1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "blockcheck.h"
40 #include "dir.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "slot_map.h"
48 #include "super.h"
49 #include "sysfile.h"
50 #include "uptodate.h"
51 #include "quota.h"
52 
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
55 
56 DEFINE_SPINLOCK(trans_inc_lock);
57 
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 			      int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 				      int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 				 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 				 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 					    int slot_num,
75 					    struct ocfs2_dinode *la_dinode,
76 					    struct ocfs2_dinode *tl_dinode,
77 					    struct ocfs2_quota_recovery *qrec);
78 
ocfs2_wait_on_mount(struct ocfs2_super * osb)79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 0);
82 }
83 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 1);
87 }
88 
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93 
94 enum ocfs2_replay_state {
95 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97 	REPLAY_DONE 		/* Replay was already queued */
98 };
99 
100 struct ocfs2_replay_map {
101 	unsigned int rm_slots;
102 	enum ocfs2_replay_state rm_state;
103 	unsigned char rm_replay_slots[0];
104 };
105 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 	if (!osb->replay_map)
109 		return;
110 
111 	/* If we've already queued the replay, we don't have any more to do */
112 	if (osb->replay_map->rm_state == REPLAY_DONE)
113 		return;
114 
115 	osb->replay_map->rm_state = state;
116 }
117 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 	struct ocfs2_replay_map *replay_map;
121 	int i, node_num;
122 
123 	/* If replay map is already set, we don't do it again */
124 	if (osb->replay_map)
125 		return 0;
126 
127 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129 
130 	if (!replay_map) {
131 		mlog_errno(-ENOMEM);
132 		return -ENOMEM;
133 	}
134 
135 	spin_lock(&osb->osb_lock);
136 
137 	replay_map->rm_slots = osb->max_slots;
138 	replay_map->rm_state = REPLAY_UNNEEDED;
139 
140 	/* set rm_replay_slots for offline slot(s) */
141 	for (i = 0; i < replay_map->rm_slots; i++) {
142 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 			replay_map->rm_replay_slots[i] = 1;
144 	}
145 
146 	osb->replay_map = replay_map;
147 	spin_unlock(&osb->osb_lock);
148 	return 0;
149 }
150 
ocfs2_queue_replay_slots(struct ocfs2_super * osb)151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 	struct ocfs2_replay_map *replay_map = osb->replay_map;
154 	int i;
155 
156 	if (!replay_map)
157 		return;
158 
159 	if (replay_map->rm_state != REPLAY_NEEDED)
160 		return;
161 
162 	for (i = 0; i < replay_map->rm_slots; i++)
163 		if (replay_map->rm_replay_slots[i])
164 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 							NULL, NULL);
166 	replay_map->rm_state = REPLAY_DONE;
167 }
168 
ocfs2_free_replay_slots(struct ocfs2_super * osb)169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 	struct ocfs2_replay_map *replay_map = osb->replay_map;
172 
173 	if (!osb->replay_map)
174 		return;
175 
176 	kfree(replay_map);
177 	osb->replay_map = NULL;
178 }
179 
ocfs2_recovery_init(struct ocfs2_super * osb)180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 	struct ocfs2_recovery_map *rm;
183 
184 	mutex_init(&osb->recovery_lock);
185 	osb->disable_recovery = 0;
186 	osb->recovery_thread_task = NULL;
187 	init_waitqueue_head(&osb->recovery_event);
188 
189 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 		     osb->max_slots * sizeof(unsigned int),
191 		     GFP_KERNEL);
192 	if (!rm) {
193 		mlog_errno(-ENOMEM);
194 		return -ENOMEM;
195 	}
196 
197 	rm->rm_entries = (unsigned int *)((char *)rm +
198 					  sizeof(struct ocfs2_recovery_map));
199 	osb->recovery_map = rm;
200 
201 	return 0;
202 }
203 
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 	mb();
210 	return osb->recovery_thread_task != NULL;
211 }
212 
ocfs2_recovery_exit(struct ocfs2_super * osb)213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 	struct ocfs2_recovery_map *rm;
216 
217 	/* disable any new recovery threads and wait for any currently
218 	 * running ones to exit. Do this before setting the vol_state. */
219 	mutex_lock(&osb->recovery_lock);
220 	osb->disable_recovery = 1;
221 	mutex_unlock(&osb->recovery_lock);
222 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 
224 	/* At this point, we know that no more recovery threads can be
225 	 * launched, so wait for any recovery completion work to
226 	 * complete. */
227 	flush_workqueue(ocfs2_wq);
228 
229 	/*
230 	 * Now that recovery is shut down, and the osb is about to be
231 	 * freed,  the osb_lock is not taken here.
232 	 */
233 	rm = osb->recovery_map;
234 	/* XXX: Should we bug if there are dirty entries? */
235 
236 	kfree(rm);
237 }
238 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 				     unsigned int node_num)
241 {
242 	int i;
243 	struct ocfs2_recovery_map *rm = osb->recovery_map;
244 
245 	assert_spin_locked(&osb->osb_lock);
246 
247 	for (i = 0; i < rm->rm_used; i++) {
248 		if (rm->rm_entries[i] == node_num)
249 			return 1;
250 	}
251 
252 	return 0;
253 }
254 
255 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 				  unsigned int node_num)
258 {
259 	struct ocfs2_recovery_map *rm = osb->recovery_map;
260 
261 	spin_lock(&osb->osb_lock);
262 	if (__ocfs2_recovery_map_test(osb, node_num)) {
263 		spin_unlock(&osb->osb_lock);
264 		return 1;
265 	}
266 
267 	/* XXX: Can this be exploited? Not from o2dlm... */
268 	BUG_ON(rm->rm_used >= osb->max_slots);
269 
270 	rm->rm_entries[rm->rm_used] = node_num;
271 	rm->rm_used++;
272 	spin_unlock(&osb->osb_lock);
273 
274 	return 0;
275 }
276 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 				     unsigned int node_num)
279 {
280 	int i;
281 	struct ocfs2_recovery_map *rm = osb->recovery_map;
282 
283 	spin_lock(&osb->osb_lock);
284 
285 	for (i = 0; i < rm->rm_used; i++) {
286 		if (rm->rm_entries[i] == node_num)
287 			break;
288 	}
289 
290 	if (i < rm->rm_used) {
291 		/* XXX: be careful with the pointer math */
292 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 			(rm->rm_used - i - 1) * sizeof(unsigned int));
294 		rm->rm_used--;
295 	}
296 
297 	spin_unlock(&osb->osb_lock);
298 }
299 
ocfs2_commit_cache(struct ocfs2_super * osb)300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 	int status = 0;
303 	unsigned int flushed;
304 	struct ocfs2_journal *journal = NULL;
305 
306 	journal = osb->journal;
307 
308 	/* Flush all pending commits and checkpoint the journal. */
309 	down_write(&journal->j_trans_barrier);
310 
311 	flushed = atomic_read(&journal->j_num_trans);
312 	trace_ocfs2_commit_cache_begin(flushed);
313 	if (flushed == 0) {
314 		up_write(&journal->j_trans_barrier);
315 		goto finally;
316 	}
317 
318 	jbd2_journal_lock_updates(journal->j_journal);
319 	status = jbd2_journal_flush(journal->j_journal);
320 	jbd2_journal_unlock_updates(journal->j_journal);
321 	if (status < 0) {
322 		up_write(&journal->j_trans_barrier);
323 		mlog_errno(status);
324 		goto finally;
325 	}
326 
327 	ocfs2_inc_trans_id(journal);
328 
329 	flushed = atomic_read(&journal->j_num_trans);
330 	atomic_set(&journal->j_num_trans, 0);
331 	up_write(&journal->j_trans_barrier);
332 
333 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334 
335 	ocfs2_wake_downconvert_thread(osb);
336 	wake_up(&journal->j_checkpointed);
337 finally:
338 	return status;
339 }
340 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342 {
343 	journal_t *journal = osb->journal->j_journal;
344 	handle_t *handle;
345 
346 	BUG_ON(!osb || !osb->journal->j_journal);
347 
348 	if (ocfs2_is_hard_readonly(osb))
349 		return ERR_PTR(-EROFS);
350 
351 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 	BUG_ON(max_buffs <= 0);
353 
354 	/* Nested transaction? Just return the handle... */
355 	if (journal_current_handle())
356 		return jbd2_journal_start(journal, max_buffs);
357 
358 	down_read(&osb->journal->j_trans_barrier);
359 
360 	handle = jbd2_journal_start(journal, max_buffs);
361 	if (IS_ERR(handle)) {
362 		up_read(&osb->journal->j_trans_barrier);
363 
364 		mlog_errno(PTR_ERR(handle));
365 
366 		if (is_journal_aborted(journal)) {
367 			ocfs2_abort(osb->sb, "Detected aborted journal");
368 			handle = ERR_PTR(-EROFS);
369 		}
370 	} else {
371 		if (!ocfs2_mount_local(osb))
372 			atomic_inc(&(osb->journal->j_num_trans));
373 	}
374 
375 	return handle;
376 }
377 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)378 int ocfs2_commit_trans(struct ocfs2_super *osb,
379 		       handle_t *handle)
380 {
381 	int ret, nested;
382 	struct ocfs2_journal *journal = osb->journal;
383 
384 	BUG_ON(!handle);
385 
386 	nested = handle->h_ref > 1;
387 	ret = jbd2_journal_stop(handle);
388 	if (ret < 0)
389 		mlog_errno(ret);
390 
391 	if (!nested)
392 		up_read(&journal->j_trans_barrier);
393 
394 	return ret;
395 }
396 
397 /*
398  * 'nblocks' is what you want to add to the current transaction.
399  *
400  * This might call jbd2_journal_restart() which will commit dirty buffers
401  * and then restart the transaction. Before calling
402  * ocfs2_extend_trans(), any changed blocks should have been
403  * dirtied. After calling it, all blocks which need to be changed must
404  * go through another set of journal_access/journal_dirty calls.
405  *
406  * WARNING: This will not release any semaphores or disk locks taken
407  * during the transaction, so make sure they were taken *before*
408  * start_trans or we'll have ordering deadlocks.
409  *
410  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411  * good because transaction ids haven't yet been recorded on the
412  * cluster locks associated with this handle.
413  */
ocfs2_extend_trans(handle_t * handle,int nblocks)414 int ocfs2_extend_trans(handle_t *handle, int nblocks)
415 {
416 	int status, old_nblocks;
417 
418 	BUG_ON(!handle);
419 	BUG_ON(nblocks < 0);
420 
421 	if (!nblocks)
422 		return 0;
423 
424 	old_nblocks = handle->h_buffer_credits;
425 
426 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
427 
428 #ifdef CONFIG_OCFS2_DEBUG_FS
429 	status = 1;
430 #else
431 	status = jbd2_journal_extend(handle, nblocks);
432 	if (status < 0) {
433 		mlog_errno(status);
434 		goto bail;
435 	}
436 #endif
437 
438 	if (status > 0) {
439 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
440 		status = jbd2_journal_restart(handle,
441 					      old_nblocks + nblocks);
442 		if (status < 0) {
443 			mlog_errno(status);
444 			goto bail;
445 		}
446 	}
447 
448 	status = 0;
449 bail:
450 	return status;
451 }
452 
453 struct ocfs2_triggers {
454 	struct jbd2_buffer_trigger_type	ot_triggers;
455 	int				ot_offset;
456 };
457 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)458 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
459 {
460 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
461 }
462 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)463 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
464 				 struct buffer_head *bh,
465 				 void *data, size_t size)
466 {
467 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
468 
469 	/*
470 	 * We aren't guaranteed to have the superblock here, so we
471 	 * must unconditionally compute the ecc data.
472 	 * __ocfs2_journal_access() will only set the triggers if
473 	 * metaecc is enabled.
474 	 */
475 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
476 }
477 
478 /*
479  * Quota blocks have their own trigger because the struct ocfs2_block_check
480  * offset depends on the blocksize.
481  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)482 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
483 				 struct buffer_head *bh,
484 				 void *data, size_t size)
485 {
486 	struct ocfs2_disk_dqtrailer *dqt =
487 		ocfs2_block_dqtrailer(size, data);
488 
489 	/*
490 	 * We aren't guaranteed to have the superblock here, so we
491 	 * must unconditionally compute the ecc data.
492 	 * __ocfs2_journal_access() will only set the triggers if
493 	 * metaecc is enabled.
494 	 */
495 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
496 }
497 
498 /*
499  * Directory blocks also have their own trigger because the
500  * struct ocfs2_block_check offset depends on the blocksize.
501  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)502 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
503 				 struct buffer_head *bh,
504 				 void *data, size_t size)
505 {
506 	struct ocfs2_dir_block_trailer *trailer =
507 		ocfs2_dir_trailer_from_size(size, data);
508 
509 	/*
510 	 * We aren't guaranteed to have the superblock here, so we
511 	 * must unconditionally compute the ecc data.
512 	 * __ocfs2_journal_access() will only set the triggers if
513 	 * metaecc is enabled.
514 	 */
515 	ocfs2_block_check_compute(data, size, &trailer->db_check);
516 }
517 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)518 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
519 				struct buffer_head *bh)
520 {
521 	mlog(ML_ERROR,
522 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
523 	     "bh->b_blocknr = %llu\n",
524 	     (unsigned long)bh,
525 	     (unsigned long long)bh->b_blocknr);
526 
527 	/* We aren't guaranteed to have the superblock here - but if we
528 	 * don't, it'll just crash. */
529 	ocfs2_error(bh->b_assoc_map->host->i_sb,
530 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
531 }
532 
533 static struct ocfs2_triggers di_triggers = {
534 	.ot_triggers = {
535 		.t_frozen = ocfs2_frozen_trigger,
536 		.t_abort = ocfs2_abort_trigger,
537 	},
538 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
539 };
540 
541 static struct ocfs2_triggers eb_triggers = {
542 	.ot_triggers = {
543 		.t_frozen = ocfs2_frozen_trigger,
544 		.t_abort = ocfs2_abort_trigger,
545 	},
546 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
547 };
548 
549 static struct ocfs2_triggers rb_triggers = {
550 	.ot_triggers = {
551 		.t_frozen = ocfs2_frozen_trigger,
552 		.t_abort = ocfs2_abort_trigger,
553 	},
554 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
555 };
556 
557 static struct ocfs2_triggers gd_triggers = {
558 	.ot_triggers = {
559 		.t_frozen = ocfs2_frozen_trigger,
560 		.t_abort = ocfs2_abort_trigger,
561 	},
562 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
563 };
564 
565 static struct ocfs2_triggers db_triggers = {
566 	.ot_triggers = {
567 		.t_frozen = ocfs2_db_frozen_trigger,
568 		.t_abort = ocfs2_abort_trigger,
569 	},
570 };
571 
572 static struct ocfs2_triggers xb_triggers = {
573 	.ot_triggers = {
574 		.t_frozen = ocfs2_frozen_trigger,
575 		.t_abort = ocfs2_abort_trigger,
576 	},
577 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
578 };
579 
580 static struct ocfs2_triggers dq_triggers = {
581 	.ot_triggers = {
582 		.t_frozen = ocfs2_dq_frozen_trigger,
583 		.t_abort = ocfs2_abort_trigger,
584 	},
585 };
586 
587 static struct ocfs2_triggers dr_triggers = {
588 	.ot_triggers = {
589 		.t_frozen = ocfs2_frozen_trigger,
590 		.t_abort = ocfs2_abort_trigger,
591 	},
592 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
593 };
594 
595 static struct ocfs2_triggers dl_triggers = {
596 	.ot_triggers = {
597 		.t_frozen = ocfs2_frozen_trigger,
598 		.t_abort = ocfs2_abort_trigger,
599 	},
600 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
601 };
602 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)603 static int __ocfs2_journal_access(handle_t *handle,
604 				  struct ocfs2_caching_info *ci,
605 				  struct buffer_head *bh,
606 				  struct ocfs2_triggers *triggers,
607 				  int type)
608 {
609 	int status;
610 	struct ocfs2_super *osb =
611 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
612 
613 	BUG_ON(!ci || !ci->ci_ops);
614 	BUG_ON(!handle);
615 	BUG_ON(!bh);
616 
617 	trace_ocfs2_journal_access(
618 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
619 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
620 
621 	/* we can safely remove this assertion after testing. */
622 	if (!buffer_uptodate(bh)) {
623 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
624 		mlog(ML_ERROR, "b_blocknr=%llu\n",
625 		     (unsigned long long)bh->b_blocknr);
626 		BUG();
627 	}
628 
629 	/* Set the current transaction information on the ci so
630 	 * that the locking code knows whether it can drop it's locks
631 	 * on this ci or not. We're protected from the commit
632 	 * thread updating the current transaction id until
633 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
634 	 * j_trans_barrier for us. */
635 	ocfs2_set_ci_lock_trans(osb->journal, ci);
636 
637 	ocfs2_metadata_cache_io_lock(ci);
638 	switch (type) {
639 	case OCFS2_JOURNAL_ACCESS_CREATE:
640 	case OCFS2_JOURNAL_ACCESS_WRITE:
641 		status = jbd2_journal_get_write_access(handle, bh);
642 		break;
643 
644 	case OCFS2_JOURNAL_ACCESS_UNDO:
645 		status = jbd2_journal_get_undo_access(handle, bh);
646 		break;
647 
648 	default:
649 		status = -EINVAL;
650 		mlog(ML_ERROR, "Unknown access type!\n");
651 	}
652 	if (!status && ocfs2_meta_ecc(osb) && triggers)
653 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
654 	ocfs2_metadata_cache_io_unlock(ci);
655 
656 	if (status < 0)
657 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
658 		     status, type);
659 
660 	return status;
661 }
662 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)663 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
664 			    struct buffer_head *bh, int type)
665 {
666 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
667 }
668 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)669 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
670 			    struct buffer_head *bh, int type)
671 {
672 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
673 }
674 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)675 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
676 			    struct buffer_head *bh, int type)
677 {
678 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
679 				      type);
680 }
681 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)682 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
683 			    struct buffer_head *bh, int type)
684 {
685 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
686 }
687 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)688 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
689 			    struct buffer_head *bh, int type)
690 {
691 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
692 }
693 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)694 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
695 			    struct buffer_head *bh, int type)
696 {
697 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
698 }
699 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)700 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
701 			    struct buffer_head *bh, int type)
702 {
703 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
704 }
705 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)706 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
707 			    struct buffer_head *bh, int type)
708 {
709 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
710 }
711 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)712 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
713 			    struct buffer_head *bh, int type)
714 {
715 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
716 }
717 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)718 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
719 			 struct buffer_head *bh, int type)
720 {
721 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
722 }
723 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)724 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
725 {
726 	int status;
727 
728 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
729 
730 	status = jbd2_journal_dirty_metadata(handle, bh);
731 	BUG_ON(status);
732 }
733 
734 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
735 
ocfs2_set_journal_params(struct ocfs2_super * osb)736 void ocfs2_set_journal_params(struct ocfs2_super *osb)
737 {
738 	journal_t *journal = osb->journal->j_journal;
739 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
740 
741 	if (osb->osb_commit_interval)
742 		commit_interval = osb->osb_commit_interval;
743 
744 	write_lock(&journal->j_state_lock);
745 	journal->j_commit_interval = commit_interval;
746 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
747 		journal->j_flags |= JBD2_BARRIER;
748 	else
749 		journal->j_flags &= ~JBD2_BARRIER;
750 	write_unlock(&journal->j_state_lock);
751 }
752 
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)753 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
754 {
755 	int status = -1;
756 	struct inode *inode = NULL; /* the journal inode */
757 	journal_t *j_journal = NULL;
758 	struct ocfs2_dinode *di = NULL;
759 	struct buffer_head *bh = NULL;
760 	struct ocfs2_super *osb;
761 	int inode_lock = 0;
762 
763 	BUG_ON(!journal);
764 
765 	osb = journal->j_osb;
766 
767 	/* already have the inode for our journal */
768 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
769 					    osb->slot_num);
770 	if (inode == NULL) {
771 		status = -EACCES;
772 		mlog_errno(status);
773 		goto done;
774 	}
775 	if (is_bad_inode(inode)) {
776 		mlog(ML_ERROR, "access error (bad inode)\n");
777 		iput(inode);
778 		inode = NULL;
779 		status = -EACCES;
780 		goto done;
781 	}
782 
783 	SET_INODE_JOURNAL(inode);
784 	OCFS2_I(inode)->ip_open_count++;
785 
786 	/* Skip recovery waits here - journal inode metadata never
787 	 * changes in a live cluster so it can be considered an
788 	 * exception to the rule. */
789 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
790 	if (status < 0) {
791 		if (status != -ERESTARTSYS)
792 			mlog(ML_ERROR, "Could not get lock on journal!\n");
793 		goto done;
794 	}
795 
796 	inode_lock = 1;
797 	di = (struct ocfs2_dinode *)bh->b_data;
798 
799 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
800 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
801 		     inode->i_size);
802 		status = -EINVAL;
803 		goto done;
804 	}
805 
806 	trace_ocfs2_journal_init(inode->i_size,
807 				 (unsigned long long)inode->i_blocks,
808 				 OCFS2_I(inode)->ip_clusters);
809 
810 	/* call the kernels journal init function now */
811 	j_journal = jbd2_journal_init_inode(inode);
812 	if (j_journal == NULL) {
813 		mlog(ML_ERROR, "Linux journal layer error\n");
814 		status = -EINVAL;
815 		goto done;
816 	}
817 
818 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
819 
820 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
821 		  OCFS2_JOURNAL_DIRTY_FL);
822 
823 	journal->j_journal = j_journal;
824 	journal->j_inode = inode;
825 	journal->j_bh = bh;
826 
827 	ocfs2_set_journal_params(osb);
828 
829 	journal->j_state = OCFS2_JOURNAL_LOADED;
830 
831 	status = 0;
832 done:
833 	if (status < 0) {
834 		if (inode_lock)
835 			ocfs2_inode_unlock(inode, 1);
836 		brelse(bh);
837 		if (inode) {
838 			OCFS2_I(inode)->ip_open_count--;
839 			iput(inode);
840 		}
841 	}
842 
843 	return status;
844 }
845 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)846 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
847 {
848 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
849 }
850 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)851 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
852 {
853 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
854 }
855 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)856 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
857 				      int dirty, int replayed)
858 {
859 	int status;
860 	unsigned int flags;
861 	struct ocfs2_journal *journal = osb->journal;
862 	struct buffer_head *bh = journal->j_bh;
863 	struct ocfs2_dinode *fe;
864 
865 	fe = (struct ocfs2_dinode *)bh->b_data;
866 
867 	/* The journal bh on the osb always comes from ocfs2_journal_init()
868 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
869 	 * code bug if we mess it up. */
870 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
871 
872 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
873 	if (dirty)
874 		flags |= OCFS2_JOURNAL_DIRTY_FL;
875 	else
876 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
877 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
878 
879 	if (replayed)
880 		ocfs2_bump_recovery_generation(fe);
881 
882 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
883 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
884 	if (status < 0)
885 		mlog_errno(status);
886 
887 	return status;
888 }
889 
890 /*
891  * If the journal has been kmalloc'd it needs to be freed after this
892  * call.
893  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)894 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
895 {
896 	struct ocfs2_journal *journal = NULL;
897 	int status = 0;
898 	struct inode *inode = NULL;
899 	int num_running_trans = 0;
900 
901 	BUG_ON(!osb);
902 
903 	journal = osb->journal;
904 	if (!journal)
905 		goto done;
906 
907 	inode = journal->j_inode;
908 
909 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
910 		goto done;
911 
912 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
913 	if (!igrab(inode))
914 		BUG();
915 
916 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
917 	trace_ocfs2_journal_shutdown(num_running_trans);
918 
919 	/* Do a commit_cache here. It will flush our journal, *and*
920 	 * release any locks that are still held.
921 	 * set the SHUTDOWN flag and release the trans lock.
922 	 * the commit thread will take the trans lock for us below. */
923 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
924 
925 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926 	 * drop the trans_lock (which we want to hold until we
927 	 * completely destroy the journal. */
928 	if (osb->commit_task) {
929 		/* Wait for the commit thread */
930 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
931 		kthread_stop(osb->commit_task);
932 		osb->commit_task = NULL;
933 	}
934 
935 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
936 
937 	if (ocfs2_mount_local(osb)) {
938 		jbd2_journal_lock_updates(journal->j_journal);
939 		status = jbd2_journal_flush(journal->j_journal);
940 		jbd2_journal_unlock_updates(journal->j_journal);
941 		if (status < 0)
942 			mlog_errno(status);
943 	}
944 
945 	if (status == 0) {
946 		/*
947 		 * Do not toggle if flush was unsuccessful otherwise
948 		 * will leave dirty metadata in a "clean" journal
949 		 */
950 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
951 		if (status < 0)
952 			mlog_errno(status);
953 	}
954 
955 	/* Shutdown the kernel journal system */
956 	jbd2_journal_destroy(journal->j_journal);
957 	journal->j_journal = NULL;
958 
959 	OCFS2_I(inode)->ip_open_count--;
960 
961 	/* unlock our journal */
962 	ocfs2_inode_unlock(inode, 1);
963 
964 	brelse(journal->j_bh);
965 	journal->j_bh = NULL;
966 
967 	journal->j_state = OCFS2_JOURNAL_FREE;
968 
969 //	up_write(&journal->j_trans_barrier);
970 done:
971 	if (inode)
972 		iput(inode);
973 }
974 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)975 static void ocfs2_clear_journal_error(struct super_block *sb,
976 				      journal_t *journal,
977 				      int slot)
978 {
979 	int olderr;
980 
981 	olderr = jbd2_journal_errno(journal);
982 	if (olderr) {
983 		mlog(ML_ERROR, "File system error %d recorded in "
984 		     "journal %u.\n", olderr, slot);
985 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
986 		     sb->s_id);
987 
988 		jbd2_journal_ack_err(journal);
989 		jbd2_journal_clear_err(journal);
990 	}
991 }
992 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)993 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
994 {
995 	int status = 0;
996 	struct ocfs2_super *osb;
997 
998 	BUG_ON(!journal);
999 
1000 	osb = journal->j_osb;
1001 
1002 	status = jbd2_journal_load(journal->j_journal);
1003 	if (status < 0) {
1004 		mlog(ML_ERROR, "Failed to load journal!\n");
1005 		goto done;
1006 	}
1007 
1008 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009 
1010 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1011 	if (status < 0) {
1012 		mlog_errno(status);
1013 		goto done;
1014 	}
1015 
1016 	/* Launch the commit thread */
1017 	if (!local) {
1018 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019 					       "ocfs2cmt");
1020 		if (IS_ERR(osb->commit_task)) {
1021 			status = PTR_ERR(osb->commit_task);
1022 			osb->commit_task = NULL;
1023 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024 			     "error=%d", status);
1025 			goto done;
1026 		}
1027 	} else
1028 		osb->commit_task = NULL;
1029 
1030 done:
1031 	return status;
1032 }
1033 
1034 
1035 /* 'full' flag tells us whether we clear out all blocks or if we just
1036  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1037 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038 {
1039 	int status;
1040 
1041 	BUG_ON(!journal);
1042 
1043 	status = jbd2_journal_wipe(journal->j_journal, full);
1044 	if (status < 0) {
1045 		mlog_errno(status);
1046 		goto bail;
1047 	}
1048 
1049 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1050 	if (status < 0)
1051 		mlog_errno(status);
1052 
1053 bail:
1054 	return status;
1055 }
1056 
ocfs2_recovery_completed(struct ocfs2_super * osb)1057 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058 {
1059 	int empty;
1060 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1061 
1062 	spin_lock(&osb->osb_lock);
1063 	empty = (rm->rm_used == 0);
1064 	spin_unlock(&osb->osb_lock);
1065 
1066 	return empty;
1067 }
1068 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1069 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070 {
1071 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072 }
1073 
1074 /*
1075  * JBD Might read a cached version of another nodes journal file. We
1076  * don't want this as this file changes often and we get no
1077  * notification on those changes. The only way to be sure that we've
1078  * got the most up to date version of those blocks then is to force
1079  * read them off disk. Just searching through the buffer cache won't
1080  * work as there may be pages backing this file which are still marked
1081  * up to date. We know things can't change on this file underneath us
1082  * as we have the lock by now :)
1083  */
ocfs2_force_read_journal(struct inode * inode)1084 static int ocfs2_force_read_journal(struct inode *inode)
1085 {
1086 	int status = 0;
1087 	int i;
1088 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1089 #define CONCURRENT_JOURNAL_FILL 32ULL
1090 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091 
1092 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093 
1094 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1095 	v_blkno = 0;
1096 	while (v_blkno < num_blocks) {
1097 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1098 						     &p_blkno, &p_blocks, NULL);
1099 		if (status < 0) {
1100 			mlog_errno(status);
1101 			goto bail;
1102 		}
1103 
1104 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105 			p_blocks = CONCURRENT_JOURNAL_FILL;
1106 
1107 		/* We are reading journal data which should not
1108 		 * be put in the uptodate cache */
1109 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110 						p_blkno, p_blocks, bhs);
1111 		if (status < 0) {
1112 			mlog_errno(status);
1113 			goto bail;
1114 		}
1115 
1116 		for(i = 0; i < p_blocks; i++) {
1117 			brelse(bhs[i]);
1118 			bhs[i] = NULL;
1119 		}
1120 
1121 		v_blkno += p_blocks;
1122 	}
1123 
1124 bail:
1125 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1126 		brelse(bhs[i]);
1127 	return status;
1128 }
1129 
1130 struct ocfs2_la_recovery_item {
1131 	struct list_head	lri_list;
1132 	int			lri_slot;
1133 	struct ocfs2_dinode	*lri_la_dinode;
1134 	struct ocfs2_dinode	*lri_tl_dinode;
1135 	struct ocfs2_quota_recovery *lri_qrec;
1136 };
1137 
1138 /* Does the second half of the recovery process. By this point, the
1139  * node is marked clean and can actually be considered recovered,
1140  * hence it's no longer in the recovery map, but there's still some
1141  * cleanup we can do which shouldn't happen within the recovery thread
1142  * as locking in that context becomes very difficult if we are to take
1143  * recovering nodes into account.
1144  *
1145  * NOTE: This function can and will sleep on recovery of other nodes
1146  * during cluster locking, just like any other ocfs2 process.
1147  */
ocfs2_complete_recovery(struct work_struct * work)1148 void ocfs2_complete_recovery(struct work_struct *work)
1149 {
1150 	int ret = 0;
1151 	struct ocfs2_journal *journal =
1152 		container_of(work, struct ocfs2_journal, j_recovery_work);
1153 	struct ocfs2_super *osb = journal->j_osb;
1154 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1155 	struct ocfs2_la_recovery_item *item, *n;
1156 	struct ocfs2_quota_recovery *qrec;
1157 	LIST_HEAD(tmp_la_list);
1158 
1159 	trace_ocfs2_complete_recovery(
1160 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1161 
1162 	spin_lock(&journal->j_lock);
1163 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164 	spin_unlock(&journal->j_lock);
1165 
1166 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1167 		list_del_init(&item->lri_list);
1168 
1169 		ocfs2_wait_on_quotas(osb);
1170 
1171 		la_dinode = item->lri_la_dinode;
1172 		tl_dinode = item->lri_tl_dinode;
1173 		qrec = item->lri_qrec;
1174 
1175 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178 			qrec);
1179 
1180 		if (la_dinode) {
1181 			ret = ocfs2_complete_local_alloc_recovery(osb,
1182 								  la_dinode);
1183 			if (ret < 0)
1184 				mlog_errno(ret);
1185 
1186 			kfree(la_dinode);
1187 		}
1188 
1189 		if (tl_dinode) {
1190 			ret = ocfs2_complete_truncate_log_recovery(osb,
1191 								   tl_dinode);
1192 			if (ret < 0)
1193 				mlog_errno(ret);
1194 
1195 			kfree(tl_dinode);
1196 		}
1197 
1198 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1199 		if (ret < 0)
1200 			mlog_errno(ret);
1201 
1202 		if (qrec) {
1203 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1204 							  item->lri_slot);
1205 			if (ret < 0)
1206 				mlog_errno(ret);
1207 			/* Recovery info is already freed now */
1208 		}
1209 
1210 		kfree(item);
1211 	}
1212 
1213 	trace_ocfs2_complete_recovery_end(ret);
1214 }
1215 
1216 /* NOTE: This function always eats your references to la_dinode and
1217  * tl_dinode, either manually on error, or by passing them to
1218  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec)1219 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220 					    int slot_num,
1221 					    struct ocfs2_dinode *la_dinode,
1222 					    struct ocfs2_dinode *tl_dinode,
1223 					    struct ocfs2_quota_recovery *qrec)
1224 {
1225 	struct ocfs2_la_recovery_item *item;
1226 
1227 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1228 	if (!item) {
1229 		/* Though we wish to avoid it, we are in fact safe in
1230 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1231 		 * than capable of reclaiming unused space. */
1232 		if (la_dinode)
1233 			kfree(la_dinode);
1234 
1235 		if (tl_dinode)
1236 			kfree(tl_dinode);
1237 
1238 		if (qrec)
1239 			ocfs2_free_quota_recovery(qrec);
1240 
1241 		mlog_errno(-ENOMEM);
1242 		return;
1243 	}
1244 
1245 	INIT_LIST_HEAD(&item->lri_list);
1246 	item->lri_la_dinode = la_dinode;
1247 	item->lri_slot = slot_num;
1248 	item->lri_tl_dinode = tl_dinode;
1249 	item->lri_qrec = qrec;
1250 
1251 	spin_lock(&journal->j_lock);
1252 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1254 	spin_unlock(&journal->j_lock);
1255 }
1256 
1257 /* Called by the mount code to queue recovery the last part of
1258  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1259 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260 {
1261 	struct ocfs2_journal *journal = osb->journal;
1262 
1263 	if (ocfs2_is_hard_readonly(osb))
1264 		return;
1265 
1266 	/* No need to queue up our truncate_log as regular cleanup will catch
1267 	 * that */
1268 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1269 					osb->local_alloc_copy, NULL, NULL);
1270 	ocfs2_schedule_truncate_log_flush(osb, 0);
1271 
1272 	osb->local_alloc_copy = NULL;
1273 	osb->dirty = 0;
1274 
1275 	/* queue to recover orphan slots for all offline slots */
1276 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1277 	ocfs2_queue_replay_slots(osb);
1278 	ocfs2_free_replay_slots(osb);
1279 }
1280 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1281 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1282 {
1283 	if (osb->quota_rec) {
1284 		ocfs2_queue_recovery_completion(osb->journal,
1285 						osb->slot_num,
1286 						NULL,
1287 						NULL,
1288 						osb->quota_rec);
1289 		osb->quota_rec = NULL;
1290 	}
1291 }
1292 
__ocfs2_recovery_thread(void * arg)1293 static int __ocfs2_recovery_thread(void *arg)
1294 {
1295 	int status, node_num, slot_num;
1296 	struct ocfs2_super *osb = arg;
1297 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1298 	int *rm_quota = NULL;
1299 	int rm_quota_used = 0, i;
1300 	struct ocfs2_quota_recovery *qrec;
1301 
1302 	status = ocfs2_wait_on_mount(osb);
1303 	if (status < 0) {
1304 		goto bail;
1305 	}
1306 
1307 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1308 	if (!rm_quota) {
1309 		status = -ENOMEM;
1310 		goto bail;
1311 	}
1312 restart:
1313 	status = ocfs2_super_lock(osb, 1);
1314 	if (status < 0) {
1315 		mlog_errno(status);
1316 		goto bail;
1317 	}
1318 
1319 	status = ocfs2_compute_replay_slots(osb);
1320 	if (status < 0)
1321 		mlog_errno(status);
1322 
1323 	/* queue recovery for our own slot */
1324 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1325 					NULL, NULL);
1326 
1327 	spin_lock(&osb->osb_lock);
1328 	while (rm->rm_used) {
1329 		/* It's always safe to remove entry zero, as we won't
1330 		 * clear it until ocfs2_recover_node() has succeeded. */
1331 		node_num = rm->rm_entries[0];
1332 		spin_unlock(&osb->osb_lock);
1333 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1334 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1335 		if (slot_num == -ENOENT) {
1336 			status = 0;
1337 			goto skip_recovery;
1338 		}
1339 
1340 		/* It is a bit subtle with quota recovery. We cannot do it
1341 		 * immediately because we have to obtain cluster locks from
1342 		 * quota files and we also don't want to just skip it because
1343 		 * then quota usage would be out of sync until some node takes
1344 		 * the slot. So we remember which nodes need quota recovery
1345 		 * and when everything else is done, we recover quotas. */
1346 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1347 		if (i == rm_quota_used)
1348 			rm_quota[rm_quota_used++] = slot_num;
1349 
1350 		status = ocfs2_recover_node(osb, node_num, slot_num);
1351 skip_recovery:
1352 		if (!status) {
1353 			ocfs2_recovery_map_clear(osb, node_num);
1354 		} else {
1355 			mlog(ML_ERROR,
1356 			     "Error %d recovering node %d on device (%u,%u)!\n",
1357 			     status, node_num,
1358 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1359 			mlog(ML_ERROR, "Volume requires unmount.\n");
1360 		}
1361 
1362 		spin_lock(&osb->osb_lock);
1363 	}
1364 	spin_unlock(&osb->osb_lock);
1365 	trace_ocfs2_recovery_thread_end(status);
1366 
1367 	/* Refresh all journal recovery generations from disk */
1368 	status = ocfs2_check_journals_nolocks(osb);
1369 	status = (status == -EROFS) ? 0 : status;
1370 	if (status < 0)
1371 		mlog_errno(status);
1372 
1373 	/* Now it is right time to recover quotas... We have to do this under
1374 	 * superblock lock so that no one can start using the slot (and crash)
1375 	 * before we recover it */
1376 	for (i = 0; i < rm_quota_used; i++) {
1377 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1378 		if (IS_ERR(qrec)) {
1379 			status = PTR_ERR(qrec);
1380 			mlog_errno(status);
1381 			continue;
1382 		}
1383 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1384 						NULL, NULL, qrec);
1385 	}
1386 
1387 	ocfs2_super_unlock(osb, 1);
1388 
1389 	/* queue recovery for offline slots */
1390 	ocfs2_queue_replay_slots(osb);
1391 
1392 bail:
1393 	mutex_lock(&osb->recovery_lock);
1394 	if (!status && !ocfs2_recovery_completed(osb)) {
1395 		mutex_unlock(&osb->recovery_lock);
1396 		goto restart;
1397 	}
1398 
1399 	ocfs2_free_replay_slots(osb);
1400 	osb->recovery_thread_task = NULL;
1401 	mb(); /* sync with ocfs2_recovery_thread_running */
1402 	wake_up(&osb->recovery_event);
1403 
1404 	mutex_unlock(&osb->recovery_lock);
1405 
1406 	if (rm_quota)
1407 		kfree(rm_quota);
1408 
1409 	/* no one is callint kthread_stop() for us so the kthread() api
1410 	 * requires that we call do_exit().  And it isn't exported, but
1411 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1412 	complete_and_exit(NULL, status);
1413 	return status;
1414 }
1415 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1416 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1417 {
1418 	mutex_lock(&osb->recovery_lock);
1419 
1420 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1421 		osb->disable_recovery, osb->recovery_thread_task,
1422 		osb->disable_recovery ?
1423 		-1 : ocfs2_recovery_map_set(osb, node_num));
1424 
1425 	if (osb->disable_recovery)
1426 		goto out;
1427 
1428 	if (osb->recovery_thread_task)
1429 		goto out;
1430 
1431 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1432 						 "ocfs2rec");
1433 	if (IS_ERR(osb->recovery_thread_task)) {
1434 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1435 		osb->recovery_thread_task = NULL;
1436 	}
1437 
1438 out:
1439 	mutex_unlock(&osb->recovery_lock);
1440 	wake_up(&osb->recovery_event);
1441 }
1442 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1443 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1444 				    int slot_num,
1445 				    struct buffer_head **bh,
1446 				    struct inode **ret_inode)
1447 {
1448 	int status = -EACCES;
1449 	struct inode *inode = NULL;
1450 
1451 	BUG_ON(slot_num >= osb->max_slots);
1452 
1453 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1454 					    slot_num);
1455 	if (!inode || is_bad_inode(inode)) {
1456 		mlog_errno(status);
1457 		goto bail;
1458 	}
1459 	SET_INODE_JOURNAL(inode);
1460 
1461 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1462 	if (status < 0) {
1463 		mlog_errno(status);
1464 		goto bail;
1465 	}
1466 
1467 	status = 0;
1468 
1469 bail:
1470 	if (inode) {
1471 		if (status || !ret_inode)
1472 			iput(inode);
1473 		else
1474 			*ret_inode = inode;
1475 	}
1476 	return status;
1477 }
1478 
1479 /* Does the actual journal replay and marks the journal inode as
1480  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1481 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1482 				int node_num,
1483 				int slot_num)
1484 {
1485 	int status;
1486 	int got_lock = 0;
1487 	unsigned int flags;
1488 	struct inode *inode = NULL;
1489 	struct ocfs2_dinode *fe;
1490 	journal_t *journal = NULL;
1491 	struct buffer_head *bh = NULL;
1492 	u32 slot_reco_gen;
1493 
1494 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1495 	if (status) {
1496 		mlog_errno(status);
1497 		goto done;
1498 	}
1499 
1500 	fe = (struct ocfs2_dinode *)bh->b_data;
1501 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1502 	brelse(bh);
1503 	bh = NULL;
1504 
1505 	/*
1506 	 * As the fs recovery is asynchronous, there is a small chance that
1507 	 * another node mounted (and recovered) the slot before the recovery
1508 	 * thread could get the lock. To handle that, we dirty read the journal
1509 	 * inode for that slot to get the recovery generation. If it is
1510 	 * different than what we expected, the slot has been recovered.
1511 	 * If not, it needs recovery.
1512 	 */
1513 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1514 		trace_ocfs2_replay_journal_recovered(slot_num,
1515 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1516 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1517 		status = -EBUSY;
1518 		goto done;
1519 	}
1520 
1521 	/* Continue with recovery as the journal has not yet been recovered */
1522 
1523 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1524 	if (status < 0) {
1525 		trace_ocfs2_replay_journal_lock_err(status);
1526 		if (status != -ERESTARTSYS)
1527 			mlog(ML_ERROR, "Could not lock journal!\n");
1528 		goto done;
1529 	}
1530 	got_lock = 1;
1531 
1532 	fe = (struct ocfs2_dinode *) bh->b_data;
1533 
1534 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1535 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1536 
1537 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1538 		trace_ocfs2_replay_journal_skip(node_num);
1539 		/* Refresh recovery generation for the slot */
1540 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1541 		goto done;
1542 	}
1543 
1544 	/* we need to run complete recovery for offline orphan slots */
1545 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1546 
1547 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1548 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1549 	       MINOR(osb->sb->s_dev));
1550 
1551 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1552 
1553 	status = ocfs2_force_read_journal(inode);
1554 	if (status < 0) {
1555 		mlog_errno(status);
1556 		goto done;
1557 	}
1558 
1559 	journal = jbd2_journal_init_inode(inode);
1560 	if (journal == NULL) {
1561 		mlog(ML_ERROR, "Linux journal layer error\n");
1562 		status = -EIO;
1563 		goto done;
1564 	}
1565 
1566 	status = jbd2_journal_load(journal);
1567 	if (status < 0) {
1568 		mlog_errno(status);
1569 		if (!igrab(inode))
1570 			BUG();
1571 		jbd2_journal_destroy(journal);
1572 		goto done;
1573 	}
1574 
1575 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1576 
1577 	/* wipe the journal */
1578 	jbd2_journal_lock_updates(journal);
1579 	status = jbd2_journal_flush(journal);
1580 	jbd2_journal_unlock_updates(journal);
1581 	if (status < 0)
1582 		mlog_errno(status);
1583 
1584 	/* This will mark the node clean */
1585 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1587 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1588 
1589 	/* Increment recovery generation to indicate successful recovery */
1590 	ocfs2_bump_recovery_generation(fe);
1591 	osb->slot_recovery_generations[slot_num] =
1592 					ocfs2_get_recovery_generation(fe);
1593 
1594 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1595 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1596 	if (status < 0)
1597 		mlog_errno(status);
1598 
1599 	if (!igrab(inode))
1600 		BUG();
1601 
1602 	jbd2_journal_destroy(journal);
1603 
1604 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1605 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1606 	       MINOR(osb->sb->s_dev));
1607 done:
1608 	/* drop the lock on this nodes journal */
1609 	if (got_lock)
1610 		ocfs2_inode_unlock(inode, 1);
1611 
1612 	if (inode)
1613 		iput(inode);
1614 
1615 	brelse(bh);
1616 
1617 	return status;
1618 }
1619 
1620 /*
1621  * Do the most important parts of node recovery:
1622  *  - Replay it's journal
1623  *  - Stamp a clean local allocator file
1624  *  - Stamp a clean truncate log
1625  *  - Mark the node clean
1626  *
1627  * If this function completes without error, a node in OCFS2 can be
1628  * said to have been safely recovered. As a result, failure during the
1629  * second part of a nodes recovery process (local alloc recovery) is
1630  * far less concerning.
1631  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1632 static int ocfs2_recover_node(struct ocfs2_super *osb,
1633 			      int node_num, int slot_num)
1634 {
1635 	int status = 0;
1636 	struct ocfs2_dinode *la_copy = NULL;
1637 	struct ocfs2_dinode *tl_copy = NULL;
1638 
1639 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1640 
1641 	/* Should not ever be called to recover ourselves -- in that
1642 	 * case we should've called ocfs2_journal_load instead. */
1643 	BUG_ON(osb->node_num == node_num);
1644 
1645 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1646 	if (status < 0) {
1647 		if (status == -EBUSY) {
1648 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1649 			status = 0;
1650 			goto done;
1651 		}
1652 		mlog_errno(status);
1653 		goto done;
1654 	}
1655 
1656 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1657 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1658 	if (status < 0) {
1659 		mlog_errno(status);
1660 		goto done;
1661 	}
1662 
1663 	/* An error from begin_truncate_log_recovery is not
1664 	 * serious enough to warrant halting the rest of
1665 	 * recovery. */
1666 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1667 	if (status < 0)
1668 		mlog_errno(status);
1669 
1670 	/* Likewise, this would be a strange but ultimately not so
1671 	 * harmful place to get an error... */
1672 	status = ocfs2_clear_slot(osb, slot_num);
1673 	if (status < 0)
1674 		mlog_errno(status);
1675 
1676 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1677 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1678 					tl_copy, NULL);
1679 
1680 	status = 0;
1681 done:
1682 
1683 	return status;
1684 }
1685 
1686 /* Test node liveness by trylocking his journal. If we get the lock,
1687  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1688  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1689 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1690 				 int slot_num)
1691 {
1692 	int status, flags;
1693 	struct inode *inode = NULL;
1694 
1695 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1696 					    slot_num);
1697 	if (inode == NULL) {
1698 		mlog(ML_ERROR, "access error\n");
1699 		status = -EACCES;
1700 		goto bail;
1701 	}
1702 	if (is_bad_inode(inode)) {
1703 		mlog(ML_ERROR, "access error (bad inode)\n");
1704 		iput(inode);
1705 		inode = NULL;
1706 		status = -EACCES;
1707 		goto bail;
1708 	}
1709 	SET_INODE_JOURNAL(inode);
1710 
1711 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1712 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1713 	if (status < 0) {
1714 		if (status != -EAGAIN)
1715 			mlog_errno(status);
1716 		goto bail;
1717 	}
1718 
1719 	ocfs2_inode_unlock(inode, 1);
1720 bail:
1721 	if (inode)
1722 		iput(inode);
1723 
1724 	return status;
1725 }
1726 
1727 /* Call this underneath ocfs2_super_lock. It also assumes that the
1728  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1729 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1730 {
1731 	unsigned int node_num;
1732 	int status, i;
1733 	u32 gen;
1734 	struct buffer_head *bh = NULL;
1735 	struct ocfs2_dinode *di;
1736 
1737 	/* This is called with the super block cluster lock, so we
1738 	 * know that the slot map can't change underneath us. */
1739 
1740 	for (i = 0; i < osb->max_slots; i++) {
1741 		/* Read journal inode to get the recovery generation */
1742 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1743 		if (status) {
1744 			mlog_errno(status);
1745 			goto bail;
1746 		}
1747 		di = (struct ocfs2_dinode *)bh->b_data;
1748 		gen = ocfs2_get_recovery_generation(di);
1749 		brelse(bh);
1750 		bh = NULL;
1751 
1752 		spin_lock(&osb->osb_lock);
1753 		osb->slot_recovery_generations[i] = gen;
1754 
1755 		trace_ocfs2_mark_dead_nodes(i,
1756 					    osb->slot_recovery_generations[i]);
1757 
1758 		if (i == osb->slot_num) {
1759 			spin_unlock(&osb->osb_lock);
1760 			continue;
1761 		}
1762 
1763 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1764 		if (status == -ENOENT) {
1765 			spin_unlock(&osb->osb_lock);
1766 			continue;
1767 		}
1768 
1769 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1770 			spin_unlock(&osb->osb_lock);
1771 			continue;
1772 		}
1773 		spin_unlock(&osb->osb_lock);
1774 
1775 		/* Ok, we have a slot occupied by another node which
1776 		 * is not in the recovery map. We trylock his journal
1777 		 * file here to test if he's alive. */
1778 		status = ocfs2_trylock_journal(osb, i);
1779 		if (!status) {
1780 			/* Since we're called from mount, we know that
1781 			 * the recovery thread can't race us on
1782 			 * setting / checking the recovery bits. */
1783 			ocfs2_recovery_thread(osb, node_num);
1784 		} else if ((status < 0) && (status != -EAGAIN)) {
1785 			mlog_errno(status);
1786 			goto bail;
1787 		}
1788 	}
1789 
1790 	status = 0;
1791 bail:
1792 	return status;
1793 }
1794 
1795 /*
1796  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1797  * randomness to the timeout to minimize multple nodes firing the timer at the
1798  * same time.
1799  */
ocfs2_orphan_scan_timeout(void)1800 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1801 {
1802 	unsigned long time;
1803 
1804 	get_random_bytes(&time, sizeof(time));
1805 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1806 	return msecs_to_jiffies(time);
1807 }
1808 
1809 /*
1810  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1811  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1812  * is done to catch any orphans that are left over in orphan directories.
1813  *
1814  * It scans all slots, even ones that are in use. It does so to handle the
1815  * case described below:
1816  *
1817  *   Node 1 has an inode it was using. The dentry went away due to memory
1818  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1819  *   has the open lock.
1820  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1821  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1822  *   open lock, sees that another node has a PR, and does nothing.
1823  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1824  *   open lock, sees the PR still, and does nothing.
1825  *   Basically, we have to trigger an orphan iput on node 1. The only way
1826  *   for this to happen is if node 1 runs node 2's orphan dir.
1827  *
1828  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1829  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1830  * stored in LVB. If the sequence number has changed, it means some other
1831  * node has done the scan.  This node skips the scan and tracks the
1832  * sequence number.  If the sequence number didn't change, it means a scan
1833  * hasn't happened.  The node queues a scan and increments the
1834  * sequence number in the LVB.
1835  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1836 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1837 {
1838 	struct ocfs2_orphan_scan *os;
1839 	int status, i;
1840 	u32 seqno = 0;
1841 
1842 	os = &osb->osb_orphan_scan;
1843 
1844 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1845 		goto out;
1846 
1847 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1848 					    atomic_read(&os->os_state));
1849 
1850 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1851 	if (status < 0) {
1852 		if (status != -EAGAIN)
1853 			mlog_errno(status);
1854 		goto out;
1855 	}
1856 
1857 	/* Do no queue the tasks if the volume is being umounted */
1858 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1859 		goto unlock;
1860 
1861 	if (os->os_seqno != seqno) {
1862 		os->os_seqno = seqno;
1863 		goto unlock;
1864 	}
1865 
1866 	for (i = 0; i < osb->max_slots; i++)
1867 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1868 						NULL);
1869 	/*
1870 	 * We queued a recovery on orphan slots, increment the sequence
1871 	 * number and update LVB so other node will skip the scan for a while
1872 	 */
1873 	seqno++;
1874 	os->os_count++;
1875 	os->os_scantime = CURRENT_TIME;
1876 unlock:
1877 	ocfs2_orphan_scan_unlock(osb, seqno);
1878 out:
1879 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1880 					  atomic_read(&os->os_state));
1881 	return;
1882 }
1883 
1884 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1885 void ocfs2_orphan_scan_work(struct work_struct *work)
1886 {
1887 	struct ocfs2_orphan_scan *os;
1888 	struct ocfs2_super *osb;
1889 
1890 	os = container_of(work, struct ocfs2_orphan_scan,
1891 			  os_orphan_scan_work.work);
1892 	osb = os->os_osb;
1893 
1894 	mutex_lock(&os->os_lock);
1895 	ocfs2_queue_orphan_scan(osb);
1896 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1897 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1898 				      ocfs2_orphan_scan_timeout());
1899 	mutex_unlock(&os->os_lock);
1900 }
1901 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)1902 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1903 {
1904 	struct ocfs2_orphan_scan *os;
1905 
1906 	os = &osb->osb_orphan_scan;
1907 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1908 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1909 		mutex_lock(&os->os_lock);
1910 		cancel_delayed_work(&os->os_orphan_scan_work);
1911 		mutex_unlock(&os->os_lock);
1912 	}
1913 }
1914 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)1915 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1916 {
1917 	struct ocfs2_orphan_scan *os;
1918 
1919 	os = &osb->osb_orphan_scan;
1920 	os->os_osb = osb;
1921 	os->os_count = 0;
1922 	os->os_seqno = 0;
1923 	mutex_init(&os->os_lock);
1924 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1925 }
1926 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)1927 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1928 {
1929 	struct ocfs2_orphan_scan *os;
1930 
1931 	os = &osb->osb_orphan_scan;
1932 	os->os_scantime = CURRENT_TIME;
1933 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1934 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1935 	else {
1936 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1937 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1938 				   ocfs2_orphan_scan_timeout());
1939 	}
1940 }
1941 
1942 struct ocfs2_orphan_filldir_priv {
1943 	struct inode		*head;
1944 	struct ocfs2_super	*osb;
1945 };
1946 
ocfs2_orphan_filldir(void * priv,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)1947 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1948 				loff_t pos, u64 ino, unsigned type)
1949 {
1950 	struct ocfs2_orphan_filldir_priv *p = priv;
1951 	struct inode *iter;
1952 
1953 	if (name_len == 1 && !strncmp(".", name, 1))
1954 		return 0;
1955 	if (name_len == 2 && !strncmp("..", name, 2))
1956 		return 0;
1957 
1958 	/* Skip bad inodes so that recovery can continue */
1959 	iter = ocfs2_iget(p->osb, ino,
1960 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1961 	if (IS_ERR(iter))
1962 		return 0;
1963 
1964 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1965 	/* No locking is required for the next_orphan queue as there
1966 	 * is only ever a single process doing orphan recovery. */
1967 	OCFS2_I(iter)->ip_next_orphan = p->head;
1968 	p->head = iter;
1969 
1970 	return 0;
1971 }
1972 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head)1973 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1974 			       int slot,
1975 			       struct inode **head)
1976 {
1977 	int status;
1978 	struct inode *orphan_dir_inode = NULL;
1979 	struct ocfs2_orphan_filldir_priv priv;
1980 	loff_t pos = 0;
1981 
1982 	priv.osb = osb;
1983 	priv.head = *head;
1984 
1985 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1986 						       ORPHAN_DIR_SYSTEM_INODE,
1987 						       slot);
1988 	if  (!orphan_dir_inode) {
1989 		status = -ENOENT;
1990 		mlog_errno(status);
1991 		return status;
1992 	}
1993 
1994 	mutex_lock(&orphan_dir_inode->i_mutex);
1995 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1996 	if (status < 0) {
1997 		mlog_errno(status);
1998 		goto out;
1999 	}
2000 
2001 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2002 				   ocfs2_orphan_filldir);
2003 	if (status) {
2004 		mlog_errno(status);
2005 		goto out_cluster;
2006 	}
2007 
2008 	*head = priv.head;
2009 
2010 out_cluster:
2011 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2012 out:
2013 	mutex_unlock(&orphan_dir_inode->i_mutex);
2014 	iput(orphan_dir_inode);
2015 	return status;
2016 }
2017 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2018 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2019 					      int slot)
2020 {
2021 	int ret;
2022 
2023 	spin_lock(&osb->osb_lock);
2024 	ret = !osb->osb_orphan_wipes[slot];
2025 	spin_unlock(&osb->osb_lock);
2026 	return ret;
2027 }
2028 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2029 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2030 					     int slot)
2031 {
2032 	spin_lock(&osb->osb_lock);
2033 	/* Mark ourselves such that new processes in delete_inode()
2034 	 * know to quit early. */
2035 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2036 	while (osb->osb_orphan_wipes[slot]) {
2037 		/* If any processes are already in the middle of an
2038 		 * orphan wipe on this dir, then we need to wait for
2039 		 * them. */
2040 		spin_unlock(&osb->osb_lock);
2041 		wait_event_interruptible(osb->osb_wipe_event,
2042 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2043 		spin_lock(&osb->osb_lock);
2044 	}
2045 	spin_unlock(&osb->osb_lock);
2046 }
2047 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2048 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2049 					      int slot)
2050 {
2051 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2052 }
2053 
2054 /*
2055  * Orphan recovery. Each mounted node has it's own orphan dir which we
2056  * must run during recovery. Our strategy here is to build a list of
2057  * the inodes in the orphan dir and iget/iput them. The VFS does
2058  * (most) of the rest of the work.
2059  *
2060  * Orphan recovery can happen at any time, not just mount so we have a
2061  * couple of extra considerations.
2062  *
2063  * - We grab as many inodes as we can under the orphan dir lock -
2064  *   doing iget() outside the orphan dir risks getting a reference on
2065  *   an invalid inode.
2066  * - We must be sure not to deadlock with other processes on the
2067  *   system wanting to run delete_inode(). This can happen when they go
2068  *   to lock the orphan dir and the orphan recovery process attempts to
2069  *   iget() inside the orphan dir lock. This can be avoided by
2070  *   advertising our state to ocfs2_delete_inode().
2071  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot)2072 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2073 				 int slot)
2074 {
2075 	int ret = 0;
2076 	struct inode *inode = NULL;
2077 	struct inode *iter;
2078 	struct ocfs2_inode_info *oi;
2079 
2080 	trace_ocfs2_recover_orphans(slot);
2081 
2082 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2083 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2084 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2085 
2086 	/* Error here should be noted, but we want to continue with as
2087 	 * many queued inodes as we've got. */
2088 	if (ret)
2089 		mlog_errno(ret);
2090 
2091 	while (inode) {
2092 		oi = OCFS2_I(inode);
2093 		trace_ocfs2_recover_orphans_iput(
2094 					(unsigned long long)oi->ip_blkno);
2095 
2096 		iter = oi->ip_next_orphan;
2097 
2098 		spin_lock(&oi->ip_lock);
2099 		/* The remote delete code may have set these on the
2100 		 * assumption that the other node would wipe them
2101 		 * successfully.  If they are still in the node's
2102 		 * orphan dir, we need to reset that state. */
2103 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2104 
2105 		/* Set the proper information to get us going into
2106 		 * ocfs2_delete_inode. */
2107 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2108 		spin_unlock(&oi->ip_lock);
2109 
2110 		iput(inode);
2111 
2112 		inode = iter;
2113 	}
2114 
2115 	return ret;
2116 }
2117 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2118 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2119 {
2120 	/* This check is good because ocfs2 will wait on our recovery
2121 	 * thread before changing it to something other than MOUNTED
2122 	 * or DISABLED. */
2123 	wait_event(osb->osb_mount_event,
2124 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2125 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2126 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2127 
2128 	/* If there's an error on mount, then we may never get to the
2129 	 * MOUNTED flag, but this is set right before
2130 	 * dismount_volume() so we can trust it. */
2131 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2132 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2133 		mlog(0, "mount error, exiting!\n");
2134 		return -EBUSY;
2135 	}
2136 
2137 	return 0;
2138 }
2139 
ocfs2_commit_thread(void * arg)2140 static int ocfs2_commit_thread(void *arg)
2141 {
2142 	int status;
2143 	struct ocfs2_super *osb = arg;
2144 	struct ocfs2_journal *journal = osb->journal;
2145 
2146 	/* we can trust j_num_trans here because _should_stop() is only set in
2147 	 * shutdown and nobody other than ourselves should be able to start
2148 	 * transactions.  committing on shutdown might take a few iterations
2149 	 * as final transactions put deleted inodes on the list */
2150 	while (!(kthread_should_stop() &&
2151 		 atomic_read(&journal->j_num_trans) == 0)) {
2152 
2153 		wait_event_interruptible(osb->checkpoint_event,
2154 					 atomic_read(&journal->j_num_trans)
2155 					 || kthread_should_stop());
2156 
2157 		status = ocfs2_commit_cache(osb);
2158 		if (status < 0)
2159 			mlog_errno(status);
2160 
2161 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2162 			mlog(ML_KTHREAD,
2163 			     "commit_thread: %u transactions pending on "
2164 			     "shutdown\n",
2165 			     atomic_read(&journal->j_num_trans));
2166 		}
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 /* Reads all the journal inodes without taking any cluster locks. Used
2173  * for hard readonly access to determine whether any journal requires
2174  * recovery. Also used to refresh the recovery generation numbers after
2175  * a journal has been recovered by another node.
2176  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2177 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2178 {
2179 	int ret = 0;
2180 	unsigned int slot;
2181 	struct buffer_head *di_bh = NULL;
2182 	struct ocfs2_dinode *di;
2183 	int journal_dirty = 0;
2184 
2185 	for(slot = 0; slot < osb->max_slots; slot++) {
2186 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2187 		if (ret) {
2188 			mlog_errno(ret);
2189 			goto out;
2190 		}
2191 
2192 		di = (struct ocfs2_dinode *) di_bh->b_data;
2193 
2194 		osb->slot_recovery_generations[slot] =
2195 					ocfs2_get_recovery_generation(di);
2196 
2197 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2198 		    OCFS2_JOURNAL_DIRTY_FL)
2199 			journal_dirty = 1;
2200 
2201 		brelse(di_bh);
2202 		di_bh = NULL;
2203 	}
2204 
2205 out:
2206 	if (journal_dirty)
2207 		ret = -EROFS;
2208 	return ret;
2209 }
2210