_name = NULL, *mask_name = NULL;
1526 char *pass_name = NULL;
1527 struct device_node *cur, *new = NULL;
1528 const __be32 *map, *mask, *pass;
1529 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1530 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1531 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1532 const __be32 *match_array = initial_match_array;
1533 int i, ret, map_len, match;
1534 u32 list_size, new_size;
1535
1536 if (index < 0)
1537 return -EINVAL;
1538
1539 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1540 if (!cells_name)
1541 return -ENOMEM;
1542
1543 ret = -ENOMEM;
1544 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1545 if (!map_name)
1546 goto free;
1547
1548 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1549 if (!mask_name)
1550 goto free;
1551
1552 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1553 if (!pass_name)
1554 goto free;
1555
1556 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1557 out_args);
1558 if (ret)
1559 goto free;
1560
1561 /* Get the #<list>-cells property */
1562 cur = out_args->np;
1563 ret = of_property_read_u32(cur, cells_name, &list_size);
1564 if (ret < 0)
1565 goto put;
1566
1567 /* Precalculate the match array - this simplifies match loop */
1568 for (i = 0; i < list_size; i++)
1569 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1570
1571 ret = -EINVAL;
1572 while (cur) {
1573 /* Get the <list>-map property */
1574 map = of_get_property(cur, map_name, &map_len);
1575 if (!map) {
1576 ret = 0;
1577 goto free;
1578 }
1579 map_len /= sizeof(u32);
1580
1581 /* Get the <list>-map-mask property (optional) */
1582 mask = of_get_property(cur, mask_name, NULL);
1583 if (!mask)
1584 mask = dummy_mask;
1585 /* Iterate through <list>-map property */
1586 match = 0;
1587 while (map_len > (list_size + 1) && !match) {
1588 /* Compare specifiers */
1589 match = 1;
1590 for (i = 0; i < list_size; i++, map_len--)
1591 match &= !((match_array[i] ^ *map++) & mask[i]);
1592
1593 of_node_put(new);
1594 new = of_find_node_by_phandle(be32_to_cpup(map));
1595 map++;
1596 map_len--;
1597
1598 /* Check if not found */
1599 if (!new)
1600 goto put;
1601
1602 if (!of_device_is_available(new))
1603 match = 0;
1604
1605 ret = of_property_read_u32(new, cells_name, &new_size);
1606 if (ret)
1607 goto put;
1608
1609 /* Check for malformed properties */
1610 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1611 goto put;
1612 if (map_len < new_size)
1613 goto put;
1614
1615 /* Move forward by new node's #<list>-cells amount */
1616 map += new_size;
1617 map_len -= new_size;
1618 }
1619 if (!match)
1620 goto put;
1621
1622 /* Get the <list>-map-pass-thru property (optional) */
1623 pass = of_get_property(cur, pass_name, NULL);
1624 if (!pass)
1625 pass = dummy_pass;
1626
1627 /*
1628 * Successfully parsed a <list>-map translation; copy new
1629 * specifier into the out_args structure, keeping the
1630 * bits specified in <list>-map-pass-thru.
1631 */
1632 match_array = map - new_size;
1633 for (i = 0; i < new_size; i++) {
1634 __be32 val = *(map - new_size + i);
1635
1636 if (i < list_size) {
1637 val &= ~pass[i];
1638 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1639 }
1640
1641 out_args->args[i] = be32_to_cpu(val);
1642 }
1643 out_args->args_count = list_size = new_size;
1644 /* Iterate again with new provider */
1645 out_args->np = new;
1646 of_node_put(cur);
1647 cur = new;
1648 }
1649 put:
1650 of_node_put(cur);
1651 of_node_put(new);
1652 free:
1653 kfree(mask_name);
1654 kfree(map_name);
1655 kfree(cells_name);
1656 kfree(pass_name);
1657
1658 return ret;
1659 }
1660 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1661
1662 /**
1663 * of_count_phandle_with_args() - Find the number of phandles references in a property
1664 * @np: pointer to a device tree node containing a list
1665 * @list_name: property name that contains a list
1666 * @cells_name: property name that specifies phandles' arguments count
1667 *
1668 * Return: The number of phandle + argument tuples within a property. It
1669 * is a typical pattern to encode a list of phandle and variable
1670 * arguments into a single property. The number of arguments is encoded
1671 * by a property in the phandle-target node. For example, a gpios
1672 * property would contain a list of GPIO specifies consisting of a
1673 * phandle and 1 or more arguments. The number of arguments are
1674 * determined by the #gpio-cells property in the node pointed to by the
1675 * phandle.
1676 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1677 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1678 const char *cells_name)
1679 {
1680 struct of_phandle_iterator it;
1681 int rc, cur_index = 0;
1682
1683 /*
1684 * If cells_name is NULL we assume a cell count of 0. This makes
1685 * counting the phandles trivial as each 32bit word in the list is a
1686 * phandle and no arguments are to consider. So we don't iterate through
1687 * the list but just use the length to determine the phandle count.
1688 */
1689 if (!cells_name) {
1690 const __be32 *list;
1691 int size;
1692
1693 list = of_get_property(np, list_name, &size);
1694 if (!list)
1695 return -ENOENT;
1696
1697 return size / sizeof(*list);
1698 }
1699
1700 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1701 if (rc)
1702 return rc;
1703
1704 while ((rc = of_phandle_iterator_next(&it)) == 0)
1705 cur_index += 1;
1706
1707 if (rc != -ENOENT)
1708 return rc;
1709
1710 return cur_index;
1711 }
1712 EXPORT_SYMBOL(of_count_phandle_with_args);
1713
1714 /**
1715 * __of_add_property - Add a property to a node without lock operations
1716 * @np: Caller's Device Node
1717 * @prop: Property to add
1718 */
__of_add_property(struct device_node * np,struct property * prop)1719 int __of_add_property(struct device_node *np, struct property *prop)
1720 {
1721 struct property **next;
1722
1723 prop->next = NULL;
1724 next = &np->properties;
1725 while (*next) {
1726 if (strcmp(prop->name, (*next)->name) == 0)
1727 /* duplicate ! don't insert it */
1728 return -EEXIST;
1729
1730 next = &(*next)->next;
1731 }
1732 *next = prop;
1733
1734 return 0;
1735 }
1736
1737 /**
1738 * of_add_property - Add a property to a node
1739 * @np: Caller's Device Node
1740 * @prop: Property to add
1741 */
of_add_property(struct device_node * np,struct property * prop)1742 int of_add_property(struct device_node *np, struct property *prop)
1743 {
1744 unsigned long flags;
1745 int rc;
1746
1747 mutex_lock(&of_mutex);
1748
1749 raw_spin_lock_irqsave(&devtree_lock, flags);
1750 rc = __of_add_property(np, prop);
1751 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1752
1753 if (!rc)
1754 __of_add_property_sysfs(np, prop);
1755
1756 mutex_unlock(&of_mutex);
1757
1758 if (!rc)
1759 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1760
1761 return rc;
1762 }
1763 EXPORT_SYMBOL_GPL(of_add_property);
1764
__of_remove_property(struct device_node * np,struct property * prop)1765 int __of_remove_property(struct device_node *np, struct property *prop)
1766 {
1767 struct property **next;
1768
1769 for (next = &np->properties; *next; next = &(*next)->next) {
1770 if (*next == prop)
1771 break;
1772 }
1773 if (*next == NULL)
1774 return -ENODEV;
1775
1776 /* found the node */
1777 *next = prop->next;
1778 prop->next = np->deadprops;
1779 np->deadprops = prop;
1780
1781 return 0;
1782 }
1783
1784 /**
1785 * of_remove_property - Remove a property from a node.
1786 * @np: Caller's Device Node
1787 * @prop: Property to remove
1788 *
1789 * Note that we don't actually remove it, since we have given out
1790 * who-knows-how-many pointers to the data using get-property.
1791 * Instead we just move the property to the "dead properties"
1792 * list, so it won't be found any more.
1793 */
of_remove_property(struct device_node * np,struct property * prop)1794 int of_remove_property(struct device_node *np, struct property *prop)
1795 {
1796 unsigned long flags;
1797 int rc;
1798
1799 if (!prop)
1800 return -ENODEV;
1801
1802 mutex_lock(&of_mutex);
1803
1804 raw_spin_lock_irqsave(&devtree_lock, flags);
1805 rc = __of_remove_property(np, prop);
1806 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1807
1808 if (!rc)
1809 __of_remove_property_sysfs(np, prop);
1810
1811 mutex_unlock(&of_mutex);
1812
1813 if (!rc)
1814 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1815
1816 return rc;
1817 }
1818 EXPORT_SYMBOL_GPL(of_remove_property);
1819
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1820 int __of_update_property(struct device_node *np, struct property *newprop,
1821 struct property **oldpropp)
1822 {
1823 struct property **next, *oldprop;
1824
1825 for (next = &np->properties; *next; next = &(*next)->next) {
1826 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1827 break;
1828 }
1829 *oldpropp = oldprop = *next;
1830
1831 if (oldprop) {
1832 /* replace the node */
1833 newprop->next = oldprop->next;
1834 *next = newprop;
1835 oldprop->next = np->deadprops;
1836 np->deadprops = oldprop;
1837 } else {
1838 /* new node */
1839 newprop->next = NULL;
1840 *next = newprop;
1841 }
1842
1843 return 0;
1844 }
1845
1846 /*
1847 * of_update_property - Update a property in a node, if the property does
1848 * not exist, add it.
1849 *
1850 * Note that we don't actually remove it, since we have given out
1851 * who-knows-how-many pointers to the data using get-property.
1852 * Instead we just move the property to the "dead properties" list,
1853 * and add the new property to the property list
1854 */
of_update_property(struct device_node * np,struct property * newprop)1855 int of_update_property(struct device_node *np, struct property *newprop)
1856 {
1857 struct property *oldprop;
1858 unsigned long flags;
1859 int rc;
1860
1861 if (!newprop->name)
1862 return -EINVAL;
1863
1864 mutex_lock(&of_mutex);
1865
1866 raw_spin_lock_irqsave(&devtree_lock, flags);
1867 rc = __of_update_property(np, newprop, &oldprop);
1868 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1869
1870 if (!rc)
1871 __of_update_property_sysfs(np, newprop, oldprop);
1872
1873 mutex_unlock(&of_mutex);
1874
1875 if (!rc)
1876 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1877
1878 return rc;
1879 }
1880
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1881 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1882 int id, const char *stem, int stem_len)
1883 {
1884 ap->np = np;
1885 ap->id = id;
1886 strncpy(ap->stem, stem, stem_len);
1887 ap->stem[stem_len] = 0;
1888 list_add_tail(&ap->link, &aliases_lookup);
1889 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1890 ap->alias, ap->stem, ap->id, np);
1891 }
1892
1893 /**
1894 * of_alias_scan - Scan all properties of the 'aliases' node
1895 * @dt_alloc: An allocator that provides a virtual address to memory
1896 * for storing the resulting tree
1897 *
1898 * The function scans all the properties of the 'aliases' node and populates
1899 * the global lookup table with the properties. It returns the
1900 * number of alias properties found, or an error code in case of failure.
1901 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1902 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1903 {
1904 struct property *pp;
1905
1906 of_aliases = of_find_node_by_path("/aliases");
1907 of_chosen = of_find_node_by_path("/chosen");
1908 if (of_chosen == NULL)
1909 of_chosen = of_find_node_by_path("/chosen@0");
1910
1911 if (of_chosen) {
1912 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1913 const char *name = NULL;
1914
1915 if (of_property_read_string(of_chosen, "stdout-path", &name))
1916 of_property_read_string(of_chosen, "linux,stdout-path",
1917 &name);
1918 if (IS_ENABLED(CONFIG_PPC) && !name)
1919 of_property_read_string(of_aliases, "stdout", &name);
1920 if (name)
1921 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1922 }
1923
1924 if (!of_aliases)
1925 return;
1926
1927 for_each_property_of_node(of_aliases, pp) {
1928 const char *start = pp->name;
1929 const char *end = start + strlen(start);
1930 struct device_node *np;
1931 struct alias_prop *ap;
1932 int id, len;
1933
1934 /* Skip those we do not want to proceed */
1935 if (!strcmp(pp->name, "name") ||
1936 !strcmp(pp->name, "phandle") ||
1937 !strcmp(pp->name, "linux,phandle"))
1938 continue;
1939
1940 np = of_find_node_by_path(pp->value);
1941 if (!np)
1942 continue;
1943
1944 /* walk the alias backwards to extract the id and work out
1945 * the 'stem' string */
1946 while (isdigit(*(end-1)) && end > start)
1947 end--;
1948 len = end - start;
1949
1950 if (kstrtoint(end, 10, &id) < 0)
1951 continue;
1952
1953 /* Allocate an alias_prop with enough space for the stem */
1954 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1955 if (!ap)
1956 continue;
1957 memset(ap, 0, sizeof(*ap) + len + 1);
1958 ap->alias = start;
1959 of_alias_add(ap, np, id, start, len);
1960 }
1961 }
1962
1963 /**
1964 * of_alias_get_id - Get alias id for the given device_node
1965 * @np: Pointer to the given device_node
1966 * @stem: Alias stem of the given device_node
1967 *
1968 * The function travels the lookup table to get the alias id for the given
1969 * device_node and alias stem.
1970 *
1971 * Return: The alias id if found.
1972 */
of_alias_get_id(struct device_node * np,const char * stem)1973 int of_alias_get_id(struct device_node *np, const char *stem)
1974 {
1975 struct alias_prop *app;
1976 int id = -ENODEV;
1977
1978 mutex_lock(&of_mutex);
1979 list_for_each_entry(app, &aliases_lookup, link) {
1980 if (strcmp(app->stem, stem) != 0)
1981 continue;
1982
1983 if (np == app->np) {
1984 id = app->id;
1985 break;
1986 }
1987 }
1988 mutex_unlock(&of_mutex);
1989
1990 return id;
1991 }
1992 EXPORT_SYMBOL_GPL(of_alias_get_id);
1993
1994 /**
1995 * of_alias_get_highest_id - Get highest alias id for the given stem
1996 * @stem: Alias stem to be examined
1997 *
1998 * The function travels the lookup table to get the highest alias id for the
1999 * given alias stem. It returns the alias id if found.
2000 */
of_alias_get_highest_id(const char * stem)2001 int of_alias_get_highest_id(const char *stem)
2002 {
2003 struct alias_prop *app;
2004 int id = -ENODEV;
2005
2006 mutex_lock(&of_mutex);
2007 list_for_each_entry(app, &aliases_lookup, link) {
2008 if (strcmp(app->stem, stem) != 0)
2009 continue;
2010
2011 if (app->id > id)
2012 id = app->id;
2013 }
2014 mutex_unlock(&of_mutex);
2015
2016 return id;
2017 }
2018 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2019
2020 /**
2021 * of_console_check() - Test and setup console for DT setup
2022 * @dn: Pointer to device node
2023 * @name: Name to use for preferred console without index. ex. "ttyS"
2024 * @index: Index to use for preferred console.
2025 *
2026 * Check if the given device node matches the stdout-path property in the
2027 * /chosen node. If it does then register it as the preferred console.
2028 *
2029 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2030 */
of_console_check(struct device_node * dn,char * name,int index)2031 bool of_console_check(struct device_node *dn, char *name, int index)
2032 {
2033 if (!dn || dn != of_stdout || console_set_on_cmdline)
2034 return false;
2035
2036 /*
2037 * XXX: cast `options' to char pointer to suppress complication
2038 * warnings: printk, UART and console drivers expect char pointer.
2039 */
2040 return !add_preferred_console(name, index, (char *)of_stdout_options);
2041 }
2042 EXPORT_SYMBOL_GPL(of_console_check);
2043
2044 /**
2045 * of_find_next_cache_node - Find a node's subsidiary cache
2046 * @np: node of type "cpu" or "cache"
2047 *
2048 * Return: A node pointer with refcount incremented, use
2049 * of_node_put() on it when done. Caller should hold a reference
2050 * to np.
2051 */
of_find_next_cache_node(const struct device_node * np)2052 struct device_node *of_find_next_cache_node(const struct device_node *np)
2053 {
2054 struct device_node *child, *cache_node;
2055
2056 cache_node = of_parse_phandle(np, "l2-cache", 0);
2057 if (!cache_node)
2058 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2059
2060 if (cache_node)
2061 return cache_node;
2062
2063 /* OF on pmac has nodes instead of properties named "l2-cache"
2064 * beneath CPU nodes.
2065 */
2066 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2067 for_each_child_of_node(np, child)
2068 if (of_node_is_type(child, "cache"))
2069 return child;
2070
2071 return NULL;
2072 }
2073
2074 /**
2075 * of_find_last_cache_level - Find the level at which the last cache is
2076 * present for the given logical cpu
2077 *
2078 * @cpu: cpu number(logical index) for which the last cache level is needed
2079 *
2080 * Return: The the level at which the last cache is present. It is exactly
2081 * same as the total number of cache levels for the given logical cpu.
2082 */
of_find_last_cache_level(unsigned int cpu)2083 int of_find_last_cache_level(unsigned int cpu)
2084 {
2085 u32 cache_level = 0;
2086 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2087
2088 while (np) {
2089 prev = np;
2090 of_node_put(np);
2091 np = of_find_next_cache_node(np);
2092 }
2093
2094 of_property_read_u32(prev, "cache-level", &cache_level);
2095
2096 return cache_level;
2097 }
2098
2099 /**
2100 * of_map_id - Translate an ID through a downstream mapping.
2101 * @np: root complex device node.
2102 * @id: device ID to map.
2103 * @map_name: property name of the map to use.
2104 * @map_mask_name: optional property name of the mask to use.
2105 * @target: optional pointer to a target device node.
2106 * @id_out: optional pointer to receive the translated ID.
2107 *
2108 * Given a device ID, look up the appropriate implementation-defined
2109 * platform ID and/or the target device which receives transactions on that
2110 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2111 * @id_out may be NULL if only the other is required. If @target points to
2112 * a non-NULL device node pointer, only entries targeting that node will be
2113 * matched; if it points to a NULL value, it will receive the device node of
2114 * the first matching target phandle, with a reference held.
2115 *
2116 * Return: 0 on success or a standard error code on failure.
2117 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2118 int of_map_id(struct device_node *np, u32 id,
2119 const char *map_name, const char *map_mask_name,
2120 struct device_node **target, u32 *id_out)
2121 {
2122 u32 map_mask, masked_id;
2123 int map_len;
2124 const __be32 *map = NULL;
2125
2126 if (!np || !map_name || (!target && !id_out))
2127 return -EINVAL;
2128
2129 map = of_get_property(np, map_name, &map_len);
2130 if (!map) {
2131 if (target)
2132 return -ENODEV;
2133 /* Otherwise, no map implies no translation */
2134 *id_out = id;
2135 return 0;
2136 }
2137
2138 if (!map_len || map_len % (4 * sizeof(*map))) {
2139 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2140 map_name, map_len);
2141 return -EINVAL;
2142 }
2143
2144 /* The default is to select all bits. */
2145 map_mask = 0xffffffff;
2146
2147 /*
2148 * Can be overridden by "{iommu,msi}-map-mask" property.
2149 * If of_property_read_u32() fails, the default is used.
2150 */
2151 if (map_mask_name)
2152 of_property_read_u32(np, map_mask_name, &map_mask);
2153
2154 masked_id = map_mask & id;
2155 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2156 struct device_node *phandle_node;
2157 u32 id_base = be32_to_cpup(map + 0);
2158 u32 phandle = be32_to_cpup(map + 1);
2159 u32 out_base = be32_to_cpup(map + 2);
2160 u32 id_len = be32_to_cpup(map + 3);
2161
2162 if (id_base & ~map_mask) {
2163 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2164 np, map_name, map_name,
2165 map_mask, id_base);
2166 return -EFAULT;
2167 }
2168
2169 if (masked_id < id_base || masked_id >= id_base + id_len)
2170 continue;
2171
2172 phandle_node = of_find_node_by_phandle(phandle);
2173 if (!phandle_node)
2174 return -ENODEV;
2175
2176 if (target) {
2177 if (*target)
2178 of_node_put(phandle_node);
2179 else
2180 *target = phandle_node;
2181
2182 if (*target != phandle_node)
2183 continue;
2184 }
2185
2186 if (id_out)
2187 *id_out = masked_id - id_base + out_base;
2188
2189 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2190 np, map_name, map_mask, id_base, out_base,
2191 id_len, id, masked_id - id_base + out_base);
2192 return 0;
2193 }
2194
2195 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2196 id, target && *target ? *target : NULL);
2197
2198 /* Bypasses translation */
2199 if (id_out)
2200 *id_out = id;
2201 return 0;
2202 }
2203 EXPORT_SYMBOL_GPL(of_map_id);
2204