1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #include <cluster/masklog.h>
33 
34 #include "ocfs2.h"
35 
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48 
49 #include "buffer_head_io.h"
50 
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	trace_ocfs2_symlink_get_block(
63 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
64 			(unsigned long long)iblock, bh_result, create);
65 
66 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 
68 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 		     (unsigned long long)iblock);
71 		goto bail;
72 	}
73 
74 	status = ocfs2_read_inode_block(inode, &bh);
75 	if (status < 0) {
76 		mlog_errno(status);
77 		goto bail;
78 	}
79 	fe = (struct ocfs2_dinode *) bh->b_data;
80 
81 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 						    le32_to_cpu(fe->i_clusters))) {
83 		mlog(ML_ERROR, "block offset is outside the allocated size: "
84 		     "%llu\n", (unsigned long long)iblock);
85 		goto bail;
86 	}
87 
88 	/* We don't use the page cache to create symlink data, so if
89 	 * need be, copy it over from the buffer cache. */
90 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 			    iblock;
93 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 		if (!buffer_cache_bh) {
95 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 			goto bail;
97 		}
98 
99 		/* we haven't locked out transactions, so a commit
100 		 * could've happened. Since we've got a reference on
101 		 * the bh, even if it commits while we're doing the
102 		 * copy, the data is still good. */
103 		if (buffer_jbd(buffer_cache_bh)
104 		    && ocfs2_inode_is_new(inode)) {
105 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 			if (!kaddr) {
107 				mlog(ML_ERROR, "couldn't kmap!\n");
108 				goto bail;
109 			}
110 			memcpy(kaddr + (bh_result->b_size * iblock),
111 			       buffer_cache_bh->b_data,
112 			       bh_result->b_size);
113 			kunmap_atomic(kaddr, KM_USER0);
114 			set_buffer_uptodate(bh_result);
115 		}
116 		brelse(buffer_cache_bh);
117 	}
118 
119 	map_bh(bh_result, inode->i_sb,
120 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 
122 	err = 0;
123 
124 bail:
125 	brelse(bh);
126 
127 	return err;
128 }
129 
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 			      (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows __block_write_begin() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 	}
200 
201 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 
203 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 				  (unsigned long long)past_eof);
205 	if (create && (iblock >= past_eof))
206 		set_buffer_new(bh_result);
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	return err;
213 }
214 
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page, KM_USER0);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr, KM_USER0);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
ocfs2_readpage_inline(struct inode * inode,struct page * page)252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
ocfs2_readpage(struct file * file,struct page * page)274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 			     (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		ret = AOP_TRUNCATED_PAGE;
294 		goto out_inode_unlock;
295 	}
296 
297 	/*
298 	 * i_size might have just been updated as we grabed the meta lock.  We
299 	 * might now be discovering a truncate that hit on another node.
300 	 * block_read_full_page->get_block freaks out if it is asked to read
301 	 * beyond the end of a file, so we check here.  Callers
302 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 	 * and notice that the page they just read isn't needed.
304 	 *
305 	 * XXX sys_readahead() seems to get that wrong?
306 	 */
307 	if (start >= i_size_read(inode)) {
308 		zero_user(page, 0, PAGE_SIZE);
309 		SetPageUptodate(page);
310 		ret = 0;
311 		goto out_alloc;
312 	}
313 
314 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 		ret = ocfs2_readpage_inline(inode, page);
316 	else
317 		ret = block_read_full_page(page, ocfs2_get_block);
318 	unlock = 0;
319 
320 out_alloc:
321 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 	ocfs2_inode_unlock(inode, 0);
324 out:
325 	if (unlock)
326 		unlock_page(page);
327 	return ret;
328 }
329 
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
ocfs2_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 			   struct list_head *pages, unsigned nr_pages)
341 {
342 	int ret, err = -EIO;
343 	struct inode *inode = mapping->host;
344 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 	loff_t start;
346 	struct page *last;
347 
348 	/*
349 	 * Use the nonblocking flag for the dlm code to avoid page
350 	 * lock inversion, but don't bother with retrying.
351 	 */
352 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 	if (ret)
354 		return err;
355 
356 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 		ocfs2_inode_unlock(inode, 0);
358 		return err;
359 	}
360 
361 	/*
362 	 * Don't bother with inline-data. There isn't anything
363 	 * to read-ahead in that case anyway...
364 	 */
365 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 		goto out_unlock;
367 
368 	/*
369 	 * Check whether a remote node truncated this file - we just
370 	 * drop out in that case as it's not worth handling here.
371 	 */
372 	last = list_entry(pages->prev, struct page, lru);
373 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 	if (start >= i_size_read(inode))
375 		goto out_unlock;
376 
377 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378 
379 out_unlock:
380 	up_read(&oi->ip_alloc_sem);
381 	ocfs2_inode_unlock(inode, 0);
382 
383 	return err;
384 }
385 
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 	trace_ocfs2_writepage(
400 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 		page->index);
402 
403 	return block_write_full_page(page, ocfs2_get_block, wbc);
404 }
405 
406 /* Taken from ext3. We don't necessarily need the full blown
407  * functionality yet, but IMHO it's better to cut and paste the whole
408  * thing so we can avoid introducing our own bugs (and easily pick up
409  * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))410 int walk_page_buffers(	handle_t *handle,
411 			struct buffer_head *head,
412 			unsigned from,
413 			unsigned to,
414 			int *partial,
415 			int (*fn)(	handle_t *handle,
416 					struct buffer_head *bh))
417 {
418 	struct buffer_head *bh;
419 	unsigned block_start, block_end;
420 	unsigned blocksize = head->b_size;
421 	int err, ret = 0;
422 	struct buffer_head *next;
423 
424 	for (	bh = head, block_start = 0;
425 		ret == 0 && (bh != head || !block_start);
426 	    	block_start = block_end, bh = next)
427 	{
428 		next = bh->b_this_page;
429 		block_end = block_start + blocksize;
430 		if (block_end <= from || block_start >= to) {
431 			if (partial && !buffer_uptodate(bh))
432 				*partial = 1;
433 			continue;
434 		}
435 		err = (*fn)(handle, bh);
436 		if (!ret)
437 			ret = err;
438 	}
439 	return ret;
440 }
441 
ocfs2_bmap(struct address_space * mapping,sector_t block)442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444 	sector_t status;
445 	u64 p_blkno = 0;
446 	int err = 0;
447 	struct inode *inode = mapping->host;
448 
449 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 			 (unsigned long long)block);
451 
452 	/* We don't need to lock journal system files, since they aren't
453 	 * accessed concurrently from multiple nodes.
454 	 */
455 	if (!INODE_JOURNAL(inode)) {
456 		err = ocfs2_inode_lock(inode, NULL, 0);
457 		if (err) {
458 			if (err != -ENOENT)
459 				mlog_errno(err);
460 			goto bail;
461 		}
462 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 	}
464 
465 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 						  NULL);
468 
469 	if (!INODE_JOURNAL(inode)) {
470 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 		ocfs2_inode_unlock(inode, 0);
472 	}
473 
474 	if (err) {
475 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 		     (unsigned long long)block);
477 		mlog_errno(err);
478 		goto bail;
479 	}
480 
481 bail:
482 	status = err ? 0 : p_blkno;
483 
484 	return status;
485 }
486 
487 /*
488  * TODO: Make this into a generic get_blocks function.
489  *
490  * From do_direct_io in direct-io.c:
491  *  "So what we do is to permit the ->get_blocks function to populate
492  *   bh.b_size with the size of IO which is permitted at this offset and
493  *   this i_blkbits."
494  *
495  * This function is called directly from get_more_blocks in direct-io.c.
496  *
497  * called like this: dio->get_blocks(dio->inode, fs_startblk,
498  * 					fs_count, map_bh, dio->rw == WRITE);
499  *
500  * Note that we never bother to allocate blocks here, and thus ignore the
501  * create argument.
502  */
ocfs2_direct_IO_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)503 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504 				     struct buffer_head *bh_result, int create)
505 {
506 	int ret;
507 	u64 p_blkno, inode_blocks, contig_blocks;
508 	unsigned int ext_flags;
509 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
511 
512 	/* This function won't even be called if the request isn't all
513 	 * nicely aligned and of the right size, so there's no need
514 	 * for us to check any of that. */
515 
516 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517 
518 	/* This figures out the size of the next contiguous block, and
519 	 * our logical offset */
520 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521 					  &contig_blocks, &ext_flags);
522 	if (ret) {
523 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 		     (unsigned long long)iblock);
525 		ret = -EIO;
526 		goto bail;
527 	}
528 
529 	/* We should already CoW the refcounted extent in case of create. */
530 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531 
532 	/*
533 	 * get_more_blocks() expects us to describe a hole by clearing
534 	 * the mapped bit on bh_result().
535 	 *
536 	 * Consider an unwritten extent as a hole.
537 	 */
538 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539 		map_bh(bh_result, inode->i_sb, p_blkno);
540 	else
541 		clear_buffer_mapped(bh_result);
542 
543 	/* make sure we don't map more than max_blocks blocks here as
544 	   that's all the kernel will handle at this point. */
545 	if (max_blocks < contig_blocks)
546 		contig_blocks = max_blocks;
547 	bh_result->b_size = contig_blocks << blocksize_bits;
548 bail:
549 	return ret;
550 }
551 
552 /*
553  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
554  * particularly interested in the aio/dio case.  Like the core uses
555  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
556  * truncation on another.
557  */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private,int ret,bool is_async)558 static void ocfs2_dio_end_io(struct kiocb *iocb,
559 			     loff_t offset,
560 			     ssize_t bytes,
561 			     void *private,
562 			     int ret,
563 			     bool is_async)
564 {
565 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
566 	int level;
567 
568 	/* this io's submitter should not have unlocked this before we could */
569 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
570 
571 	if (ocfs2_iocb_is_sem_locked(iocb)) {
572 		up_read(&inode->i_alloc_sem);
573 		ocfs2_iocb_clear_sem_locked(iocb);
574 	}
575 
576 	ocfs2_iocb_clear_rw_locked(iocb);
577 
578 	level = ocfs2_iocb_rw_locked_level(iocb);
579 	ocfs2_rw_unlock(inode, level);
580 
581 	if (is_async)
582 		aio_complete(iocb, ret, 0);
583 }
584 
585 /*
586  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
587  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
588  * do journalled data.
589  */
ocfs2_invalidatepage(struct page * page,unsigned long offset)590 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
591 {
592 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
593 
594 	jbd2_journal_invalidatepage(journal, page, offset);
595 }
596 
ocfs2_releasepage(struct page * page,gfp_t wait)597 static int ocfs2_releasepage(struct page *page, gfp_t wait)
598 {
599 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
600 
601 	if (!page_has_buffers(page))
602 		return 0;
603 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
604 }
605 
ocfs2_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)606 static ssize_t ocfs2_direct_IO(int rw,
607 			       struct kiocb *iocb,
608 			       const struct iovec *iov,
609 			       loff_t offset,
610 			       unsigned long nr_segs)
611 {
612 	struct file *file = iocb->ki_filp;
613 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
614 
615 	/*
616 	 * Fallback to buffered I/O if we see an inode without
617 	 * extents.
618 	 */
619 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
620 		return 0;
621 
622 	/* Fallback to buffered I/O if we are appending. */
623 	if (i_size_read(inode) <= offset)
624 		return 0;
625 
626 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
627 				    iov, offset, nr_segs,
628 				    ocfs2_direct_IO_get_blocks,
629 				    ocfs2_dio_end_io, NULL, 0);
630 }
631 
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)632 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
633 					    u32 cpos,
634 					    unsigned int *start,
635 					    unsigned int *end)
636 {
637 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
638 
639 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
640 		unsigned int cpp;
641 
642 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
643 
644 		cluster_start = cpos % cpp;
645 		cluster_start = cluster_start << osb->s_clustersize_bits;
646 
647 		cluster_end = cluster_start + osb->s_clustersize;
648 	}
649 
650 	BUG_ON(cluster_start > PAGE_SIZE);
651 	BUG_ON(cluster_end > PAGE_SIZE);
652 
653 	if (start)
654 		*start = cluster_start;
655 	if (end)
656 		*end = cluster_end;
657 }
658 
659 /*
660  * 'from' and 'to' are the region in the page to avoid zeroing.
661  *
662  * If pagesize > clustersize, this function will avoid zeroing outside
663  * of the cluster boundary.
664  *
665  * from == to == 0 is code for "zero the entire cluster region"
666  */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)667 static void ocfs2_clear_page_regions(struct page *page,
668 				     struct ocfs2_super *osb, u32 cpos,
669 				     unsigned from, unsigned to)
670 {
671 	void *kaddr;
672 	unsigned int cluster_start, cluster_end;
673 
674 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
675 
676 	kaddr = kmap_atomic(page, KM_USER0);
677 
678 	if (from || to) {
679 		if (from > cluster_start)
680 			memset(kaddr + cluster_start, 0, from - cluster_start);
681 		if (to < cluster_end)
682 			memset(kaddr + to, 0, cluster_end - to);
683 	} else {
684 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
685 	}
686 
687 	kunmap_atomic(kaddr, KM_USER0);
688 }
689 
690 /*
691  * Nonsparse file systems fully allocate before we get to the write
692  * code. This prevents ocfs2_write() from tagging the write as an
693  * allocating one, which means ocfs2_map_page_blocks() might try to
694  * read-in the blocks at the tail of our file. Avoid reading them by
695  * testing i_size against each block offset.
696  */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)697 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
698 				 unsigned int block_start)
699 {
700 	u64 offset = page_offset(page) + block_start;
701 
702 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
703 		return 1;
704 
705 	if (i_size_read(inode) > offset)
706 		return 1;
707 
708 	return 0;
709 }
710 
711 /*
712  * Some of this taken from __block_write_begin(). We already have our
713  * mapping by now though, and the entire write will be allocating or
714  * it won't, so not much need to use BH_New.
715  *
716  * This will also skip zeroing, which is handled externally.
717  */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)718 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
719 			  struct inode *inode, unsigned int from,
720 			  unsigned int to, int new)
721 {
722 	int ret = 0;
723 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
724 	unsigned int block_end, block_start;
725 	unsigned int bsize = 1 << inode->i_blkbits;
726 
727 	if (!page_has_buffers(page))
728 		create_empty_buffers(page, bsize, 0);
729 
730 	head = page_buffers(page);
731 	for (bh = head, block_start = 0; bh != head || !block_start;
732 	     bh = bh->b_this_page, block_start += bsize) {
733 		block_end = block_start + bsize;
734 
735 		clear_buffer_new(bh);
736 
737 		/*
738 		 * Ignore blocks outside of our i/o range -
739 		 * they may belong to unallocated clusters.
740 		 */
741 		if (block_start >= to || block_end <= from) {
742 			if (PageUptodate(page))
743 				set_buffer_uptodate(bh);
744 			continue;
745 		}
746 
747 		/*
748 		 * For an allocating write with cluster size >= page
749 		 * size, we always write the entire page.
750 		 */
751 		if (new)
752 			set_buffer_new(bh);
753 
754 		if (!buffer_mapped(bh)) {
755 			map_bh(bh, inode->i_sb, *p_blkno);
756 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
757 		}
758 
759 		if (PageUptodate(page)) {
760 			if (!buffer_uptodate(bh))
761 				set_buffer_uptodate(bh);
762 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
763 			   !buffer_new(bh) &&
764 			   ocfs2_should_read_blk(inode, page, block_start) &&
765 			   (block_start < from || block_end > to)) {
766 			ll_rw_block(READ, 1, &bh);
767 			*wait_bh++=bh;
768 		}
769 
770 		*p_blkno = *p_blkno + 1;
771 	}
772 
773 	/*
774 	 * If we issued read requests - let them complete.
775 	 */
776 	while(wait_bh > wait) {
777 		wait_on_buffer(*--wait_bh);
778 		if (!buffer_uptodate(*wait_bh))
779 			ret = -EIO;
780 	}
781 
782 	if (ret == 0 || !new)
783 		return ret;
784 
785 	/*
786 	 * If we get -EIO above, zero out any newly allocated blocks
787 	 * to avoid exposing stale data.
788 	 */
789 	bh = head;
790 	block_start = 0;
791 	do {
792 		block_end = block_start + bsize;
793 		if (block_end <= from)
794 			goto next_bh;
795 		if (block_start >= to)
796 			break;
797 
798 		zero_user(page, block_start, bh->b_size);
799 		set_buffer_uptodate(bh);
800 		mark_buffer_dirty(bh);
801 
802 next_bh:
803 		block_start = block_end;
804 		bh = bh->b_this_page;
805 	} while (bh != head);
806 
807 	return ret;
808 }
809 
810 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
811 #define OCFS2_MAX_CTXT_PAGES	1
812 #else
813 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
814 #endif
815 
816 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
817 
818 /*
819  * Describe the state of a single cluster to be written to.
820  */
821 struct ocfs2_write_cluster_desc {
822 	u32		c_cpos;
823 	u32		c_phys;
824 	/*
825 	 * Give this a unique field because c_phys eventually gets
826 	 * filled.
827 	 */
828 	unsigned	c_new;
829 	unsigned	c_unwritten;
830 	unsigned	c_needs_zero;
831 };
832 
833 struct ocfs2_write_ctxt {
834 	/* Logical cluster position / len of write */
835 	u32				w_cpos;
836 	u32				w_clen;
837 
838 	/* First cluster allocated in a nonsparse extend */
839 	u32				w_first_new_cpos;
840 
841 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
842 
843 	/*
844 	 * This is true if page_size > cluster_size.
845 	 *
846 	 * It triggers a set of special cases during write which might
847 	 * have to deal with allocating writes to partial pages.
848 	 */
849 	unsigned int			w_large_pages;
850 
851 	/*
852 	 * Pages involved in this write.
853 	 *
854 	 * w_target_page is the page being written to by the user.
855 	 *
856 	 * w_pages is an array of pages which always contains
857 	 * w_target_page, and in the case of an allocating write with
858 	 * page_size < cluster size, it will contain zero'd and mapped
859 	 * pages adjacent to w_target_page which need to be written
860 	 * out in so that future reads from that region will get
861 	 * zero's.
862 	 */
863 	unsigned int			w_num_pages;
864 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
865 	struct page			*w_target_page;
866 
867 	/*
868 	 * ocfs2_write_end() uses this to know what the real range to
869 	 * write in the target should be.
870 	 */
871 	unsigned int			w_target_from;
872 	unsigned int			w_target_to;
873 
874 	/*
875 	 * We could use journal_current_handle() but this is cleaner,
876 	 * IMHO -Mark
877 	 */
878 	handle_t			*w_handle;
879 
880 	struct buffer_head		*w_di_bh;
881 
882 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
883 };
884 
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)885 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
886 {
887 	int i;
888 
889 	for(i = 0; i < num_pages; i++) {
890 		if (pages[i]) {
891 			unlock_page(pages[i]);
892 			mark_page_accessed(pages[i]);
893 			page_cache_release(pages[i]);
894 		}
895 	}
896 }
897 
ocfs2_free_write_ctxt(struct ocfs2_write_ctxt * wc)898 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
899 {
900 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
901 
902 	brelse(wc->w_di_bh);
903 	kfree(wc);
904 }
905 
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,struct buffer_head * di_bh)906 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
907 				  struct ocfs2_super *osb, loff_t pos,
908 				  unsigned len, struct buffer_head *di_bh)
909 {
910 	u32 cend;
911 	struct ocfs2_write_ctxt *wc;
912 
913 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
914 	if (!wc)
915 		return -ENOMEM;
916 
917 	wc->w_cpos = pos >> osb->s_clustersize_bits;
918 	wc->w_first_new_cpos = UINT_MAX;
919 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
920 	wc->w_clen = cend - wc->w_cpos + 1;
921 	get_bh(di_bh);
922 	wc->w_di_bh = di_bh;
923 
924 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
925 		wc->w_large_pages = 1;
926 	else
927 		wc->w_large_pages = 0;
928 
929 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
930 
931 	*wcp = wc;
932 
933 	return 0;
934 }
935 
936 /*
937  * If a page has any new buffers, zero them out here, and mark them uptodate
938  * and dirty so they'll be written out (in order to prevent uninitialised
939  * block data from leaking). And clear the new bit.
940  */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)941 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
942 {
943 	unsigned int block_start, block_end;
944 	struct buffer_head *head, *bh;
945 
946 	BUG_ON(!PageLocked(page));
947 	if (!page_has_buffers(page))
948 		return;
949 
950 	bh = head = page_buffers(page);
951 	block_start = 0;
952 	do {
953 		block_end = block_start + bh->b_size;
954 
955 		if (buffer_new(bh)) {
956 			if (block_end > from && block_start < to) {
957 				if (!PageUptodate(page)) {
958 					unsigned start, end;
959 
960 					start = max(from, block_start);
961 					end = min(to, block_end);
962 
963 					zero_user_segment(page, start, end);
964 					set_buffer_uptodate(bh);
965 				}
966 
967 				clear_buffer_new(bh);
968 				mark_buffer_dirty(bh);
969 			}
970 		}
971 
972 		block_start = block_end;
973 		bh = bh->b_this_page;
974 	} while (bh != head);
975 }
976 
977 /*
978  * Only called when we have a failure during allocating write to write
979  * zero's to the newly allocated region.
980  */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)981 static void ocfs2_write_failure(struct inode *inode,
982 				struct ocfs2_write_ctxt *wc,
983 				loff_t user_pos, unsigned user_len)
984 {
985 	int i;
986 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
987 		to = user_pos + user_len;
988 	struct page *tmppage;
989 
990 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
991 
992 	for(i = 0; i < wc->w_num_pages; i++) {
993 		tmppage = wc->w_pages[i];
994 
995 		if (page_has_buffers(tmppage)) {
996 			if (ocfs2_should_order_data(inode))
997 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
998 
999 			block_commit_write(tmppage, from, to);
1000 		}
1001 	}
1002 }
1003 
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)1004 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1005 					struct ocfs2_write_ctxt *wc,
1006 					struct page *page, u32 cpos,
1007 					loff_t user_pos, unsigned user_len,
1008 					int new)
1009 {
1010 	int ret;
1011 	unsigned int map_from = 0, map_to = 0;
1012 	unsigned int cluster_start, cluster_end;
1013 	unsigned int user_data_from = 0, user_data_to = 0;
1014 
1015 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1016 					&cluster_start, &cluster_end);
1017 
1018 	/* treat the write as new if the a hole/lseek spanned across
1019 	 * the page boundary.
1020 	 */
1021 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1022 			(page_offset(page) <= user_pos));
1023 
1024 	if (page == wc->w_target_page) {
1025 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1026 		map_to = map_from + user_len;
1027 
1028 		if (new)
1029 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1030 						    cluster_start, cluster_end,
1031 						    new);
1032 		else
1033 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1034 						    map_from, map_to, new);
1035 		if (ret) {
1036 			mlog_errno(ret);
1037 			goto out;
1038 		}
1039 
1040 		user_data_from = map_from;
1041 		user_data_to = map_to;
1042 		if (new) {
1043 			map_from = cluster_start;
1044 			map_to = cluster_end;
1045 		}
1046 	} else {
1047 		/*
1048 		 * If we haven't allocated the new page yet, we
1049 		 * shouldn't be writing it out without copying user
1050 		 * data. This is likely a math error from the caller.
1051 		 */
1052 		BUG_ON(!new);
1053 
1054 		map_from = cluster_start;
1055 		map_to = cluster_end;
1056 
1057 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1058 					    cluster_start, cluster_end, new);
1059 		if (ret) {
1060 			mlog_errno(ret);
1061 			goto out;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * Parts of newly allocated pages need to be zero'd.
1067 	 *
1068 	 * Above, we have also rewritten 'to' and 'from' - as far as
1069 	 * the rest of the function is concerned, the entire cluster
1070 	 * range inside of a page needs to be written.
1071 	 *
1072 	 * We can skip this if the page is up to date - it's already
1073 	 * been zero'd from being read in as a hole.
1074 	 */
1075 	if (new && !PageUptodate(page))
1076 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1077 					 cpos, user_data_from, user_data_to);
1078 
1079 	flush_dcache_page(page);
1080 
1081 out:
1082 	return ret;
1083 }
1084 
1085 /*
1086  * This function will only grab one clusters worth of pages.
1087  */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1088 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1089 				      struct ocfs2_write_ctxt *wc,
1090 				      u32 cpos, loff_t user_pos,
1091 				      unsigned user_len, int new,
1092 				      struct page *mmap_page)
1093 {
1094 	int ret = 0, i;
1095 	unsigned long start, target_index, end_index, index;
1096 	struct inode *inode = mapping->host;
1097 	loff_t last_byte;
1098 
1099 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1100 
1101 	/*
1102 	 * Figure out how many pages we'll be manipulating here. For
1103 	 * non allocating write, we just change the one
1104 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1105 	 * writing past i_size, we only need enough pages to cover the
1106 	 * last page of the write.
1107 	 */
1108 	if (new) {
1109 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1110 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1111 		/*
1112 		 * We need the index *past* the last page we could possibly
1113 		 * touch.  This is the page past the end of the write or
1114 		 * i_size, whichever is greater.
1115 		 */
1116 		last_byte = max(user_pos + user_len, i_size_read(inode));
1117 		BUG_ON(last_byte < 1);
1118 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1119 		if ((start + wc->w_num_pages) > end_index)
1120 			wc->w_num_pages = end_index - start;
1121 	} else {
1122 		wc->w_num_pages = 1;
1123 		start = target_index;
1124 	}
1125 
1126 	for(i = 0; i < wc->w_num_pages; i++) {
1127 		index = start + i;
1128 
1129 		if (index == target_index && mmap_page) {
1130 			/*
1131 			 * ocfs2_pagemkwrite() is a little different
1132 			 * and wants us to directly use the page
1133 			 * passed in.
1134 			 */
1135 			lock_page(mmap_page);
1136 
1137 			if (mmap_page->mapping != mapping) {
1138 				unlock_page(mmap_page);
1139 				/*
1140 				 * Sanity check - the locking in
1141 				 * ocfs2_pagemkwrite() should ensure
1142 				 * that this code doesn't trigger.
1143 				 */
1144 				ret = -EINVAL;
1145 				mlog_errno(ret);
1146 				goto out;
1147 			}
1148 
1149 			page_cache_get(mmap_page);
1150 			wc->w_pages[i] = mmap_page;
1151 		} else {
1152 			wc->w_pages[i] = find_or_create_page(mapping, index,
1153 							     GFP_NOFS);
1154 			if (!wc->w_pages[i]) {
1155 				ret = -ENOMEM;
1156 				mlog_errno(ret);
1157 				goto out;
1158 			}
1159 		}
1160 
1161 		if (index == target_index)
1162 			wc->w_target_page = wc->w_pages[i];
1163 	}
1164 out:
1165 	return ret;
1166 }
1167 
1168 /*
1169  * Prepare a single cluster for write one cluster into the file.
1170  */
ocfs2_write_cluster(struct address_space * mapping,u32 phys,unsigned int unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1171 static int ocfs2_write_cluster(struct address_space *mapping,
1172 			       u32 phys, unsigned int unwritten,
1173 			       unsigned int should_zero,
1174 			       struct ocfs2_alloc_context *data_ac,
1175 			       struct ocfs2_alloc_context *meta_ac,
1176 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1177 			       loff_t user_pos, unsigned user_len)
1178 {
1179 	int ret, i, new;
1180 	u64 v_blkno, p_blkno;
1181 	struct inode *inode = mapping->host;
1182 	struct ocfs2_extent_tree et;
1183 
1184 	new = phys == 0 ? 1 : 0;
1185 	if (new) {
1186 		u32 tmp_pos;
1187 
1188 		/*
1189 		 * This is safe to call with the page locks - it won't take
1190 		 * any additional semaphores or cluster locks.
1191 		 */
1192 		tmp_pos = cpos;
1193 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1194 					   &tmp_pos, 1, 0, wc->w_di_bh,
1195 					   wc->w_handle, data_ac,
1196 					   meta_ac, NULL);
1197 		/*
1198 		 * This shouldn't happen because we must have already
1199 		 * calculated the correct meta data allocation required. The
1200 		 * internal tree allocation code should know how to increase
1201 		 * transaction credits itself.
1202 		 *
1203 		 * If need be, we could handle -EAGAIN for a
1204 		 * RESTART_TRANS here.
1205 		 */
1206 		mlog_bug_on_msg(ret == -EAGAIN,
1207 				"Inode %llu: EAGAIN return during allocation.\n",
1208 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1209 		if (ret < 0) {
1210 			mlog_errno(ret);
1211 			goto out;
1212 		}
1213 	} else if (unwritten) {
1214 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1215 					      wc->w_di_bh);
1216 		ret = ocfs2_mark_extent_written(inode, &et,
1217 						wc->w_handle, cpos, 1, phys,
1218 						meta_ac, &wc->w_dealloc);
1219 		if (ret < 0) {
1220 			mlog_errno(ret);
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	if (should_zero)
1226 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1227 	else
1228 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1229 
1230 	/*
1231 	 * The only reason this should fail is due to an inability to
1232 	 * find the extent added.
1233 	 */
1234 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1235 					  NULL);
1236 	if (ret < 0) {
1237 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1238 			    "at logical block %llu",
1239 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1240 			    (unsigned long long)v_blkno);
1241 		goto out;
1242 	}
1243 
1244 	BUG_ON(p_blkno == 0);
1245 
1246 	for(i = 0; i < wc->w_num_pages; i++) {
1247 		int tmpret;
1248 
1249 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1250 						      wc->w_pages[i], cpos,
1251 						      user_pos, user_len,
1252 						      should_zero);
1253 		if (tmpret) {
1254 			mlog_errno(tmpret);
1255 			if (ret == 0)
1256 				ret = tmpret;
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * We only have cleanup to do in case of allocating write.
1262 	 */
1263 	if (ret && new)
1264 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1265 
1266 out:
1267 
1268 	return ret;
1269 }
1270 
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1271 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1272 				       struct ocfs2_alloc_context *data_ac,
1273 				       struct ocfs2_alloc_context *meta_ac,
1274 				       struct ocfs2_write_ctxt *wc,
1275 				       loff_t pos, unsigned len)
1276 {
1277 	int ret, i;
1278 	loff_t cluster_off;
1279 	unsigned int local_len = len;
1280 	struct ocfs2_write_cluster_desc *desc;
1281 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1282 
1283 	for (i = 0; i < wc->w_clen; i++) {
1284 		desc = &wc->w_desc[i];
1285 
1286 		/*
1287 		 * We have to make sure that the total write passed in
1288 		 * doesn't extend past a single cluster.
1289 		 */
1290 		local_len = len;
1291 		cluster_off = pos & (osb->s_clustersize - 1);
1292 		if ((cluster_off + local_len) > osb->s_clustersize)
1293 			local_len = osb->s_clustersize - cluster_off;
1294 
1295 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1296 					  desc->c_unwritten,
1297 					  desc->c_needs_zero,
1298 					  data_ac, meta_ac,
1299 					  wc, desc->c_cpos, pos, local_len);
1300 		if (ret) {
1301 			mlog_errno(ret);
1302 			goto out;
1303 		}
1304 
1305 		len -= local_len;
1306 		pos += local_len;
1307 	}
1308 
1309 	ret = 0;
1310 out:
1311 	return ret;
1312 }
1313 
1314 /*
1315  * ocfs2_write_end() wants to know which parts of the target page it
1316  * should complete the write on. It's easiest to compute them ahead of
1317  * time when a more complete view of the write is available.
1318  */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1319 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1320 					struct ocfs2_write_ctxt *wc,
1321 					loff_t pos, unsigned len, int alloc)
1322 {
1323 	struct ocfs2_write_cluster_desc *desc;
1324 
1325 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1326 	wc->w_target_to = wc->w_target_from + len;
1327 
1328 	if (alloc == 0)
1329 		return;
1330 
1331 	/*
1332 	 * Allocating write - we may have different boundaries based
1333 	 * on page size and cluster size.
1334 	 *
1335 	 * NOTE: We can no longer compute one value from the other as
1336 	 * the actual write length and user provided length may be
1337 	 * different.
1338 	 */
1339 
1340 	if (wc->w_large_pages) {
1341 		/*
1342 		 * We only care about the 1st and last cluster within
1343 		 * our range and whether they should be zero'd or not. Either
1344 		 * value may be extended out to the start/end of a
1345 		 * newly allocated cluster.
1346 		 */
1347 		desc = &wc->w_desc[0];
1348 		if (desc->c_needs_zero)
1349 			ocfs2_figure_cluster_boundaries(osb,
1350 							desc->c_cpos,
1351 							&wc->w_target_from,
1352 							NULL);
1353 
1354 		desc = &wc->w_desc[wc->w_clen - 1];
1355 		if (desc->c_needs_zero)
1356 			ocfs2_figure_cluster_boundaries(osb,
1357 							desc->c_cpos,
1358 							NULL,
1359 							&wc->w_target_to);
1360 	} else {
1361 		wc->w_target_from = 0;
1362 		wc->w_target_to = PAGE_CACHE_SIZE;
1363 	}
1364 }
1365 
1366 /*
1367  * Populate each single-cluster write descriptor in the write context
1368  * with information about the i/o to be done.
1369  *
1370  * Returns the number of clusters that will have to be allocated, as
1371  * well as a worst case estimate of the number of extent records that
1372  * would have to be created during a write to an unwritten region.
1373  */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1374 static int ocfs2_populate_write_desc(struct inode *inode,
1375 				     struct ocfs2_write_ctxt *wc,
1376 				     unsigned int *clusters_to_alloc,
1377 				     unsigned int *extents_to_split)
1378 {
1379 	int ret;
1380 	struct ocfs2_write_cluster_desc *desc;
1381 	unsigned int num_clusters = 0;
1382 	unsigned int ext_flags = 0;
1383 	u32 phys = 0;
1384 	int i;
1385 
1386 	*clusters_to_alloc = 0;
1387 	*extents_to_split = 0;
1388 
1389 	for (i = 0; i < wc->w_clen; i++) {
1390 		desc = &wc->w_desc[i];
1391 		desc->c_cpos = wc->w_cpos + i;
1392 
1393 		if (num_clusters == 0) {
1394 			/*
1395 			 * Need to look up the next extent record.
1396 			 */
1397 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1398 						 &num_clusters, &ext_flags);
1399 			if (ret) {
1400 				mlog_errno(ret);
1401 				goto out;
1402 			}
1403 
1404 			/* We should already CoW the refcountd extent. */
1405 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1406 
1407 			/*
1408 			 * Assume worst case - that we're writing in
1409 			 * the middle of the extent.
1410 			 *
1411 			 * We can assume that the write proceeds from
1412 			 * left to right, in which case the extent
1413 			 * insert code is smart enough to coalesce the
1414 			 * next splits into the previous records created.
1415 			 */
1416 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1417 				*extents_to_split = *extents_to_split + 2;
1418 		} else if (phys) {
1419 			/*
1420 			 * Only increment phys if it doesn't describe
1421 			 * a hole.
1422 			 */
1423 			phys++;
1424 		}
1425 
1426 		/*
1427 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1428 		 * file that got extended.  w_first_new_cpos tells us
1429 		 * where the newly allocated clusters are so we can
1430 		 * zero them.
1431 		 */
1432 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1433 			BUG_ON(phys == 0);
1434 			desc->c_needs_zero = 1;
1435 		}
1436 
1437 		desc->c_phys = phys;
1438 		if (phys == 0) {
1439 			desc->c_new = 1;
1440 			desc->c_needs_zero = 1;
1441 			*clusters_to_alloc = *clusters_to_alloc + 1;
1442 		}
1443 
1444 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1445 			desc->c_unwritten = 1;
1446 			desc->c_needs_zero = 1;
1447 		}
1448 
1449 		num_clusters--;
1450 	}
1451 
1452 	ret = 0;
1453 out:
1454 	return ret;
1455 }
1456 
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1457 static int ocfs2_write_begin_inline(struct address_space *mapping,
1458 				    struct inode *inode,
1459 				    struct ocfs2_write_ctxt *wc)
1460 {
1461 	int ret;
1462 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1463 	struct page *page;
1464 	handle_t *handle;
1465 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1466 
1467 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1468 	if (!page) {
1469 		ret = -ENOMEM;
1470 		mlog_errno(ret);
1471 		goto out;
1472 	}
1473 	/*
1474 	 * If we don't set w_num_pages then this page won't get unlocked
1475 	 * and freed on cleanup of the write context.
1476 	 */
1477 	wc->w_pages[0] = wc->w_target_page = page;
1478 	wc->w_num_pages = 1;
1479 
1480 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1481 	if (IS_ERR(handle)) {
1482 		ret = PTR_ERR(handle);
1483 		mlog_errno(ret);
1484 		goto out;
1485 	}
1486 
1487 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1488 				      OCFS2_JOURNAL_ACCESS_WRITE);
1489 	if (ret) {
1490 		ocfs2_commit_trans(osb, handle);
1491 
1492 		mlog_errno(ret);
1493 		goto out;
1494 	}
1495 
1496 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1497 		ocfs2_set_inode_data_inline(inode, di);
1498 
1499 	if (!PageUptodate(page)) {
1500 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1501 		if (ret) {
1502 			ocfs2_commit_trans(osb, handle);
1503 
1504 			goto out;
1505 		}
1506 	}
1507 
1508 	wc->w_handle = handle;
1509 out:
1510 	return ret;
1511 }
1512 
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1513 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1514 {
1515 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1516 
1517 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1518 		return 1;
1519 	return 0;
1520 }
1521 
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1522 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1523 					  struct inode *inode, loff_t pos,
1524 					  unsigned len, struct page *mmap_page,
1525 					  struct ocfs2_write_ctxt *wc)
1526 {
1527 	int ret, written = 0;
1528 	loff_t end = pos + len;
1529 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1530 	struct ocfs2_dinode *di = NULL;
1531 
1532 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1533 					     len, (unsigned long long)pos,
1534 					     oi->ip_dyn_features);
1535 
1536 	/*
1537 	 * Handle inodes which already have inline data 1st.
1538 	 */
1539 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1540 		if (mmap_page == NULL &&
1541 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1542 			goto do_inline_write;
1543 
1544 		/*
1545 		 * The write won't fit - we have to give this inode an
1546 		 * inline extent list now.
1547 		 */
1548 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1549 		if (ret)
1550 			mlog_errno(ret);
1551 		goto out;
1552 	}
1553 
1554 	/*
1555 	 * Check whether the inode can accept inline data.
1556 	 */
1557 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1558 		return 0;
1559 
1560 	/*
1561 	 * Check whether the write can fit.
1562 	 */
1563 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1564 	if (mmap_page ||
1565 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1566 		return 0;
1567 
1568 do_inline_write:
1569 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1570 	if (ret) {
1571 		mlog_errno(ret);
1572 		goto out;
1573 	}
1574 
1575 	/*
1576 	 * This signals to the caller that the data can be written
1577 	 * inline.
1578 	 */
1579 	written = 1;
1580 out:
1581 	return written ? written : ret;
1582 }
1583 
1584 /*
1585  * This function only does anything for file systems which can't
1586  * handle sparse files.
1587  *
1588  * What we want to do here is fill in any hole between the current end
1589  * of allocation and the end of our write. That way the rest of the
1590  * write path can treat it as an non-allocating write, which has no
1591  * special case code for sparse/nonsparse files.
1592  */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1593 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1594 					struct buffer_head *di_bh,
1595 					loff_t pos, unsigned len,
1596 					struct ocfs2_write_ctxt *wc)
1597 {
1598 	int ret;
1599 	loff_t newsize = pos + len;
1600 
1601 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1602 
1603 	if (newsize <= i_size_read(inode))
1604 		return 0;
1605 
1606 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1607 	if (ret)
1608 		mlog_errno(ret);
1609 
1610 	wc->w_first_new_cpos =
1611 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1612 
1613 	return ret;
1614 }
1615 
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1616 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1617 			   loff_t pos)
1618 {
1619 	int ret = 0;
1620 
1621 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1622 	if (pos > i_size_read(inode))
1623 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1624 
1625 	return ret;
1626 }
1627 
1628 /*
1629  * Try to flush truncate logs if we can free enough clusters from it.
1630  * As for return value, "< 0" means error, "0" no space and "1" means
1631  * we have freed enough spaces and let the caller try to allocate again.
1632  */
ocfs2_try_to_free_truncate_log(struct ocfs2_super * osb,unsigned int needed)1633 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1634 					  unsigned int needed)
1635 {
1636 	tid_t target;
1637 	int ret = 0;
1638 	unsigned int truncated_clusters;
1639 
1640 	mutex_lock(&osb->osb_tl_inode->i_mutex);
1641 	truncated_clusters = osb->truncated_clusters;
1642 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1643 
1644 	/*
1645 	 * Check whether we can succeed in allocating if we free
1646 	 * the truncate log.
1647 	 */
1648 	if (truncated_clusters < needed)
1649 		goto out;
1650 
1651 	ret = ocfs2_flush_truncate_log(osb);
1652 	if (ret) {
1653 		mlog_errno(ret);
1654 		goto out;
1655 	}
1656 
1657 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1658 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1659 		ret = 1;
1660 	}
1661 out:
1662 	return ret;
1663 }
1664 
ocfs2_write_begin_nolock(struct file * filp,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1665 int ocfs2_write_begin_nolock(struct file *filp,
1666 			     struct address_space *mapping,
1667 			     loff_t pos, unsigned len, unsigned flags,
1668 			     struct page **pagep, void **fsdata,
1669 			     struct buffer_head *di_bh, struct page *mmap_page)
1670 {
1671 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1672 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1673 	struct ocfs2_write_ctxt *wc;
1674 	struct inode *inode = mapping->host;
1675 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1676 	struct ocfs2_dinode *di;
1677 	struct ocfs2_alloc_context *data_ac = NULL;
1678 	struct ocfs2_alloc_context *meta_ac = NULL;
1679 	handle_t *handle;
1680 	struct ocfs2_extent_tree et;
1681 	int try_free = 1, ret1;
1682 
1683 try_again:
1684 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1685 	if (ret) {
1686 		mlog_errno(ret);
1687 		return ret;
1688 	}
1689 
1690 	if (ocfs2_supports_inline_data(osb)) {
1691 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1692 						     mmap_page, wc);
1693 		if (ret == 1) {
1694 			ret = 0;
1695 			goto success;
1696 		}
1697 		if (ret < 0) {
1698 			mlog_errno(ret);
1699 			goto out;
1700 		}
1701 	}
1702 
1703 	if (ocfs2_sparse_alloc(osb))
1704 		ret = ocfs2_zero_tail(inode, di_bh, pos);
1705 	else
1706 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1707 						   wc);
1708 	if (ret) {
1709 		mlog_errno(ret);
1710 		goto out;
1711 	}
1712 
1713 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1714 	if (ret < 0) {
1715 		mlog_errno(ret);
1716 		goto out;
1717 	} else if (ret == 1) {
1718 		clusters_need = wc->w_clen;
1719 		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1720 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1721 		if (ret) {
1722 			mlog_errno(ret);
1723 			goto out;
1724 		}
1725 	}
1726 
1727 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1728 					&extents_to_split);
1729 	if (ret) {
1730 		mlog_errno(ret);
1731 		goto out;
1732 	}
1733 	clusters_need += clusters_to_alloc;
1734 
1735 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1736 
1737 	trace_ocfs2_write_begin_nolock(
1738 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1739 			(long long)i_size_read(inode),
1740 			le32_to_cpu(di->i_clusters),
1741 			pos, len, flags, mmap_page,
1742 			clusters_to_alloc, extents_to_split);
1743 
1744 	/*
1745 	 * We set w_target_from, w_target_to here so that
1746 	 * ocfs2_write_end() knows which range in the target page to
1747 	 * write out. An allocation requires that we write the entire
1748 	 * cluster range.
1749 	 */
1750 	if (clusters_to_alloc || extents_to_split) {
1751 		/*
1752 		 * XXX: We are stretching the limits of
1753 		 * ocfs2_lock_allocators(). It greatly over-estimates
1754 		 * the work to be done.
1755 		 */
1756 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1757 					      wc->w_di_bh);
1758 		ret = ocfs2_lock_allocators(inode, &et,
1759 					    clusters_to_alloc, extents_to_split,
1760 					    &data_ac, &meta_ac);
1761 		if (ret) {
1762 			mlog_errno(ret);
1763 			goto out;
1764 		}
1765 
1766 		if (data_ac)
1767 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1768 
1769 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1770 						    &di->id2.i_list,
1771 						    clusters_to_alloc);
1772 
1773 	}
1774 
1775 	/*
1776 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1777 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1778 	 * we know zeros will only be needed in the first and/or last cluster.
1779 	 */
1780 	if (clusters_to_alloc || extents_to_split ||
1781 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1782 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1783 		cluster_of_pages = 1;
1784 	else
1785 		cluster_of_pages = 0;
1786 
1787 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1788 
1789 	handle = ocfs2_start_trans(osb, credits);
1790 	if (IS_ERR(handle)) {
1791 		ret = PTR_ERR(handle);
1792 		mlog_errno(ret);
1793 		goto out;
1794 	}
1795 
1796 	wc->w_handle = handle;
1797 
1798 	if (clusters_to_alloc) {
1799 		ret = dquot_alloc_space_nodirty(inode,
1800 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1801 		if (ret)
1802 			goto out_commit;
1803 	}
1804 	/*
1805 	 * We don't want this to fail in ocfs2_write_end(), so do it
1806 	 * here.
1807 	 */
1808 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1809 				      OCFS2_JOURNAL_ACCESS_WRITE);
1810 	if (ret) {
1811 		mlog_errno(ret);
1812 		goto out_quota;
1813 	}
1814 
1815 	/*
1816 	 * Fill our page array first. That way we've grabbed enough so
1817 	 * that we can zero and flush if we error after adding the
1818 	 * extent.
1819 	 */
1820 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1821 					 cluster_of_pages, mmap_page);
1822 	if (ret) {
1823 		mlog_errno(ret);
1824 		goto out_quota;
1825 	}
1826 
1827 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1828 					  len);
1829 	if (ret) {
1830 		mlog_errno(ret);
1831 		goto out_quota;
1832 	}
1833 
1834 	if (data_ac)
1835 		ocfs2_free_alloc_context(data_ac);
1836 	if (meta_ac)
1837 		ocfs2_free_alloc_context(meta_ac);
1838 
1839 success:
1840 	*pagep = wc->w_target_page;
1841 	*fsdata = wc;
1842 	return 0;
1843 out_quota:
1844 	if (clusters_to_alloc)
1845 		dquot_free_space(inode,
1846 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1847 out_commit:
1848 	ocfs2_commit_trans(osb, handle);
1849 
1850 out:
1851 	ocfs2_free_write_ctxt(wc);
1852 
1853 	if (data_ac)
1854 		ocfs2_free_alloc_context(data_ac);
1855 	if (meta_ac)
1856 		ocfs2_free_alloc_context(meta_ac);
1857 
1858 	if (ret == -ENOSPC && try_free) {
1859 		/*
1860 		 * Try to free some truncate log so that we can have enough
1861 		 * clusters to allocate.
1862 		 */
1863 		try_free = 0;
1864 
1865 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1866 		if (ret1 == 1)
1867 			goto try_again;
1868 
1869 		if (ret1 < 0)
1870 			mlog_errno(ret1);
1871 	}
1872 
1873 	return ret;
1874 }
1875 
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1876 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1877 			     loff_t pos, unsigned len, unsigned flags,
1878 			     struct page **pagep, void **fsdata)
1879 {
1880 	int ret;
1881 	struct buffer_head *di_bh = NULL;
1882 	struct inode *inode = mapping->host;
1883 
1884 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1885 	if (ret) {
1886 		mlog_errno(ret);
1887 		return ret;
1888 	}
1889 
1890 	/*
1891 	 * Take alloc sem here to prevent concurrent lookups. That way
1892 	 * the mapping, zeroing and tree manipulation within
1893 	 * ocfs2_write() will be safe against ->readpage(). This
1894 	 * should also serve to lock out allocation from a shared
1895 	 * writeable region.
1896 	 */
1897 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1898 
1899 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1900 				       fsdata, di_bh, NULL);
1901 	if (ret) {
1902 		mlog_errno(ret);
1903 		goto out_fail;
1904 	}
1905 
1906 	brelse(di_bh);
1907 
1908 	return 0;
1909 
1910 out_fail:
1911 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1912 
1913 	brelse(di_bh);
1914 	ocfs2_inode_unlock(inode, 1);
1915 
1916 	return ret;
1917 }
1918 
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1919 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1920 				   unsigned len, unsigned *copied,
1921 				   struct ocfs2_dinode *di,
1922 				   struct ocfs2_write_ctxt *wc)
1923 {
1924 	void *kaddr;
1925 
1926 	if (unlikely(*copied < len)) {
1927 		if (!PageUptodate(wc->w_target_page)) {
1928 			*copied = 0;
1929 			return;
1930 		}
1931 	}
1932 
1933 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1934 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1935 	kunmap_atomic(kaddr, KM_USER0);
1936 
1937 	trace_ocfs2_write_end_inline(
1938 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1939 	     (unsigned long long)pos, *copied,
1940 	     le16_to_cpu(di->id2.i_data.id_count),
1941 	     le16_to_cpu(di->i_dyn_features));
1942 }
1943 
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1944 int ocfs2_write_end_nolock(struct address_space *mapping,
1945 			   loff_t pos, unsigned len, unsigned copied,
1946 			   struct page *page, void *fsdata)
1947 {
1948 	int i;
1949 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1950 	struct inode *inode = mapping->host;
1951 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1952 	struct ocfs2_write_ctxt *wc = fsdata;
1953 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1954 	handle_t *handle = wc->w_handle;
1955 	struct page *tmppage;
1956 
1957 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1958 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1959 		goto out_write_size;
1960 	}
1961 
1962 	if (unlikely(copied < len)) {
1963 		if (!PageUptodate(wc->w_target_page))
1964 			copied = 0;
1965 
1966 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1967 				       start+len);
1968 	}
1969 	flush_dcache_page(wc->w_target_page);
1970 
1971 	for(i = 0; i < wc->w_num_pages; i++) {
1972 		tmppage = wc->w_pages[i];
1973 
1974 		if (tmppage == wc->w_target_page) {
1975 			from = wc->w_target_from;
1976 			to = wc->w_target_to;
1977 
1978 			BUG_ON(from > PAGE_CACHE_SIZE ||
1979 			       to > PAGE_CACHE_SIZE ||
1980 			       to < from);
1981 		} else {
1982 			/*
1983 			 * Pages adjacent to the target (if any) imply
1984 			 * a hole-filling write in which case we want
1985 			 * to flush their entire range.
1986 			 */
1987 			from = 0;
1988 			to = PAGE_CACHE_SIZE;
1989 		}
1990 
1991 		if (page_has_buffers(tmppage)) {
1992 			if (ocfs2_should_order_data(inode))
1993 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1994 			block_commit_write(tmppage, from, to);
1995 		}
1996 	}
1997 
1998 out_write_size:
1999 	pos += copied;
2000 	if (pos > inode->i_size) {
2001 		i_size_write(inode, pos);
2002 		mark_inode_dirty(inode);
2003 	}
2004 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2005 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2006 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2007 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2008 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2009 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2010 
2011 	ocfs2_commit_trans(osb, handle);
2012 
2013 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2014 
2015 	ocfs2_free_write_ctxt(wc);
2016 
2017 	return copied;
2018 }
2019 
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2020 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2021 			   loff_t pos, unsigned len, unsigned copied,
2022 			   struct page *page, void *fsdata)
2023 {
2024 	int ret;
2025 	struct inode *inode = mapping->host;
2026 
2027 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2028 
2029 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2030 	ocfs2_inode_unlock(inode, 1);
2031 
2032 	return ret;
2033 }
2034 
2035 const struct address_space_operations ocfs2_aops = {
2036 	.readpage		= ocfs2_readpage,
2037 	.readpages		= ocfs2_readpages,
2038 	.writepage		= ocfs2_writepage,
2039 	.write_begin		= ocfs2_write_begin,
2040 	.write_end		= ocfs2_write_end,
2041 	.bmap			= ocfs2_bmap,
2042 	.direct_IO		= ocfs2_direct_IO,
2043 	.invalidatepage		= ocfs2_invalidatepage,
2044 	.releasepage		= ocfs2_releasepage,
2045 	.migratepage		= buffer_migrate_page,
2046 	.is_partially_uptodate	= block_is_partially_uptodate,
2047 	.error_remove_page	= generic_error_remove_page,
2048 };
2049