1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * journal.c
4 *
5 * Defines functions of journalling api
6 *
7 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18
19 #include <cluster/masklog.h>
20
21 #include "ocfs2.h"
22
23 #include "alloc.h"
24 #include "blockcheck.h"
25 #include "dir.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "heartbeat.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "localalloc.h"
32 #include "slot_map.h"
33 #include "super.h"
34 #include "sysfile.h"
35 #include "uptodate.h"
36 #include "quota.h"
37 #include "file.h"
38 #include "namei.h"
39
40 #include "buffer_head_io.h"
41 #include "ocfs2_trace.h"
42
43 DEFINE_SPINLOCK(trans_inc_lock);
44
45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
46
47 static int ocfs2_force_read_journal(struct inode *inode);
48 static int ocfs2_recover_node(struct ocfs2_super *osb,
49 int node_num, int slot_num);
50 static int __ocfs2_recovery_thread(void *arg);
51 static int ocfs2_commit_cache(struct ocfs2_super *osb);
52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
54 int dirty, int replayed);
55 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
56 int slot_num);
57 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
58 int slot,
59 enum ocfs2_orphan_reco_type orphan_reco_type);
60 static int ocfs2_commit_thread(void *arg);
61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
62 int slot_num,
63 struct ocfs2_dinode *la_dinode,
64 struct ocfs2_dinode *tl_dinode,
65 struct ocfs2_quota_recovery *qrec,
66 enum ocfs2_orphan_reco_type orphan_reco_type);
67
ocfs2_wait_on_mount(struct ocfs2_super * osb)68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
69 {
70 return __ocfs2_wait_on_mount(osb, 0);
71 }
72
ocfs2_wait_on_quotas(struct ocfs2_super * osb)73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
74 {
75 return __ocfs2_wait_on_mount(osb, 1);
76 }
77
78 /*
79 * This replay_map is to track online/offline slots, so we could recover
80 * offline slots during recovery and mount
81 */
82
83 enum ocfs2_replay_state {
84 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
85 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
86 REPLAY_DONE /* Replay was already queued */
87 };
88
89 struct ocfs2_replay_map {
90 unsigned int rm_slots;
91 enum ocfs2_replay_state rm_state;
92 unsigned char rm_replay_slots[];
93 };
94
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
96 {
97 if (!osb->replay_map)
98 return;
99
100 /* If we've already queued the replay, we don't have any more to do */
101 if (osb->replay_map->rm_state == REPLAY_DONE)
102 return;
103
104 osb->replay_map->rm_state = state;
105 }
106
ocfs2_compute_replay_slots(struct ocfs2_super * osb)107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
108 {
109 struct ocfs2_replay_map *replay_map;
110 int i, node_num;
111
112 /* If replay map is already set, we don't do it again */
113 if (osb->replay_map)
114 return 0;
115
116 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
117 (osb->max_slots * sizeof(char)), GFP_KERNEL);
118
119 if (!replay_map) {
120 mlog_errno(-ENOMEM);
121 return -ENOMEM;
122 }
123
124 spin_lock(&osb->osb_lock);
125
126 replay_map->rm_slots = osb->max_slots;
127 replay_map->rm_state = REPLAY_UNNEEDED;
128
129 /* set rm_replay_slots for offline slot(s) */
130 for (i = 0; i < replay_map->rm_slots; i++) {
131 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
132 replay_map->rm_replay_slots[i] = 1;
133 }
134
135 osb->replay_map = replay_map;
136 spin_unlock(&osb->osb_lock);
137 return 0;
138 }
139
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
141 enum ocfs2_orphan_reco_type orphan_reco_type)
142 {
143 struct ocfs2_replay_map *replay_map = osb->replay_map;
144 int i;
145
146 if (!replay_map)
147 return;
148
149 if (replay_map->rm_state != REPLAY_NEEDED)
150 return;
151
152 for (i = 0; i < replay_map->rm_slots; i++)
153 if (replay_map->rm_replay_slots[i])
154 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
155 NULL, NULL,
156 orphan_reco_type);
157 replay_map->rm_state = REPLAY_DONE;
158 }
159
ocfs2_free_replay_slots(struct ocfs2_super * osb)160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
161 {
162 struct ocfs2_replay_map *replay_map = osb->replay_map;
163
164 if (!osb->replay_map)
165 return;
166
167 kfree(replay_map);
168 osb->replay_map = NULL;
169 }
170
ocfs2_recovery_init(struct ocfs2_super * osb)171 int ocfs2_recovery_init(struct ocfs2_super *osb)
172 {
173 struct ocfs2_recovery_map *rm;
174
175 mutex_init(&osb->recovery_lock);
176 osb->disable_recovery = 0;
177 osb->recovery_thread_task = NULL;
178 init_waitqueue_head(&osb->recovery_event);
179
180 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
181 osb->max_slots * sizeof(unsigned int),
182 GFP_KERNEL);
183 if (!rm) {
184 mlog_errno(-ENOMEM);
185 return -ENOMEM;
186 }
187
188 rm->rm_entries = (unsigned int *)((char *)rm +
189 sizeof(struct ocfs2_recovery_map));
190 osb->recovery_map = rm;
191
192 return 0;
193 }
194
195 /* we can't grab the goofy sem lock from inside wait_event, so we use
196 * memory barriers to make sure that we'll see the null task before
197 * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
199 {
200 mb();
201 return osb->recovery_thread_task != NULL;
202 }
203
ocfs2_recovery_exit(struct ocfs2_super * osb)204 void ocfs2_recovery_exit(struct ocfs2_super *osb)
205 {
206 struct ocfs2_recovery_map *rm;
207
208 /* disable any new recovery threads and wait for any currently
209 * running ones to exit. Do this before setting the vol_state. */
210 mutex_lock(&osb->recovery_lock);
211 osb->disable_recovery = 1;
212 mutex_unlock(&osb->recovery_lock);
213 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
214
215 /* At this point, we know that no more recovery threads can be
216 * launched, so wait for any recovery completion work to
217 * complete. */
218 if (osb->ocfs2_wq)
219 flush_workqueue(osb->ocfs2_wq);
220
221 /*
222 * Now that recovery is shut down, and the osb is about to be
223 * freed, the osb_lock is not taken here.
224 */
225 rm = osb->recovery_map;
226 /* XXX: Should we bug if there are dirty entries? */
227
228 kfree(rm);
229 }
230
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
232 unsigned int node_num)
233 {
234 int i;
235 struct ocfs2_recovery_map *rm = osb->recovery_map;
236
237 assert_spin_locked(&osb->osb_lock);
238
239 for (i = 0; i < rm->rm_used; i++) {
240 if (rm->rm_entries[i] == node_num)
241 return 1;
242 }
243
244 return 0;
245 }
246
247 /* Behaves like test-and-set. Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
249 unsigned int node_num)
250 {
251 struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253 spin_lock(&osb->osb_lock);
254 if (__ocfs2_recovery_map_test(osb, node_num)) {
255 spin_unlock(&osb->osb_lock);
256 return 1;
257 }
258
259 /* XXX: Can this be exploited? Not from o2dlm... */
260 BUG_ON(rm->rm_used >= osb->max_slots);
261
262 rm->rm_entries[rm->rm_used] = node_num;
263 rm->rm_used++;
264 spin_unlock(&osb->osb_lock);
265
266 return 0;
267 }
268
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
270 unsigned int node_num)
271 {
272 int i;
273 struct ocfs2_recovery_map *rm = osb->recovery_map;
274
275 spin_lock(&osb->osb_lock);
276
277 for (i = 0; i < rm->rm_used; i++) {
278 if (rm->rm_entries[i] == node_num)
279 break;
280 }
281
282 if (i < rm->rm_used) {
283 /* XXX: be careful with the pointer math */
284 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
285 (rm->rm_used - i - 1) * sizeof(unsigned int));
286 rm->rm_used--;
287 }
288
289 spin_unlock(&osb->osb_lock);
290 }
291
ocfs2_commit_cache(struct ocfs2_super * osb)292 static int ocfs2_commit_cache(struct ocfs2_super *osb)
293 {
294 int status = 0;
295 unsigned int flushed;
296 struct ocfs2_journal *journal = NULL;
297
298 journal = osb->journal;
299
300 /* Flush all pending commits and checkpoint the journal. */
301 down_write(&journal->j_trans_barrier);
302
303 flushed = atomic_read(&journal->j_num_trans);
304 trace_ocfs2_commit_cache_begin(flushed);
305 if (flushed == 0) {
306 up_write(&journal->j_trans_barrier);
307 goto finally;
308 }
309
310 jbd2_journal_lock_updates(journal->j_journal);
311 status = jbd2_journal_flush(journal->j_journal, 0);
312 jbd2_journal_unlock_updates(journal->j_journal);
313 if (status < 0) {
314 up_write(&journal->j_trans_barrier);
315 mlog_errno(status);
316 goto finally;
317 }
318
319 ocfs2_inc_trans_id(journal);
320
321 flushed = atomic_read(&journal->j_num_trans);
322 atomic_set(&journal->j_num_trans, 0);
323 up_write(&journal->j_trans_barrier);
324
325 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
326
327 ocfs2_wake_downconvert_thread(osb);
328 wake_up(&journal->j_checkpointed);
329 finally:
330 return status;
331 }
332
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
334 {
335 journal_t *journal = osb->journal->j_journal;
336 handle_t *handle;
337
338 BUG_ON(!osb || !osb->journal->j_journal);
339
340 if (ocfs2_is_hard_readonly(osb))
341 return ERR_PTR(-EROFS);
342
343 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
344 BUG_ON(max_buffs <= 0);
345
346 /* Nested transaction? Just return the handle... */
347 if (journal_current_handle())
348 return jbd2_journal_start(journal, max_buffs);
349
350 sb_start_intwrite(osb->sb);
351
352 down_read(&osb->journal->j_trans_barrier);
353
354 handle = jbd2_journal_start(journal, max_buffs);
355 if (IS_ERR(handle)) {
356 up_read(&osb->journal->j_trans_barrier);
357 sb_end_intwrite(osb->sb);
358
359 mlog_errno(PTR_ERR(handle));
360
361 if (is_journal_aborted(journal)) {
362 ocfs2_abort(osb->sb, "Detected aborted journal\n");
363 handle = ERR_PTR(-EROFS);
364 }
365 } else {
366 if (!ocfs2_mount_local(osb))
367 atomic_inc(&(osb->journal->j_num_trans));
368 }
369
370 return handle;
371 }
372
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)373 int ocfs2_commit_trans(struct ocfs2_super *osb,
374 handle_t *handle)
375 {
376 int ret, nested;
377 struct ocfs2_journal *journal = osb->journal;
378
379 BUG_ON(!handle);
380
381 nested = handle->h_ref > 1;
382 ret = jbd2_journal_stop(handle);
383 if (ret < 0)
384 mlog_errno(ret);
385
386 if (!nested) {
387 up_read(&journal->j_trans_barrier);
388 sb_end_intwrite(osb->sb);
389 }
390
391 return ret;
392 }
393
394 /*
395 * 'nblocks' is what you want to add to the current transaction.
396 *
397 * This might call jbd2_journal_restart() which will commit dirty buffers
398 * and then restart the transaction. Before calling
399 * ocfs2_extend_trans(), any changed blocks should have been
400 * dirtied. After calling it, all blocks which need to be changed must
401 * go through another set of journal_access/journal_dirty calls.
402 *
403 * WARNING: This will not release any semaphores or disk locks taken
404 * during the transaction, so make sure they were taken *before*
405 * start_trans or we'll have ordering deadlocks.
406 *
407 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
408 * good because transaction ids haven't yet been recorded on the
409 * cluster locks associated with this handle.
410 */
ocfs2_extend_trans(handle_t * handle,int nblocks)411 int ocfs2_extend_trans(handle_t *handle, int nblocks)
412 {
413 int status, old_nblocks;
414
415 BUG_ON(!handle);
416 BUG_ON(nblocks < 0);
417
418 if (!nblocks)
419 return 0;
420
421 old_nblocks = jbd2_handle_buffer_credits(handle);
422
423 trace_ocfs2_extend_trans(old_nblocks, nblocks);
424
425 #ifdef CONFIG_OCFS2_DEBUG_FS
426 status = 1;
427 #else
428 status = jbd2_journal_extend(handle, nblocks, 0);
429 if (status < 0) {
430 mlog_errno(status);
431 goto bail;
432 }
433 #endif
434
435 if (status > 0) {
436 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
437 status = jbd2_journal_restart(handle,
438 old_nblocks + nblocks);
439 if (status < 0) {
440 mlog_errno(status);
441 goto bail;
442 }
443 }
444
445 status = 0;
446 bail:
447 return status;
448 }
449
450 /*
451 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
452 * If that fails, restart the transaction & regain write access for the
453 * buffer head which is used for metadata modifications.
454 * Taken from Ext4: extend_or_restart_transaction()
455 */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
457 {
458 int status, old_nblks;
459
460 BUG_ON(!handle);
461
462 old_nblks = jbd2_handle_buffer_credits(handle);
463 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
464
465 if (old_nblks < thresh)
466 return 0;
467
468 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
469 if (status < 0) {
470 mlog_errno(status);
471 goto bail;
472 }
473
474 if (status > 0) {
475 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
476 if (status < 0)
477 mlog_errno(status);
478 }
479
480 bail:
481 return status;
482 }
483
484
485 struct ocfs2_triggers {
486 struct jbd2_buffer_trigger_type ot_triggers;
487 int ot_offset;
488 };
489
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
491 {
492 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
493 }
494
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
496 struct buffer_head *bh,
497 void *data, size_t size)
498 {
499 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
500
501 /*
502 * We aren't guaranteed to have the superblock here, so we
503 * must unconditionally compute the ecc data.
504 * __ocfs2_journal_access() will only set the triggers if
505 * metaecc is enabled.
506 */
507 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
508 }
509
510 /*
511 * Quota blocks have their own trigger because the struct ocfs2_block_check
512 * offset depends on the blocksize.
513 */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515 struct buffer_head *bh,
516 void *data, size_t size)
517 {
518 struct ocfs2_disk_dqtrailer *dqt =
519 ocfs2_block_dqtrailer(size, data);
520
521 /*
522 * We aren't guaranteed to have the superblock here, so we
523 * must unconditionally compute the ecc data.
524 * __ocfs2_journal_access() will only set the triggers if
525 * metaecc is enabled.
526 */
527 ocfs2_block_check_compute(data, size, &dqt->dq_check);
528 }
529
530 /*
531 * Directory blocks also have their own trigger because the
532 * struct ocfs2_block_check offset depends on the blocksize.
533 */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
535 struct buffer_head *bh,
536 void *data, size_t size)
537 {
538 struct ocfs2_dir_block_trailer *trailer =
539 ocfs2_dir_trailer_from_size(size, data);
540
541 /*
542 * We aren't guaranteed to have the superblock here, so we
543 * must unconditionally compute the ecc data.
544 * __ocfs2_journal_access() will only set the triggers if
545 * metaecc is enabled.
546 */
547 ocfs2_block_check_compute(data, size, &trailer->db_check);
548 }
549
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
551 struct buffer_head *bh)
552 {
553 mlog(ML_ERROR,
554 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
555 "bh->b_blocknr = %llu\n",
556 (unsigned long)bh,
557 (unsigned long long)bh->b_blocknr);
558
559 ocfs2_error(bh->b_bdev->bd_super,
560 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
561 }
562
563 static struct ocfs2_triggers di_triggers = {
564 .ot_triggers = {
565 .t_frozen = ocfs2_frozen_trigger,
566 .t_abort = ocfs2_abort_trigger,
567 },
568 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
569 };
570
571 static struct ocfs2_triggers eb_triggers = {
572 .ot_triggers = {
573 .t_frozen = ocfs2_frozen_trigger,
574 .t_abort = ocfs2_abort_trigger,
575 },
576 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
577 };
578
579 static struct ocfs2_triggers rb_triggers = {
580 .ot_triggers = {
581 .t_frozen = ocfs2_frozen_trigger,
582 .t_abort = ocfs2_abort_trigger,
583 },
584 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
585 };
586
587 static struct ocfs2_triggers gd_triggers = {
588 .ot_triggers = {
589 .t_frozen = ocfs2_frozen_trigger,
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
593 };
594
595 static struct ocfs2_triggers db_triggers = {
596 .ot_triggers = {
597 .t_frozen = ocfs2_db_frozen_trigger,
598 .t_abort = ocfs2_abort_trigger,
599 },
600 };
601
602 static struct ocfs2_triggers xb_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
606 },
607 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
608 };
609
610 static struct ocfs2_triggers dq_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_dq_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
614 },
615 };
616
617 static struct ocfs2_triggers dr_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
621 },
622 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
623 };
624
625 static struct ocfs2_triggers dl_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
629 },
630 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
631 };
632
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)633 static int __ocfs2_journal_access(handle_t *handle,
634 struct ocfs2_caching_info *ci,
635 struct buffer_head *bh,
636 struct ocfs2_triggers *triggers,
637 int type)
638 {
639 int status;
640 struct ocfs2_super *osb =
641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642
643 BUG_ON(!ci || !ci->ci_ops);
644 BUG_ON(!handle);
645 BUG_ON(!bh);
646
647 trace_ocfs2_journal_access(
648 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649 (unsigned long long)bh->b_blocknr, type, bh->b_size);
650
651 /* we can safely remove this assertion after testing. */
652 if (!buffer_uptodate(bh)) {
653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 (unsigned long long)bh->b_blocknr, bh->b_state);
656
657 lock_buffer(bh);
658 /*
659 * A previous transaction with a couple of buffer heads fail
660 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 * For current transaction, the bh is just among those error
662 * bhs which previous transaction handle. We can't just clear
663 * its BH_Write_EIO and reuse directly, since other bhs are
664 * not written to disk yet and that will cause metadata
665 * inconsistency. So we should set fs read-only to avoid
666 * further damage.
667 */
668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 unlock_buffer(bh);
670 return ocfs2_error(osb->sb, "A previous attempt to "
671 "write this buffer head failed\n");
672 }
673 unlock_buffer(bh);
674 }
675
676 /* Set the current transaction information on the ci so
677 * that the locking code knows whether it can drop it's locks
678 * on this ci or not. We're protected from the commit
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
682 ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684 ocfs2_metadata_cache_io_lock(ci);
685 switch (type) {
686 case OCFS2_JOURNAL_ACCESS_CREATE:
687 case OCFS2_JOURNAL_ACCESS_WRITE:
688 status = jbd2_journal_get_write_access(handle, bh);
689 break;
690
691 case OCFS2_JOURNAL_ACCESS_UNDO:
692 status = jbd2_journal_get_undo_access(handle, bh);
693 break;
694
695 default:
696 status = -EINVAL;
697 mlog(ML_ERROR, "Unknown access type!\n");
698 }
699 if (!status && ocfs2_meta_ecc(osb) && triggers)
700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 ocfs2_metadata_cache_io_unlock(ci);
702
703 if (status < 0)
704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 status, type);
706
707 return status;
708 }
709
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
712 {
713 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717 struct buffer_head *bh, int type)
718 {
719 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723 struct buffer_head *bh, int type)
724 {
725 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726 type);
727 }
728
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730 struct buffer_head *bh, int type)
731 {
732 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736 struct buffer_head *bh, int type)
737 {
738 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742 struct buffer_head *bh, int type)
743 {
744 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748 struct buffer_head *bh, int type)
749 {
750 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754 struct buffer_head *bh, int type)
755 {
756 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760 struct buffer_head *bh, int type)
761 {
762 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766 struct buffer_head *bh, int type)
767 {
768 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773 int status;
774
775 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776
777 status = jbd2_journal_dirty_metadata(handle, bh);
778 if (status) {
779 mlog_errno(status);
780 if (!is_handle_aborted(handle)) {
781 journal_t *journal = handle->h_transaction->t_journal;
782 struct super_block *sb = bh->b_bdev->bd_super;
783
784 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785 "Aborting transaction and journal.\n");
786 handle->h_err = status;
787 jbd2_journal_abort_handle(handle);
788 jbd2_journal_abort(journal, status);
789 ocfs2_abort(sb, "Journal already aborted.\n");
790 }
791 }
792 }
793
794 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
795
ocfs2_set_journal_params(struct ocfs2_super * osb)796 void ocfs2_set_journal_params(struct ocfs2_super *osb)
797 {
798 journal_t *journal = osb->journal->j_journal;
799 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800
801 if (osb->osb_commit_interval)
802 commit_interval = osb->osb_commit_interval;
803
804 write_lock(&journal->j_state_lock);
805 journal->j_commit_interval = commit_interval;
806 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
807 journal->j_flags |= JBD2_BARRIER;
808 else
809 journal->j_flags &= ~JBD2_BARRIER;
810 write_unlock(&journal->j_state_lock);
811 }
812
813 /*
814 * alloc & initialize skeleton for journal structure.
815 * ocfs2_journal_init() will make fs have journal ability.
816 */
ocfs2_journal_alloc(struct ocfs2_super * osb)817 int ocfs2_journal_alloc(struct ocfs2_super *osb)
818 {
819 int status = 0;
820 struct ocfs2_journal *journal;
821
822 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
823 if (!journal) {
824 mlog(ML_ERROR, "unable to alloc journal\n");
825 status = -ENOMEM;
826 goto bail;
827 }
828 osb->journal = journal;
829 journal->j_osb = osb;
830
831 atomic_set(&journal->j_num_trans, 0);
832 init_rwsem(&journal->j_trans_barrier);
833 init_waitqueue_head(&journal->j_checkpointed);
834 spin_lock_init(&journal->j_lock);
835 journal->j_trans_id = 1UL;
836 INIT_LIST_HEAD(&journal->j_la_cleanups);
837 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
838 journal->j_state = OCFS2_JOURNAL_FREE;
839
840 bail:
841 return status;
842 }
843
ocfs2_journal_init(struct ocfs2_super * osb,int * dirty)844 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
845 {
846 int status = -1;
847 struct inode *inode = NULL; /* the journal inode */
848 journal_t *j_journal = NULL;
849 struct ocfs2_journal *journal = osb->journal;
850 struct ocfs2_dinode *di = NULL;
851 struct buffer_head *bh = NULL;
852 int inode_lock = 0;
853
854 BUG_ON(!journal);
855 /* already have the inode for our journal */
856 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
857 osb->slot_num);
858 if (inode == NULL) {
859 status = -EACCES;
860 mlog_errno(status);
861 goto done;
862 }
863 if (is_bad_inode(inode)) {
864 mlog(ML_ERROR, "access error (bad inode)\n");
865 iput(inode);
866 inode = NULL;
867 status = -EACCES;
868 goto done;
869 }
870
871 SET_INODE_JOURNAL(inode);
872 OCFS2_I(inode)->ip_open_count++;
873
874 /* Skip recovery waits here - journal inode metadata never
875 * changes in a live cluster so it can be considered an
876 * exception to the rule. */
877 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
878 if (status < 0) {
879 if (status != -ERESTARTSYS)
880 mlog(ML_ERROR, "Could not get lock on journal!\n");
881 goto done;
882 }
883
884 inode_lock = 1;
885 di = (struct ocfs2_dinode *)bh->b_data;
886
887 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
888 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
889 i_size_read(inode));
890 status = -EINVAL;
891 goto done;
892 }
893
894 trace_ocfs2_journal_init(i_size_read(inode),
895 (unsigned long long)inode->i_blocks,
896 OCFS2_I(inode)->ip_clusters);
897
898 /* call the kernels journal init function now */
899 j_journal = jbd2_journal_init_inode(inode);
900 if (j_journal == NULL) {
901 mlog(ML_ERROR, "Linux journal layer error\n");
902 status = -EINVAL;
903 goto done;
904 }
905
906 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
907
908 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
909 OCFS2_JOURNAL_DIRTY_FL);
910
911 journal->j_journal = j_journal;
912 journal->j_journal->j_submit_inode_data_buffers =
913 jbd2_journal_submit_inode_data_buffers;
914 journal->j_journal->j_finish_inode_data_buffers =
915 jbd2_journal_finish_inode_data_buffers;
916 journal->j_inode = inode;
917 journal->j_bh = bh;
918
919 ocfs2_set_journal_params(osb);
920
921 journal->j_state = OCFS2_JOURNAL_LOADED;
922
923 status = 0;
924 done:
925 if (status < 0) {
926 if (inode_lock)
927 ocfs2_inode_unlock(inode, 1);
928 brelse(bh);
929 if (inode) {
930 OCFS2_I(inode)->ip_open_count--;
931 iput(inode);
932 }
933 }
934
935 return status;
936 }
937
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)938 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
939 {
940 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
941 }
942
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)943 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
944 {
945 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
946 }
947
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)948 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
949 int dirty, int replayed)
950 {
951 int status;
952 unsigned int flags;
953 struct ocfs2_journal *journal = osb->journal;
954 struct buffer_head *bh = journal->j_bh;
955 struct ocfs2_dinode *fe;
956
957 fe = (struct ocfs2_dinode *)bh->b_data;
958
959 /* The journal bh on the osb always comes from ocfs2_journal_init()
960 * and was validated there inside ocfs2_inode_lock_full(). It's a
961 * code bug if we mess it up. */
962 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
963
964 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
965 if (dirty)
966 flags |= OCFS2_JOURNAL_DIRTY_FL;
967 else
968 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
969 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
970
971 if (replayed)
972 ocfs2_bump_recovery_generation(fe);
973
974 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
975 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
976 if (status < 0)
977 mlog_errno(status);
978
979 return status;
980 }
981
982 /*
983 * If the journal has been kmalloc'd it needs to be freed after this
984 * call.
985 */
ocfs2_journal_shutdown(struct ocfs2_super * osb)986 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
987 {
988 struct ocfs2_journal *journal = NULL;
989 int status = 0;
990 struct inode *inode = NULL;
991 int num_running_trans = 0;
992
993 BUG_ON(!osb);
994
995 journal = osb->journal;
996 if (!journal)
997 goto done;
998
999 inode = journal->j_inode;
1000
1001 if (journal->j_state != OCFS2_JOURNAL_LOADED)
1002 goto done;
1003
1004 /* need to inc inode use count - jbd2_journal_destroy will iput. */
1005 if (!igrab(inode))
1006 BUG();
1007
1008 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1009 trace_ocfs2_journal_shutdown(num_running_trans);
1010
1011 /* Do a commit_cache here. It will flush our journal, *and*
1012 * release any locks that are still held.
1013 * set the SHUTDOWN flag and release the trans lock.
1014 * the commit thread will take the trans lock for us below. */
1015 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1016
1017 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1018 * drop the trans_lock (which we want to hold until we
1019 * completely destroy the journal. */
1020 if (osb->commit_task) {
1021 /* Wait for the commit thread */
1022 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1023 kthread_stop(osb->commit_task);
1024 osb->commit_task = NULL;
1025 }
1026
1027 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1028
1029 if (ocfs2_mount_local(osb)) {
1030 jbd2_journal_lock_updates(journal->j_journal);
1031 status = jbd2_journal_flush(journal->j_journal, 0);
1032 jbd2_journal_unlock_updates(journal->j_journal);
1033 if (status < 0)
1034 mlog_errno(status);
1035 }
1036
1037 /* Shutdown the kernel journal system */
1038 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1039 /*
1040 * Do not toggle if flush was unsuccessful otherwise
1041 * will leave dirty metadata in a "clean" journal
1042 */
1043 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1044 if (status < 0)
1045 mlog_errno(status);
1046 }
1047 journal->j_journal = NULL;
1048
1049 OCFS2_I(inode)->ip_open_count--;
1050
1051 /* unlock our journal */
1052 ocfs2_inode_unlock(inode, 1);
1053
1054 brelse(journal->j_bh);
1055 journal->j_bh = NULL;
1056
1057 journal->j_state = OCFS2_JOURNAL_FREE;
1058
1059 done:
1060 iput(inode);
1061 kfree(journal);
1062 osb->journal = NULL;
1063 }
1064
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1065 static void ocfs2_clear_journal_error(struct super_block *sb,
1066 journal_t *journal,
1067 int slot)
1068 {
1069 int olderr;
1070
1071 olderr = jbd2_journal_errno(journal);
1072 if (olderr) {
1073 mlog(ML_ERROR, "File system error %d recorded in "
1074 "journal %u.\n", olderr, slot);
1075 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1076 sb->s_id);
1077
1078 jbd2_journal_ack_err(journal);
1079 jbd2_journal_clear_err(journal);
1080 }
1081 }
1082
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1083 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1084 {
1085 int status = 0;
1086 struct ocfs2_super *osb;
1087
1088 BUG_ON(!journal);
1089
1090 osb = journal->j_osb;
1091
1092 status = jbd2_journal_load(journal->j_journal);
1093 if (status < 0) {
1094 mlog(ML_ERROR, "Failed to load journal!\n");
1095 goto done;
1096 }
1097
1098 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1099
1100 if (replayed) {
1101 jbd2_journal_lock_updates(journal->j_journal);
1102 status = jbd2_journal_flush(journal->j_journal, 0);
1103 jbd2_journal_unlock_updates(journal->j_journal);
1104 if (status < 0)
1105 mlog_errno(status);
1106 }
1107
1108 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1109 if (status < 0) {
1110 mlog_errno(status);
1111 goto done;
1112 }
1113
1114 /* Launch the commit thread */
1115 if (!local) {
1116 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1117 "ocfs2cmt-%s", osb->uuid_str);
1118 if (IS_ERR(osb->commit_task)) {
1119 status = PTR_ERR(osb->commit_task);
1120 osb->commit_task = NULL;
1121 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1122 "error=%d", status);
1123 goto done;
1124 }
1125 } else
1126 osb->commit_task = NULL;
1127
1128 done:
1129 return status;
1130 }
1131
1132
1133 /* 'full' flag tells us whether we clear out all blocks or if we just
1134 * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1135 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1136 {
1137 int status;
1138
1139 BUG_ON(!journal);
1140
1141 status = jbd2_journal_wipe(journal->j_journal, full);
1142 if (status < 0) {
1143 mlog_errno(status);
1144 goto bail;
1145 }
1146
1147 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1148 if (status < 0)
1149 mlog_errno(status);
1150
1151 bail:
1152 return status;
1153 }
1154
ocfs2_recovery_completed(struct ocfs2_super * osb)1155 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1156 {
1157 int empty;
1158 struct ocfs2_recovery_map *rm = osb->recovery_map;
1159
1160 spin_lock(&osb->osb_lock);
1161 empty = (rm->rm_used == 0);
1162 spin_unlock(&osb->osb_lock);
1163
1164 return empty;
1165 }
1166
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1167 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1168 {
1169 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1170 }
1171
1172 /*
1173 * JBD Might read a cached version of another nodes journal file. We
1174 * don't want this as this file changes often and we get no
1175 * notification on those changes. The only way to be sure that we've
1176 * got the most up to date version of those blocks then is to force
1177 * read them off disk. Just searching through the buffer cache won't
1178 * work as there may be pages backing this file which are still marked
1179 * up to date. We know things can't change on this file underneath us
1180 * as we have the lock by now :)
1181 */
ocfs2_force_read_journal(struct inode * inode)1182 static int ocfs2_force_read_journal(struct inode *inode)
1183 {
1184 int status = 0;
1185 int i;
1186 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1187 struct buffer_head *bh = NULL;
1188 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1189
1190 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1191 v_blkno = 0;
1192 while (v_blkno < num_blocks) {
1193 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1194 &p_blkno, &p_blocks, NULL);
1195 if (status < 0) {
1196 mlog_errno(status);
1197 goto bail;
1198 }
1199
1200 for (i = 0; i < p_blocks; i++, p_blkno++) {
1201 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1202 osb->sb->s_blocksize);
1203 /* block not cached. */
1204 if (!bh)
1205 continue;
1206
1207 brelse(bh);
1208 bh = NULL;
1209 /* We are reading journal data which should not
1210 * be put in the uptodate cache.
1211 */
1212 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1213 if (status < 0) {
1214 mlog_errno(status);
1215 goto bail;
1216 }
1217
1218 brelse(bh);
1219 bh = NULL;
1220 }
1221
1222 v_blkno += p_blocks;
1223 }
1224
1225 bail:
1226 return status;
1227 }
1228
1229 struct ocfs2_la_recovery_item {
1230 struct list_head lri_list;
1231 int lri_slot;
1232 struct ocfs2_dinode *lri_la_dinode;
1233 struct ocfs2_dinode *lri_tl_dinode;
1234 struct ocfs2_quota_recovery *lri_qrec;
1235 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1236 };
1237
1238 /* Does the second half of the recovery process. By this point, the
1239 * node is marked clean and can actually be considered recovered,
1240 * hence it's no longer in the recovery map, but there's still some
1241 * cleanup we can do which shouldn't happen within the recovery thread
1242 * as locking in that context becomes very difficult if we are to take
1243 * recovering nodes into account.
1244 *
1245 * NOTE: This function can and will sleep on recovery of other nodes
1246 * during cluster locking, just like any other ocfs2 process.
1247 */
ocfs2_complete_recovery(struct work_struct * work)1248 void ocfs2_complete_recovery(struct work_struct *work)
1249 {
1250 int ret = 0;
1251 struct ocfs2_journal *journal =
1252 container_of(work, struct ocfs2_journal, j_recovery_work);
1253 struct ocfs2_super *osb = journal->j_osb;
1254 struct ocfs2_dinode *la_dinode, *tl_dinode;
1255 struct ocfs2_la_recovery_item *item, *n;
1256 struct ocfs2_quota_recovery *qrec;
1257 enum ocfs2_orphan_reco_type orphan_reco_type;
1258 LIST_HEAD(tmp_la_list);
1259
1260 trace_ocfs2_complete_recovery(
1261 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1262
1263 spin_lock(&journal->j_lock);
1264 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1265 spin_unlock(&journal->j_lock);
1266
1267 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1268 list_del_init(&item->lri_list);
1269
1270 ocfs2_wait_on_quotas(osb);
1271
1272 la_dinode = item->lri_la_dinode;
1273 tl_dinode = item->lri_tl_dinode;
1274 qrec = item->lri_qrec;
1275 orphan_reco_type = item->lri_orphan_reco_type;
1276
1277 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1278 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1279 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1280 qrec);
1281
1282 if (la_dinode) {
1283 ret = ocfs2_complete_local_alloc_recovery(osb,
1284 la_dinode);
1285 if (ret < 0)
1286 mlog_errno(ret);
1287
1288 kfree(la_dinode);
1289 }
1290
1291 if (tl_dinode) {
1292 ret = ocfs2_complete_truncate_log_recovery(osb,
1293 tl_dinode);
1294 if (ret < 0)
1295 mlog_errno(ret);
1296
1297 kfree(tl_dinode);
1298 }
1299
1300 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1301 orphan_reco_type);
1302 if (ret < 0)
1303 mlog_errno(ret);
1304
1305 if (qrec) {
1306 ret = ocfs2_finish_quota_recovery(osb, qrec,
1307 item->lri_slot);
1308 if (ret < 0)
1309 mlog_errno(ret);
1310 /* Recovery info is already freed now */
1311 }
1312
1313 kfree(item);
1314 }
1315
1316 trace_ocfs2_complete_recovery_end(ret);
1317 }
1318
1319 /* NOTE: This function always eats your references to la_dinode and
1320 * tl_dinode, either manually on error, or by passing them to
1321 * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1322 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1323 int slot_num,
1324 struct ocfs2_dinode *la_dinode,
1325 struct ocfs2_dinode *tl_dinode,
1326 struct ocfs2_quota_recovery *qrec,
1327 enum ocfs2_orphan_reco_type orphan_reco_type)
1328 {
1329 struct ocfs2_la_recovery_item *item;
1330
1331 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1332 if (!item) {
1333 /* Though we wish to avoid it, we are in fact safe in
1334 * skipping local alloc cleanup as fsck.ocfs2 is more
1335 * than capable of reclaiming unused space. */
1336 kfree(la_dinode);
1337 kfree(tl_dinode);
1338
1339 if (qrec)
1340 ocfs2_free_quota_recovery(qrec);
1341
1342 mlog_errno(-ENOMEM);
1343 return;
1344 }
1345
1346 INIT_LIST_HEAD(&item->lri_list);
1347 item->lri_la_dinode = la_dinode;
1348 item->lri_slot = slot_num;
1349 item->lri_tl_dinode = tl_dinode;
1350 item->lri_qrec = qrec;
1351 item->lri_orphan_reco_type = orphan_reco_type;
1352
1353 spin_lock(&journal->j_lock);
1354 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1355 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1356 spin_unlock(&journal->j_lock);
1357 }
1358
1359 /* Called by the mount code to queue recovery the last part of
1360 * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1361 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1362 {
1363 struct ocfs2_journal *journal = osb->journal;
1364
1365 if (ocfs2_is_hard_readonly(osb))
1366 return;
1367
1368 /* No need to queue up our truncate_log as regular cleanup will catch
1369 * that */
1370 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1371 osb->local_alloc_copy, NULL, NULL,
1372 ORPHAN_NEED_TRUNCATE);
1373 ocfs2_schedule_truncate_log_flush(osb, 0);
1374
1375 osb->local_alloc_copy = NULL;
1376
1377 /* queue to recover orphan slots for all offline slots */
1378 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1379 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1380 ocfs2_free_replay_slots(osb);
1381 }
1382
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1383 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1384 {
1385 if (osb->quota_rec) {
1386 ocfs2_queue_recovery_completion(osb->journal,
1387 osb->slot_num,
1388 NULL,
1389 NULL,
1390 osb->quota_rec,
1391 ORPHAN_NEED_TRUNCATE);
1392 osb->quota_rec = NULL;
1393 }
1394 }
1395
__ocfs2_recovery_thread(void * arg)1396 static int __ocfs2_recovery_thread(void *arg)
1397 {
1398 int status, node_num, slot_num;
1399 struct ocfs2_super *osb = arg;
1400 struct ocfs2_recovery_map *rm = osb->recovery_map;
1401 int *rm_quota = NULL;
1402 int rm_quota_used = 0, i;
1403 struct ocfs2_quota_recovery *qrec;
1404
1405 /* Whether the quota supported. */
1406 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1407 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1408 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1409 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1410
1411 status = ocfs2_wait_on_mount(osb);
1412 if (status < 0) {
1413 goto bail;
1414 }
1415
1416 if (quota_enabled) {
1417 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1418 if (!rm_quota) {
1419 status = -ENOMEM;
1420 goto bail;
1421 }
1422 }
1423 restart:
1424 status = ocfs2_super_lock(osb, 1);
1425 if (status < 0) {
1426 mlog_errno(status);
1427 goto bail;
1428 }
1429
1430 status = ocfs2_compute_replay_slots(osb);
1431 if (status < 0)
1432 mlog_errno(status);
1433
1434 /* queue recovery for our own slot */
1435 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1436 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1437
1438 spin_lock(&osb->osb_lock);
1439 while (rm->rm_used) {
1440 /* It's always safe to remove entry zero, as we won't
1441 * clear it until ocfs2_recover_node() has succeeded. */
1442 node_num = rm->rm_entries[0];
1443 spin_unlock(&osb->osb_lock);
1444 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1445 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1446 if (slot_num == -ENOENT) {
1447 status = 0;
1448 goto skip_recovery;
1449 }
1450
1451 /* It is a bit subtle with quota recovery. We cannot do it
1452 * immediately because we have to obtain cluster locks from
1453 * quota files and we also don't want to just skip it because
1454 * then quota usage would be out of sync until some node takes
1455 * the slot. So we remember which nodes need quota recovery
1456 * and when everything else is done, we recover quotas. */
1457 if (quota_enabled) {
1458 for (i = 0; i < rm_quota_used
1459 && rm_quota[i] != slot_num; i++)
1460 ;
1461
1462 if (i == rm_quota_used)
1463 rm_quota[rm_quota_used++] = slot_num;
1464 }
1465
1466 status = ocfs2_recover_node(osb, node_num, slot_num);
1467 skip_recovery:
1468 if (!status) {
1469 ocfs2_recovery_map_clear(osb, node_num);
1470 } else {
1471 mlog(ML_ERROR,
1472 "Error %d recovering node %d on device (%u,%u)!\n",
1473 status, node_num,
1474 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1475 mlog(ML_ERROR, "Volume requires unmount.\n");
1476 }
1477
1478 spin_lock(&osb->osb_lock);
1479 }
1480 spin_unlock(&osb->osb_lock);
1481 trace_ocfs2_recovery_thread_end(status);
1482
1483 /* Refresh all journal recovery generations from disk */
1484 status = ocfs2_check_journals_nolocks(osb);
1485 status = (status == -EROFS) ? 0 : status;
1486 if (status < 0)
1487 mlog_errno(status);
1488
1489 /* Now it is right time to recover quotas... We have to do this under
1490 * superblock lock so that no one can start using the slot (and crash)
1491 * before we recover it */
1492 if (quota_enabled) {
1493 for (i = 0; i < rm_quota_used; i++) {
1494 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1495 if (IS_ERR(qrec)) {
1496 status = PTR_ERR(qrec);
1497 mlog_errno(status);
1498 continue;
1499 }
1500 ocfs2_queue_recovery_completion(osb->journal,
1501 rm_quota[i],
1502 NULL, NULL, qrec,
1503 ORPHAN_NEED_TRUNCATE);
1504 }
1505 }
1506
1507 ocfs2_super_unlock(osb, 1);
1508
1509 /* queue recovery for offline slots */
1510 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1511
1512 bail:
1513 mutex_lock(&osb->recovery_lock);
1514 if (!status && !ocfs2_recovery_completed(osb)) {
1515 mutex_unlock(&osb->recovery_lock);
1516 goto restart;
1517 }
1518
1519 ocfs2_free_replay_slots(osb);
1520 osb->recovery_thread_task = NULL;
1521 mb(); /* sync with ocfs2_recovery_thread_running */
1522 wake_up(&osb->recovery_event);
1523
1524 mutex_unlock(&osb->recovery_lock);
1525
1526 if (quota_enabled)
1527 kfree(rm_quota);
1528
1529 return status;
1530 }
1531
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1532 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1533 {
1534 mutex_lock(&osb->recovery_lock);
1535
1536 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1537 osb->disable_recovery, osb->recovery_thread_task,
1538 osb->disable_recovery ?
1539 -1 : ocfs2_recovery_map_set(osb, node_num));
1540
1541 if (osb->disable_recovery)
1542 goto out;
1543
1544 if (osb->recovery_thread_task)
1545 goto out;
1546
1547 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1548 "ocfs2rec-%s", osb->uuid_str);
1549 if (IS_ERR(osb->recovery_thread_task)) {
1550 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1551 osb->recovery_thread_task = NULL;
1552 }
1553
1554 out:
1555 mutex_unlock(&osb->recovery_lock);
1556 wake_up(&osb->recovery_event);
1557 }
1558
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1559 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1560 int slot_num,
1561 struct buffer_head **bh,
1562 struct inode **ret_inode)
1563 {
1564 int status = -EACCES;
1565 struct inode *inode = NULL;
1566
1567 BUG_ON(slot_num >= osb->max_slots);
1568
1569 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1570 slot_num);
1571 if (!inode || is_bad_inode(inode)) {
1572 mlog_errno(status);
1573 goto bail;
1574 }
1575 SET_INODE_JOURNAL(inode);
1576
1577 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1578 if (status < 0) {
1579 mlog_errno(status);
1580 goto bail;
1581 }
1582
1583 status = 0;
1584
1585 bail:
1586 if (inode) {
1587 if (status || !ret_inode)
1588 iput(inode);
1589 else
1590 *ret_inode = inode;
1591 }
1592 return status;
1593 }
1594
1595 /* Does the actual journal replay and marks the journal inode as
1596 * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1597 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1598 int node_num,
1599 int slot_num)
1600 {
1601 int status;
1602 int got_lock = 0;
1603 unsigned int flags;
1604 struct inode *inode = NULL;
1605 struct ocfs2_dinode *fe;
1606 journal_t *journal = NULL;
1607 struct buffer_head *bh = NULL;
1608 u32 slot_reco_gen;
1609
1610 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1611 if (status) {
1612 mlog_errno(status);
1613 goto done;
1614 }
1615
1616 fe = (struct ocfs2_dinode *)bh->b_data;
1617 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1618 brelse(bh);
1619 bh = NULL;
1620
1621 /*
1622 * As the fs recovery is asynchronous, there is a small chance that
1623 * another node mounted (and recovered) the slot before the recovery
1624 * thread could get the lock. To handle that, we dirty read the journal
1625 * inode for that slot to get the recovery generation. If it is
1626 * different than what we expected, the slot has been recovered.
1627 * If not, it needs recovery.
1628 */
1629 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1630 trace_ocfs2_replay_journal_recovered(slot_num,
1631 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1632 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1633 status = -EBUSY;
1634 goto done;
1635 }
1636
1637 /* Continue with recovery as the journal has not yet been recovered */
1638
1639 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1640 if (status < 0) {
1641 trace_ocfs2_replay_journal_lock_err(status);
1642 if (status != -ERESTARTSYS)
1643 mlog(ML_ERROR, "Could not lock journal!\n");
1644 goto done;
1645 }
1646 got_lock = 1;
1647
1648 fe = (struct ocfs2_dinode *) bh->b_data;
1649
1650 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1651 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1652
1653 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1654 trace_ocfs2_replay_journal_skip(node_num);
1655 /* Refresh recovery generation for the slot */
1656 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1657 goto done;
1658 }
1659
1660 /* we need to run complete recovery for offline orphan slots */
1661 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1662
1663 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1664 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1665 MINOR(osb->sb->s_dev));
1666
1667 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1668
1669 status = ocfs2_force_read_journal(inode);
1670 if (status < 0) {
1671 mlog_errno(status);
1672 goto done;
1673 }
1674
1675 journal = jbd2_journal_init_inode(inode);
1676 if (journal == NULL) {
1677 mlog(ML_ERROR, "Linux journal layer error\n");
1678 status = -EIO;
1679 goto done;
1680 }
1681
1682 status = jbd2_journal_load(journal);
1683 if (status < 0) {
1684 mlog_errno(status);
1685 BUG_ON(!igrab(inode));
1686 jbd2_journal_destroy(journal);
1687 goto done;
1688 }
1689
1690 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1691
1692 /* wipe the journal */
1693 jbd2_journal_lock_updates(journal);
1694 status = jbd2_journal_flush(journal, 0);
1695 jbd2_journal_unlock_updates(journal);
1696 if (status < 0)
1697 mlog_errno(status);
1698
1699 /* This will mark the node clean */
1700 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1701 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1702 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1703
1704 /* Increment recovery generation to indicate successful recovery */
1705 ocfs2_bump_recovery_generation(fe);
1706 osb->slot_recovery_generations[slot_num] =
1707 ocfs2_get_recovery_generation(fe);
1708
1709 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1710 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1711 if (status < 0)
1712 mlog_errno(status);
1713
1714 BUG_ON(!igrab(inode));
1715
1716 jbd2_journal_destroy(journal);
1717
1718 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1719 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1720 MINOR(osb->sb->s_dev));
1721 done:
1722 /* drop the lock on this nodes journal */
1723 if (got_lock)
1724 ocfs2_inode_unlock(inode, 1);
1725
1726 iput(inode);
1727 brelse(bh);
1728
1729 return status;
1730 }
1731
1732 /*
1733 * Do the most important parts of node recovery:
1734 * - Replay it's journal
1735 * - Stamp a clean local allocator file
1736 * - Stamp a clean truncate log
1737 * - Mark the node clean
1738 *
1739 * If this function completes without error, a node in OCFS2 can be
1740 * said to have been safely recovered. As a result, failure during the
1741 * second part of a nodes recovery process (local alloc recovery) is
1742 * far less concerning.
1743 */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1744 static int ocfs2_recover_node(struct ocfs2_super *osb,
1745 int node_num, int slot_num)
1746 {
1747 int status = 0;
1748 struct ocfs2_dinode *la_copy = NULL;
1749 struct ocfs2_dinode *tl_copy = NULL;
1750
1751 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1752
1753 /* Should not ever be called to recover ourselves -- in that
1754 * case we should've called ocfs2_journal_load instead. */
1755 BUG_ON(osb->node_num == node_num);
1756
1757 status = ocfs2_replay_journal(osb, node_num, slot_num);
1758 if (status < 0) {
1759 if (status == -EBUSY) {
1760 trace_ocfs2_recover_node_skip(slot_num, node_num);
1761 status = 0;
1762 goto done;
1763 }
1764 mlog_errno(status);
1765 goto done;
1766 }
1767
1768 /* Stamp a clean local alloc file AFTER recovering the journal... */
1769 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1770 if (status < 0) {
1771 mlog_errno(status);
1772 goto done;
1773 }
1774
1775 /* An error from begin_truncate_log_recovery is not
1776 * serious enough to warrant halting the rest of
1777 * recovery. */
1778 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1779 if (status < 0)
1780 mlog_errno(status);
1781
1782 /* Likewise, this would be a strange but ultimately not so
1783 * harmful place to get an error... */
1784 status = ocfs2_clear_slot(osb, slot_num);
1785 if (status < 0)
1786 mlog_errno(status);
1787
1788 /* This will kfree the memory pointed to by la_copy and tl_copy */
1789 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1790 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1791
1792 status = 0;
1793 done:
1794
1795 return status;
1796 }
1797
1798 /* Test node liveness by trylocking his journal. If we get the lock,
1799 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1800 * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1801 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1802 int slot_num)
1803 {
1804 int status, flags;
1805 struct inode *inode = NULL;
1806
1807 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1808 slot_num);
1809 if (inode == NULL) {
1810 mlog(ML_ERROR, "access error\n");
1811 status = -EACCES;
1812 goto bail;
1813 }
1814 if (is_bad_inode(inode)) {
1815 mlog(ML_ERROR, "access error (bad inode)\n");
1816 iput(inode);
1817 inode = NULL;
1818 status = -EACCES;
1819 goto bail;
1820 }
1821 SET_INODE_JOURNAL(inode);
1822
1823 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1824 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1825 if (status < 0) {
1826 if (status != -EAGAIN)
1827 mlog_errno(status);
1828 goto bail;
1829 }
1830
1831 ocfs2_inode_unlock(inode, 1);
1832 bail:
1833 iput(inode);
1834
1835 return status;
1836 }
1837
1838 /* Call this underneath ocfs2_super_lock. It also assumes that the
1839 * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1840 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1841 {
1842 unsigned int node_num;
1843 int status, i;
1844 u32 gen;
1845 struct buffer_head *bh = NULL;
1846 struct ocfs2_dinode *di;
1847
1848 /* This is called with the super block cluster lock, so we
1849 * know that the slot map can't change underneath us. */
1850
1851 for (i = 0; i < osb->max_slots; i++) {
1852 /* Read journal inode to get the recovery generation */
1853 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1854 if (status) {
1855 mlog_errno(status);
1856 goto bail;
1857 }
1858 di = (struct ocfs2_dinode *)bh->b_data;
1859 gen = ocfs2_get_recovery_generation(di);
1860 brelse(bh);
1861 bh = NULL;
1862
1863 spin_lock(&osb->osb_lock);
1864 osb->slot_recovery_generations[i] = gen;
1865
1866 trace_ocfs2_mark_dead_nodes(i,
1867 osb->slot_recovery_generations[i]);
1868
1869 if (i == osb->slot_num) {
1870 spin_unlock(&osb->osb_lock);
1871 continue;
1872 }
1873
1874 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1875 if (status == -ENOENT) {
1876 spin_unlock(&osb->osb_lock);
1877 continue;
1878 }
1879
1880 if (__ocfs2_recovery_map_test(osb, node_num)) {
1881 spin_unlock(&osb->osb_lock);
1882 continue;
1883 }
1884 spin_unlock(&osb->osb_lock);
1885
1886 /* Ok, we have a slot occupied by another node which
1887 * is not in the recovery map. We trylock his journal
1888 * file here to test if he's alive. */
1889 status = ocfs2_trylock_journal(osb, i);
1890 if (!status) {
1891 /* Since we're called from mount, we know that
1892 * the recovery thread can't race us on
1893 * setting / checking the recovery bits. */
1894 ocfs2_recovery_thread(osb, node_num);
1895 } else if ((status < 0) && (status != -EAGAIN)) {
1896 mlog_errno(status);
1897 goto bail;
1898 }
1899 }
1900
1901 status = 0;
1902 bail:
1903 return status;
1904 }
1905
1906 /*
1907 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1908 * randomness to the timeout to minimize multple nodes firing the timer at the
1909 * same time.
1910 */
ocfs2_orphan_scan_timeout(void)1911 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1912 {
1913 unsigned long time;
1914
1915 get_random_bytes(&time, sizeof(time));
1916 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1917 return msecs_to_jiffies(time);
1918 }
1919
1920 /*
1921 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1922 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1923 * is done to catch any orphans that are left over in orphan directories.
1924 *
1925 * It scans all slots, even ones that are in use. It does so to handle the
1926 * case described below:
1927 *
1928 * Node 1 has an inode it was using. The dentry went away due to memory
1929 * pressure. Node 1 closes the inode, but it's on the free list. The node
1930 * has the open lock.
1931 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1932 * but node 1 has no dentry and doesn't get the message. It trylocks the
1933 * open lock, sees that another node has a PR, and does nothing.
1934 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1935 * open lock, sees the PR still, and does nothing.
1936 * Basically, we have to trigger an orphan iput on node 1. The only way
1937 * for this to happen is if node 1 runs node 2's orphan dir.
1938 *
1939 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1940 * seconds. It gets an EX lock on os_lockres and checks sequence number
1941 * stored in LVB. If the sequence number has changed, it means some other
1942 * node has done the scan. This node skips the scan and tracks the
1943 * sequence number. If the sequence number didn't change, it means a scan
1944 * hasn't happened. The node queues a scan and increments the
1945 * sequence number in the LVB.
1946 */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1947 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1948 {
1949 struct ocfs2_orphan_scan *os;
1950 int status, i;
1951 u32 seqno = 0;
1952
1953 os = &osb->osb_orphan_scan;
1954
1955 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1956 goto out;
1957
1958 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1959 atomic_read(&os->os_state));
1960
1961 status = ocfs2_orphan_scan_lock(osb, &seqno);
1962 if (status < 0) {
1963 if (status != -EAGAIN)
1964 mlog_errno(status);
1965 goto out;
1966 }
1967
1968 /* Do no queue the tasks if the volume is being umounted */
1969 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1970 goto unlock;
1971
1972 if (os->os_seqno != seqno) {
1973 os->os_seqno = seqno;
1974 goto unlock;
1975 }
1976
1977 for (i = 0; i < osb->max_slots; i++)
1978 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1979 NULL, ORPHAN_NO_NEED_TRUNCATE);
1980 /*
1981 * We queued a recovery on orphan slots, increment the sequence
1982 * number and update LVB so other node will skip the scan for a while
1983 */
1984 seqno++;
1985 os->os_count++;
1986 os->os_scantime = ktime_get_seconds();
1987 unlock:
1988 ocfs2_orphan_scan_unlock(osb, seqno);
1989 out:
1990 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1991 atomic_read(&os->os_state));
1992 return;
1993 }
1994
1995 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1996 static void ocfs2_orphan_scan_work(struct work_struct *work)
1997 {
1998 struct ocfs2_orphan_scan *os;
1999 struct ocfs2_super *osb;
2000
2001 os = container_of(work, struct ocfs2_orphan_scan,
2002 os_orphan_scan_work.work);
2003 osb = os->os_osb;
2004
2005 mutex_lock(&os->os_lock);
2006 ocfs2_queue_orphan_scan(osb);
2007 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2008 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2009 ocfs2_orphan_scan_timeout());
2010 mutex_unlock(&os->os_lock);
2011 }
2012
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2013 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2014 {
2015 struct ocfs2_orphan_scan *os;
2016
2017 os = &osb->osb_orphan_scan;
2018 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2019 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2020 mutex_lock(&os->os_lock);
2021 cancel_delayed_work(&os->os_orphan_scan_work);
2022 mutex_unlock(&os->os_lock);
2023 }
2024 }
2025
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2026 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2027 {
2028 struct ocfs2_orphan_scan *os;
2029
2030 os = &osb->osb_orphan_scan;
2031 os->os_osb = osb;
2032 os->os_count = 0;
2033 os->os_seqno = 0;
2034 mutex_init(&os->os_lock);
2035 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2036 }
2037
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2038 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2039 {
2040 struct ocfs2_orphan_scan *os;
2041
2042 os = &osb->osb_orphan_scan;
2043 os->os_scantime = ktime_get_seconds();
2044 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2045 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2046 else {
2047 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2048 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2049 ocfs2_orphan_scan_timeout());
2050 }
2051 }
2052
2053 struct ocfs2_orphan_filldir_priv {
2054 struct dir_context ctx;
2055 struct inode *head;
2056 struct ocfs2_super *osb;
2057 enum ocfs2_orphan_reco_type orphan_reco_type;
2058 };
2059
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2060 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2061 int name_len, loff_t pos, u64 ino,
2062 unsigned type)
2063 {
2064 struct ocfs2_orphan_filldir_priv *p =
2065 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2066 struct inode *iter;
2067
2068 if (name_len == 1 && !strncmp(".", name, 1))
2069 return 0;
2070 if (name_len == 2 && !strncmp("..", name, 2))
2071 return 0;
2072
2073 /* do not include dio entry in case of orphan scan */
2074 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2075 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2076 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2077 return 0;
2078
2079 /* Skip bad inodes so that recovery can continue */
2080 iter = ocfs2_iget(p->osb, ino,
2081 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2082 if (IS_ERR(iter))
2083 return 0;
2084
2085 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2086 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2087 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2088
2089 /* Skip inodes which are already added to recover list, since dio may
2090 * happen concurrently with unlink/rename */
2091 if (OCFS2_I(iter)->ip_next_orphan) {
2092 iput(iter);
2093 return 0;
2094 }
2095
2096 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2097 /* No locking is required for the next_orphan queue as there
2098 * is only ever a single process doing orphan recovery. */
2099 OCFS2_I(iter)->ip_next_orphan = p->head;
2100 p->head = iter;
2101
2102 return 0;
2103 }
2104
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2105 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2106 int slot,
2107 struct inode **head,
2108 enum ocfs2_orphan_reco_type orphan_reco_type)
2109 {
2110 int status;
2111 struct inode *orphan_dir_inode = NULL;
2112 struct ocfs2_orphan_filldir_priv priv = {
2113 .ctx.actor = ocfs2_orphan_filldir,
2114 .osb = osb,
2115 .head = *head,
2116 .orphan_reco_type = orphan_reco_type
2117 };
2118
2119 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2120 ORPHAN_DIR_SYSTEM_INODE,
2121 slot);
2122 if (!orphan_dir_inode) {
2123 status = -ENOENT;
2124 mlog_errno(status);
2125 return status;
2126 }
2127
2128 inode_lock(orphan_dir_inode);
2129 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2130 if (status < 0) {
2131 mlog_errno(status);
2132 goto out;
2133 }
2134
2135 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2136 if (status) {
2137 mlog_errno(status);
2138 goto out_cluster;
2139 }
2140
2141 *head = priv.head;
2142
2143 out_cluster:
2144 ocfs2_inode_unlock(orphan_dir_inode, 0);
2145 out:
2146 inode_unlock(orphan_dir_inode);
2147 iput(orphan_dir_inode);
2148 return status;
2149 }
2150
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2151 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2152 int slot)
2153 {
2154 int ret;
2155
2156 spin_lock(&osb->osb_lock);
2157 ret = !osb->osb_orphan_wipes[slot];
2158 spin_unlock(&osb->osb_lock);
2159 return ret;
2160 }
2161
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2162 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2163 int slot)
2164 {
2165 spin_lock(&osb->osb_lock);
2166 /* Mark ourselves such that new processes in delete_inode()
2167 * know to quit early. */
2168 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2169 while (osb->osb_orphan_wipes[slot]) {
2170 /* If any processes are already in the middle of an
2171 * orphan wipe on this dir, then we need to wait for
2172 * them. */
2173 spin_unlock(&osb->osb_lock);
2174 wait_event_interruptible(osb->osb_wipe_event,
2175 ocfs2_orphan_recovery_can_continue(osb, slot));
2176 spin_lock(&osb->osb_lock);
2177 }
2178 spin_unlock(&osb->osb_lock);
2179 }
2180
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2181 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2182 int slot)
2183 {
2184 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2185 }
2186
2187 /*
2188 * Orphan recovery. Each mounted node has it's own orphan dir which we
2189 * must run during recovery. Our strategy here is to build a list of
2190 * the inodes in the orphan dir and iget/iput them. The VFS does
2191 * (most) of the rest of the work.
2192 *
2193 * Orphan recovery can happen at any time, not just mount so we have a
2194 * couple of extra considerations.
2195 *
2196 * - We grab as many inodes as we can under the orphan dir lock -
2197 * doing iget() outside the orphan dir risks getting a reference on
2198 * an invalid inode.
2199 * - We must be sure not to deadlock with other processes on the
2200 * system wanting to run delete_inode(). This can happen when they go
2201 * to lock the orphan dir and the orphan recovery process attempts to
2202 * iget() inside the orphan dir lock. This can be avoided by
2203 * advertising our state to ocfs2_delete_inode().
2204 */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2205 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2206 int slot,
2207 enum ocfs2_orphan_reco_type orphan_reco_type)
2208 {
2209 int ret = 0;
2210 struct inode *inode = NULL;
2211 struct inode *iter;
2212 struct ocfs2_inode_info *oi;
2213 struct buffer_head *di_bh = NULL;
2214 struct ocfs2_dinode *di = NULL;
2215
2216 trace_ocfs2_recover_orphans(slot);
2217
2218 ocfs2_mark_recovering_orphan_dir(osb, slot);
2219 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2220 ocfs2_clear_recovering_orphan_dir(osb, slot);
2221
2222 /* Error here should be noted, but we want to continue with as
2223 * many queued inodes as we've got. */
2224 if (ret)
2225 mlog_errno(ret);
2226
2227 while (inode) {
2228 oi = OCFS2_I(inode);
2229 trace_ocfs2_recover_orphans_iput(
2230 (unsigned long long)oi->ip_blkno);
2231
2232 iter = oi->ip_next_orphan;
2233 oi->ip_next_orphan = NULL;
2234
2235 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2236 inode_lock(inode);
2237 ret = ocfs2_rw_lock(inode, 1);
2238 if (ret < 0) {
2239 mlog_errno(ret);
2240 goto unlock_mutex;
2241 }
2242 /*
2243 * We need to take and drop the inode lock to
2244 * force read inode from disk.
2245 */
2246 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2247 if (ret) {
2248 mlog_errno(ret);
2249 goto unlock_rw;
2250 }
2251
2252 di = (struct ocfs2_dinode *)di_bh->b_data;
2253
2254 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2255 ret = ocfs2_truncate_file(inode, di_bh,
2256 i_size_read(inode));
2257 if (ret < 0) {
2258 if (ret != -ENOSPC)
2259 mlog_errno(ret);
2260 goto unlock_inode;
2261 }
2262
2263 ret = ocfs2_del_inode_from_orphan(osb, inode,
2264 di_bh, 0, 0);
2265 if (ret)
2266 mlog_errno(ret);
2267 }
2268 unlock_inode:
2269 ocfs2_inode_unlock(inode, 1);
2270 brelse(di_bh);
2271 di_bh = NULL;
2272 unlock_rw:
2273 ocfs2_rw_unlock(inode, 1);
2274 unlock_mutex:
2275 inode_unlock(inode);
2276
2277 /* clear dio flag in ocfs2_inode_info */
2278 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2279 } else {
2280 spin_lock(&oi->ip_lock);
2281 /* Set the proper information to get us going into
2282 * ocfs2_delete_inode. */
2283 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2284 spin_unlock(&oi->ip_lock);
2285 }
2286
2287 iput(inode);
2288 inode = iter;
2289 }
2290
2291 return ret;
2292 }
2293
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2294 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2295 {
2296 /* This check is good because ocfs2 will wait on our recovery
2297 * thread before changing it to something other than MOUNTED
2298 * or DISABLED. */
2299 wait_event(osb->osb_mount_event,
2300 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2301 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2302 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2303
2304 /* If there's an error on mount, then we may never get to the
2305 * MOUNTED flag, but this is set right before
2306 * dismount_volume() so we can trust it. */
2307 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2308 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2309 mlog(0, "mount error, exiting!\n");
2310 return -EBUSY;
2311 }
2312
2313 return 0;
2314 }
2315
ocfs2_commit_thread(void * arg)2316 static int ocfs2_commit_thread(void *arg)
2317 {
2318 int status;
2319 struct ocfs2_super *osb = arg;
2320 struct ocfs2_journal *journal = osb->journal;
2321
2322 /* we can trust j_num_trans here because _should_stop() is only set in
2323 * shutdown and nobody other than ourselves should be able to start
2324 * transactions. committing on shutdown might take a few iterations
2325 * as final transactions put deleted inodes on the list */
2326 while (!(kthread_should_stop() &&
2327 atomic_read(&journal->j_num_trans) == 0)) {
2328
2329 wait_event_interruptible(osb->checkpoint_event,
2330 atomic_read(&journal->j_num_trans)
2331 || kthread_should_stop());
2332
2333 status = ocfs2_commit_cache(osb);
2334 if (status < 0) {
2335 static unsigned long abort_warn_time;
2336
2337 /* Warn about this once per minute */
2338 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2339 mlog(ML_ERROR, "status = %d, journal is "
2340 "already aborted.\n", status);
2341 /*
2342 * After ocfs2_commit_cache() fails, j_num_trans has a
2343 * non-zero value. Sleep here to avoid a busy-wait
2344 * loop.
2345 */
2346 msleep_interruptible(1000);
2347 }
2348
2349 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2350 mlog(ML_KTHREAD,
2351 "commit_thread: %u transactions pending on "
2352 "shutdown\n",
2353 atomic_read(&journal->j_num_trans));
2354 }
2355 }
2356
2357 return 0;
2358 }
2359
2360 /* Reads all the journal inodes without taking any cluster locks. Used
2361 * for hard readonly access to determine whether any journal requires
2362 * recovery. Also used to refresh the recovery generation numbers after
2363 * a journal has been recovered by another node.
2364 */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2365 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2366 {
2367 int ret = 0;
2368 unsigned int slot;
2369 struct buffer_head *di_bh = NULL;
2370 struct ocfs2_dinode *di;
2371 int journal_dirty = 0;
2372
2373 for(slot = 0; slot < osb->max_slots; slot++) {
2374 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2375 if (ret) {
2376 mlog_errno(ret);
2377 goto out;
2378 }
2379
2380 di = (struct ocfs2_dinode *) di_bh->b_data;
2381
2382 osb->slot_recovery_generations[slot] =
2383 ocfs2_get_recovery_generation(di);
2384
2385 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2386 OCFS2_JOURNAL_DIRTY_FL)
2387 journal_dirty = 1;
2388
2389 brelse(di_bh);
2390 di_bh = NULL;
2391 }
2392
2393 out:
2394 if (journal_dirty)
2395 ret = -EROFS;
2396 return ret;
2397 }
2398