1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 struct workqueue_struct *zbd_wq;
20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
21 static DEFINE_IDA(cntlid_ida);
22
23 struct workqueue_struct *nvmet_wq;
24 EXPORT_SYMBOL_GPL(nvmet_wq);
25
26 /*
27 * This read/write semaphore is used to synchronize access to configuration
28 * information on a target system that will result in discovery log page
29 * information change for at least one host.
30 * The full list of resources to protected by this semaphore is:
31 *
32 * - subsystems list
33 * - per-subsystem allowed hosts list
34 * - allow_any_host subsystem attribute
35 * - nvmet_genctr
36 * - the nvmet_transports array
37 *
38 * When updating any of those lists/structures write lock should be obtained,
39 * while when reading (popolating discovery log page or checking host-subsystem
40 * link) read lock is obtained to allow concurrent reads.
41 */
42 DECLARE_RWSEM(nvmet_config_sem);
43
44 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
45 u64 nvmet_ana_chgcnt;
46 DECLARE_RWSEM(nvmet_ana_sem);
47
errno_to_nvme_status(struct nvmet_req * req,int errno)48 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
49 {
50 switch (errno) {
51 case 0:
52 return NVME_SC_SUCCESS;
53 case -ENOSPC:
54 req->error_loc = offsetof(struct nvme_rw_command, length);
55 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
56 case -EREMOTEIO:
57 req->error_loc = offsetof(struct nvme_rw_command, slba);
58 return NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 case -EOPNOTSUPP:
60 req->error_loc = offsetof(struct nvme_common_command, opcode);
61 switch (req->cmd->common.opcode) {
62 case nvme_cmd_dsm:
63 case nvme_cmd_write_zeroes:
64 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
65 default:
66 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
67 }
68 break;
69 case -ENODATA:
70 req->error_loc = offsetof(struct nvme_rw_command, nsid);
71 return NVME_SC_ACCESS_DENIED;
72 case -EIO:
73 fallthrough;
74 default:
75 req->error_loc = offsetof(struct nvme_common_command, opcode);
76 return NVME_SC_INTERNAL | NVME_SC_DNR;
77 }
78 }
79
nvmet_report_invalid_opcode(struct nvmet_req * req)80 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
81 {
82 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
83 req->sq->qid);
84
85 req->error_loc = offsetof(struct nvme_common_command, opcode);
86 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
87 }
88
89 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
90 const char *subsysnqn);
91
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)92 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
93 size_t len)
94 {
95 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
96 req->error_loc = offsetof(struct nvme_common_command, dptr);
97 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
98 }
99 return 0;
100 }
101
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)102 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
103 {
104 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
105 req->error_loc = offsetof(struct nvme_common_command, dptr);
106 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
107 }
108 return 0;
109 }
110
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)111 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
112 {
113 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
114 req->error_loc = offsetof(struct nvme_common_command, dptr);
115 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
116 }
117 return 0;
118 }
119
nvmet_max_nsid(struct nvmet_subsys * subsys)120 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
121 {
122 struct nvmet_ns *cur;
123 unsigned long idx;
124 u32 nsid = 0;
125
126 xa_for_each(&subsys->namespaces, idx, cur)
127 nsid = cur->nsid;
128
129 return nsid;
130 }
131
nvmet_async_event_result(struct nvmet_async_event * aen)132 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
133 {
134 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
135 }
136
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)137 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
138 {
139 struct nvmet_req *req;
140
141 mutex_lock(&ctrl->lock);
142 while (ctrl->nr_async_event_cmds) {
143 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144 mutex_unlock(&ctrl->lock);
145 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146 mutex_lock(&ctrl->lock);
147 }
148 mutex_unlock(&ctrl->lock);
149 }
150
nvmet_async_events_process(struct nvmet_ctrl * ctrl)151 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
152 {
153 struct nvmet_async_event *aen;
154 struct nvmet_req *req;
155
156 mutex_lock(&ctrl->lock);
157 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
158 aen = list_first_entry(&ctrl->async_events,
159 struct nvmet_async_event, entry);
160 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
161 nvmet_set_result(req, nvmet_async_event_result(aen));
162
163 list_del(&aen->entry);
164 kfree(aen);
165
166 mutex_unlock(&ctrl->lock);
167 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
168 nvmet_req_complete(req, 0);
169 mutex_lock(&ctrl->lock);
170 }
171 mutex_unlock(&ctrl->lock);
172 }
173
nvmet_async_events_free(struct nvmet_ctrl * ctrl)174 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
175 {
176 struct nvmet_async_event *aen, *tmp;
177
178 mutex_lock(&ctrl->lock);
179 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
180 list_del(&aen->entry);
181 kfree(aen);
182 }
183 mutex_unlock(&ctrl->lock);
184 }
185
nvmet_async_event_work(struct work_struct * work)186 static void nvmet_async_event_work(struct work_struct *work)
187 {
188 struct nvmet_ctrl *ctrl =
189 container_of(work, struct nvmet_ctrl, async_event_work);
190
191 nvmet_async_events_process(ctrl);
192 }
193
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)194 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
195 u8 event_info, u8 log_page)
196 {
197 struct nvmet_async_event *aen;
198
199 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
200 if (!aen)
201 return;
202
203 aen->event_type = event_type;
204 aen->event_info = event_info;
205 aen->log_page = log_page;
206
207 mutex_lock(&ctrl->lock);
208 list_add_tail(&aen->entry, &ctrl->async_events);
209 mutex_unlock(&ctrl->lock);
210
211 queue_work(nvmet_wq, &ctrl->async_event_work);
212 }
213
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)214 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
215 {
216 u32 i;
217
218 mutex_lock(&ctrl->lock);
219 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
220 goto out_unlock;
221
222 for (i = 0; i < ctrl->nr_changed_ns; i++) {
223 if (ctrl->changed_ns_list[i] == nsid)
224 goto out_unlock;
225 }
226
227 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
228 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
229 ctrl->nr_changed_ns = U32_MAX;
230 goto out_unlock;
231 }
232
233 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
234 out_unlock:
235 mutex_unlock(&ctrl->lock);
236 }
237
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)238 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
239 {
240 struct nvmet_ctrl *ctrl;
241
242 lockdep_assert_held(&subsys->lock);
243
244 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
245 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
246 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
247 continue;
248 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
249 NVME_AER_NOTICE_NS_CHANGED,
250 NVME_LOG_CHANGED_NS);
251 }
252 }
253
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)254 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
255 struct nvmet_port *port)
256 {
257 struct nvmet_ctrl *ctrl;
258
259 mutex_lock(&subsys->lock);
260 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
261 if (port && ctrl->port != port)
262 continue;
263 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
264 continue;
265 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
266 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
267 }
268 mutex_unlock(&subsys->lock);
269 }
270
nvmet_port_send_ana_event(struct nvmet_port * port)271 void nvmet_port_send_ana_event(struct nvmet_port *port)
272 {
273 struct nvmet_subsys_link *p;
274
275 down_read(&nvmet_config_sem);
276 list_for_each_entry(p, &port->subsystems, entry)
277 nvmet_send_ana_event(p->subsys, port);
278 up_read(&nvmet_config_sem);
279 }
280
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)281 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
282 {
283 int ret = 0;
284
285 down_write(&nvmet_config_sem);
286 if (nvmet_transports[ops->type])
287 ret = -EINVAL;
288 else
289 nvmet_transports[ops->type] = ops;
290 up_write(&nvmet_config_sem);
291
292 return ret;
293 }
294 EXPORT_SYMBOL_GPL(nvmet_register_transport);
295
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)296 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
297 {
298 down_write(&nvmet_config_sem);
299 nvmet_transports[ops->type] = NULL;
300 up_write(&nvmet_config_sem);
301 }
302 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
303
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)304 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
305 {
306 struct nvmet_ctrl *ctrl;
307
308 mutex_lock(&subsys->lock);
309 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
310 if (ctrl->port == port)
311 ctrl->ops->delete_ctrl(ctrl);
312 }
313 mutex_unlock(&subsys->lock);
314 }
315
nvmet_enable_port(struct nvmet_port * port)316 int nvmet_enable_port(struct nvmet_port *port)
317 {
318 const struct nvmet_fabrics_ops *ops;
319 int ret;
320
321 lockdep_assert_held(&nvmet_config_sem);
322
323 ops = nvmet_transports[port->disc_addr.trtype];
324 if (!ops) {
325 up_write(&nvmet_config_sem);
326 request_module("nvmet-transport-%d", port->disc_addr.trtype);
327 down_write(&nvmet_config_sem);
328 ops = nvmet_transports[port->disc_addr.trtype];
329 if (!ops) {
330 pr_err("transport type %d not supported\n",
331 port->disc_addr.trtype);
332 return -EINVAL;
333 }
334 }
335
336 if (!try_module_get(ops->owner))
337 return -EINVAL;
338
339 /*
340 * If the user requested PI support and the transport isn't pi capable,
341 * don't enable the port.
342 */
343 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
344 pr_err("T10-PI is not supported by transport type %d\n",
345 port->disc_addr.trtype);
346 ret = -EINVAL;
347 goto out_put;
348 }
349
350 ret = ops->add_port(port);
351 if (ret)
352 goto out_put;
353
354 /* If the transport didn't set inline_data_size, then disable it. */
355 if (port->inline_data_size < 0)
356 port->inline_data_size = 0;
357
358 port->enabled = true;
359 port->tr_ops = ops;
360 return 0;
361
362 out_put:
363 module_put(ops->owner);
364 return ret;
365 }
366
nvmet_disable_port(struct nvmet_port * port)367 void nvmet_disable_port(struct nvmet_port *port)
368 {
369 const struct nvmet_fabrics_ops *ops;
370
371 lockdep_assert_held(&nvmet_config_sem);
372
373 port->enabled = false;
374 port->tr_ops = NULL;
375
376 ops = nvmet_transports[port->disc_addr.trtype];
377 ops->remove_port(port);
378 module_put(ops->owner);
379 }
380
nvmet_keep_alive_timer(struct work_struct * work)381 static void nvmet_keep_alive_timer(struct work_struct *work)
382 {
383 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
384 struct nvmet_ctrl, ka_work);
385 bool reset_tbkas = ctrl->reset_tbkas;
386
387 ctrl->reset_tbkas = false;
388 if (reset_tbkas) {
389 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
390 ctrl->cntlid);
391 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
392 return;
393 }
394
395 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
396 ctrl->cntlid, ctrl->kato);
397
398 nvmet_ctrl_fatal_error(ctrl);
399 }
400
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)401 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
402 {
403 if (unlikely(ctrl->kato == 0))
404 return;
405
406 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
407 ctrl->cntlid, ctrl->kato);
408
409 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
410 }
411
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)412 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
413 {
414 if (unlikely(ctrl->kato == 0))
415 return;
416
417 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
418
419 cancel_delayed_work_sync(&ctrl->ka_work);
420 }
421
nvmet_req_find_ns(struct nvmet_req * req)422 u16 nvmet_req_find_ns(struct nvmet_req *req)
423 {
424 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
425
426 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
427 if (unlikely(!req->ns)) {
428 req->error_loc = offsetof(struct nvme_common_command, nsid);
429 return NVME_SC_INVALID_NS | NVME_SC_DNR;
430 }
431
432 percpu_ref_get(&req->ns->ref);
433 return NVME_SC_SUCCESS;
434 }
435
nvmet_destroy_namespace(struct percpu_ref * ref)436 static void nvmet_destroy_namespace(struct percpu_ref *ref)
437 {
438 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
439
440 complete(&ns->disable_done);
441 }
442
nvmet_put_namespace(struct nvmet_ns * ns)443 void nvmet_put_namespace(struct nvmet_ns *ns)
444 {
445 percpu_ref_put(&ns->ref);
446 }
447
nvmet_ns_dev_disable(struct nvmet_ns * ns)448 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
449 {
450 nvmet_bdev_ns_disable(ns);
451 nvmet_file_ns_disable(ns);
452 }
453
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)454 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
455 {
456 int ret;
457 struct pci_dev *p2p_dev;
458
459 if (!ns->use_p2pmem)
460 return 0;
461
462 if (!ns->bdev) {
463 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
464 return -EINVAL;
465 }
466
467 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
468 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
469 ns->device_path);
470 return -EINVAL;
471 }
472
473 if (ns->p2p_dev) {
474 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
475 if (ret < 0)
476 return -EINVAL;
477 } else {
478 /*
479 * Right now we just check that there is p2pmem available so
480 * we can report an error to the user right away if there
481 * is not. We'll find the actual device to use once we
482 * setup the controller when the port's device is available.
483 */
484
485 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
486 if (!p2p_dev) {
487 pr_err("no peer-to-peer memory is available for %s\n",
488 ns->device_path);
489 return -EINVAL;
490 }
491
492 pci_dev_put(p2p_dev);
493 }
494
495 return 0;
496 }
497
498 /*
499 * Note: ctrl->subsys->lock should be held when calling this function
500 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)501 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
502 struct nvmet_ns *ns)
503 {
504 struct device *clients[2];
505 struct pci_dev *p2p_dev;
506 int ret;
507
508 if (!ctrl->p2p_client || !ns->use_p2pmem)
509 return;
510
511 if (ns->p2p_dev) {
512 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
513 if (ret < 0)
514 return;
515
516 p2p_dev = pci_dev_get(ns->p2p_dev);
517 } else {
518 clients[0] = ctrl->p2p_client;
519 clients[1] = nvmet_ns_dev(ns);
520
521 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
522 if (!p2p_dev) {
523 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
524 dev_name(ctrl->p2p_client), ns->device_path);
525 return;
526 }
527 }
528
529 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
530 if (ret < 0)
531 pci_dev_put(p2p_dev);
532
533 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
534 ns->nsid);
535 }
536
nvmet_ns_revalidate(struct nvmet_ns * ns)537 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
538 {
539 loff_t oldsize = ns->size;
540
541 if (ns->bdev)
542 nvmet_bdev_ns_revalidate(ns);
543 else
544 nvmet_file_ns_revalidate(ns);
545
546 return oldsize != ns->size;
547 }
548
nvmet_ns_enable(struct nvmet_ns * ns)549 int nvmet_ns_enable(struct nvmet_ns *ns)
550 {
551 struct nvmet_subsys *subsys = ns->subsys;
552 struct nvmet_ctrl *ctrl;
553 int ret;
554
555 mutex_lock(&subsys->lock);
556 ret = 0;
557
558 if (nvmet_is_passthru_subsys(subsys)) {
559 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
560 goto out_unlock;
561 }
562
563 if (ns->enabled)
564 goto out_unlock;
565
566 ret = -EMFILE;
567 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
568 goto out_unlock;
569
570 ret = nvmet_bdev_ns_enable(ns);
571 if (ret == -ENOTBLK)
572 ret = nvmet_file_ns_enable(ns);
573 if (ret)
574 goto out_unlock;
575
576 ret = nvmet_p2pmem_ns_enable(ns);
577 if (ret)
578 goto out_dev_disable;
579
580 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
581 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
582
583 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
584 0, GFP_KERNEL);
585 if (ret)
586 goto out_dev_put;
587
588 if (ns->nsid > subsys->max_nsid)
589 subsys->max_nsid = ns->nsid;
590
591 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
592 if (ret)
593 goto out_restore_subsys_maxnsid;
594
595 subsys->nr_namespaces++;
596
597 nvmet_ns_changed(subsys, ns->nsid);
598 ns->enabled = true;
599 ret = 0;
600 out_unlock:
601 mutex_unlock(&subsys->lock);
602 return ret;
603
604 out_restore_subsys_maxnsid:
605 subsys->max_nsid = nvmet_max_nsid(subsys);
606 percpu_ref_exit(&ns->ref);
607 out_dev_put:
608 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
609 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
610 out_dev_disable:
611 nvmet_ns_dev_disable(ns);
612 goto out_unlock;
613 }
614
nvmet_ns_disable(struct nvmet_ns * ns)615 void nvmet_ns_disable(struct nvmet_ns *ns)
616 {
617 struct nvmet_subsys *subsys = ns->subsys;
618 struct nvmet_ctrl *ctrl;
619
620 mutex_lock(&subsys->lock);
621 if (!ns->enabled)
622 goto out_unlock;
623
624 ns->enabled = false;
625 xa_erase(&ns->subsys->namespaces, ns->nsid);
626 if (ns->nsid == subsys->max_nsid)
627 subsys->max_nsid = nvmet_max_nsid(subsys);
628
629 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
630 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
631
632 mutex_unlock(&subsys->lock);
633
634 /*
635 * Now that we removed the namespaces from the lookup list, we
636 * can kill the per_cpu ref and wait for any remaining references
637 * to be dropped, as well as a RCU grace period for anyone only
638 * using the namepace under rcu_read_lock(). Note that we can't
639 * use call_rcu here as we need to ensure the namespaces have
640 * been fully destroyed before unloading the module.
641 */
642 percpu_ref_kill(&ns->ref);
643 synchronize_rcu();
644 wait_for_completion(&ns->disable_done);
645 percpu_ref_exit(&ns->ref);
646
647 mutex_lock(&subsys->lock);
648
649 subsys->nr_namespaces--;
650 nvmet_ns_changed(subsys, ns->nsid);
651 nvmet_ns_dev_disable(ns);
652 out_unlock:
653 mutex_unlock(&subsys->lock);
654 }
655
nvmet_ns_free(struct nvmet_ns * ns)656 void nvmet_ns_free(struct nvmet_ns *ns)
657 {
658 nvmet_ns_disable(ns);
659
660 down_write(&nvmet_ana_sem);
661 nvmet_ana_group_enabled[ns->anagrpid]--;
662 up_write(&nvmet_ana_sem);
663
664 kfree(ns->device_path);
665 kfree(ns);
666 }
667
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)668 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
669 {
670 struct nvmet_ns *ns;
671
672 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
673 if (!ns)
674 return NULL;
675
676 init_completion(&ns->disable_done);
677
678 ns->nsid = nsid;
679 ns->subsys = subsys;
680
681 down_write(&nvmet_ana_sem);
682 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
683 nvmet_ana_group_enabled[ns->anagrpid]++;
684 up_write(&nvmet_ana_sem);
685
686 uuid_gen(&ns->uuid);
687 ns->buffered_io = false;
688 ns->csi = NVME_CSI_NVM;
689
690 return ns;
691 }
692
nvmet_update_sq_head(struct nvmet_req * req)693 static void nvmet_update_sq_head(struct nvmet_req *req)
694 {
695 if (req->sq->size) {
696 u32 old_sqhd, new_sqhd;
697
698 do {
699 old_sqhd = req->sq->sqhd;
700 new_sqhd = (old_sqhd + 1) % req->sq->size;
701 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
702 old_sqhd);
703 }
704 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
705 }
706
nvmet_set_error(struct nvmet_req * req,u16 status)707 static void nvmet_set_error(struct nvmet_req *req, u16 status)
708 {
709 struct nvmet_ctrl *ctrl = req->sq->ctrl;
710 struct nvme_error_slot *new_error_slot;
711 unsigned long flags;
712
713 req->cqe->status = cpu_to_le16(status << 1);
714
715 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
716 return;
717
718 spin_lock_irqsave(&ctrl->error_lock, flags);
719 ctrl->err_counter++;
720 new_error_slot =
721 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
722
723 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
724 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
725 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
726 new_error_slot->status_field = cpu_to_le16(status << 1);
727 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
728 new_error_slot->lba = cpu_to_le64(req->error_slba);
729 new_error_slot->nsid = req->cmd->common.nsid;
730 spin_unlock_irqrestore(&ctrl->error_lock, flags);
731
732 /* set the more bit for this request */
733 req->cqe->status |= cpu_to_le16(1 << 14);
734 }
735
__nvmet_req_complete(struct nvmet_req * req,u16 status)736 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
737 {
738 struct nvmet_ns *ns = req->ns;
739
740 if (!req->sq->sqhd_disabled)
741 nvmet_update_sq_head(req);
742 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
743 req->cqe->command_id = req->cmd->common.command_id;
744
745 if (unlikely(status))
746 nvmet_set_error(req, status);
747
748 trace_nvmet_req_complete(req);
749
750 req->ops->queue_response(req);
751 if (ns)
752 nvmet_put_namespace(ns);
753 }
754
nvmet_req_complete(struct nvmet_req * req,u16 status)755 void nvmet_req_complete(struct nvmet_req *req, u16 status)
756 {
757 __nvmet_req_complete(req, status);
758 percpu_ref_put(&req->sq->ref);
759 }
760 EXPORT_SYMBOL_GPL(nvmet_req_complete);
761
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)762 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
763 u16 qid, u16 size)
764 {
765 cq->qid = qid;
766 cq->size = size;
767 }
768
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)769 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
770 u16 qid, u16 size)
771 {
772 sq->sqhd = 0;
773 sq->qid = qid;
774 sq->size = size;
775
776 ctrl->sqs[qid] = sq;
777 }
778
nvmet_confirm_sq(struct percpu_ref * ref)779 static void nvmet_confirm_sq(struct percpu_ref *ref)
780 {
781 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
782
783 complete(&sq->confirm_done);
784 }
785
nvmet_sq_destroy(struct nvmet_sq * sq)786 void nvmet_sq_destroy(struct nvmet_sq *sq)
787 {
788 struct nvmet_ctrl *ctrl = sq->ctrl;
789
790 /*
791 * If this is the admin queue, complete all AERs so that our
792 * queue doesn't have outstanding requests on it.
793 */
794 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
795 nvmet_async_events_failall(ctrl);
796 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
797 wait_for_completion(&sq->confirm_done);
798 wait_for_completion(&sq->free_done);
799 percpu_ref_exit(&sq->ref);
800
801 if (ctrl) {
802 /*
803 * The teardown flow may take some time, and the host may not
804 * send us keep-alive during this period, hence reset the
805 * traffic based keep-alive timer so we don't trigger a
806 * controller teardown as a result of a keep-alive expiration.
807 */
808 ctrl->reset_tbkas = true;
809 sq->ctrl->sqs[sq->qid] = NULL;
810 nvmet_ctrl_put(ctrl);
811 sq->ctrl = NULL; /* allows reusing the queue later */
812 }
813 }
814 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
815
nvmet_sq_free(struct percpu_ref * ref)816 static void nvmet_sq_free(struct percpu_ref *ref)
817 {
818 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
819
820 complete(&sq->free_done);
821 }
822
nvmet_sq_init(struct nvmet_sq * sq)823 int nvmet_sq_init(struct nvmet_sq *sq)
824 {
825 int ret;
826
827 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
828 if (ret) {
829 pr_err("percpu_ref init failed!\n");
830 return ret;
831 }
832 init_completion(&sq->free_done);
833 init_completion(&sq->confirm_done);
834
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(nvmet_sq_init);
838
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)839 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
840 struct nvmet_ns *ns)
841 {
842 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
843
844 if (unlikely(state == NVME_ANA_INACCESSIBLE))
845 return NVME_SC_ANA_INACCESSIBLE;
846 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
847 return NVME_SC_ANA_PERSISTENT_LOSS;
848 if (unlikely(state == NVME_ANA_CHANGE))
849 return NVME_SC_ANA_TRANSITION;
850 return 0;
851 }
852
nvmet_io_cmd_check_access(struct nvmet_req * req)853 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
854 {
855 if (unlikely(req->ns->readonly)) {
856 switch (req->cmd->common.opcode) {
857 case nvme_cmd_read:
858 case nvme_cmd_flush:
859 break;
860 default:
861 return NVME_SC_NS_WRITE_PROTECTED;
862 }
863 }
864
865 return 0;
866 }
867
nvmet_parse_io_cmd(struct nvmet_req * req)868 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
869 {
870 u16 ret;
871
872 ret = nvmet_check_ctrl_status(req);
873 if (unlikely(ret))
874 return ret;
875
876 if (nvmet_is_passthru_req(req))
877 return nvmet_parse_passthru_io_cmd(req);
878
879 ret = nvmet_req_find_ns(req);
880 if (unlikely(ret))
881 return ret;
882
883 ret = nvmet_check_ana_state(req->port, req->ns);
884 if (unlikely(ret)) {
885 req->error_loc = offsetof(struct nvme_common_command, nsid);
886 return ret;
887 }
888 ret = nvmet_io_cmd_check_access(req);
889 if (unlikely(ret)) {
890 req->error_loc = offsetof(struct nvme_common_command, nsid);
891 return ret;
892 }
893
894 switch (req->ns->csi) {
895 case NVME_CSI_NVM:
896 if (req->ns->file)
897 return nvmet_file_parse_io_cmd(req);
898 return nvmet_bdev_parse_io_cmd(req);
899 case NVME_CSI_ZNS:
900 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
901 return nvmet_bdev_zns_parse_io_cmd(req);
902 return NVME_SC_INVALID_IO_CMD_SET;
903 default:
904 return NVME_SC_INVALID_IO_CMD_SET;
905 }
906 }
907
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)908 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
909 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
910 {
911 u8 flags = req->cmd->common.flags;
912 u16 status;
913
914 req->cq = cq;
915 req->sq = sq;
916 req->ops = ops;
917 req->sg = NULL;
918 req->metadata_sg = NULL;
919 req->sg_cnt = 0;
920 req->metadata_sg_cnt = 0;
921 req->transfer_len = 0;
922 req->metadata_len = 0;
923 req->cqe->status = 0;
924 req->cqe->sq_head = 0;
925 req->ns = NULL;
926 req->error_loc = NVMET_NO_ERROR_LOC;
927 req->error_slba = 0;
928
929 /* no support for fused commands yet */
930 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
931 req->error_loc = offsetof(struct nvme_common_command, flags);
932 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
933 goto fail;
934 }
935
936 /*
937 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
938 * contains an address of a single contiguous physical buffer that is
939 * byte aligned.
940 */
941 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
942 req->error_loc = offsetof(struct nvme_common_command, flags);
943 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
944 goto fail;
945 }
946
947 if (unlikely(!req->sq->ctrl))
948 /* will return an error for any non-connect command: */
949 status = nvmet_parse_connect_cmd(req);
950 else if (likely(req->sq->qid != 0))
951 status = nvmet_parse_io_cmd(req);
952 else
953 status = nvmet_parse_admin_cmd(req);
954
955 if (status)
956 goto fail;
957
958 trace_nvmet_req_init(req, req->cmd);
959
960 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
961 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
962 goto fail;
963 }
964
965 if (sq->ctrl)
966 sq->ctrl->reset_tbkas = true;
967
968 return true;
969
970 fail:
971 __nvmet_req_complete(req, status);
972 return false;
973 }
974 EXPORT_SYMBOL_GPL(nvmet_req_init);
975
nvmet_req_uninit(struct nvmet_req * req)976 void nvmet_req_uninit(struct nvmet_req *req)
977 {
978 percpu_ref_put(&req->sq->ref);
979 if (req->ns)
980 nvmet_put_namespace(req->ns);
981 }
982 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
983
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)984 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
985 {
986 if (unlikely(len != req->transfer_len)) {
987 req->error_loc = offsetof(struct nvme_common_command, dptr);
988 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
989 return false;
990 }
991
992 return true;
993 }
994 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
995
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)996 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
997 {
998 if (unlikely(data_len > req->transfer_len)) {
999 req->error_loc = offsetof(struct nvme_common_command, dptr);
1000 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1001 return false;
1002 }
1003
1004 return true;
1005 }
1006
nvmet_data_transfer_len(struct nvmet_req * req)1007 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1008 {
1009 return req->transfer_len - req->metadata_len;
1010 }
1011
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1012 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1013 struct nvmet_req *req)
1014 {
1015 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1016 nvmet_data_transfer_len(req));
1017 if (!req->sg)
1018 goto out_err;
1019
1020 if (req->metadata_len) {
1021 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1022 &req->metadata_sg_cnt, req->metadata_len);
1023 if (!req->metadata_sg)
1024 goto out_free_sg;
1025 }
1026
1027 req->p2p_dev = p2p_dev;
1028
1029 return 0;
1030 out_free_sg:
1031 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1032 out_err:
1033 return -ENOMEM;
1034 }
1035
nvmet_req_find_p2p_dev(struct nvmet_req * req)1036 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1037 {
1038 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1039 !req->sq->ctrl || !req->sq->qid || !req->ns)
1040 return NULL;
1041 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1042 }
1043
nvmet_req_alloc_sgls(struct nvmet_req * req)1044 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1045 {
1046 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1047
1048 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1049 return 0;
1050
1051 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1052 &req->sg_cnt);
1053 if (unlikely(!req->sg))
1054 goto out;
1055
1056 if (req->metadata_len) {
1057 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1058 &req->metadata_sg_cnt);
1059 if (unlikely(!req->metadata_sg))
1060 goto out_free;
1061 }
1062
1063 return 0;
1064 out_free:
1065 sgl_free(req->sg);
1066 out:
1067 return -ENOMEM;
1068 }
1069 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1070
nvmet_req_free_sgls(struct nvmet_req * req)1071 void nvmet_req_free_sgls(struct nvmet_req *req)
1072 {
1073 if (req->p2p_dev) {
1074 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1075 if (req->metadata_sg)
1076 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1077 req->p2p_dev = NULL;
1078 } else {
1079 sgl_free(req->sg);
1080 if (req->metadata_sg)
1081 sgl_free(req->metadata_sg);
1082 }
1083
1084 req->sg = NULL;
1085 req->metadata_sg = NULL;
1086 req->sg_cnt = 0;
1087 req->metadata_sg_cnt = 0;
1088 }
1089 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1090
nvmet_cc_en(u32 cc)1091 static inline bool nvmet_cc_en(u32 cc)
1092 {
1093 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1094 }
1095
nvmet_cc_css(u32 cc)1096 static inline u8 nvmet_cc_css(u32 cc)
1097 {
1098 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1099 }
1100
nvmet_cc_mps(u32 cc)1101 static inline u8 nvmet_cc_mps(u32 cc)
1102 {
1103 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1104 }
1105
nvmet_cc_ams(u32 cc)1106 static inline u8 nvmet_cc_ams(u32 cc)
1107 {
1108 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1109 }
1110
nvmet_cc_shn(u32 cc)1111 static inline u8 nvmet_cc_shn(u32 cc)
1112 {
1113 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1114 }
1115
nvmet_cc_iosqes(u32 cc)1116 static inline u8 nvmet_cc_iosqes(u32 cc)
1117 {
1118 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1119 }
1120
nvmet_cc_iocqes(u32 cc)1121 static inline u8 nvmet_cc_iocqes(u32 cc)
1122 {
1123 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1124 }
1125
nvmet_css_supported(u8 cc_css)1126 static inline bool nvmet_css_supported(u8 cc_css)
1127 {
1128 switch (cc_css << NVME_CC_CSS_SHIFT) {
1129 case NVME_CC_CSS_NVM:
1130 case NVME_CC_CSS_CSI:
1131 return true;
1132 default:
1133 return false;
1134 }
1135 }
1136
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1137 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1138 {
1139 lockdep_assert_held(&ctrl->lock);
1140
1141 /*
1142 * Only I/O controllers should verify iosqes,iocqes.
1143 * Strictly speaking, the spec says a discovery controller
1144 * should verify iosqes,iocqes are zeroed, however that
1145 * would break backwards compatibility, so don't enforce it.
1146 */
1147 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1148 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1149 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1150 ctrl->csts = NVME_CSTS_CFS;
1151 return;
1152 }
1153
1154 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1155 nvmet_cc_ams(ctrl->cc) != 0 ||
1156 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1157 ctrl->csts = NVME_CSTS_CFS;
1158 return;
1159 }
1160
1161 ctrl->csts = NVME_CSTS_RDY;
1162
1163 /*
1164 * Controllers that are not yet enabled should not really enforce the
1165 * keep alive timeout, but we still want to track a timeout and cleanup
1166 * in case a host died before it enabled the controller. Hence, simply
1167 * reset the keep alive timer when the controller is enabled.
1168 */
1169 if (ctrl->kato)
1170 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1171 }
1172
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1173 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1174 {
1175 lockdep_assert_held(&ctrl->lock);
1176
1177 /* XXX: tear down queues? */
1178 ctrl->csts &= ~NVME_CSTS_RDY;
1179 ctrl->cc = 0;
1180 }
1181
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1182 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1183 {
1184 u32 old;
1185
1186 mutex_lock(&ctrl->lock);
1187 old = ctrl->cc;
1188 ctrl->cc = new;
1189
1190 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1191 nvmet_start_ctrl(ctrl);
1192 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1193 nvmet_clear_ctrl(ctrl);
1194 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1195 nvmet_clear_ctrl(ctrl);
1196 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1197 }
1198 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1199 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1200 mutex_unlock(&ctrl->lock);
1201 }
1202
nvmet_init_cap(struct nvmet_ctrl * ctrl)1203 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1204 {
1205 /* command sets supported: NVMe command set: */
1206 ctrl->cap = (1ULL << 37);
1207 /* Controller supports one or more I/O Command Sets */
1208 ctrl->cap |= (1ULL << 43);
1209 /* CC.EN timeout in 500msec units: */
1210 ctrl->cap |= (15ULL << 24);
1211 /* maximum queue entries supported: */
1212 if (ctrl->ops->get_max_queue_size)
1213 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1214 else
1215 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1216
1217 if (nvmet_is_passthru_subsys(ctrl->subsys))
1218 nvmet_passthrough_override_cap(ctrl);
1219 }
1220
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1221 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1222 const char *hostnqn, u16 cntlid,
1223 struct nvmet_req *req)
1224 {
1225 struct nvmet_ctrl *ctrl = NULL;
1226 struct nvmet_subsys *subsys;
1227
1228 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1229 if (!subsys) {
1230 pr_warn("connect request for invalid subsystem %s!\n",
1231 subsysnqn);
1232 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1233 goto out;
1234 }
1235
1236 mutex_lock(&subsys->lock);
1237 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1238 if (ctrl->cntlid == cntlid) {
1239 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1240 pr_warn("hostnqn mismatch.\n");
1241 continue;
1242 }
1243 if (!kref_get_unless_zero(&ctrl->ref))
1244 continue;
1245
1246 /* ctrl found */
1247 goto found;
1248 }
1249 }
1250
1251 ctrl = NULL; /* ctrl not found */
1252 pr_warn("could not find controller %d for subsys %s / host %s\n",
1253 cntlid, subsysnqn, hostnqn);
1254 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1255
1256 found:
1257 mutex_unlock(&subsys->lock);
1258 nvmet_subsys_put(subsys);
1259 out:
1260 return ctrl;
1261 }
1262
nvmet_check_ctrl_status(struct nvmet_req * req)1263 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1264 {
1265 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1266 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1267 req->cmd->common.opcode, req->sq->qid);
1268 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1269 }
1270
1271 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1272 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1273 req->cmd->common.opcode, req->sq->qid);
1274 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1275 }
1276 return 0;
1277 }
1278
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1279 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1280 {
1281 struct nvmet_host_link *p;
1282
1283 lockdep_assert_held(&nvmet_config_sem);
1284
1285 if (subsys->allow_any_host)
1286 return true;
1287
1288 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1289 return true;
1290
1291 list_for_each_entry(p, &subsys->hosts, entry) {
1292 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1293 return true;
1294 }
1295
1296 return false;
1297 }
1298
1299 /*
1300 * Note: ctrl->subsys->lock should be held when calling this function
1301 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1302 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1303 struct nvmet_req *req)
1304 {
1305 struct nvmet_ns *ns;
1306 unsigned long idx;
1307
1308 if (!req->p2p_client)
1309 return;
1310
1311 ctrl->p2p_client = get_device(req->p2p_client);
1312
1313 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1314 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1315 }
1316
1317 /*
1318 * Note: ctrl->subsys->lock should be held when calling this function
1319 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1320 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1321 {
1322 struct radix_tree_iter iter;
1323 void __rcu **slot;
1324
1325 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1326 pci_dev_put(radix_tree_deref_slot(slot));
1327
1328 put_device(ctrl->p2p_client);
1329 }
1330
nvmet_fatal_error_handler(struct work_struct * work)1331 static void nvmet_fatal_error_handler(struct work_struct *work)
1332 {
1333 struct nvmet_ctrl *ctrl =
1334 container_of(work, struct nvmet_ctrl, fatal_err_work);
1335
1336 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1337 ctrl->ops->delete_ctrl(ctrl);
1338 }
1339
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1340 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1341 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1342 {
1343 struct nvmet_subsys *subsys;
1344 struct nvmet_ctrl *ctrl;
1345 int ret;
1346 u16 status;
1347
1348 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1349 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1350 if (!subsys) {
1351 pr_warn("connect request for invalid subsystem %s!\n",
1352 subsysnqn);
1353 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1354 req->error_loc = offsetof(struct nvme_common_command, dptr);
1355 goto out;
1356 }
1357
1358 down_read(&nvmet_config_sem);
1359 if (!nvmet_host_allowed(subsys, hostnqn)) {
1360 pr_info("connect by host %s for subsystem %s not allowed\n",
1361 hostnqn, subsysnqn);
1362 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1363 up_read(&nvmet_config_sem);
1364 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1365 req->error_loc = offsetof(struct nvme_common_command, dptr);
1366 goto out_put_subsystem;
1367 }
1368 up_read(&nvmet_config_sem);
1369
1370 status = NVME_SC_INTERNAL;
1371 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1372 if (!ctrl)
1373 goto out_put_subsystem;
1374 mutex_init(&ctrl->lock);
1375
1376 ctrl->port = req->port;
1377 ctrl->ops = req->ops;
1378
1379 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1380 /* By default, set loop targets to clear IDS by default */
1381 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1382 subsys->clear_ids = 1;
1383 #endif
1384
1385 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1386 INIT_LIST_HEAD(&ctrl->async_events);
1387 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1388 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1389 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1390
1391 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1392 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1393
1394 kref_init(&ctrl->ref);
1395 ctrl->subsys = subsys;
1396 nvmet_init_cap(ctrl);
1397 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1398
1399 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1400 sizeof(__le32), GFP_KERNEL);
1401 if (!ctrl->changed_ns_list)
1402 goto out_free_ctrl;
1403
1404 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1405 sizeof(struct nvmet_sq *),
1406 GFP_KERNEL);
1407 if (!ctrl->sqs)
1408 goto out_free_changed_ns_list;
1409
1410 if (subsys->cntlid_min > subsys->cntlid_max)
1411 goto out_free_sqs;
1412
1413 ret = ida_alloc_range(&cntlid_ida,
1414 subsys->cntlid_min, subsys->cntlid_max,
1415 GFP_KERNEL);
1416 if (ret < 0) {
1417 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1418 goto out_free_sqs;
1419 }
1420 ctrl->cntlid = ret;
1421
1422 /*
1423 * Discovery controllers may use some arbitrary high value
1424 * in order to cleanup stale discovery sessions
1425 */
1426 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1427 kato = NVMET_DISC_KATO_MS;
1428
1429 /* keep-alive timeout in seconds */
1430 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1431
1432 ctrl->err_counter = 0;
1433 spin_lock_init(&ctrl->error_lock);
1434
1435 nvmet_start_keep_alive_timer(ctrl);
1436
1437 mutex_lock(&subsys->lock);
1438 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1439 nvmet_setup_p2p_ns_map(ctrl, req);
1440 mutex_unlock(&subsys->lock);
1441
1442 *ctrlp = ctrl;
1443 return 0;
1444
1445 out_free_sqs:
1446 kfree(ctrl->sqs);
1447 out_free_changed_ns_list:
1448 kfree(ctrl->changed_ns_list);
1449 out_free_ctrl:
1450 kfree(ctrl);
1451 out_put_subsystem:
1452 nvmet_subsys_put(subsys);
1453 out:
1454 return status;
1455 }
1456
nvmet_ctrl_free(struct kref * ref)1457 static void nvmet_ctrl_free(struct kref *ref)
1458 {
1459 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1460 struct nvmet_subsys *subsys = ctrl->subsys;
1461
1462 mutex_lock(&subsys->lock);
1463 nvmet_release_p2p_ns_map(ctrl);
1464 list_del(&ctrl->subsys_entry);
1465 mutex_unlock(&subsys->lock);
1466
1467 nvmet_stop_keep_alive_timer(ctrl);
1468
1469 flush_work(&ctrl->async_event_work);
1470 cancel_work_sync(&ctrl->fatal_err_work);
1471
1472 ida_free(&cntlid_ida, ctrl->cntlid);
1473
1474 nvmet_async_events_free(ctrl);
1475 kfree(ctrl->sqs);
1476 kfree(ctrl->changed_ns_list);
1477 kfree(ctrl);
1478
1479 nvmet_subsys_put(subsys);
1480 }
1481
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1482 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1483 {
1484 kref_put(&ctrl->ref, nvmet_ctrl_free);
1485 }
1486
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1487 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1488 {
1489 mutex_lock(&ctrl->lock);
1490 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1491 ctrl->csts |= NVME_CSTS_CFS;
1492 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1493 }
1494 mutex_unlock(&ctrl->lock);
1495 }
1496 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1497
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1498 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1499 const char *subsysnqn)
1500 {
1501 struct nvmet_subsys_link *p;
1502
1503 if (!port)
1504 return NULL;
1505
1506 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1507 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1508 return NULL;
1509 return nvmet_disc_subsys;
1510 }
1511
1512 down_read(&nvmet_config_sem);
1513 list_for_each_entry(p, &port->subsystems, entry) {
1514 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1515 NVMF_NQN_SIZE)) {
1516 if (!kref_get_unless_zero(&p->subsys->ref))
1517 break;
1518 up_read(&nvmet_config_sem);
1519 return p->subsys;
1520 }
1521 }
1522 up_read(&nvmet_config_sem);
1523 return NULL;
1524 }
1525
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1526 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1527 enum nvme_subsys_type type)
1528 {
1529 struct nvmet_subsys *subsys;
1530 char serial[NVMET_SN_MAX_SIZE / 2];
1531 int ret;
1532
1533 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1534 if (!subsys)
1535 return ERR_PTR(-ENOMEM);
1536
1537 subsys->ver = NVMET_DEFAULT_VS;
1538 /* generate a random serial number as our controllers are ephemeral: */
1539 get_random_bytes(&serial, sizeof(serial));
1540 bin2hex(subsys->serial, &serial, sizeof(serial));
1541
1542 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1543 if (!subsys->model_number) {
1544 ret = -ENOMEM;
1545 goto free_subsys;
1546 }
1547
1548 switch (type) {
1549 case NVME_NQN_NVME:
1550 subsys->max_qid = NVMET_NR_QUEUES;
1551 break;
1552 case NVME_NQN_DISC:
1553 case NVME_NQN_CURR:
1554 subsys->max_qid = 0;
1555 break;
1556 default:
1557 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1558 ret = -EINVAL;
1559 goto free_mn;
1560 }
1561 subsys->type = type;
1562 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1563 GFP_KERNEL);
1564 if (!subsys->subsysnqn) {
1565 ret = -ENOMEM;
1566 goto free_mn;
1567 }
1568 subsys->cntlid_min = NVME_CNTLID_MIN;
1569 subsys->cntlid_max = NVME_CNTLID_MAX;
1570 kref_init(&subsys->ref);
1571
1572 mutex_init(&subsys->lock);
1573 xa_init(&subsys->namespaces);
1574 INIT_LIST_HEAD(&subsys->ctrls);
1575 INIT_LIST_HEAD(&subsys->hosts);
1576
1577 return subsys;
1578
1579 free_mn:
1580 kfree(subsys->model_number);
1581 free_subsys:
1582 kfree(subsys);
1583 return ERR_PTR(ret);
1584 }
1585
nvmet_subsys_free(struct kref * ref)1586 static void nvmet_subsys_free(struct kref *ref)
1587 {
1588 struct nvmet_subsys *subsys =
1589 container_of(ref, struct nvmet_subsys, ref);
1590
1591 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1592
1593 xa_destroy(&subsys->namespaces);
1594 nvmet_passthru_subsys_free(subsys);
1595
1596 kfree(subsys->subsysnqn);
1597 kfree(subsys->model_number);
1598 kfree(subsys);
1599 }
1600
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1601 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1602 {
1603 struct nvmet_ctrl *ctrl;
1604
1605 mutex_lock(&subsys->lock);
1606 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1607 ctrl->ops->delete_ctrl(ctrl);
1608 mutex_unlock(&subsys->lock);
1609 }
1610
nvmet_subsys_put(struct nvmet_subsys * subsys)1611 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1612 {
1613 kref_put(&subsys->ref, nvmet_subsys_free);
1614 }
1615
nvmet_init(void)1616 static int __init nvmet_init(void)
1617 {
1618 int error;
1619
1620 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1621
1622 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1623 if (!zbd_wq)
1624 return -ENOMEM;
1625
1626 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1627 WQ_MEM_RECLAIM, 0);
1628 if (!buffered_io_wq) {
1629 error = -ENOMEM;
1630 goto out_free_zbd_work_queue;
1631 }
1632
1633 nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1634 if (!nvmet_wq) {
1635 error = -ENOMEM;
1636 goto out_free_buffered_work_queue;
1637 }
1638
1639 error = nvmet_init_discovery();
1640 if (error)
1641 goto out_free_nvmet_work_queue;
1642
1643 error = nvmet_init_configfs();
1644 if (error)
1645 goto out_exit_discovery;
1646 return 0;
1647
1648 out_exit_discovery:
1649 nvmet_exit_discovery();
1650 out_free_nvmet_work_queue:
1651 destroy_workqueue(nvmet_wq);
1652 out_free_buffered_work_queue:
1653 destroy_workqueue(buffered_io_wq);
1654 out_free_zbd_work_queue:
1655 destroy_workqueue(zbd_wq);
1656 return error;
1657 }
1658
nvmet_exit(void)1659 static void __exit nvmet_exit(void)
1660 {
1661 nvmet_exit_configfs();
1662 nvmet_exit_discovery();
1663 ida_destroy(&cntlid_ida);
1664 destroy_workqueue(nvmet_wq);
1665 destroy_workqueue(buffered_io_wq);
1666 destroy_workqueue(zbd_wq);
1667
1668 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1669 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1670 }
1671
1672 module_init(nvmet_init);
1673 module_exit(nvmet_exit);
1674
1675 MODULE_LICENSE("GPL v2");
1676