1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "blockcheck.h"
40 #include "dir.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "slot_map.h"
48 #include "super.h"
49 #include "sysfile.h"
50 #include "uptodate.h"
51 #include "quota.h"
52
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
55
56 DEFINE_SPINLOCK(trans_inc_lock);
57
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
78
ocfs2_wait_on_mount(struct ocfs2_super * osb)79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 return __ocfs2_wait_on_mount(osb, 0);
82 }
83
ocfs2_wait_on_quotas(struct ocfs2_super * osb)84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 1);
87 }
88
89 /*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98 };
99
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104 };
105
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116 }
117
ocfs2_compute_replay_slots(struct ocfs2_super * osb)118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149 }
150
ocfs2_queue_replay_slots(struct ocfs2_super * osb)151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167 }
168
ocfs2_free_replay_slots(struct ocfs2_super * osb)169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178 }
179
ocfs2_recovery_init(struct ocfs2_super * osb)180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202 }
203
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 mb();
210 return osb->recovery_thread_task != NULL;
211 }
212
ocfs2_recovery_exit(struct ocfs2_super * osb)213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237 }
238
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241 {
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253 }
254
255 /* Behaves like test-and-set. Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258 {
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275 }
276
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279 {
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298 }
299
ocfs2_commit_cache(struct ocfs2_super * osb)300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 int status = 0;
303 unsigned int flushed;
304 struct ocfs2_journal *journal = NULL;
305
306 journal = osb->journal;
307
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
310
311 flushed = atomic_read(&journal->j_num_trans);
312 trace_ocfs2_commit_cache_begin(flushed);
313 if (flushed == 0) {
314 up_write(&journal->j_trans_barrier);
315 goto finally;
316 }
317
318 jbd2_journal_lock_updates(journal->j_journal);
319 status = jbd2_journal_flush(journal->j_journal);
320 jbd2_journal_unlock_updates(journal->j_journal);
321 if (status < 0) {
322 up_write(&journal->j_trans_barrier);
323 mlog_errno(status);
324 goto finally;
325 }
326
327 ocfs2_inc_trans_id(journal);
328
329 flushed = atomic_read(&journal->j_num_trans);
330 atomic_set(&journal->j_num_trans, 0);
331 up_write(&journal->j_trans_barrier);
332
333 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334
335 ocfs2_wake_downconvert_thread(osb);
336 wake_up(&journal->j_checkpointed);
337 finally:
338 return status;
339 }
340
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342 {
343 journal_t *journal = osb->journal->j_journal;
344 handle_t *handle;
345
346 BUG_ON(!osb || !osb->journal->j_journal);
347
348 if (ocfs2_is_hard_readonly(osb))
349 return ERR_PTR(-EROFS);
350
351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 BUG_ON(max_buffs <= 0);
353
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal, max_buffs);
357
358 down_read(&osb->journal->j_trans_barrier);
359
360 handle = jbd2_journal_start(journal, max_buffs);
361 if (IS_ERR(handle)) {
362 up_read(&osb->journal->j_trans_barrier);
363
364 mlog_errno(PTR_ERR(handle));
365
366 if (is_journal_aborted(journal)) {
367 ocfs2_abort(osb->sb, "Detected aborted journal");
368 handle = ERR_PTR(-EROFS);
369 }
370 } else {
371 if (!ocfs2_mount_local(osb))
372 atomic_inc(&(osb->journal->j_num_trans));
373 }
374
375 return handle;
376 }
377
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)378 int ocfs2_commit_trans(struct ocfs2_super *osb,
379 handle_t *handle)
380 {
381 int ret, nested;
382 struct ocfs2_journal *journal = osb->journal;
383
384 BUG_ON(!handle);
385
386 nested = handle->h_ref > 1;
387 ret = jbd2_journal_stop(handle);
388 if (ret < 0)
389 mlog_errno(ret);
390
391 if (!nested)
392 up_read(&journal->j_trans_barrier);
393
394 return ret;
395 }
396
397 /*
398 * 'nblocks' is what you want to add to the current transaction.
399 *
400 * This might call jbd2_journal_restart() which will commit dirty buffers
401 * and then restart the transaction. Before calling
402 * ocfs2_extend_trans(), any changed blocks should have been
403 * dirtied. After calling it, all blocks which need to be changed must
404 * go through another set of journal_access/journal_dirty calls.
405 *
406 * WARNING: This will not release any semaphores or disk locks taken
407 * during the transaction, so make sure they were taken *before*
408 * start_trans or we'll have ordering deadlocks.
409 *
410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411 * good because transaction ids haven't yet been recorded on the
412 * cluster locks associated with this handle.
413 */
ocfs2_extend_trans(handle_t * handle,int nblocks)414 int ocfs2_extend_trans(handle_t *handle, int nblocks)
415 {
416 int status, old_nblocks;
417
418 BUG_ON(!handle);
419 BUG_ON(nblocks < 0);
420
421 if (!nblocks)
422 return 0;
423
424 old_nblocks = handle->h_buffer_credits;
425
426 trace_ocfs2_extend_trans(old_nblocks, nblocks);
427
428 #ifdef CONFIG_OCFS2_DEBUG_FS
429 status = 1;
430 #else
431 status = jbd2_journal_extend(handle, nblocks);
432 if (status < 0) {
433 mlog_errno(status);
434 goto bail;
435 }
436 #endif
437
438 if (status > 0) {
439 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
440 status = jbd2_journal_restart(handle,
441 old_nblocks + nblocks);
442 if (status < 0) {
443 mlog_errno(status);
444 goto bail;
445 }
446 }
447
448 status = 0;
449 bail:
450 return status;
451 }
452
453 struct ocfs2_triggers {
454 struct jbd2_buffer_trigger_type ot_triggers;
455 int ot_offset;
456 };
457
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)458 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
459 {
460 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
461 }
462
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)463 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
464 struct buffer_head *bh,
465 void *data, size_t size)
466 {
467 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
468
469 /*
470 * We aren't guaranteed to have the superblock here, so we
471 * must unconditionally compute the ecc data.
472 * __ocfs2_journal_access() will only set the triggers if
473 * metaecc is enabled.
474 */
475 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
476 }
477
478 /*
479 * Quota blocks have their own trigger because the struct ocfs2_block_check
480 * offset depends on the blocksize.
481 */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)482 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
483 struct buffer_head *bh,
484 void *data, size_t size)
485 {
486 struct ocfs2_disk_dqtrailer *dqt =
487 ocfs2_block_dqtrailer(size, data);
488
489 /*
490 * We aren't guaranteed to have the superblock here, so we
491 * must unconditionally compute the ecc data.
492 * __ocfs2_journal_access() will only set the triggers if
493 * metaecc is enabled.
494 */
495 ocfs2_block_check_compute(data, size, &dqt->dq_check);
496 }
497
498 /*
499 * Directory blocks also have their own trigger because the
500 * struct ocfs2_block_check offset depends on the blocksize.
501 */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)502 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
503 struct buffer_head *bh,
504 void *data, size_t size)
505 {
506 struct ocfs2_dir_block_trailer *trailer =
507 ocfs2_dir_trailer_from_size(size, data);
508
509 /*
510 * We aren't guaranteed to have the superblock here, so we
511 * must unconditionally compute the ecc data.
512 * __ocfs2_journal_access() will only set the triggers if
513 * metaecc is enabled.
514 */
515 ocfs2_block_check_compute(data, size, &trailer->db_check);
516 }
517
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)518 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
519 struct buffer_head *bh)
520 {
521 mlog(ML_ERROR,
522 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
523 "bh->b_blocknr = %llu\n",
524 (unsigned long)bh,
525 (unsigned long long)bh->b_blocknr);
526
527 /* We aren't guaranteed to have the superblock here - but if we
528 * don't, it'll just crash. */
529 ocfs2_error(bh->b_assoc_map->host->i_sb,
530 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
531 }
532
533 static struct ocfs2_triggers di_triggers = {
534 .ot_triggers = {
535 .t_frozen = ocfs2_frozen_trigger,
536 .t_abort = ocfs2_abort_trigger,
537 },
538 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
539 };
540
541 static struct ocfs2_triggers eb_triggers = {
542 .ot_triggers = {
543 .t_frozen = ocfs2_frozen_trigger,
544 .t_abort = ocfs2_abort_trigger,
545 },
546 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
547 };
548
549 static struct ocfs2_triggers rb_triggers = {
550 .ot_triggers = {
551 .t_frozen = ocfs2_frozen_trigger,
552 .t_abort = ocfs2_abort_trigger,
553 },
554 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
555 };
556
557 static struct ocfs2_triggers gd_triggers = {
558 .ot_triggers = {
559 .t_frozen = ocfs2_frozen_trigger,
560 .t_abort = ocfs2_abort_trigger,
561 },
562 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
563 };
564
565 static struct ocfs2_triggers db_triggers = {
566 .ot_triggers = {
567 .t_frozen = ocfs2_db_frozen_trigger,
568 .t_abort = ocfs2_abort_trigger,
569 },
570 };
571
572 static struct ocfs2_triggers xb_triggers = {
573 .ot_triggers = {
574 .t_frozen = ocfs2_frozen_trigger,
575 .t_abort = ocfs2_abort_trigger,
576 },
577 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
578 };
579
580 static struct ocfs2_triggers dq_triggers = {
581 .ot_triggers = {
582 .t_frozen = ocfs2_dq_frozen_trigger,
583 .t_abort = ocfs2_abort_trigger,
584 },
585 };
586
587 static struct ocfs2_triggers dr_triggers = {
588 .ot_triggers = {
589 .t_frozen = ocfs2_frozen_trigger,
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
593 };
594
595 static struct ocfs2_triggers dl_triggers = {
596 .ot_triggers = {
597 .t_frozen = ocfs2_frozen_trigger,
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
601 };
602
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)603 static int __ocfs2_journal_access(handle_t *handle,
604 struct ocfs2_caching_info *ci,
605 struct buffer_head *bh,
606 struct ocfs2_triggers *triggers,
607 int type)
608 {
609 int status;
610 struct ocfs2_super *osb =
611 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
612
613 BUG_ON(!ci || !ci->ci_ops);
614 BUG_ON(!handle);
615 BUG_ON(!bh);
616
617 trace_ocfs2_journal_access(
618 (unsigned long long)ocfs2_metadata_cache_owner(ci),
619 (unsigned long long)bh->b_blocknr, type, bh->b_size);
620
621 /* we can safely remove this assertion after testing. */
622 if (!buffer_uptodate(bh)) {
623 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
624 mlog(ML_ERROR, "b_blocknr=%llu\n",
625 (unsigned long long)bh->b_blocknr);
626 BUG();
627 }
628
629 /* Set the current transaction information on the ci so
630 * that the locking code knows whether it can drop it's locks
631 * on this ci or not. We're protected from the commit
632 * thread updating the current transaction id until
633 * ocfs2_commit_trans() because ocfs2_start_trans() took
634 * j_trans_barrier for us. */
635 ocfs2_set_ci_lock_trans(osb->journal, ci);
636
637 ocfs2_metadata_cache_io_lock(ci);
638 switch (type) {
639 case OCFS2_JOURNAL_ACCESS_CREATE:
640 case OCFS2_JOURNAL_ACCESS_WRITE:
641 status = jbd2_journal_get_write_access(handle, bh);
642 break;
643
644 case OCFS2_JOURNAL_ACCESS_UNDO:
645 status = jbd2_journal_get_undo_access(handle, bh);
646 break;
647
648 default:
649 status = -EINVAL;
650 mlog(ML_ERROR, "Unknown access type!\n");
651 }
652 if (!status && ocfs2_meta_ecc(osb) && triggers)
653 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
654 ocfs2_metadata_cache_io_unlock(ci);
655
656 if (status < 0)
657 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
658 status, type);
659
660 return status;
661 }
662
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)663 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
664 struct buffer_head *bh, int type)
665 {
666 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
667 }
668
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)669 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
670 struct buffer_head *bh, int type)
671 {
672 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
673 }
674
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)675 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
676 struct buffer_head *bh, int type)
677 {
678 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
679 type);
680 }
681
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)682 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
683 struct buffer_head *bh, int type)
684 {
685 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
686 }
687
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)688 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
689 struct buffer_head *bh, int type)
690 {
691 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
692 }
693
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)694 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
695 struct buffer_head *bh, int type)
696 {
697 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
698 }
699
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)700 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
701 struct buffer_head *bh, int type)
702 {
703 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
704 }
705
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)706 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
707 struct buffer_head *bh, int type)
708 {
709 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
710 }
711
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)712 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
713 struct buffer_head *bh, int type)
714 {
715 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
716 }
717
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)718 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
719 struct buffer_head *bh, int type)
720 {
721 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
722 }
723
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)724 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
725 {
726 int status;
727
728 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
729
730 status = jbd2_journal_dirty_metadata(handle, bh);
731 BUG_ON(status);
732 }
733
734 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
735
ocfs2_set_journal_params(struct ocfs2_super * osb)736 void ocfs2_set_journal_params(struct ocfs2_super *osb)
737 {
738 journal_t *journal = osb->journal->j_journal;
739 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
740
741 if (osb->osb_commit_interval)
742 commit_interval = osb->osb_commit_interval;
743
744 write_lock(&journal->j_state_lock);
745 journal->j_commit_interval = commit_interval;
746 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
747 journal->j_flags |= JBD2_BARRIER;
748 else
749 journal->j_flags &= ~JBD2_BARRIER;
750 write_unlock(&journal->j_state_lock);
751 }
752
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)753 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
754 {
755 int status = -1;
756 struct inode *inode = NULL; /* the journal inode */
757 journal_t *j_journal = NULL;
758 struct ocfs2_dinode *di = NULL;
759 struct buffer_head *bh = NULL;
760 struct ocfs2_super *osb;
761 int inode_lock = 0;
762
763 BUG_ON(!journal);
764
765 osb = journal->j_osb;
766
767 /* already have the inode for our journal */
768 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
769 osb->slot_num);
770 if (inode == NULL) {
771 status = -EACCES;
772 mlog_errno(status);
773 goto done;
774 }
775 if (is_bad_inode(inode)) {
776 mlog(ML_ERROR, "access error (bad inode)\n");
777 iput(inode);
778 inode = NULL;
779 status = -EACCES;
780 goto done;
781 }
782
783 SET_INODE_JOURNAL(inode);
784 OCFS2_I(inode)->ip_open_count++;
785
786 /* Skip recovery waits here - journal inode metadata never
787 * changes in a live cluster so it can be considered an
788 * exception to the rule. */
789 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
790 if (status < 0) {
791 if (status != -ERESTARTSYS)
792 mlog(ML_ERROR, "Could not get lock on journal!\n");
793 goto done;
794 }
795
796 inode_lock = 1;
797 di = (struct ocfs2_dinode *)bh->b_data;
798
799 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
800 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
801 inode->i_size);
802 status = -EINVAL;
803 goto done;
804 }
805
806 trace_ocfs2_journal_init(inode->i_size,
807 (unsigned long long)inode->i_blocks,
808 OCFS2_I(inode)->ip_clusters);
809
810 /* call the kernels journal init function now */
811 j_journal = jbd2_journal_init_inode(inode);
812 if (j_journal == NULL) {
813 mlog(ML_ERROR, "Linux journal layer error\n");
814 status = -EINVAL;
815 goto done;
816 }
817
818 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
819
820 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
821 OCFS2_JOURNAL_DIRTY_FL);
822
823 journal->j_journal = j_journal;
824 journal->j_inode = inode;
825 journal->j_bh = bh;
826
827 ocfs2_set_journal_params(osb);
828
829 journal->j_state = OCFS2_JOURNAL_LOADED;
830
831 status = 0;
832 done:
833 if (status < 0) {
834 if (inode_lock)
835 ocfs2_inode_unlock(inode, 1);
836 brelse(bh);
837 if (inode) {
838 OCFS2_I(inode)->ip_open_count--;
839 iput(inode);
840 }
841 }
842
843 return status;
844 }
845
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)846 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
847 {
848 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
849 }
850
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)851 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
852 {
853 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
854 }
855
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)856 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
857 int dirty, int replayed)
858 {
859 int status;
860 unsigned int flags;
861 struct ocfs2_journal *journal = osb->journal;
862 struct buffer_head *bh = journal->j_bh;
863 struct ocfs2_dinode *fe;
864
865 fe = (struct ocfs2_dinode *)bh->b_data;
866
867 /* The journal bh on the osb always comes from ocfs2_journal_init()
868 * and was validated there inside ocfs2_inode_lock_full(). It's a
869 * code bug if we mess it up. */
870 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
871
872 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
873 if (dirty)
874 flags |= OCFS2_JOURNAL_DIRTY_FL;
875 else
876 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
877 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
878
879 if (replayed)
880 ocfs2_bump_recovery_generation(fe);
881
882 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
883 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
884 if (status < 0)
885 mlog_errno(status);
886
887 return status;
888 }
889
890 /*
891 * If the journal has been kmalloc'd it needs to be freed after this
892 * call.
893 */
ocfs2_journal_shutdown(struct ocfs2_super * osb)894 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
895 {
896 struct ocfs2_journal *journal = NULL;
897 int status = 0;
898 struct inode *inode = NULL;
899 int num_running_trans = 0;
900
901 BUG_ON(!osb);
902
903 journal = osb->journal;
904 if (!journal)
905 goto done;
906
907 inode = journal->j_inode;
908
909 if (journal->j_state != OCFS2_JOURNAL_LOADED)
910 goto done;
911
912 /* need to inc inode use count - jbd2_journal_destroy will iput. */
913 if (!igrab(inode))
914 BUG();
915
916 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
917 trace_ocfs2_journal_shutdown(num_running_trans);
918
919 /* Do a commit_cache here. It will flush our journal, *and*
920 * release any locks that are still held.
921 * set the SHUTDOWN flag and release the trans lock.
922 * the commit thread will take the trans lock for us below. */
923 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
924
925 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926 * drop the trans_lock (which we want to hold until we
927 * completely destroy the journal. */
928 if (osb->commit_task) {
929 /* Wait for the commit thread */
930 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
931 kthread_stop(osb->commit_task);
932 osb->commit_task = NULL;
933 }
934
935 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
936
937 if (ocfs2_mount_local(osb)) {
938 jbd2_journal_lock_updates(journal->j_journal);
939 status = jbd2_journal_flush(journal->j_journal);
940 jbd2_journal_unlock_updates(journal->j_journal);
941 if (status < 0)
942 mlog_errno(status);
943 }
944
945 if (status == 0) {
946 /*
947 * Do not toggle if flush was unsuccessful otherwise
948 * will leave dirty metadata in a "clean" journal
949 */
950 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
951 if (status < 0)
952 mlog_errno(status);
953 }
954
955 /* Shutdown the kernel journal system */
956 jbd2_journal_destroy(journal->j_journal);
957 journal->j_journal = NULL;
958
959 OCFS2_I(inode)->ip_open_count--;
960
961 /* unlock our journal */
962 ocfs2_inode_unlock(inode, 1);
963
964 brelse(journal->j_bh);
965 journal->j_bh = NULL;
966
967 journal->j_state = OCFS2_JOURNAL_FREE;
968
969 // up_write(&journal->j_trans_barrier);
970 done:
971 if (inode)
972 iput(inode);
973 }
974
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)975 static void ocfs2_clear_journal_error(struct super_block *sb,
976 journal_t *journal,
977 int slot)
978 {
979 int olderr;
980
981 olderr = jbd2_journal_errno(journal);
982 if (olderr) {
983 mlog(ML_ERROR, "File system error %d recorded in "
984 "journal %u.\n", olderr, slot);
985 mlog(ML_ERROR, "File system on device %s needs checking.\n",
986 sb->s_id);
987
988 jbd2_journal_ack_err(journal);
989 jbd2_journal_clear_err(journal);
990 }
991 }
992
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)993 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
994 {
995 int status = 0;
996 struct ocfs2_super *osb;
997
998 BUG_ON(!journal);
999
1000 osb = journal->j_osb;
1001
1002 status = jbd2_journal_load(journal->j_journal);
1003 if (status < 0) {
1004 mlog(ML_ERROR, "Failed to load journal!\n");
1005 goto done;
1006 }
1007
1008 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009
1010 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1011 if (status < 0) {
1012 mlog_errno(status);
1013 goto done;
1014 }
1015
1016 /* Launch the commit thread */
1017 if (!local) {
1018 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019 "ocfs2cmt");
1020 if (IS_ERR(osb->commit_task)) {
1021 status = PTR_ERR(osb->commit_task);
1022 osb->commit_task = NULL;
1023 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024 "error=%d", status);
1025 goto done;
1026 }
1027 } else
1028 osb->commit_task = NULL;
1029
1030 done:
1031 return status;
1032 }
1033
1034
1035 /* 'full' flag tells us whether we clear out all blocks or if we just
1036 * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1037 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038 {
1039 int status;
1040
1041 BUG_ON(!journal);
1042
1043 status = jbd2_journal_wipe(journal->j_journal, full);
1044 if (status < 0) {
1045 mlog_errno(status);
1046 goto bail;
1047 }
1048
1049 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1050 if (status < 0)
1051 mlog_errno(status);
1052
1053 bail:
1054 return status;
1055 }
1056
ocfs2_recovery_completed(struct ocfs2_super * osb)1057 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058 {
1059 int empty;
1060 struct ocfs2_recovery_map *rm = osb->recovery_map;
1061
1062 spin_lock(&osb->osb_lock);
1063 empty = (rm->rm_used == 0);
1064 spin_unlock(&osb->osb_lock);
1065
1066 return empty;
1067 }
1068
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1069 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070 {
1071 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072 }
1073
1074 /*
1075 * JBD Might read a cached version of another nodes journal file. We
1076 * don't want this as this file changes often and we get no
1077 * notification on those changes. The only way to be sure that we've
1078 * got the most up to date version of those blocks then is to force
1079 * read them off disk. Just searching through the buffer cache won't
1080 * work as there may be pages backing this file which are still marked
1081 * up to date. We know things can't change on this file underneath us
1082 * as we have the lock by now :)
1083 */
ocfs2_force_read_journal(struct inode * inode)1084 static int ocfs2_force_read_journal(struct inode *inode)
1085 {
1086 int status = 0;
1087 int i;
1088 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1089 #define CONCURRENT_JOURNAL_FILL 32ULL
1090 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091
1092 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093
1094 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1095 v_blkno = 0;
1096 while (v_blkno < num_blocks) {
1097 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1098 &p_blkno, &p_blocks, NULL);
1099 if (status < 0) {
1100 mlog_errno(status);
1101 goto bail;
1102 }
1103
1104 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105 p_blocks = CONCURRENT_JOURNAL_FILL;
1106
1107 /* We are reading journal data which should not
1108 * be put in the uptodate cache */
1109 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110 p_blkno, p_blocks, bhs);
1111 if (status < 0) {
1112 mlog_errno(status);
1113 goto bail;
1114 }
1115
1116 for(i = 0; i < p_blocks; i++) {
1117 brelse(bhs[i]);
1118 bhs[i] = NULL;
1119 }
1120
1121 v_blkno += p_blocks;
1122 }
1123
1124 bail:
1125 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1126 brelse(bhs[i]);
1127 return status;
1128 }
1129
1130 struct ocfs2_la_recovery_item {
1131 struct list_head lri_list;
1132 int lri_slot;
1133 struct ocfs2_dinode *lri_la_dinode;
1134 struct ocfs2_dinode *lri_tl_dinode;
1135 struct ocfs2_quota_recovery *lri_qrec;
1136 };
1137
1138 /* Does the second half of the recovery process. By this point, the
1139 * node is marked clean and can actually be considered recovered,
1140 * hence it's no longer in the recovery map, but there's still some
1141 * cleanup we can do which shouldn't happen within the recovery thread
1142 * as locking in that context becomes very difficult if we are to take
1143 * recovering nodes into account.
1144 *
1145 * NOTE: This function can and will sleep on recovery of other nodes
1146 * during cluster locking, just like any other ocfs2 process.
1147 */
ocfs2_complete_recovery(struct work_struct * work)1148 void ocfs2_complete_recovery(struct work_struct *work)
1149 {
1150 int ret = 0;
1151 struct ocfs2_journal *journal =
1152 container_of(work, struct ocfs2_journal, j_recovery_work);
1153 struct ocfs2_super *osb = journal->j_osb;
1154 struct ocfs2_dinode *la_dinode, *tl_dinode;
1155 struct ocfs2_la_recovery_item *item, *n;
1156 struct ocfs2_quota_recovery *qrec;
1157 LIST_HEAD(tmp_la_list);
1158
1159 trace_ocfs2_complete_recovery(
1160 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1161
1162 spin_lock(&journal->j_lock);
1163 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164 spin_unlock(&journal->j_lock);
1165
1166 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1167 list_del_init(&item->lri_list);
1168
1169 ocfs2_wait_on_quotas(osb);
1170
1171 la_dinode = item->lri_la_dinode;
1172 tl_dinode = item->lri_tl_dinode;
1173 qrec = item->lri_qrec;
1174
1175 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178 qrec);
1179
1180 if (la_dinode) {
1181 ret = ocfs2_complete_local_alloc_recovery(osb,
1182 la_dinode);
1183 if (ret < 0)
1184 mlog_errno(ret);
1185
1186 kfree(la_dinode);
1187 }
1188
1189 if (tl_dinode) {
1190 ret = ocfs2_complete_truncate_log_recovery(osb,
1191 tl_dinode);
1192 if (ret < 0)
1193 mlog_errno(ret);
1194
1195 kfree(tl_dinode);
1196 }
1197
1198 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1199 if (ret < 0)
1200 mlog_errno(ret);
1201
1202 if (qrec) {
1203 ret = ocfs2_finish_quota_recovery(osb, qrec,
1204 item->lri_slot);
1205 if (ret < 0)
1206 mlog_errno(ret);
1207 /* Recovery info is already freed now */
1208 }
1209
1210 kfree(item);
1211 }
1212
1213 trace_ocfs2_complete_recovery_end(ret);
1214 }
1215
1216 /* NOTE: This function always eats your references to la_dinode and
1217 * tl_dinode, either manually on error, or by passing them to
1218 * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec)1219 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220 int slot_num,
1221 struct ocfs2_dinode *la_dinode,
1222 struct ocfs2_dinode *tl_dinode,
1223 struct ocfs2_quota_recovery *qrec)
1224 {
1225 struct ocfs2_la_recovery_item *item;
1226
1227 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1228 if (!item) {
1229 /* Though we wish to avoid it, we are in fact safe in
1230 * skipping local alloc cleanup as fsck.ocfs2 is more
1231 * than capable of reclaiming unused space. */
1232 if (la_dinode)
1233 kfree(la_dinode);
1234
1235 if (tl_dinode)
1236 kfree(tl_dinode);
1237
1238 if (qrec)
1239 ocfs2_free_quota_recovery(qrec);
1240
1241 mlog_errno(-ENOMEM);
1242 return;
1243 }
1244
1245 INIT_LIST_HEAD(&item->lri_list);
1246 item->lri_la_dinode = la_dinode;
1247 item->lri_slot = slot_num;
1248 item->lri_tl_dinode = tl_dinode;
1249 item->lri_qrec = qrec;
1250
1251 spin_lock(&journal->j_lock);
1252 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253 queue_work(ocfs2_wq, &journal->j_recovery_work);
1254 spin_unlock(&journal->j_lock);
1255 }
1256
1257 /* Called by the mount code to queue recovery the last part of
1258 * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1259 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260 {
1261 struct ocfs2_journal *journal = osb->journal;
1262
1263 if (ocfs2_is_hard_readonly(osb))
1264 return;
1265
1266 /* No need to queue up our truncate_log as regular cleanup will catch
1267 * that */
1268 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1269 osb->local_alloc_copy, NULL, NULL);
1270 ocfs2_schedule_truncate_log_flush(osb, 0);
1271
1272 osb->local_alloc_copy = NULL;
1273 osb->dirty = 0;
1274
1275 /* queue to recover orphan slots for all offline slots */
1276 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1277 ocfs2_queue_replay_slots(osb);
1278 ocfs2_free_replay_slots(osb);
1279 }
1280
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1281 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1282 {
1283 if (osb->quota_rec) {
1284 ocfs2_queue_recovery_completion(osb->journal,
1285 osb->slot_num,
1286 NULL,
1287 NULL,
1288 osb->quota_rec);
1289 osb->quota_rec = NULL;
1290 }
1291 }
1292
__ocfs2_recovery_thread(void * arg)1293 static int __ocfs2_recovery_thread(void *arg)
1294 {
1295 int status, node_num, slot_num;
1296 struct ocfs2_super *osb = arg;
1297 struct ocfs2_recovery_map *rm = osb->recovery_map;
1298 int *rm_quota = NULL;
1299 int rm_quota_used = 0, i;
1300 struct ocfs2_quota_recovery *qrec;
1301
1302 status = ocfs2_wait_on_mount(osb);
1303 if (status < 0) {
1304 goto bail;
1305 }
1306
1307 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1308 if (!rm_quota) {
1309 status = -ENOMEM;
1310 goto bail;
1311 }
1312 restart:
1313 status = ocfs2_super_lock(osb, 1);
1314 if (status < 0) {
1315 mlog_errno(status);
1316 goto bail;
1317 }
1318
1319 status = ocfs2_compute_replay_slots(osb);
1320 if (status < 0)
1321 mlog_errno(status);
1322
1323 /* queue recovery for our own slot */
1324 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1325 NULL, NULL);
1326
1327 spin_lock(&osb->osb_lock);
1328 while (rm->rm_used) {
1329 /* It's always safe to remove entry zero, as we won't
1330 * clear it until ocfs2_recover_node() has succeeded. */
1331 node_num = rm->rm_entries[0];
1332 spin_unlock(&osb->osb_lock);
1333 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1334 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1335 if (slot_num == -ENOENT) {
1336 status = 0;
1337 goto skip_recovery;
1338 }
1339
1340 /* It is a bit subtle with quota recovery. We cannot do it
1341 * immediately because we have to obtain cluster locks from
1342 * quota files and we also don't want to just skip it because
1343 * then quota usage would be out of sync until some node takes
1344 * the slot. So we remember which nodes need quota recovery
1345 * and when everything else is done, we recover quotas. */
1346 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1347 if (i == rm_quota_used)
1348 rm_quota[rm_quota_used++] = slot_num;
1349
1350 status = ocfs2_recover_node(osb, node_num, slot_num);
1351 skip_recovery:
1352 if (!status) {
1353 ocfs2_recovery_map_clear(osb, node_num);
1354 } else {
1355 mlog(ML_ERROR,
1356 "Error %d recovering node %d on device (%u,%u)!\n",
1357 status, node_num,
1358 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1359 mlog(ML_ERROR, "Volume requires unmount.\n");
1360 }
1361
1362 spin_lock(&osb->osb_lock);
1363 }
1364 spin_unlock(&osb->osb_lock);
1365 trace_ocfs2_recovery_thread_end(status);
1366
1367 /* Refresh all journal recovery generations from disk */
1368 status = ocfs2_check_journals_nolocks(osb);
1369 status = (status == -EROFS) ? 0 : status;
1370 if (status < 0)
1371 mlog_errno(status);
1372
1373 /* Now it is right time to recover quotas... We have to do this under
1374 * superblock lock so that no one can start using the slot (and crash)
1375 * before we recover it */
1376 for (i = 0; i < rm_quota_used; i++) {
1377 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1378 if (IS_ERR(qrec)) {
1379 status = PTR_ERR(qrec);
1380 mlog_errno(status);
1381 continue;
1382 }
1383 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1384 NULL, NULL, qrec);
1385 }
1386
1387 ocfs2_super_unlock(osb, 1);
1388
1389 /* queue recovery for offline slots */
1390 ocfs2_queue_replay_slots(osb);
1391
1392 bail:
1393 mutex_lock(&osb->recovery_lock);
1394 if (!status && !ocfs2_recovery_completed(osb)) {
1395 mutex_unlock(&osb->recovery_lock);
1396 goto restart;
1397 }
1398
1399 ocfs2_free_replay_slots(osb);
1400 osb->recovery_thread_task = NULL;
1401 mb(); /* sync with ocfs2_recovery_thread_running */
1402 wake_up(&osb->recovery_event);
1403
1404 mutex_unlock(&osb->recovery_lock);
1405
1406 if (rm_quota)
1407 kfree(rm_quota);
1408
1409 /* no one is callint kthread_stop() for us so the kthread() api
1410 * requires that we call do_exit(). And it isn't exported, but
1411 * complete_and_exit() seems to be a minimal wrapper around it. */
1412 complete_and_exit(NULL, status);
1413 return status;
1414 }
1415
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1416 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1417 {
1418 mutex_lock(&osb->recovery_lock);
1419
1420 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1421 osb->disable_recovery, osb->recovery_thread_task,
1422 osb->disable_recovery ?
1423 -1 : ocfs2_recovery_map_set(osb, node_num));
1424
1425 if (osb->disable_recovery)
1426 goto out;
1427
1428 if (osb->recovery_thread_task)
1429 goto out;
1430
1431 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1432 "ocfs2rec");
1433 if (IS_ERR(osb->recovery_thread_task)) {
1434 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1435 osb->recovery_thread_task = NULL;
1436 }
1437
1438 out:
1439 mutex_unlock(&osb->recovery_lock);
1440 wake_up(&osb->recovery_event);
1441 }
1442
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1443 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1444 int slot_num,
1445 struct buffer_head **bh,
1446 struct inode **ret_inode)
1447 {
1448 int status = -EACCES;
1449 struct inode *inode = NULL;
1450
1451 BUG_ON(slot_num >= osb->max_slots);
1452
1453 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1454 slot_num);
1455 if (!inode || is_bad_inode(inode)) {
1456 mlog_errno(status);
1457 goto bail;
1458 }
1459 SET_INODE_JOURNAL(inode);
1460
1461 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1462 if (status < 0) {
1463 mlog_errno(status);
1464 goto bail;
1465 }
1466
1467 status = 0;
1468
1469 bail:
1470 if (inode) {
1471 if (status || !ret_inode)
1472 iput(inode);
1473 else
1474 *ret_inode = inode;
1475 }
1476 return status;
1477 }
1478
1479 /* Does the actual journal replay and marks the journal inode as
1480 * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1481 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1482 int node_num,
1483 int slot_num)
1484 {
1485 int status;
1486 int got_lock = 0;
1487 unsigned int flags;
1488 struct inode *inode = NULL;
1489 struct ocfs2_dinode *fe;
1490 journal_t *journal = NULL;
1491 struct buffer_head *bh = NULL;
1492 u32 slot_reco_gen;
1493
1494 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1495 if (status) {
1496 mlog_errno(status);
1497 goto done;
1498 }
1499
1500 fe = (struct ocfs2_dinode *)bh->b_data;
1501 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1502 brelse(bh);
1503 bh = NULL;
1504
1505 /*
1506 * As the fs recovery is asynchronous, there is a small chance that
1507 * another node mounted (and recovered) the slot before the recovery
1508 * thread could get the lock. To handle that, we dirty read the journal
1509 * inode for that slot to get the recovery generation. If it is
1510 * different than what we expected, the slot has been recovered.
1511 * If not, it needs recovery.
1512 */
1513 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1514 trace_ocfs2_replay_journal_recovered(slot_num,
1515 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1516 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1517 status = -EBUSY;
1518 goto done;
1519 }
1520
1521 /* Continue with recovery as the journal has not yet been recovered */
1522
1523 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1524 if (status < 0) {
1525 trace_ocfs2_replay_journal_lock_err(status);
1526 if (status != -ERESTARTSYS)
1527 mlog(ML_ERROR, "Could not lock journal!\n");
1528 goto done;
1529 }
1530 got_lock = 1;
1531
1532 fe = (struct ocfs2_dinode *) bh->b_data;
1533
1534 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1535 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1536
1537 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1538 trace_ocfs2_replay_journal_skip(node_num);
1539 /* Refresh recovery generation for the slot */
1540 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1541 goto done;
1542 }
1543
1544 /* we need to run complete recovery for offline orphan slots */
1545 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1546
1547 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1548 node_num, slot_num,
1549 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1550
1551 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1552
1553 status = ocfs2_force_read_journal(inode);
1554 if (status < 0) {
1555 mlog_errno(status);
1556 goto done;
1557 }
1558
1559 journal = jbd2_journal_init_inode(inode);
1560 if (journal == NULL) {
1561 mlog(ML_ERROR, "Linux journal layer error\n");
1562 status = -EIO;
1563 goto done;
1564 }
1565
1566 status = jbd2_journal_load(journal);
1567 if (status < 0) {
1568 mlog_errno(status);
1569 if (!igrab(inode))
1570 BUG();
1571 jbd2_journal_destroy(journal);
1572 goto done;
1573 }
1574
1575 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1576
1577 /* wipe the journal */
1578 jbd2_journal_lock_updates(journal);
1579 status = jbd2_journal_flush(journal);
1580 jbd2_journal_unlock_updates(journal);
1581 if (status < 0)
1582 mlog_errno(status);
1583
1584 /* This will mark the node clean */
1585 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1587 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1588
1589 /* Increment recovery generation to indicate successful recovery */
1590 ocfs2_bump_recovery_generation(fe);
1591 osb->slot_recovery_generations[slot_num] =
1592 ocfs2_get_recovery_generation(fe);
1593
1594 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1595 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1596 if (status < 0)
1597 mlog_errno(status);
1598
1599 if (!igrab(inode))
1600 BUG();
1601
1602 jbd2_journal_destroy(journal);
1603
1604 done:
1605 /* drop the lock on this nodes journal */
1606 if (got_lock)
1607 ocfs2_inode_unlock(inode, 1);
1608
1609 if (inode)
1610 iput(inode);
1611
1612 brelse(bh);
1613
1614 return status;
1615 }
1616
1617 /*
1618 * Do the most important parts of node recovery:
1619 * - Replay it's journal
1620 * - Stamp a clean local allocator file
1621 * - Stamp a clean truncate log
1622 * - Mark the node clean
1623 *
1624 * If this function completes without error, a node in OCFS2 can be
1625 * said to have been safely recovered. As a result, failure during the
1626 * second part of a nodes recovery process (local alloc recovery) is
1627 * far less concerning.
1628 */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1629 static int ocfs2_recover_node(struct ocfs2_super *osb,
1630 int node_num, int slot_num)
1631 {
1632 int status = 0;
1633 struct ocfs2_dinode *la_copy = NULL;
1634 struct ocfs2_dinode *tl_copy = NULL;
1635
1636 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1637
1638 /* Should not ever be called to recover ourselves -- in that
1639 * case we should've called ocfs2_journal_load instead. */
1640 BUG_ON(osb->node_num == node_num);
1641
1642 status = ocfs2_replay_journal(osb, node_num, slot_num);
1643 if (status < 0) {
1644 if (status == -EBUSY) {
1645 trace_ocfs2_recover_node_skip(slot_num, node_num);
1646 status = 0;
1647 goto done;
1648 }
1649 mlog_errno(status);
1650 goto done;
1651 }
1652
1653 /* Stamp a clean local alloc file AFTER recovering the journal... */
1654 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1655 if (status < 0) {
1656 mlog_errno(status);
1657 goto done;
1658 }
1659
1660 /* An error from begin_truncate_log_recovery is not
1661 * serious enough to warrant halting the rest of
1662 * recovery. */
1663 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1664 if (status < 0)
1665 mlog_errno(status);
1666
1667 /* Likewise, this would be a strange but ultimately not so
1668 * harmful place to get an error... */
1669 status = ocfs2_clear_slot(osb, slot_num);
1670 if (status < 0)
1671 mlog_errno(status);
1672
1673 /* This will kfree the memory pointed to by la_copy and tl_copy */
1674 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1675 tl_copy, NULL);
1676
1677 status = 0;
1678 done:
1679
1680 return status;
1681 }
1682
1683 /* Test node liveness by trylocking his journal. If we get the lock,
1684 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1685 * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1686 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1687 int slot_num)
1688 {
1689 int status, flags;
1690 struct inode *inode = NULL;
1691
1692 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1693 slot_num);
1694 if (inode == NULL) {
1695 mlog(ML_ERROR, "access error\n");
1696 status = -EACCES;
1697 goto bail;
1698 }
1699 if (is_bad_inode(inode)) {
1700 mlog(ML_ERROR, "access error (bad inode)\n");
1701 iput(inode);
1702 inode = NULL;
1703 status = -EACCES;
1704 goto bail;
1705 }
1706 SET_INODE_JOURNAL(inode);
1707
1708 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1709 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1710 if (status < 0) {
1711 if (status != -EAGAIN)
1712 mlog_errno(status);
1713 goto bail;
1714 }
1715
1716 ocfs2_inode_unlock(inode, 1);
1717 bail:
1718 if (inode)
1719 iput(inode);
1720
1721 return status;
1722 }
1723
1724 /* Call this underneath ocfs2_super_lock. It also assumes that the
1725 * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1726 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1727 {
1728 unsigned int node_num;
1729 int status, i;
1730 u32 gen;
1731 struct buffer_head *bh = NULL;
1732 struct ocfs2_dinode *di;
1733
1734 /* This is called with the super block cluster lock, so we
1735 * know that the slot map can't change underneath us. */
1736
1737 for (i = 0; i < osb->max_slots; i++) {
1738 /* Read journal inode to get the recovery generation */
1739 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1740 if (status) {
1741 mlog_errno(status);
1742 goto bail;
1743 }
1744 di = (struct ocfs2_dinode *)bh->b_data;
1745 gen = ocfs2_get_recovery_generation(di);
1746 brelse(bh);
1747 bh = NULL;
1748
1749 spin_lock(&osb->osb_lock);
1750 osb->slot_recovery_generations[i] = gen;
1751
1752 trace_ocfs2_mark_dead_nodes(i,
1753 osb->slot_recovery_generations[i]);
1754
1755 if (i == osb->slot_num) {
1756 spin_unlock(&osb->osb_lock);
1757 continue;
1758 }
1759
1760 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1761 if (status == -ENOENT) {
1762 spin_unlock(&osb->osb_lock);
1763 continue;
1764 }
1765
1766 if (__ocfs2_recovery_map_test(osb, node_num)) {
1767 spin_unlock(&osb->osb_lock);
1768 continue;
1769 }
1770 spin_unlock(&osb->osb_lock);
1771
1772 /* Ok, we have a slot occupied by another node which
1773 * is not in the recovery map. We trylock his journal
1774 * file here to test if he's alive. */
1775 status = ocfs2_trylock_journal(osb, i);
1776 if (!status) {
1777 /* Since we're called from mount, we know that
1778 * the recovery thread can't race us on
1779 * setting / checking the recovery bits. */
1780 ocfs2_recovery_thread(osb, node_num);
1781 } else if ((status < 0) && (status != -EAGAIN)) {
1782 mlog_errno(status);
1783 goto bail;
1784 }
1785 }
1786
1787 status = 0;
1788 bail:
1789 return status;
1790 }
1791
1792 /*
1793 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1794 * randomness to the timeout to minimize multple nodes firing the timer at the
1795 * same time.
1796 */
ocfs2_orphan_scan_timeout(void)1797 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1798 {
1799 unsigned long time;
1800
1801 get_random_bytes(&time, sizeof(time));
1802 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1803 return msecs_to_jiffies(time);
1804 }
1805
1806 /*
1807 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1808 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1809 * is done to catch any orphans that are left over in orphan directories.
1810 *
1811 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1812 * seconds. It gets an EX lock on os_lockres and checks sequence number
1813 * stored in LVB. If the sequence number has changed, it means some other
1814 * node has done the scan. This node skips the scan and tracks the
1815 * sequence number. If the sequence number didn't change, it means a scan
1816 * hasn't happened. The node queues a scan and increments the
1817 * sequence number in the LVB.
1818 */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1819 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1820 {
1821 struct ocfs2_orphan_scan *os;
1822 int status, i;
1823 u32 seqno = 0;
1824
1825 os = &osb->osb_orphan_scan;
1826
1827 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1828 goto out;
1829
1830 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1831 atomic_read(&os->os_state));
1832
1833 status = ocfs2_orphan_scan_lock(osb, &seqno);
1834 if (status < 0) {
1835 if (status != -EAGAIN)
1836 mlog_errno(status);
1837 goto out;
1838 }
1839
1840 /* Do no queue the tasks if the volume is being umounted */
1841 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1842 goto unlock;
1843
1844 if (os->os_seqno != seqno) {
1845 os->os_seqno = seqno;
1846 goto unlock;
1847 }
1848
1849 for (i = 0; i < osb->max_slots; i++)
1850 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1851 NULL);
1852 /*
1853 * We queued a recovery on orphan slots, increment the sequence
1854 * number and update LVB so other node will skip the scan for a while
1855 */
1856 seqno++;
1857 os->os_count++;
1858 os->os_scantime = CURRENT_TIME;
1859 unlock:
1860 ocfs2_orphan_scan_unlock(osb, seqno);
1861 out:
1862 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1863 atomic_read(&os->os_state));
1864 return;
1865 }
1866
1867 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1868 void ocfs2_orphan_scan_work(struct work_struct *work)
1869 {
1870 struct ocfs2_orphan_scan *os;
1871 struct ocfs2_super *osb;
1872
1873 os = container_of(work, struct ocfs2_orphan_scan,
1874 os_orphan_scan_work.work);
1875 osb = os->os_osb;
1876
1877 mutex_lock(&os->os_lock);
1878 ocfs2_queue_orphan_scan(osb);
1879 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1880 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1881 ocfs2_orphan_scan_timeout());
1882 mutex_unlock(&os->os_lock);
1883 }
1884
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)1885 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1886 {
1887 struct ocfs2_orphan_scan *os;
1888
1889 os = &osb->osb_orphan_scan;
1890 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1891 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1892 mutex_lock(&os->os_lock);
1893 cancel_delayed_work(&os->os_orphan_scan_work);
1894 mutex_unlock(&os->os_lock);
1895 }
1896 }
1897
ocfs2_orphan_scan_init(struct ocfs2_super * osb)1898 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1899 {
1900 struct ocfs2_orphan_scan *os;
1901
1902 os = &osb->osb_orphan_scan;
1903 os->os_osb = osb;
1904 os->os_count = 0;
1905 os->os_seqno = 0;
1906 mutex_init(&os->os_lock);
1907 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1908 }
1909
ocfs2_orphan_scan_start(struct ocfs2_super * osb)1910 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1911 {
1912 struct ocfs2_orphan_scan *os;
1913
1914 os = &osb->osb_orphan_scan;
1915 os->os_scantime = CURRENT_TIME;
1916 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1917 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1918 else {
1919 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1920 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1921 ocfs2_orphan_scan_timeout());
1922 }
1923 }
1924
1925 struct ocfs2_orphan_filldir_priv {
1926 struct inode *head;
1927 struct ocfs2_super *osb;
1928 };
1929
ocfs2_orphan_filldir(void * priv,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)1930 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1931 loff_t pos, u64 ino, unsigned type)
1932 {
1933 struct ocfs2_orphan_filldir_priv *p = priv;
1934 struct inode *iter;
1935
1936 if (name_len == 1 && !strncmp(".", name, 1))
1937 return 0;
1938 if (name_len == 2 && !strncmp("..", name, 2))
1939 return 0;
1940
1941 /* Skip bad inodes so that recovery can continue */
1942 iter = ocfs2_iget(p->osb, ino,
1943 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1944 if (IS_ERR(iter))
1945 return 0;
1946
1947 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1948 /* No locking is required for the next_orphan queue as there
1949 * is only ever a single process doing orphan recovery. */
1950 OCFS2_I(iter)->ip_next_orphan = p->head;
1951 p->head = iter;
1952
1953 return 0;
1954 }
1955
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head)1956 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1957 int slot,
1958 struct inode **head)
1959 {
1960 int status;
1961 struct inode *orphan_dir_inode = NULL;
1962 struct ocfs2_orphan_filldir_priv priv;
1963 loff_t pos = 0;
1964
1965 priv.osb = osb;
1966 priv.head = *head;
1967
1968 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1969 ORPHAN_DIR_SYSTEM_INODE,
1970 slot);
1971 if (!orphan_dir_inode) {
1972 status = -ENOENT;
1973 mlog_errno(status);
1974 return status;
1975 }
1976
1977 mutex_lock(&orphan_dir_inode->i_mutex);
1978 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1979 if (status < 0) {
1980 mlog_errno(status);
1981 goto out;
1982 }
1983
1984 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1985 ocfs2_orphan_filldir);
1986 if (status) {
1987 mlog_errno(status);
1988 goto out_cluster;
1989 }
1990
1991 *head = priv.head;
1992
1993 out_cluster:
1994 ocfs2_inode_unlock(orphan_dir_inode, 0);
1995 out:
1996 mutex_unlock(&orphan_dir_inode->i_mutex);
1997 iput(orphan_dir_inode);
1998 return status;
1999 }
2000
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2001 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2002 int slot)
2003 {
2004 int ret;
2005
2006 spin_lock(&osb->osb_lock);
2007 ret = !osb->osb_orphan_wipes[slot];
2008 spin_unlock(&osb->osb_lock);
2009 return ret;
2010 }
2011
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2012 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2013 int slot)
2014 {
2015 spin_lock(&osb->osb_lock);
2016 /* Mark ourselves such that new processes in delete_inode()
2017 * know to quit early. */
2018 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2019 while (osb->osb_orphan_wipes[slot]) {
2020 /* If any processes are already in the middle of an
2021 * orphan wipe on this dir, then we need to wait for
2022 * them. */
2023 spin_unlock(&osb->osb_lock);
2024 wait_event_interruptible(osb->osb_wipe_event,
2025 ocfs2_orphan_recovery_can_continue(osb, slot));
2026 spin_lock(&osb->osb_lock);
2027 }
2028 spin_unlock(&osb->osb_lock);
2029 }
2030
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2031 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2032 int slot)
2033 {
2034 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2035 }
2036
2037 /*
2038 * Orphan recovery. Each mounted node has it's own orphan dir which we
2039 * must run during recovery. Our strategy here is to build a list of
2040 * the inodes in the orphan dir and iget/iput them. The VFS does
2041 * (most) of the rest of the work.
2042 *
2043 * Orphan recovery can happen at any time, not just mount so we have a
2044 * couple of extra considerations.
2045 *
2046 * - We grab as many inodes as we can under the orphan dir lock -
2047 * doing iget() outside the orphan dir risks getting a reference on
2048 * an invalid inode.
2049 * - We must be sure not to deadlock with other processes on the
2050 * system wanting to run delete_inode(). This can happen when they go
2051 * to lock the orphan dir and the orphan recovery process attempts to
2052 * iget() inside the orphan dir lock. This can be avoided by
2053 * advertising our state to ocfs2_delete_inode().
2054 */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot)2055 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2056 int slot)
2057 {
2058 int ret = 0;
2059 struct inode *inode = NULL;
2060 struct inode *iter;
2061 struct ocfs2_inode_info *oi;
2062
2063 trace_ocfs2_recover_orphans(slot);
2064
2065 ocfs2_mark_recovering_orphan_dir(osb, slot);
2066 ret = ocfs2_queue_orphans(osb, slot, &inode);
2067 ocfs2_clear_recovering_orphan_dir(osb, slot);
2068
2069 /* Error here should be noted, but we want to continue with as
2070 * many queued inodes as we've got. */
2071 if (ret)
2072 mlog_errno(ret);
2073
2074 while (inode) {
2075 oi = OCFS2_I(inode);
2076 trace_ocfs2_recover_orphans_iput(
2077 (unsigned long long)oi->ip_blkno);
2078
2079 iter = oi->ip_next_orphan;
2080
2081 spin_lock(&oi->ip_lock);
2082 /* The remote delete code may have set these on the
2083 * assumption that the other node would wipe them
2084 * successfully. If they are still in the node's
2085 * orphan dir, we need to reset that state. */
2086 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2087
2088 /* Set the proper information to get us going into
2089 * ocfs2_delete_inode. */
2090 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2091 spin_unlock(&oi->ip_lock);
2092
2093 iput(inode);
2094
2095 inode = iter;
2096 }
2097
2098 return ret;
2099 }
2100
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2101 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2102 {
2103 /* This check is good because ocfs2 will wait on our recovery
2104 * thread before changing it to something other than MOUNTED
2105 * or DISABLED. */
2106 wait_event(osb->osb_mount_event,
2107 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2108 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2109 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2110
2111 /* If there's an error on mount, then we may never get to the
2112 * MOUNTED flag, but this is set right before
2113 * dismount_volume() so we can trust it. */
2114 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2115 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2116 mlog(0, "mount error, exiting!\n");
2117 return -EBUSY;
2118 }
2119
2120 return 0;
2121 }
2122
ocfs2_commit_thread(void * arg)2123 static int ocfs2_commit_thread(void *arg)
2124 {
2125 int status;
2126 struct ocfs2_super *osb = arg;
2127 struct ocfs2_journal *journal = osb->journal;
2128
2129 /* we can trust j_num_trans here because _should_stop() is only set in
2130 * shutdown and nobody other than ourselves should be able to start
2131 * transactions. committing on shutdown might take a few iterations
2132 * as final transactions put deleted inodes on the list */
2133 while (!(kthread_should_stop() &&
2134 atomic_read(&journal->j_num_trans) == 0)) {
2135
2136 wait_event_interruptible(osb->checkpoint_event,
2137 atomic_read(&journal->j_num_trans)
2138 || kthread_should_stop());
2139
2140 status = ocfs2_commit_cache(osb);
2141 if (status < 0)
2142 mlog_errno(status);
2143
2144 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2145 mlog(ML_KTHREAD,
2146 "commit_thread: %u transactions pending on "
2147 "shutdown\n",
2148 atomic_read(&journal->j_num_trans));
2149 }
2150 }
2151
2152 return 0;
2153 }
2154
2155 /* Reads all the journal inodes without taking any cluster locks. Used
2156 * for hard readonly access to determine whether any journal requires
2157 * recovery. Also used to refresh the recovery generation numbers after
2158 * a journal has been recovered by another node.
2159 */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2160 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2161 {
2162 int ret = 0;
2163 unsigned int slot;
2164 struct buffer_head *di_bh = NULL;
2165 struct ocfs2_dinode *di;
2166 int journal_dirty = 0;
2167
2168 for(slot = 0; slot < osb->max_slots; slot++) {
2169 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2170 if (ret) {
2171 mlog_errno(ret);
2172 goto out;
2173 }
2174
2175 di = (struct ocfs2_dinode *) di_bh->b_data;
2176
2177 osb->slot_recovery_generations[slot] =
2178 ocfs2_get_recovery_generation(di);
2179
2180 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2181 OCFS2_JOURNAL_DIRTY_FL)
2182 journal_dirty = 1;
2183
2184 brelse(di_bh);
2185 di_bh = NULL;
2186 }
2187
2188 out:
2189 if (journal_dirty)
2190 ret = -EROFS;
2191 return ret;
2192 }
2193