1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 #include <linux/kmemleak.h>
30
31 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
32 #include <asm/page.h>
33
34 #include "of_private.h"
35
36 /*
37 * of_fdt_limit_memory - limit the number of regions in the /memory node
38 * @limit: maximum entries
39 *
40 * Adjust the flattened device tree to have at most 'limit' number of
41 * memory entries in the /memory node. This function may be called
42 * any time after initial_boot_param is set.
43 */
of_fdt_limit_memory(int limit)44 void __init of_fdt_limit_memory(int limit)
45 {
46 int memory;
47 int len;
48 const void *val;
49 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
50 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
51 const __be32 *addr_prop;
52 const __be32 *size_prop;
53 int root_offset;
54 int cell_size;
55
56 root_offset = fdt_path_offset(initial_boot_params, "/");
57 if (root_offset < 0)
58 return;
59
60 addr_prop = fdt_getprop(initial_boot_params, root_offset,
61 "#address-cells", NULL);
62 if (addr_prop)
63 nr_address_cells = fdt32_to_cpu(*addr_prop);
64
65 size_prop = fdt_getprop(initial_boot_params, root_offset,
66 "#size-cells", NULL);
67 if (size_prop)
68 nr_size_cells = fdt32_to_cpu(*size_prop);
69
70 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
71
72 memory = fdt_path_offset(initial_boot_params, "/memory");
73 if (memory > 0) {
74 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
75 if (len > limit*cell_size) {
76 len = limit*cell_size;
77 pr_debug("Limiting number of entries to %d\n", limit);
78 fdt_setprop(initial_boot_params, memory, "reg", val,
79 len);
80 }
81 }
82 }
83
of_fdt_device_is_available(const void * blob,unsigned long node)84 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
85 {
86 const char *status = fdt_getprop(blob, node, "status", NULL);
87
88 if (!status)
89 return true;
90
91 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
92 return true;
93
94 return false;
95 }
96
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)97 static void *unflatten_dt_alloc(void **mem, unsigned long size,
98 unsigned long align)
99 {
100 void *res;
101
102 *mem = PTR_ALIGN(*mem, align);
103 res = *mem;
104 *mem += size;
105
106 return res;
107 }
108
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)109 static void populate_properties(const void *blob,
110 int offset,
111 void **mem,
112 struct device_node *np,
113 const char *nodename,
114 bool dryrun)
115 {
116 struct property *pp, **pprev = NULL;
117 int cur;
118 bool has_name = false;
119
120 pprev = &np->properties;
121 for (cur = fdt_first_property_offset(blob, offset);
122 cur >= 0;
123 cur = fdt_next_property_offset(blob, cur)) {
124 const __be32 *val;
125 const char *pname;
126 u32 sz;
127
128 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
129 if (!val) {
130 pr_warn("Cannot locate property at 0x%x\n", cur);
131 continue;
132 }
133
134 if (!pname) {
135 pr_warn("Cannot find property name at 0x%x\n", cur);
136 continue;
137 }
138
139 if (!strcmp(pname, "name"))
140 has_name = true;
141
142 pp = unflatten_dt_alloc(mem, sizeof(struct property),
143 __alignof__(struct property));
144 if (dryrun)
145 continue;
146
147 /* We accept flattened tree phandles either in
148 * ePAPR-style "phandle" properties, or the
149 * legacy "linux,phandle" properties. If both
150 * appear and have different values, things
151 * will get weird. Don't do that.
152 */
153 if (!strcmp(pname, "phandle") ||
154 !strcmp(pname, "linux,phandle")) {
155 if (!np->phandle)
156 np->phandle = be32_to_cpup(val);
157 }
158
159 /* And we process the "ibm,phandle" property
160 * used in pSeries dynamic device tree
161 * stuff
162 */
163 if (!strcmp(pname, "ibm,phandle"))
164 np->phandle = be32_to_cpup(val);
165
166 pp->name = (char *)pname;
167 pp->length = sz;
168 pp->value = (__be32 *)val;
169 *pprev = pp;
170 pprev = &pp->next;
171 }
172
173 /* With version 0x10 we may not have the name property,
174 * recreate it here from the unit name if absent
175 */
176 if (!has_name) {
177 const char *p = nodename, *ps = p, *pa = NULL;
178 int len;
179
180 while (*p) {
181 if ((*p) == '@')
182 pa = p;
183 else if ((*p) == '/')
184 ps = p + 1;
185 p++;
186 }
187
188 if (pa < ps)
189 pa = p;
190 len = (pa - ps) + 1;
191 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
192 __alignof__(struct property));
193 if (!dryrun) {
194 pp->name = "name";
195 pp->length = len;
196 pp->value = pp + 1;
197 *pprev = pp;
198 memcpy(pp->value, ps, len - 1);
199 ((char *)pp->value)[len - 1] = 0;
200 pr_debug("fixed up name for %s -> %s\n",
201 nodename, (char *)pp->value);
202 }
203 }
204 }
205
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)206 static int populate_node(const void *blob,
207 int offset,
208 void **mem,
209 struct device_node *dad,
210 struct device_node **pnp,
211 bool dryrun)
212 {
213 struct device_node *np;
214 const char *pathp;
215 int len;
216
217 pathp = fdt_get_name(blob, offset, &len);
218 if (!pathp) {
219 *pnp = NULL;
220 return len;
221 }
222
223 len++;
224
225 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
226 __alignof__(struct device_node));
227 if (!dryrun) {
228 char *fn;
229 of_node_init(np);
230 np->full_name = fn = ((char *)np) + sizeof(*np);
231
232 memcpy(fn, pathp, len);
233
234 if (dad != NULL) {
235 np->parent = dad;
236 np->sibling = dad->child;
237 dad->child = np;
238 }
239 }
240
241 populate_properties(blob, offset, mem, np, pathp, dryrun);
242 if (!dryrun) {
243 np->name = of_get_property(np, "name", NULL);
244 if (!np->name)
245 np->name = "<NULL>";
246 }
247
248 *pnp = np;
249 return 0;
250 }
251
reverse_nodes(struct device_node * parent)252 static void reverse_nodes(struct device_node *parent)
253 {
254 struct device_node *child, *next;
255
256 /* In-depth first */
257 child = parent->child;
258 while (child) {
259 reverse_nodes(child);
260
261 child = child->sibling;
262 }
263
264 /* Reverse the nodes in the child list */
265 child = parent->child;
266 parent->child = NULL;
267 while (child) {
268 next = child->sibling;
269
270 child->sibling = parent->child;
271 parent->child = child;
272 child = next;
273 }
274 }
275
276 /**
277 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
278 * @blob: The parent device tree blob
279 * @mem: Memory chunk to use for allocating device nodes and properties
280 * @dad: Parent struct device_node
281 * @nodepp: The device_node tree created by the call
282 *
283 * Return: The size of unflattened device tree or error code
284 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)285 static int unflatten_dt_nodes(const void *blob,
286 void *mem,
287 struct device_node *dad,
288 struct device_node **nodepp)
289 {
290 struct device_node *root;
291 int offset = 0, depth = 0, initial_depth = 0;
292 #define FDT_MAX_DEPTH 64
293 struct device_node *nps[FDT_MAX_DEPTH];
294 void *base = mem;
295 bool dryrun = !base;
296 int ret;
297
298 if (nodepp)
299 *nodepp = NULL;
300
301 /*
302 * We're unflattening device sub-tree if @dad is valid. There are
303 * possibly multiple nodes in the first level of depth. We need
304 * set @depth to 1 to make fdt_next_node() happy as it bails
305 * immediately when negative @depth is found. Otherwise, the device
306 * nodes except the first one won't be unflattened successfully.
307 */
308 if (dad)
309 depth = initial_depth = 1;
310
311 root = dad;
312 nps[depth] = dad;
313
314 for (offset = 0;
315 offset >= 0 && depth >= initial_depth;
316 offset = fdt_next_node(blob, offset, &depth)) {
317 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
318 continue;
319
320 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
321 !of_fdt_device_is_available(blob, offset))
322 continue;
323
324 ret = populate_node(blob, offset, &mem, nps[depth],
325 &nps[depth+1], dryrun);
326 if (ret < 0)
327 return ret;
328
329 if (!dryrun && nodepp && !*nodepp)
330 *nodepp = nps[depth+1];
331 if (!dryrun && !root)
332 root = nps[depth+1];
333 }
334
335 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
336 pr_err("Error %d processing FDT\n", offset);
337 return -EINVAL;
338 }
339
340 /*
341 * Reverse the child list. Some drivers assumes node order matches .dts
342 * node order
343 */
344 if (!dryrun)
345 reverse_nodes(root);
346
347 return mem - base;
348 }
349
350 /**
351 * __unflatten_device_tree - create tree of device_nodes from flat blob
352 * @blob: The blob to expand
353 * @dad: Parent device node
354 * @mynodes: The device_node tree created by the call
355 * @dt_alloc: An allocator that provides a virtual address to memory
356 * for the resulting tree
357 * @detached: if true set OF_DETACHED on @mynodes
358 *
359 * unflattens a device-tree, creating the tree of struct device_node. It also
360 * fills the "name" and "type" pointers of the nodes so the normal device-tree
361 * walking functions can be used.
362 *
363 * Return: NULL on failure or the memory chunk containing the unflattened
364 * device tree on success.
365 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)366 void *__unflatten_device_tree(const void *blob,
367 struct device_node *dad,
368 struct device_node **mynodes,
369 void *(*dt_alloc)(u64 size, u64 align),
370 bool detached)
371 {
372 int size;
373 void *mem;
374 int ret;
375
376 if (mynodes)
377 *mynodes = NULL;
378
379 pr_debug(" -> unflatten_device_tree()\n");
380
381 if (!blob) {
382 pr_debug("No device tree pointer\n");
383 return NULL;
384 }
385
386 pr_debug("Unflattening device tree:\n");
387 pr_debug("magic: %08x\n", fdt_magic(blob));
388 pr_debug("size: %08x\n", fdt_totalsize(blob));
389 pr_debug("version: %08x\n", fdt_version(blob));
390
391 if (fdt_check_header(blob)) {
392 pr_err("Invalid device tree blob header\n");
393 return NULL;
394 }
395
396 /* First pass, scan for size */
397 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
398 if (size <= 0)
399 return NULL;
400
401 size = ALIGN(size, 4);
402 pr_debug(" size is %d, allocating...\n", size);
403
404 /* Allocate memory for the expanded device tree */
405 mem = dt_alloc(size + 4, __alignof__(struct device_node));
406 if (!mem)
407 return NULL;
408
409 memset(mem, 0, size);
410
411 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
412
413 pr_debug(" unflattening %p...\n", mem);
414
415 /* Second pass, do actual unflattening */
416 ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
417
418 if (be32_to_cpup(mem + size) != 0xdeadbeef)
419 pr_warn("End of tree marker overwritten: %08x\n",
420 be32_to_cpup(mem + size));
421
422 if (ret <= 0)
423 return NULL;
424
425 if (detached && mynodes && *mynodes) {
426 of_node_set_flag(*mynodes, OF_DETACHED);
427 pr_debug("unflattened tree is detached\n");
428 }
429
430 pr_debug(" <- unflatten_device_tree()\n");
431 return mem;
432 }
433
kernel_tree_alloc(u64 size,u64 align)434 static void *kernel_tree_alloc(u64 size, u64 align)
435 {
436 return kzalloc(size, GFP_KERNEL);
437 }
438
439 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
440
441 /**
442 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
443 * @blob: Flat device tree blob
444 * @dad: Parent device node
445 * @mynodes: The device tree created by the call
446 *
447 * unflattens the device-tree passed by the firmware, creating the
448 * tree of struct device_node. It also fills the "name" and "type"
449 * pointers of the nodes so the normal device-tree walking functions
450 * can be used.
451 *
452 * Return: NULL on failure or the memory chunk containing the unflattened
453 * device tree on success.
454 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)455 void *of_fdt_unflatten_tree(const unsigned long *blob,
456 struct device_node *dad,
457 struct device_node **mynodes)
458 {
459 void *mem;
460
461 mutex_lock(&of_fdt_unflatten_mutex);
462 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
463 true);
464 mutex_unlock(&of_fdt_unflatten_mutex);
465
466 return mem;
467 }
468 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
469
470 /* Everything below here references initial_boot_params directly. */
471 int __initdata dt_root_addr_cells;
472 int __initdata dt_root_size_cells;
473
474 void *initial_boot_params __ro_after_init;
475
476 #ifdef CONFIG_OF_EARLY_FLATTREE
477
478 static u32 of_fdt_crc32;
479
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)480 static int __init early_init_dt_reserve_memory_arch(phys_addr_t base,
481 phys_addr_t size, bool nomap)
482 {
483 if (nomap) {
484 /*
485 * If the memory is already reserved (by another region), we
486 * should not allow it to be marked nomap, but don't worry
487 * if the region isn't memory as it won't be mapped.
488 */
489 if (memblock_overlaps_region(&memblock.memory, base, size) &&
490 memblock_is_region_reserved(base, size))
491 return -EBUSY;
492
493 return memblock_mark_nomap(base, size);
494 }
495 return memblock_reserve(base, size);
496 }
497
498 /*
499 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
500 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)501 static int __init __reserved_mem_reserve_reg(unsigned long node,
502 const char *uname)
503 {
504 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
505 phys_addr_t base, size;
506 int len;
507 const __be32 *prop;
508 int first = 1;
509 bool nomap;
510
511 prop = of_get_flat_dt_prop(node, "reg", &len);
512 if (!prop)
513 return -ENOENT;
514
515 if (len && len % t_len != 0) {
516 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
517 uname);
518 return -EINVAL;
519 }
520
521 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
522
523 while (len >= t_len) {
524 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
525 size = dt_mem_next_cell(dt_root_size_cells, &prop);
526
527 if (size &&
528 early_init_dt_reserve_memory_arch(base, size, nomap) == 0) {
529 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
530 uname, &base, (unsigned long)(size / SZ_1M));
531 if (!nomap)
532 kmemleak_alloc_phys(base, size, 0, 0);
533 }
534 else
535 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
536 uname, &base, (unsigned long)(size / SZ_1M));
537
538 len -= t_len;
539 if (first) {
540 fdt_reserved_mem_save_node(node, uname, base, size);
541 first = 0;
542 }
543 }
544 return 0;
545 }
546
547 /*
548 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
549 * in /reserved-memory matches the values supported by the current implementation,
550 * also check if ranges property has been provided
551 */
__reserved_mem_check_root(unsigned long node)552 static int __init __reserved_mem_check_root(unsigned long node)
553 {
554 const __be32 *prop;
555
556 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
557 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
558 return -EINVAL;
559
560 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
561 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
562 return -EINVAL;
563
564 prop = of_get_flat_dt_prop(node, "ranges", NULL);
565 if (!prop)
566 return -EINVAL;
567 return 0;
568 }
569
570 /*
571 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
572 */
fdt_scan_reserved_mem(void)573 static int __init fdt_scan_reserved_mem(void)
574 {
575 int node, child;
576 const void *fdt = initial_boot_params;
577
578 node = fdt_path_offset(fdt, "/reserved-memory");
579 if (node < 0)
580 return -ENODEV;
581
582 if (__reserved_mem_check_root(node) != 0) {
583 pr_err("Reserved memory: unsupported node format, ignoring\n");
584 return -EINVAL;
585 }
586
587 fdt_for_each_subnode(child, fdt, node) {
588 const char *uname;
589 int err;
590
591 if (!of_fdt_device_is_available(fdt, child))
592 continue;
593
594 uname = fdt_get_name(fdt, child, NULL);
595
596 err = __reserved_mem_reserve_reg(child, uname);
597 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
598 fdt_reserved_mem_save_node(child, uname, 0, 0);
599 }
600 return 0;
601 }
602
603 /*
604 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
605 *
606 * This function reserves the memory occupied by an elf core header
607 * described in the device tree. This region contains all the
608 * information about primary kernel's core image and is used by a dump
609 * capture kernel to access the system memory on primary kernel.
610 */
fdt_reserve_elfcorehdr(void)611 static void __init fdt_reserve_elfcorehdr(void)
612 {
613 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
614 return;
615
616 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
617 pr_warn("elfcorehdr is overlapped\n");
618 return;
619 }
620
621 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
622
623 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
624 elfcorehdr_size >> 10, elfcorehdr_addr);
625 }
626
627 /**
628 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
629 *
630 * This function grabs memory from early allocator for device exclusive use
631 * defined in device tree structures. It should be called by arch specific code
632 * once the early allocator (i.e. memblock) has been fully activated.
633 */
early_init_fdt_scan_reserved_mem(void)634 void __init early_init_fdt_scan_reserved_mem(void)
635 {
636 int n;
637 u64 base, size;
638
639 if (!initial_boot_params)
640 return;
641
642 /* Process header /memreserve/ fields */
643 for (n = 0; ; n++) {
644 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
645 if (!size)
646 break;
647 early_init_dt_reserve_memory_arch(base, size, false);
648 }
649
650 fdt_scan_reserved_mem();
651 fdt_reserve_elfcorehdr();
652 fdt_init_reserved_mem();
653 }
654
655 /**
656 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
657 */
early_init_fdt_reserve_self(void)658 void __init early_init_fdt_reserve_self(void)
659 {
660 if (!initial_boot_params)
661 return;
662
663 /* Reserve the dtb region */
664 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
665 fdt_totalsize(initial_boot_params),
666 false);
667 }
668
669 /**
670 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
671 * @it: callback function
672 * @data: context data pointer
673 *
674 * This function is used to scan the flattened device-tree, it is
675 * used to extract the memory information at boot before we can
676 * unflatten the tree
677 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)678 int __init of_scan_flat_dt(int (*it)(unsigned long node,
679 const char *uname, int depth,
680 void *data),
681 void *data)
682 {
683 const void *blob = initial_boot_params;
684 const char *pathp;
685 int offset, rc = 0, depth = -1;
686
687 if (!blob)
688 return 0;
689
690 for (offset = fdt_next_node(blob, -1, &depth);
691 offset >= 0 && depth >= 0 && !rc;
692 offset = fdt_next_node(blob, offset, &depth)) {
693
694 pathp = fdt_get_name(blob, offset, NULL);
695 rc = it(offset, pathp, depth, data);
696 }
697 return rc;
698 }
699
700 /**
701 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
702 * @parent: parent node
703 * @it: callback function
704 * @data: context data pointer
705 *
706 * This function is used to scan sub-nodes of a node.
707 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)708 int __init of_scan_flat_dt_subnodes(unsigned long parent,
709 int (*it)(unsigned long node,
710 const char *uname,
711 void *data),
712 void *data)
713 {
714 const void *blob = initial_boot_params;
715 int node;
716
717 fdt_for_each_subnode(node, blob, parent) {
718 const char *pathp;
719 int rc;
720
721 pathp = fdt_get_name(blob, node, NULL);
722 rc = it(node, pathp, data);
723 if (rc)
724 return rc;
725 }
726 return 0;
727 }
728
729 /**
730 * of_get_flat_dt_subnode_by_name - get the subnode by given name
731 *
732 * @node: the parent node
733 * @uname: the name of subnode
734 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
735 */
736
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)737 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
738 {
739 return fdt_subnode_offset(initial_boot_params, node, uname);
740 }
741
742 /*
743 * of_get_flat_dt_root - find the root node in the flat blob
744 */
of_get_flat_dt_root(void)745 unsigned long __init of_get_flat_dt_root(void)
746 {
747 return 0;
748 }
749
750 /*
751 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
752 *
753 * This function can be used within scan_flattened_dt callback to get
754 * access to properties
755 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)756 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
757 int *size)
758 {
759 return fdt_getprop(initial_boot_params, node, name, size);
760 }
761
762 /**
763 * of_fdt_is_compatible - Return true if given node from the given blob has
764 * compat in its compatible list
765 * @blob: A device tree blob
766 * @node: node to test
767 * @compat: compatible string to compare with compatible list.
768 *
769 * Return: a non-zero value on match with smaller values returned for more
770 * specific compatible values.
771 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)772 static int of_fdt_is_compatible(const void *blob,
773 unsigned long node, const char *compat)
774 {
775 const char *cp;
776 int cplen;
777 unsigned long l, score = 0;
778
779 cp = fdt_getprop(blob, node, "compatible", &cplen);
780 if (cp == NULL)
781 return 0;
782 while (cplen > 0) {
783 score++;
784 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
785 return score;
786 l = strlen(cp) + 1;
787 cp += l;
788 cplen -= l;
789 }
790
791 return 0;
792 }
793
794 /**
795 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
796 * @node: node to test
797 * @compat: compatible string to compare with compatible list.
798 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)799 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
800 {
801 return of_fdt_is_compatible(initial_boot_params, node, compat);
802 }
803
804 /*
805 * of_flat_dt_match - Return true if node matches a list of compatible values
806 */
of_flat_dt_match(unsigned long node,const char * const * compat)807 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
808 {
809 unsigned int tmp, score = 0;
810
811 if (!compat)
812 return 0;
813
814 while (*compat) {
815 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
816 if (tmp && (score == 0 || (tmp < score)))
817 score = tmp;
818 compat++;
819 }
820
821 return score;
822 }
823
824 /*
825 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
826 */
of_get_flat_dt_phandle(unsigned long node)827 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
828 {
829 return fdt_get_phandle(initial_boot_params, node);
830 }
831
832 struct fdt_scan_status {
833 const char *name;
834 int namelen;
835 int depth;
836 int found;
837 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
838 void *data;
839 };
840
of_flat_dt_get_machine_name(void)841 const char * __init of_flat_dt_get_machine_name(void)
842 {
843 const char *name;
844 unsigned long dt_root = of_get_flat_dt_root();
845
846 name = of_get_flat_dt_prop(dt_root, "model", NULL);
847 if (!name)
848 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
849 return name;
850 }
851
852 /**
853 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
854 *
855 * @default_match: A machine specific ptr to return in case of no match.
856 * @get_next_compat: callback function to return next compatible match table.
857 *
858 * Iterate through machine match tables to find the best match for the machine
859 * compatible string in the FDT.
860 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))861 const void * __init of_flat_dt_match_machine(const void *default_match,
862 const void * (*get_next_compat)(const char * const**))
863 {
864 const void *data = NULL;
865 const void *best_data = default_match;
866 const char *const *compat;
867 unsigned long dt_root;
868 unsigned int best_score = ~1, score = 0;
869
870 dt_root = of_get_flat_dt_root();
871 while ((data = get_next_compat(&compat))) {
872 score = of_flat_dt_match(dt_root, compat);
873 if (score > 0 && score < best_score) {
874 best_data = data;
875 best_score = score;
876 }
877 }
878 if (!best_data) {
879 const char *prop;
880 int size;
881
882 pr_err("\n unrecognized device tree list:\n[ ");
883
884 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
885 if (prop) {
886 while (size > 0) {
887 printk("'%s' ", prop);
888 size -= strlen(prop) + 1;
889 prop += strlen(prop) + 1;
890 }
891 }
892 printk("]\n\n");
893 return NULL;
894 }
895
896 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
897
898 return best_data;
899 }
900
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)901 static void __early_init_dt_declare_initrd(unsigned long start,
902 unsigned long end)
903 {
904 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
905 * enabled since __va() is called too early. ARM64 does make use
906 * of phys_initrd_start/phys_initrd_size so we can skip this
907 * conversion.
908 */
909 if (!IS_ENABLED(CONFIG_ARM64)) {
910 initrd_start = (unsigned long)__va(start);
911 initrd_end = (unsigned long)__va(end);
912 initrd_below_start_ok = 1;
913 }
914 }
915
916 /**
917 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
918 * @node: reference to node containing initrd location ('chosen')
919 */
early_init_dt_check_for_initrd(unsigned long node)920 static void __init early_init_dt_check_for_initrd(unsigned long node)
921 {
922 u64 start, end;
923 int len;
924 const __be32 *prop;
925
926 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
927 return;
928
929 pr_debug("Looking for initrd properties... ");
930
931 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
932 if (!prop)
933 return;
934 start = of_read_number(prop, len/4);
935
936 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
937 if (!prop)
938 return;
939 end = of_read_number(prop, len/4);
940
941 __early_init_dt_declare_initrd(start, end);
942 phys_initrd_start = start;
943 phys_initrd_size = end - start;
944
945 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end);
946 }
947
948 /**
949 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
950 * tree
951 * @node: reference to node containing elfcorehdr location ('chosen')
952 */
early_init_dt_check_for_elfcorehdr(unsigned long node)953 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
954 {
955 const __be32 *prop;
956 int len;
957
958 if (!IS_ENABLED(CONFIG_CRASH_DUMP))
959 return;
960
961 pr_debug("Looking for elfcorehdr property... ");
962
963 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
964 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
965 return;
966
967 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
968 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
969
970 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
971 elfcorehdr_addr, elfcorehdr_size);
972 }
973
974 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
975
976 /*
977 * The main usage of linux,usable-memory-range is for crash dump kernel.
978 * Originally, the number of usable-memory regions is one. Now there may
979 * be two regions, low region and high region.
980 * To make compatibility with existing user-space and older kdump, the low
981 * region is always the last range of linux,usable-memory-range if exist.
982 */
983 #define MAX_USABLE_RANGES 2
984
985 /**
986 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
987 * location from flat tree
988 */
early_init_dt_check_for_usable_mem_range(void)989 void __init early_init_dt_check_for_usable_mem_range(void)
990 {
991 struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
992 const __be32 *prop, *endp;
993 int len, i;
994 unsigned long node = chosen_node_offset;
995
996 if ((long)node < 0)
997 return;
998
999 pr_debug("Looking for usable-memory-range property... ");
1000
1001 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
1002 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
1003 return;
1004
1005 endp = prop + (len / sizeof(__be32));
1006 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
1007 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
1008 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
1009
1010 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1011 i, &rgn[i].base, &rgn[i].size);
1012 }
1013
1014 memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1015 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1016 memblock_add(rgn[i].base, rgn[i].size);
1017 }
1018
1019 #ifdef CONFIG_SERIAL_EARLYCON
1020
early_init_dt_scan_chosen_stdout(void)1021 int __init early_init_dt_scan_chosen_stdout(void)
1022 {
1023 int offset;
1024 const char *p, *q, *options = NULL;
1025 int l;
1026 const struct earlycon_id *match;
1027 const void *fdt = initial_boot_params;
1028
1029 offset = fdt_path_offset(fdt, "/chosen");
1030 if (offset < 0)
1031 offset = fdt_path_offset(fdt, "/chosen@0");
1032 if (offset < 0)
1033 return -ENOENT;
1034
1035 p = fdt_getprop(fdt, offset, "stdout-path", &l);
1036 if (!p)
1037 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1038 if (!p || !l)
1039 return -ENOENT;
1040
1041 q = strchrnul(p, ':');
1042 if (*q != '\0')
1043 options = q + 1;
1044 l = q - p;
1045
1046 /* Get the node specified by stdout-path */
1047 offset = fdt_path_offset_namelen(fdt, p, l);
1048 if (offset < 0) {
1049 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1050 return 0;
1051 }
1052
1053 for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1054 if (!match->compatible[0])
1055 continue;
1056
1057 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1058 continue;
1059
1060 if (of_setup_earlycon(match, offset, options) == 0)
1061 return 0;
1062 }
1063 return -ENODEV;
1064 }
1065 #endif
1066
1067 /*
1068 * early_init_dt_scan_root - fetch the top level address and size cells
1069 */
early_init_dt_scan_root(void)1070 int __init early_init_dt_scan_root(void)
1071 {
1072 const __be32 *prop;
1073 const void *fdt = initial_boot_params;
1074 int node = fdt_path_offset(fdt, "/");
1075
1076 if (node < 0)
1077 return -ENODEV;
1078
1079 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1080 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1081
1082 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1083 if (prop)
1084 dt_root_size_cells = be32_to_cpup(prop);
1085 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1086
1087 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1088 if (prop)
1089 dt_root_addr_cells = be32_to_cpup(prop);
1090 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1091
1092 return 0;
1093 }
1094
dt_mem_next_cell(int s,const __be32 ** cellp)1095 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1096 {
1097 const __be32 *p = *cellp;
1098
1099 *cellp = p + s;
1100 return of_read_number(p, s);
1101 }
1102
1103 /*
1104 * early_init_dt_scan_memory - Look for and parse memory nodes
1105 */
early_init_dt_scan_memory(void)1106 int __init early_init_dt_scan_memory(void)
1107 {
1108 int node;
1109 const void *fdt = initial_boot_params;
1110
1111 fdt_for_each_subnode(node, fdt, 0) {
1112 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1113 const __be32 *reg, *endp;
1114 int l;
1115 bool hotpluggable;
1116
1117 /* We are scanning "memory" nodes only */
1118 if (type == NULL || strcmp(type, "memory") != 0)
1119 continue;
1120
1121 if (!of_fdt_device_is_available(fdt, node))
1122 continue;
1123
1124 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1125 if (reg == NULL)
1126 reg = of_get_flat_dt_prop(node, "reg", &l);
1127 if (reg == NULL)
1128 continue;
1129
1130 endp = reg + (l / sizeof(__be32));
1131 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1132
1133 pr_debug("memory scan node %s, reg size %d,\n",
1134 fdt_get_name(fdt, node, NULL), l);
1135
1136 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1137 u64 base, size;
1138
1139 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1140 size = dt_mem_next_cell(dt_root_size_cells, ®);
1141
1142 if (size == 0)
1143 continue;
1144 pr_debug(" - %llx, %llx\n", base, size);
1145
1146 early_init_dt_add_memory_arch(base, size);
1147
1148 if (!hotpluggable)
1149 continue;
1150
1151 if (memblock_mark_hotplug(base, size))
1152 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1153 base, base + size);
1154 }
1155 }
1156 return 0;
1157 }
1158
early_init_dt_scan_chosen(char * cmdline)1159 int __init early_init_dt_scan_chosen(char *cmdline)
1160 {
1161 int l, node;
1162 const char *p;
1163 const void *rng_seed;
1164 const void *fdt = initial_boot_params;
1165
1166 node = fdt_path_offset(fdt, "/chosen");
1167 if (node < 0)
1168 node = fdt_path_offset(fdt, "/chosen@0");
1169 if (node < 0)
1170 return -ENOENT;
1171
1172 chosen_node_offset = node;
1173
1174 early_init_dt_check_for_initrd(node);
1175 early_init_dt_check_for_elfcorehdr(node);
1176
1177 /* Retrieve command line */
1178 p = of_get_flat_dt_prop(node, "bootargs", &l);
1179 if (p != NULL && l > 0)
1180 strlcpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1181
1182 /*
1183 * CONFIG_CMDLINE is meant to be a default in case nothing else
1184 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1185 * is set in which case we override whatever was found earlier.
1186 */
1187 #ifdef CONFIG_CMDLINE
1188 #if defined(CONFIG_CMDLINE_EXTEND)
1189 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1190 strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1191 #elif defined(CONFIG_CMDLINE_FORCE)
1192 strlcpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1193 #else
1194 /* No arguments from boot loader, use kernel's cmdl*/
1195 if (!((char *)cmdline)[0])
1196 strlcpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1197 #endif
1198 #endif /* CONFIG_CMDLINE */
1199
1200 pr_debug("Command line is: %s\n", (char *)cmdline);
1201
1202 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1203 if (rng_seed && l > 0) {
1204 add_bootloader_randomness(rng_seed, l);
1205
1206 /* try to clear seed so it won't be found. */
1207 fdt_nop_property(initial_boot_params, node, "rng-seed");
1208
1209 /* update CRC check value */
1210 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1211 fdt_totalsize(initial_boot_params));
1212 }
1213
1214 return 0;
1215 }
1216
1217 #ifndef MIN_MEMBLOCK_ADDR
1218 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1219 #endif
1220 #ifndef MAX_MEMBLOCK_ADDR
1221 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1222 #endif
1223
early_init_dt_add_memory_arch(u64 base,u64 size)1224 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1225 {
1226 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1227
1228 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1229 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1230 base, base + size);
1231 return;
1232 }
1233
1234 if (!PAGE_ALIGNED(base)) {
1235 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1236 base = PAGE_ALIGN(base);
1237 }
1238 size &= PAGE_MASK;
1239
1240 if (base > MAX_MEMBLOCK_ADDR) {
1241 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1242 base, base + size);
1243 return;
1244 }
1245
1246 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1247 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1248 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1249 size = MAX_MEMBLOCK_ADDR - base + 1;
1250 }
1251
1252 if (base + size < phys_offset) {
1253 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1254 base, base + size);
1255 return;
1256 }
1257 if (base < phys_offset) {
1258 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1259 base, phys_offset);
1260 size -= phys_offset - base;
1261 base = phys_offset;
1262 }
1263 memblock_add(base, size);
1264 }
1265
early_init_dt_alloc_memory_arch(u64 size,u64 align)1266 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1267 {
1268 void *ptr = memblock_alloc(size, align);
1269
1270 if (!ptr)
1271 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1272 __func__, size, align);
1273
1274 return ptr;
1275 }
1276
early_init_dt_verify(void * params)1277 bool __init early_init_dt_verify(void *params)
1278 {
1279 if (!params)
1280 return false;
1281
1282 /* check device tree validity */
1283 if (fdt_check_header(params))
1284 return false;
1285
1286 /* Setup flat device-tree pointer */
1287 initial_boot_params = params;
1288 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1289 fdt_totalsize(initial_boot_params));
1290 return true;
1291 }
1292
1293
early_init_dt_scan_nodes(void)1294 void __init early_init_dt_scan_nodes(void)
1295 {
1296 int rc;
1297
1298 /* Initialize {size,address}-cells info */
1299 early_init_dt_scan_root();
1300
1301 /* Retrieve various information from the /chosen node */
1302 rc = early_init_dt_scan_chosen(boot_command_line);
1303 if (rc)
1304 pr_warn("No chosen node found, continuing without\n");
1305
1306 /* Setup memory, calling early_init_dt_add_memory_arch */
1307 early_init_dt_scan_memory();
1308
1309 /* Handle linux,usable-memory-range property */
1310 early_init_dt_check_for_usable_mem_range();
1311 }
1312
early_init_dt_scan(void * params)1313 bool __init early_init_dt_scan(void *params)
1314 {
1315 bool status;
1316
1317 status = early_init_dt_verify(params);
1318 if (!status)
1319 return false;
1320
1321 early_init_dt_scan_nodes();
1322 return true;
1323 }
1324
1325 /**
1326 * unflatten_device_tree - create tree of device_nodes from flat blob
1327 *
1328 * unflattens the device-tree passed by the firmware, creating the
1329 * tree of struct device_node. It also fills the "name" and "type"
1330 * pointers of the nodes so the normal device-tree walking functions
1331 * can be used.
1332 */
unflatten_device_tree(void)1333 void __init unflatten_device_tree(void)
1334 {
1335 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1336 early_init_dt_alloc_memory_arch, false);
1337
1338 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1339 of_alias_scan(early_init_dt_alloc_memory_arch);
1340
1341 unittest_unflatten_overlay_base();
1342 }
1343
1344 /**
1345 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1346 *
1347 * Copies and unflattens the device-tree passed by the firmware, creating the
1348 * tree of struct device_node. It also fills the "name" and "type"
1349 * pointers of the nodes so the normal device-tree walking functions
1350 * can be used. This should only be used when the FDT memory has not been
1351 * reserved such is the case when the FDT is built-in to the kernel init
1352 * section. If the FDT memory is reserved already then unflatten_device_tree
1353 * should be used instead.
1354 */
unflatten_and_copy_device_tree(void)1355 void __init unflatten_and_copy_device_tree(void)
1356 {
1357 int size;
1358 void *dt;
1359
1360 if (!initial_boot_params) {
1361 pr_warn("No valid device tree found, continuing without\n");
1362 return;
1363 }
1364
1365 size = fdt_totalsize(initial_boot_params);
1366 dt = early_init_dt_alloc_memory_arch(size,
1367 roundup_pow_of_two(FDT_V17_SIZE));
1368
1369 if (dt) {
1370 memcpy(dt, initial_boot_params, size);
1371 initial_boot_params = dt;
1372 }
1373 unflatten_device_tree();
1374 }
1375
1376 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1377 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1378 struct bin_attribute *bin_attr,
1379 char *buf, loff_t off, size_t count)
1380 {
1381 memcpy(buf, initial_boot_params + off, count);
1382 return count;
1383 }
1384
of_fdt_raw_init(void)1385 static int __init of_fdt_raw_init(void)
1386 {
1387 static struct bin_attribute of_fdt_raw_attr =
1388 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1389
1390 if (!initial_boot_params)
1391 return 0;
1392
1393 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1394 fdt_totalsize(initial_boot_params))) {
1395 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1396 return 0;
1397 }
1398 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1399 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1400 }
1401 late_initcall(of_fdt_raw_init);
1402 #endif
1403
1404 #endif /* CONFIG_OF_EARLY_FLATTREE */
1405