1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/memblock.h>
20 #include <linux/serial.h>
21 #include <linux/smp.h>
22 #include <linux/types.h>
23 #include <linux/string.h> /* for memset */
24 #include <linux/tty.h>
25 #include <linux/time.h>
26 #include <linux/platform_device.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial_8250.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/kexec.h>
32
33 #include <asm/processor.h>
34 #include <asm/reboot.h>
35 #include <asm/smp-ops.h>
36 #include <asm/irq_cpu.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bootinfo.h>
39 #include <asm/sections.h>
40 #include <asm/fw/fw.h>
41 #include <asm/setup.h>
42 #include <asm/prom.h>
43 #include <asm/time.h>
44
45 #include <asm/octeon/octeon.h>
46 #include <asm/octeon/pci-octeon.h>
47 #include <asm/octeon/cvmx-rst-defs.h>
48
49 /*
50 * TRUE for devices having registers with little-endian byte
51 * order, FALSE for registers with native-endian byte order.
52 * PCI mandates little-endian, USB and SATA are configuraable,
53 * but we chose little-endian for these.
54 */
55 const bool octeon_should_swizzle_table[256] = {
56 [0x00] = true, /* bootbus/CF */
57 [0x1b] = true, /* PCI mmio window */
58 [0x1c] = true, /* PCI mmio window */
59 [0x1d] = true, /* PCI mmio window */
60 [0x1e] = true, /* PCI mmio window */
61 [0x68] = true, /* OCTEON III USB */
62 [0x69] = true, /* OCTEON III USB */
63 [0x6c] = true, /* OCTEON III SATA */
64 [0x6f] = true, /* OCTEON II USB */
65 };
66 EXPORT_SYMBOL(octeon_should_swizzle_table);
67
68 #ifdef CONFIG_PCI
69 extern void pci_console_init(const char *arg);
70 #endif
71
72 static unsigned long long max_memory = ULLONG_MAX;
73 static unsigned long long reserve_low_mem;
74
75 DEFINE_SEMAPHORE(octeon_bootbus_sem);
76 EXPORT_SYMBOL(octeon_bootbus_sem);
77
78 static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
79
80 struct cvmx_bootinfo *octeon_bootinfo;
81 EXPORT_SYMBOL(octeon_bootinfo);
82
83 #ifdef CONFIG_KEXEC
84 #ifdef CONFIG_SMP
85 /*
86 * Wait for relocation code is prepared and send
87 * secondary CPUs to spin until kernel is relocated.
88 */
octeon_kexec_smp_down(void * ignored)89 static void octeon_kexec_smp_down(void *ignored)
90 {
91 int cpu = smp_processor_id();
92
93 local_irq_disable();
94 set_cpu_online(cpu, false);
95 while (!atomic_read(&kexec_ready_to_reboot))
96 cpu_relax();
97
98 asm volatile (
99 " sync \n"
100 " synci ($0) \n");
101
102 kexec_reboot();
103 }
104 #endif
105
106 #define OCTEON_DDR0_BASE (0x0ULL)
107 #define OCTEON_DDR0_SIZE (0x010000000ULL)
108 #define OCTEON_DDR1_BASE (0x410000000ULL)
109 #define OCTEON_DDR1_SIZE (0x010000000ULL)
110 #define OCTEON_DDR2_BASE (0x020000000ULL)
111 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
112 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
113
114 static struct kimage *kimage_ptr;
115
kexec_bootmem_init(uint64_t mem_size,uint32_t low_reserved_bytes)116 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
117 {
118 int64_t addr;
119 struct cvmx_bootmem_desc *bootmem_desc;
120
121 bootmem_desc = cvmx_bootmem_get_desc();
122
123 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
124 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
125 pr_err("Error: requested memory too large,"
126 "truncating to maximum size\n");
127 }
128
129 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
130 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
131
132 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
133 bootmem_desc->head_addr = 0;
134
135 if (mem_size <= OCTEON_DDR0_SIZE) {
136 __cvmx_bootmem_phy_free(addr,
137 mem_size - reserve_low_mem -
138 low_reserved_bytes, 0);
139 return;
140 }
141
142 __cvmx_bootmem_phy_free(addr,
143 OCTEON_DDR0_SIZE - reserve_low_mem -
144 low_reserved_bytes, 0);
145
146 mem_size -= OCTEON_DDR0_SIZE;
147
148 if (mem_size > OCTEON_DDR1_SIZE) {
149 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
150 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
151 mem_size - OCTEON_DDR1_SIZE, 0);
152 } else
153 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
154 }
155
octeon_kexec_prepare(struct kimage * image)156 static int octeon_kexec_prepare(struct kimage *image)
157 {
158 int i;
159 char *bootloader = "kexec";
160
161 octeon_boot_desc_ptr->argc = 0;
162 for (i = 0; i < image->nr_segments; i++) {
163 if (!strncmp(bootloader, (char *)image->segment[i].buf,
164 strlen(bootloader))) {
165 /*
166 * convert command line string to array
167 * of parameters (as bootloader does).
168 */
169 int argc = 0, offt;
170 char *str = (char *)image->segment[i].buf;
171 char *ptr = strchr(str, ' ');
172 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
173 *ptr = '\0';
174 if (ptr[1] != ' ') {
175 offt = (int)(ptr - str + 1);
176 octeon_boot_desc_ptr->argv[argc] =
177 image->segment[i].mem + offt;
178 argc++;
179 }
180 ptr = strchr(ptr + 1, ' ');
181 }
182 octeon_boot_desc_ptr->argc = argc;
183 break;
184 }
185 }
186
187 /*
188 * Information about segments will be needed during pre-boot memory
189 * initialization.
190 */
191 kimage_ptr = image;
192 return 0;
193 }
194
octeon_generic_shutdown(void)195 static void octeon_generic_shutdown(void)
196 {
197 int i;
198 #ifdef CONFIG_SMP
199 int cpu;
200 #endif
201 struct cvmx_bootmem_desc *bootmem_desc;
202 void *named_block_array_ptr;
203
204 bootmem_desc = cvmx_bootmem_get_desc();
205 named_block_array_ptr =
206 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
207
208 #ifdef CONFIG_SMP
209 /* disable watchdogs */
210 for_each_online_cpu(cpu)
211 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
212 #else
213 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
214 #endif
215 if (kimage_ptr != kexec_crash_image) {
216 memset(named_block_array_ptr,
217 0x0,
218 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
219 sizeof(struct cvmx_bootmem_named_block_desc));
220 /*
221 * Mark all memory (except low 0x100000 bytes) as free.
222 * It is the same thing that bootloader does.
223 */
224 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
225 0x100000);
226 /*
227 * Allocate all segments to avoid their corruption during boot.
228 */
229 for (i = 0; i < kimage_ptr->nr_segments; i++)
230 cvmx_bootmem_alloc_address(
231 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
232 kimage_ptr->segment[i].mem - PAGE_SIZE,
233 PAGE_SIZE);
234 } else {
235 /*
236 * Do not mark all memory as free. Free only named sections
237 * leaving the rest of memory unchanged.
238 */
239 struct cvmx_bootmem_named_block_desc *ptr =
240 (struct cvmx_bootmem_named_block_desc *)
241 named_block_array_ptr;
242
243 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
244 if (ptr[i].size)
245 cvmx_bootmem_free_named(ptr[i].name);
246 }
247 kexec_args[2] = 1UL; /* running on octeon_main_processor */
248 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249 #ifdef CONFIG_SMP
250 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
251 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
252 #endif
253 }
254
octeon_shutdown(void)255 static void octeon_shutdown(void)
256 {
257 octeon_generic_shutdown();
258 #ifdef CONFIG_SMP
259 smp_call_function(octeon_kexec_smp_down, NULL, 0);
260 smp_wmb();
261 while (num_online_cpus() > 1) {
262 cpu_relax();
263 mdelay(1);
264 }
265 #endif
266 }
267
octeon_crash_shutdown(struct pt_regs * regs)268 static void octeon_crash_shutdown(struct pt_regs *regs)
269 {
270 octeon_generic_shutdown();
271 default_machine_crash_shutdown(regs);
272 }
273
274 #ifdef CONFIG_SMP
octeon_crash_smp_send_stop(void)275 void octeon_crash_smp_send_stop(void)
276 {
277 int cpu;
278
279 /* disable watchdogs */
280 for_each_online_cpu(cpu)
281 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
282 }
283 #endif
284
285 #endif /* CONFIG_KEXEC */
286
287 uint64_t octeon_reserve32_memory;
288 EXPORT_SYMBOL(octeon_reserve32_memory);
289
290 #ifdef CONFIG_KEXEC
291 /* crashkernel cmdline parameter is parsed _after_ memory setup
292 * we also parse it here (workaround for EHB5200) */
293 static uint64_t crashk_size, crashk_base;
294 #endif
295
296 static int octeon_uart;
297
298 extern asmlinkage void handle_int(void);
299
300 /**
301 * octeon_is_simulation - Return non-zero if we are currently running
302 * in the Octeon simulator
303 *
304 * Return: non-0 if running in the Octeon simulator, 0 otherwise
305 */
octeon_is_simulation(void)306 int octeon_is_simulation(void)
307 {
308 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
309 }
310 EXPORT_SYMBOL(octeon_is_simulation);
311
312 /**
313 * octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means
314 * Linux can control the PCI bus.
315 *
316 * Return: Non-zero if Octeon is in host mode.
317 */
octeon_is_pci_host(void)318 int octeon_is_pci_host(void)
319 {
320 #ifdef CONFIG_PCI
321 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
322 #else
323 return 0;
324 #endif
325 }
326
327 /**
328 * octeon_get_clock_rate - Get the clock rate of Octeon
329 *
330 * Return: Clock rate in HZ
331 */
octeon_get_clock_rate(void)332 uint64_t octeon_get_clock_rate(void)
333 {
334 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
335
336 return sysinfo->cpu_clock_hz;
337 }
338 EXPORT_SYMBOL(octeon_get_clock_rate);
339
340 static u64 octeon_io_clock_rate;
341
octeon_get_io_clock_rate(void)342 u64 octeon_get_io_clock_rate(void)
343 {
344 return octeon_io_clock_rate;
345 }
346 EXPORT_SYMBOL(octeon_get_io_clock_rate);
347
348
349 /**
350 * octeon_write_lcd - Write to the LCD display connected to the bootbus.
351 * @s: String to write
352 *
353 * This display exists on most Cavium evaluation boards. If it doesn't exist,
354 * then this function doesn't do anything.
355 */
octeon_write_lcd(const char * s)356 static void octeon_write_lcd(const char *s)
357 {
358 if (octeon_bootinfo->led_display_base_addr) {
359 void __iomem *lcd_address =
360 ioremap(octeon_bootinfo->led_display_base_addr,
361 8);
362 int i;
363 for (i = 0; i < 8; i++, s++) {
364 if (*s)
365 iowrite8(*s, lcd_address + i);
366 else
367 iowrite8(' ', lcd_address + i);
368 }
369 iounmap(lcd_address);
370 }
371 }
372
373 /**
374 * octeon_get_boot_uart - Return the console uart passed by the bootloader
375 *
376 * Return: uart number (0 or 1)
377 */
octeon_get_boot_uart(void)378 static int octeon_get_boot_uart(void)
379 {
380 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
381 1 : 0;
382 }
383
384 /**
385 * octeon_get_boot_coremask - Get the coremask Linux was booted on.
386 *
387 * Return: Core mask
388 */
octeon_get_boot_coremask(void)389 int octeon_get_boot_coremask(void)
390 {
391 return octeon_boot_desc_ptr->core_mask;
392 }
393
394 /**
395 * octeon_check_cpu_bist - Check the hardware BIST results for a CPU
396 */
octeon_check_cpu_bist(void)397 void octeon_check_cpu_bist(void)
398 {
399 const int coreid = cvmx_get_core_num();
400 unsigned long long mask;
401 unsigned long long bist_val;
402
403 /* Check BIST results for COP0 registers */
404 mask = 0x1f00000000ull;
405 bist_val = read_octeon_c0_icacheerr();
406 if (bist_val & mask)
407 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
408 coreid, bist_val);
409
410 bist_val = read_octeon_c0_dcacheerr();
411 if (bist_val & 1)
412 pr_err("Core%d L1 Dcache parity error: "
413 "CacheErr(dcache) = 0x%llx\n",
414 coreid, bist_val);
415
416 mask = 0xfc00000000000000ull;
417 bist_val = read_c0_cvmmemctl();
418 if (bist_val & mask)
419 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
420 coreid, bist_val);
421
422 write_octeon_c0_dcacheerr(0);
423 }
424
425 /**
426 * octeon_restart - Reboot Octeon
427 *
428 * @command: Command to pass to the bootloader. Currently ignored.
429 */
octeon_restart(char * command)430 static void octeon_restart(char *command)
431 {
432 /* Disable all watchdogs before soft reset. They don't get cleared */
433 #ifdef CONFIG_SMP
434 int cpu;
435 for_each_online_cpu(cpu)
436 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
437 #else
438 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439 #endif
440
441 mb();
442 while (1)
443 if (OCTEON_IS_OCTEON3())
444 cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
445 else
446 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
447 }
448
449
450 /**
451 * octeon_kill_core - Permanently stop a core.
452 *
453 * @arg: Ignored.
454 */
octeon_kill_core(void * arg)455 static void octeon_kill_core(void *arg)
456 {
457 if (octeon_is_simulation())
458 /* A break instruction causes the simulator stop a core */
459 asm volatile ("break" ::: "memory");
460
461 local_irq_disable();
462 /* Disable watchdog on this core. */
463 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
464 /* Spin in a low power mode. */
465 while (true)
466 asm volatile ("wait" ::: "memory");
467 }
468
469
470 /**
471 * octeon_halt - Halt the system
472 */
octeon_halt(void)473 static void octeon_halt(void)
474 {
475 smp_call_function(octeon_kill_core, NULL, 0);
476
477 switch (octeon_bootinfo->board_type) {
478 case CVMX_BOARD_TYPE_NAO38:
479 /* Driving a 1 to GPIO 12 shuts off this board */
480 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
481 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
482 break;
483 default:
484 octeon_write_lcd("PowerOff");
485 break;
486 }
487
488 octeon_kill_core(NULL);
489 }
490
491 static char __read_mostly octeon_system_type[80];
492
init_octeon_system_type(void)493 static void __init init_octeon_system_type(void)
494 {
495 char const *board_type;
496
497 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
498 if (board_type == NULL) {
499 struct device_node *root;
500 int ret;
501
502 root = of_find_node_by_path("/");
503 ret = of_property_read_string(root, "model", &board_type);
504 of_node_put(root);
505 if (ret)
506 board_type = "Unsupported Board";
507 }
508
509 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
510 board_type, octeon_model_get_string(read_c0_prid()));
511 }
512
513 /**
514 * octeon_board_type_string - Return a string representing the system type
515 *
516 * Return: system type string
517 */
octeon_board_type_string(void)518 const char *octeon_board_type_string(void)
519 {
520 return octeon_system_type;
521 }
522
523 const char *get_system_type(void)
524 __attribute__ ((alias("octeon_board_type_string")));
525
octeon_user_io_init(void)526 void octeon_user_io_init(void)
527 {
528 union octeon_cvmemctl cvmmemctl;
529
530 /* Get the current settings for CP0_CVMMEMCTL_REG */
531 cvmmemctl.u64 = read_c0_cvmmemctl();
532 /* R/W If set, marked write-buffer entries time out the same
533 * as other entries; if clear, marked write-buffer entries
534 * use the maximum timeout. */
535 cvmmemctl.s.dismarkwblongto = 1;
536 /* R/W If set, a merged store does not clear the write-buffer
537 * entry timeout state. */
538 cvmmemctl.s.dismrgclrwbto = 0;
539 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
540 * word location for an IOBDMA. The other 8 bits come from the
541 * SCRADDR field of the IOBDMA. */
542 cvmmemctl.s.iobdmascrmsb = 0;
543 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
544 * clear, SYNCWS and SYNCS only order unmarked
545 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
546 * set. */
547 cvmmemctl.s.syncwsmarked = 0;
548 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
549 cvmmemctl.s.dissyncws = 0;
550 /* R/W If set, no stall happens on write buffer full. */
551 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
552 cvmmemctl.s.diswbfst = 1;
553 else
554 cvmmemctl.s.diswbfst = 0;
555 /* R/W If set (and SX set), supervisor-level loads/stores can
556 * use XKPHYS addresses with <48>==0 */
557 cvmmemctl.s.xkmemenas = 0;
558
559 /* R/W If set (and UX set), user-level loads/stores can use
560 * XKPHYS addresses with VA<48>==0 */
561 cvmmemctl.s.xkmemenau = 0;
562
563 /* R/W If set (and SX set), supervisor-level loads/stores can
564 * use XKPHYS addresses with VA<48>==1 */
565 cvmmemctl.s.xkioenas = 0;
566
567 /* R/W If set (and UX set), user-level loads/stores can use
568 * XKPHYS addresses with VA<48>==1 */
569 cvmmemctl.s.xkioenau = 0;
570
571 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
572 * when this is set) RW, reset to 0. */
573 cvmmemctl.s.allsyncw = 0;
574
575 /* R/W If set, no stores merge, and all stores reach the
576 * coherent bus in order. */
577 cvmmemctl.s.nomerge = 0;
578 /* R/W Selects the bit in the counter used for DID time-outs 0
579 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
580 * between 1x and 2x this interval. For example, with
581 * DIDTTO=3, expiration interval is between 16K and 32K. */
582 cvmmemctl.s.didtto = 0;
583 /* R/W If set, the (mem) CSR clock never turns off. */
584 cvmmemctl.s.csrckalwys = 0;
585 /* R/W If set, mclk never turns off. */
586 cvmmemctl.s.mclkalwys = 0;
587 /* R/W Selects the bit in the counter used for write buffer
588 * flush time-outs (WBFLT+11) is the bit position in an
589 * internal counter used to determine expiration. The write
590 * buffer expires between 1x and 2x this interval. For
591 * example, with WBFLT = 0, a write buffer expires between 2K
592 * and 4K cycles after the write buffer entry is allocated. */
593 cvmmemctl.s.wbfltime = 0;
594 /* R/W If set, do not put Istream in the L2 cache. */
595 cvmmemctl.s.istrnol2 = 0;
596
597 /*
598 * R/W The write buffer threshold. As per erratum Core-14752
599 * for CN63XX, a sc/scd might fail if the write buffer is
600 * full. Lowering WBTHRESH greatly lowers the chances of the
601 * write buffer ever being full and triggering the erratum.
602 */
603 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
604 cvmmemctl.s.wbthresh = 4;
605 else
606 cvmmemctl.s.wbthresh = 10;
607
608 /* R/W If set, CVMSEG is available for loads/stores in
609 * kernel/debug mode. */
610 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
611 cvmmemctl.s.cvmsegenak = 1;
612 #else
613 cvmmemctl.s.cvmsegenak = 0;
614 #endif
615 /* R/W If set, CVMSEG is available for loads/stores in
616 * supervisor mode. */
617 cvmmemctl.s.cvmsegenas = 0;
618 /* R/W If set, CVMSEG is available for loads/stores in user
619 * mode. */
620 cvmmemctl.s.cvmsegenau = 0;
621
622 write_c0_cvmmemctl(cvmmemctl.u64);
623
624 /* Setup of CVMSEG is done in kernel-entry-init.h */
625 if (smp_processor_id() == 0)
626 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
627 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
628 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
629
630 if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
631 union cvmx_iob_fau_timeout fau_timeout;
632
633 /* Set a default for the hardware timeouts */
634 fau_timeout.u64 = 0;
635 fau_timeout.s.tout_val = 0xfff;
636 /* Disable tagwait FAU timeout */
637 fau_timeout.s.tout_enb = 0;
638 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
639 }
640
641 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
642 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
643 OCTEON_IS_MODEL(OCTEON_CN70XX)) {
644 union cvmx_pow_nw_tim nm_tim;
645
646 nm_tim.u64 = 0;
647 /* 4096 cycles */
648 nm_tim.s.nw_tim = 3;
649 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
650 }
651
652 write_octeon_c0_icacheerr(0);
653 write_c0_derraddr1(0);
654 }
655
656 /**
657 * prom_init - Early entry point for arch setup
658 */
prom_init(void)659 void __init prom_init(void)
660 {
661 struct cvmx_sysinfo *sysinfo;
662 const char *arg;
663 char *p;
664 int i;
665 u64 t;
666 int argc;
667 /*
668 * The bootloader passes a pointer to the boot descriptor in
669 * $a3, this is available as fw_arg3.
670 */
671 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672 octeon_bootinfo =
673 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
675
676 sysinfo = cvmx_sysinfo_get();
677 memset(sysinfo, 0, sizeof(*sysinfo));
678 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
680
681 if ((octeon_bootinfo->major_version > 1) ||
682 (octeon_bootinfo->major_version == 1 &&
683 octeon_bootinfo->minor_version >= 4))
684 cvmx_coremask_copy(&sysinfo->core_mask,
685 &octeon_bootinfo->ext_core_mask);
686 else
687 cvmx_coremask_set64(&sysinfo->core_mask,
688 octeon_bootinfo->core_mask);
689
690 /* Some broken u-boot pass garbage in upper bits, clear them out */
691 if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692 for (i = 512; i < 1024; i++)
693 cvmx_coremask_clear_core(&sysinfo->core_mask, i);
694
695 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698 sysinfo->board_type = octeon_bootinfo->board_type;
699 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702 sizeof(sysinfo->mac_addr_base));
703 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704 memcpy(sysinfo->board_serial_number,
705 octeon_bootinfo->board_serial_number,
706 sizeof(sysinfo->board_serial_number));
707 sysinfo->compact_flash_common_base_addr =
708 octeon_bootinfo->compact_flash_common_base_addr;
709 sysinfo->compact_flash_attribute_base_addr =
710 octeon_bootinfo->compact_flash_attribute_base_addr;
711 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
714
715 if (OCTEON_IS_OCTEON2()) {
716 /* I/O clock runs at a different rate than the CPU. */
717 union cvmx_mio_rst_boot rst_boot;
718 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720 } else if (OCTEON_IS_OCTEON3()) {
721 /* I/O clock runs at a different rate than the CPU. */
722 union cvmx_rst_boot rst_boot;
723 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725 } else {
726 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
727 }
728
729 t = read_c0_cvmctl();
730 if ((t & (1ull << 27)) == 0) {
731 /*
732 * Setup the multiplier save/restore code if
733 * CvmCtl[NOMUL] clear.
734 */
735 void *save;
736 void *save_end;
737 void *restore;
738 void *restore_end;
739 int save_len;
740 int restore_len;
741 int save_max = (char *)octeon_mult_save_end -
742 (char *)octeon_mult_save;
743 int restore_max = (char *)octeon_mult_restore_end -
744 (char *)octeon_mult_restore;
745 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746 save = octeon_mult_save3;
747 save_end = octeon_mult_save3_end;
748 restore = octeon_mult_restore3;
749 restore_end = octeon_mult_restore3_end;
750 } else {
751 save = octeon_mult_save2;
752 save_end = octeon_mult_save2_end;
753 restore = octeon_mult_restore2;
754 restore_end = octeon_mult_restore2_end;
755 }
756 save_len = (char *)save_end - (char *)save;
757 restore_len = (char *)restore_end - (char *)restore;
758 if (!WARN_ON(save_len > save_max ||
759 restore_len > restore_max)) {
760 memcpy(octeon_mult_save, save, save_len);
761 memcpy(octeon_mult_restore, restore, restore_len);
762 }
763 }
764
765 /*
766 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
767 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
768 */
769 if (!octeon_is_simulation() &&
770 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771 cvmx_write_csr(CVMX_LED_EN, 0);
772 cvmx_write_csr(CVMX_LED_PRT, 0);
773 cvmx_write_csr(CVMX_LED_DBG, 0);
774 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779 cvmx_write_csr(CVMX_LED_EN, 1);
780 }
781
782 /*
783 * We need to temporarily allocate all memory in the reserve32
784 * region. This makes sure the kernel doesn't allocate this
785 * memory when it is getting memory from the
786 * bootloader. Later, after the memory allocations are
787 * complete, the reserve32 will be freed.
788 *
789 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
790 * is in case we later use hugetlb entries with it.
791 */
792 if (CONFIG_CAVIUM_RESERVE32) {
793 int64_t addr =
794 cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
795 0, 0, 2 << 20,
796 "CAVIUM_RESERVE32", 0);
797 if (addr < 0)
798 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
799 else
800 octeon_reserve32_memory = addr;
801 }
802
803 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
804 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
805 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
806 } else {
807 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
808 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
809 /* TLB refill */
810 cvmx_l2c_lock_mem_region(ebase, 0x100);
811 #endif
812 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
813 /* General exception */
814 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
815 #endif
816 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
817 /* Interrupt handler */
818 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
819 #endif
820 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
821 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
822 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
823 #endif
824 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
825 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
826 #endif
827 }
828 #endif
829
830 octeon_check_cpu_bist();
831
832 octeon_uart = octeon_get_boot_uart();
833
834 #ifdef CONFIG_SMP
835 octeon_write_lcd("LinuxSMP");
836 #else
837 octeon_write_lcd("Linux");
838 #endif
839
840 octeon_setup_delays();
841
842 /*
843 * BIST should always be enabled when doing a soft reset. L2
844 * Cache locking for instance is not cleared unless BIST is
845 * enabled. Unfortunately due to a chip errata G-200 for
846 * Cn38XX and CN31XX, BIST must be disabled on these parts.
847 */
848 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
849 OCTEON_IS_MODEL(OCTEON_CN31XX))
850 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
851 else
852 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
853
854 /* Default to 64MB in the simulator to speed things up */
855 if (octeon_is_simulation())
856 max_memory = 64ull << 20;
857
858 arg = strstr(arcs_cmdline, "mem=");
859 if (arg) {
860 max_memory = memparse(arg + 4, &p);
861 if (max_memory == 0)
862 max_memory = 32ull << 30;
863 if (*p == '@')
864 reserve_low_mem = memparse(p + 1, &p);
865 }
866
867 arcs_cmdline[0] = 0;
868 argc = octeon_boot_desc_ptr->argc;
869 for (i = 0; i < argc; i++) {
870 const char *arg =
871 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
872 if ((strncmp(arg, "MEM=", 4) == 0) ||
873 (strncmp(arg, "mem=", 4) == 0)) {
874 max_memory = memparse(arg + 4, &p);
875 if (max_memory == 0)
876 max_memory = 32ull << 30;
877 if (*p == '@')
878 reserve_low_mem = memparse(p + 1, &p);
879 #ifdef CONFIG_KEXEC
880 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
881 crashk_size = memparse(arg+12, &p);
882 if (*p == '@')
883 crashk_base = memparse(p+1, &p);
884 strcat(arcs_cmdline, " ");
885 strcat(arcs_cmdline, arg);
886 /*
887 * To do: switch parsing to new style, something like:
888 * parse_crashkernel(arg, sysinfo->system_dram_size,
889 * &crashk_size, &crashk_base);
890 */
891 #endif
892 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
893 sizeof(arcs_cmdline) - 1) {
894 strcat(arcs_cmdline, " ");
895 strcat(arcs_cmdline, arg);
896 }
897 }
898
899 if (strstr(arcs_cmdline, "console=") == NULL) {
900 if (octeon_uart == 1)
901 strcat(arcs_cmdline, " console=ttyS1,115200");
902 else
903 strcat(arcs_cmdline, " console=ttyS0,115200");
904 }
905
906 mips_hpt_frequency = octeon_get_clock_rate();
907
908 octeon_init_cvmcount();
909
910 _machine_restart = octeon_restart;
911 _machine_halt = octeon_halt;
912
913 #ifdef CONFIG_KEXEC
914 _machine_kexec_shutdown = octeon_shutdown;
915 _machine_crash_shutdown = octeon_crash_shutdown;
916 _machine_kexec_prepare = octeon_kexec_prepare;
917 #ifdef CONFIG_SMP
918 _crash_smp_send_stop = octeon_crash_smp_send_stop;
919 #endif
920 #endif
921
922 octeon_user_io_init();
923 octeon_setup_smp();
924 }
925
926 /* Exclude a single page from the regions obtained in plat_mem_setup. */
927 #ifndef CONFIG_CRASH_DUMP
memory_exclude_page(u64 addr,u64 * mem,u64 * size)928 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
929 {
930 if (addr > *mem && addr < *mem + *size) {
931 u64 inc = addr - *mem;
932 memblock_add(*mem, inc);
933 *mem += inc;
934 *size -= inc;
935 }
936
937 if (addr == *mem && *size > PAGE_SIZE) {
938 *mem += PAGE_SIZE;
939 *size -= PAGE_SIZE;
940 }
941 }
942 #endif /* CONFIG_CRASH_DUMP */
943
fw_init_cmdline(void)944 void __init fw_init_cmdline(void)
945 {
946 int i;
947
948 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
949 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
950 const char *arg =
951 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
952 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
953 sizeof(arcs_cmdline) - 1) {
954 strcat(arcs_cmdline, " ");
955 strcat(arcs_cmdline, arg);
956 }
957 }
958 }
959
plat_get_fdt(void)960 void __init *plat_get_fdt(void)
961 {
962 octeon_bootinfo =
963 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
964 return phys_to_virt(octeon_bootinfo->fdt_addr);
965 }
966
plat_mem_setup(void)967 void __init plat_mem_setup(void)
968 {
969 uint64_t mem_alloc_size;
970 uint64_t total;
971 uint64_t crashk_end;
972 #ifndef CONFIG_CRASH_DUMP
973 int64_t memory;
974 #endif
975
976 total = 0;
977 crashk_end = 0;
978
979 /*
980 * The Mips memory init uses the first memory location for
981 * some memory vectors. When SPARSEMEM is in use, it doesn't
982 * verify that the size is big enough for the final
983 * vectors. Making the smallest chuck 4MB seems to be enough
984 * to consistently work.
985 */
986 mem_alloc_size = 4 << 20;
987 if (mem_alloc_size > max_memory)
988 mem_alloc_size = max_memory;
989
990 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991 #ifdef CONFIG_CRASH_DUMP
992 memblock_add(reserve_low_mem, max_memory);
993 total += max_memory;
994 #else
995 #ifdef CONFIG_KEXEC
996 if (crashk_size > 0) {
997 memblock_add(crashk_base, crashk_size);
998 crashk_end = crashk_base + crashk_size;
999 }
1000 #endif
1001 /*
1002 * When allocating memory, we want incrementing addresses,
1003 * which is handled by memblock
1004 */
1005 cvmx_bootmem_lock();
1006 while (total < max_memory) {
1007 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1008 __pa_symbol(&_end), -1,
1009 0x100000,
1010 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1011 if (memory >= 0) {
1012 u64 size = mem_alloc_size;
1013 #ifdef CONFIG_KEXEC
1014 uint64_t end;
1015 #endif
1016
1017 /*
1018 * exclude a page at the beginning and end of
1019 * the 256MB PCIe 'hole' so the kernel will not
1020 * try to allocate multi-page buffers that
1021 * span the discontinuity.
1022 */
1023 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1024 &memory, &size);
1025 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1026 CVMX_PCIE_BAR1_PHYS_SIZE,
1027 &memory, &size);
1028 #ifdef CONFIG_KEXEC
1029 end = memory + mem_alloc_size;
1030
1031 /*
1032 * This function automatically merges address regions
1033 * next to each other if they are received in
1034 * incrementing order
1035 */
1036 if (memory < crashk_base && end > crashk_end) {
1037 /* region is fully in */
1038 memblock_add(memory, crashk_base - memory);
1039 total += crashk_base - memory;
1040 memblock_add(crashk_end, end - crashk_end);
1041 total += end - crashk_end;
1042 continue;
1043 }
1044
1045 if (memory >= crashk_base && end <= crashk_end)
1046 /*
1047 * Entire memory region is within the new
1048 * kernel's memory, ignore it.
1049 */
1050 continue;
1051
1052 if (memory > crashk_base && memory < crashk_end &&
1053 end > crashk_end) {
1054 /*
1055 * Overlap with the beginning of the region,
1056 * reserve the beginning.
1057 */
1058 mem_alloc_size -= crashk_end - memory;
1059 memory = crashk_end;
1060 } else if (memory < crashk_base && end > crashk_base &&
1061 end < crashk_end)
1062 /*
1063 * Overlap with the beginning of the region,
1064 * chop of end.
1065 */
1066 mem_alloc_size -= end - crashk_base;
1067 #endif
1068 memblock_add(memory, mem_alloc_size);
1069 total += mem_alloc_size;
1070 /* Recovering mem_alloc_size */
1071 mem_alloc_size = 4 << 20;
1072 } else {
1073 break;
1074 }
1075 }
1076 cvmx_bootmem_unlock();
1077 #endif /* CONFIG_CRASH_DUMP */
1078
1079 /*
1080 * Now that we've allocated the kernel memory it is safe to
1081 * free the reserved region. We free it here so that builtin
1082 * drivers can use the memory.
1083 */
1084 if (octeon_reserve32_memory)
1085 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1086
1087 if (total == 0)
1088 panic("Unable to allocate memory from "
1089 "cvmx_bootmem_phy_alloc");
1090 }
1091
1092 /*
1093 * Emit one character to the boot UART. Exported for use by the
1094 * watchdog timer.
1095 */
prom_putchar(char c)1096 void prom_putchar(char c)
1097 {
1098 uint64_t lsrval;
1099
1100 /* Spin until there is room */
1101 do {
1102 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1103 } while ((lsrval & 0x20) == 0);
1104
1105 /* Write the byte */
1106 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1107 }
1108 EXPORT_SYMBOL(prom_putchar);
1109
prom_free_prom_memory(void)1110 void __init prom_free_prom_memory(void)
1111 {
1112 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
1113 /* Check for presence of Core-14449 fix. */
1114 u32 insn;
1115 u32 *foo;
1116
1117 foo = &insn;
1118
1119 asm volatile("# before" : : : "memory");
1120 prefetch(foo);
1121 asm volatile(
1122 ".set push\n\t"
1123 ".set noreorder\n\t"
1124 "bal 1f\n\t"
1125 "nop\n"
1126 "1:\tlw %0,-12($31)\n\t"
1127 ".set pop\n\t"
1128 : "=r" (insn) : : "$31", "memory");
1129
1130 if ((insn >> 26) != 0x33)
1131 panic("No PREF instruction at Core-14449 probe point.");
1132
1133 if (((insn >> 16) & 0x1f) != 28)
1134 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1135 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1136 insn);
1137 }
1138 }
1139
1140 void __init octeon_fill_mac_addresses(void);
1141
device_tree_init(void)1142 void __init device_tree_init(void)
1143 {
1144 const void *fdt;
1145 bool do_prune;
1146 bool fill_mac;
1147
1148 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1149 if (!fdt_check_header(&__appended_dtb)) {
1150 fdt = &__appended_dtb;
1151 do_prune = false;
1152 fill_mac = true;
1153 pr_info("Using appended Device Tree.\n");
1154 } else
1155 #endif
1156 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1157 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1158 if (fdt_check_header(fdt))
1159 panic("Corrupt Device Tree passed to kernel.");
1160 do_prune = false;
1161 fill_mac = false;
1162 pr_info("Using passed Device Tree.\n");
1163 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1164 fdt = &__dtb_octeon_68xx_begin;
1165 do_prune = true;
1166 fill_mac = true;
1167 } else {
1168 fdt = &__dtb_octeon_3xxx_begin;
1169 do_prune = true;
1170 fill_mac = true;
1171 }
1172
1173 initial_boot_params = (void *)fdt;
1174
1175 if (do_prune) {
1176 octeon_prune_device_tree();
1177 pr_info("Using internal Device Tree.\n");
1178 }
1179 if (fill_mac)
1180 octeon_fill_mac_addresses();
1181 unflatten_and_copy_device_tree();
1182 init_octeon_system_type();
1183 }
1184
1185 static int __initdata disable_octeon_edac_p;
1186
disable_octeon_edac(char * str)1187 static int __init disable_octeon_edac(char *str)
1188 {
1189 disable_octeon_edac_p = 1;
1190 return 0;
1191 }
1192 early_param("disable_octeon_edac", disable_octeon_edac);
1193
1194 static char *edac_device_names[] = {
1195 "octeon_l2c_edac",
1196 "octeon_pc_edac",
1197 };
1198
edac_devinit(void)1199 static int __init edac_devinit(void)
1200 {
1201 struct platform_device *dev;
1202 int i, err = 0;
1203 int num_lmc;
1204 char *name;
1205
1206 if (disable_octeon_edac_p)
1207 return 0;
1208
1209 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1210 name = edac_device_names[i];
1211 dev = platform_device_register_simple(name, -1, NULL, 0);
1212 if (IS_ERR(dev)) {
1213 pr_err("Registration of %s failed!\n", name);
1214 err = PTR_ERR(dev);
1215 }
1216 }
1217
1218 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1219 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1220 for (i = 0; i < num_lmc; i++) {
1221 dev = platform_device_register_simple("octeon_lmc_edac",
1222 i, NULL, 0);
1223 if (IS_ERR(dev)) {
1224 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1225 err = PTR_ERR(dev);
1226 }
1227 }
1228
1229 return err;
1230 }
1231 device_initcall(edac_devinit);
1232
1233 static void __initdata *octeon_dummy_iospace;
1234
octeon_no_pci_init(void)1235 static int __init octeon_no_pci_init(void)
1236 {
1237 /*
1238 * Initially assume there is no PCI. The PCI/PCIe platform code will
1239 * later re-initialize these to correct values if they are present.
1240 */
1241 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1242 set_io_port_base((unsigned long)octeon_dummy_iospace);
1243 ioport_resource.start = MAX_RESOURCE;
1244 ioport_resource.end = 0;
1245 return 0;
1246 }
1247 core_initcall(octeon_no_pci_init);
1248
octeon_no_pci_release(void)1249 static int __init octeon_no_pci_release(void)
1250 {
1251 /*
1252 * Release the allocated memory if a real IO space is there.
1253 */
1254 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1255 vfree(octeon_dummy_iospace);
1256 return 0;
1257 }
1258 late_initcall(octeon_no_pci_release);
1259