1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2011-2014, Intel Corporation.
4 */
5
6 #ifndef _NVME_H
7 #define _NVME_H
8
9 #include <linux/nvme.h>
10 #include <linux/cdev.h>
11 #include <linux/pci.h>
12 #include <linux/kref.h>
13 #include <linux/blk-mq.h>
14 #include <linux/sed-opal.h>
15 #include <linux/fault-inject.h>
16 #include <linux/rcupdate.h>
17 #include <linux/wait.h>
18 #include <linux/t10-pi.h>
19
20 #include <trace/events/block.h>
21
22 extern const struct pr_ops nvme_pr_ops;
23
24 extern unsigned int nvme_io_timeout;
25 #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
26
27 extern unsigned int admin_timeout;
28 #define NVME_ADMIN_TIMEOUT (admin_timeout * HZ)
29
30 #define NVME_DEFAULT_KATO 5
31
32 #ifdef CONFIG_ARCH_NO_SG_CHAIN
33 #define NVME_INLINE_SG_CNT 0
34 #define NVME_INLINE_METADATA_SG_CNT 0
35 #else
36 #define NVME_INLINE_SG_CNT 2
37 #define NVME_INLINE_METADATA_SG_CNT 1
38 #endif
39
40 /*
41 * Default to a 4K page size, with the intention to update this
42 * path in the future to accommodate architectures with differing
43 * kernel and IO page sizes.
44 */
45 #define NVME_CTRL_PAGE_SHIFT 12
46 #define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT)
47
48 extern struct workqueue_struct *nvme_wq;
49 extern struct workqueue_struct *nvme_reset_wq;
50 extern struct workqueue_struct *nvme_delete_wq;
51
52 /*
53 * List of workarounds for devices that required behavior not specified in
54 * the standard.
55 */
56 enum nvme_quirks {
57 /*
58 * Prefers I/O aligned to a stripe size specified in a vendor
59 * specific Identify field.
60 */
61 NVME_QUIRK_STRIPE_SIZE = (1 << 0),
62
63 /*
64 * The controller doesn't handle Identify value others than 0 or 1
65 * correctly.
66 */
67 NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
68
69 /*
70 * The controller deterministically returns O's on reads to
71 * logical blocks that deallocate was called on.
72 */
73 NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2),
74
75 /*
76 * The controller needs a delay before starts checking the device
77 * readiness, which is done by reading the NVME_CSTS_RDY bit.
78 */
79 NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3),
80
81 /*
82 * APST should not be used.
83 */
84 NVME_QUIRK_NO_APST = (1 << 4),
85
86 /*
87 * The deepest sleep state should not be used.
88 */
89 NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
90
91 /*
92 * Set MEDIUM priority on SQ creation
93 */
94 NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7),
95
96 /*
97 * Ignore device provided subnqn.
98 */
99 NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8),
100
101 /*
102 * Broken Write Zeroes.
103 */
104 NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9),
105
106 /*
107 * Force simple suspend/resume path.
108 */
109 NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10),
110
111 /*
112 * Use only one interrupt vector for all queues
113 */
114 NVME_QUIRK_SINGLE_VECTOR = (1 << 11),
115
116 /*
117 * Use non-standard 128 bytes SQEs.
118 */
119 NVME_QUIRK_128_BYTES_SQES = (1 << 12),
120
121 /*
122 * Prevent tag overlap between queues
123 */
124 NVME_QUIRK_SHARED_TAGS = (1 << 13),
125
126 /*
127 * Don't change the value of the temperature threshold feature
128 */
129 NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14),
130
131 /*
132 * The controller doesn't handle the Identify Namespace
133 * Identification Descriptor list subcommand despite claiming
134 * NVMe 1.3 compliance.
135 */
136 NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15),
137
138 /*
139 * The controller does not properly handle DMA addresses over
140 * 48 bits.
141 */
142 NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16),
143
144 /*
145 * The controller requires the command_id value be limited, so skip
146 * encoding the generation sequence number.
147 */
148 NVME_QUIRK_SKIP_CID_GEN = (1 << 17),
149
150 /*
151 * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
152 */
153 NVME_QUIRK_BOGUS_NID = (1 << 18),
154
155 /*
156 * No temperature thresholds for channels other than 0 (Composite).
157 */
158 NVME_QUIRK_NO_SECONDARY_TEMP_THRESH = (1 << 19),
159
160 /*
161 * Disables simple suspend/resume path.
162 */
163 NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND = (1 << 20),
164 };
165
166 /*
167 * Common request structure for NVMe passthrough. All drivers must have
168 * this structure as the first member of their request-private data.
169 */
170 struct nvme_request {
171 struct nvme_command *cmd;
172 union nvme_result result;
173 u8 genctr;
174 u8 retries;
175 u8 flags;
176 u16 status;
177 #ifdef CONFIG_NVME_MULTIPATH
178 unsigned long start_time;
179 #endif
180 struct nvme_ctrl *ctrl;
181 };
182
183 /*
184 * Mark a bio as coming in through the mpath node.
185 */
186 #define REQ_NVME_MPATH REQ_DRV
187
188 enum {
189 NVME_REQ_CANCELLED = (1 << 0),
190 NVME_REQ_USERCMD = (1 << 1),
191 NVME_MPATH_IO_STATS = (1 << 2),
192 };
193
nvme_req(struct request * req)194 static inline struct nvme_request *nvme_req(struct request *req)
195 {
196 return blk_mq_rq_to_pdu(req);
197 }
198
nvme_req_qid(struct request * req)199 static inline u16 nvme_req_qid(struct request *req)
200 {
201 if (!req->q->queuedata)
202 return 0;
203
204 return req->mq_hctx->queue_num + 1;
205 }
206
207 /* The below value is the specific amount of delay needed before checking
208 * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
209 * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
210 * found empirically.
211 */
212 #define NVME_QUIRK_DELAY_AMOUNT 2300
213
214 /*
215 * enum nvme_ctrl_state: Controller state
216 *
217 * @NVME_CTRL_NEW: New controller just allocated, initial state
218 * @NVME_CTRL_LIVE: Controller is connected and I/O capable
219 * @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset)
220 * @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the
221 * transport
222 * @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion)
223 * @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not
224 * disabled/failed immediately. This state comes
225 * after all async event processing took place and
226 * before ns removal and the controller deletion
227 * progress
228 * @NVME_CTRL_DEAD: Controller is non-present/unresponsive during
229 * shutdown or removal. In this case we forcibly
230 * kill all inflight I/O as they have no chance to
231 * complete
232 */
233 enum nvme_ctrl_state {
234 NVME_CTRL_NEW,
235 NVME_CTRL_LIVE,
236 NVME_CTRL_RESETTING,
237 NVME_CTRL_CONNECTING,
238 NVME_CTRL_DELETING,
239 NVME_CTRL_DELETING_NOIO,
240 NVME_CTRL_DEAD,
241 };
242
243 struct nvme_fault_inject {
244 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
245 struct fault_attr attr;
246 struct dentry *parent;
247 bool dont_retry; /* DNR, do not retry */
248 u16 status; /* status code */
249 #endif
250 };
251
252 enum nvme_ctrl_flags {
253 NVME_CTRL_FAILFAST_EXPIRED = 0,
254 NVME_CTRL_ADMIN_Q_STOPPED = 1,
255 NVME_CTRL_STARTED_ONCE = 2,
256 NVME_CTRL_STOPPED = 3,
257 NVME_CTRL_SKIP_ID_CNS_CS = 4,
258 NVME_CTRL_DIRTY_CAPABILITY = 5,
259 NVME_CTRL_FROZEN = 6,
260 };
261
262 struct nvme_ctrl {
263 bool comp_seen;
264 bool identified;
265 enum nvme_ctrl_state state;
266 spinlock_t lock;
267 struct mutex scan_lock;
268 const struct nvme_ctrl_ops *ops;
269 struct request_queue *admin_q;
270 struct request_queue *connect_q;
271 struct request_queue *fabrics_q;
272 struct device *dev;
273 int instance;
274 int numa_node;
275 struct blk_mq_tag_set *tagset;
276 struct blk_mq_tag_set *admin_tagset;
277 struct list_head namespaces;
278 struct rw_semaphore namespaces_rwsem;
279 struct device ctrl_device;
280 struct device *device; /* char device */
281 #ifdef CONFIG_NVME_HWMON
282 struct device *hwmon_device;
283 #endif
284 struct cdev cdev;
285 struct work_struct reset_work;
286 struct work_struct delete_work;
287 wait_queue_head_t state_wq;
288
289 struct nvme_subsystem *subsys;
290 struct list_head subsys_entry;
291
292 struct opal_dev *opal_dev;
293
294 char name[12];
295 u16 cntlid;
296
297 u16 mtfa;
298 u32 ctrl_config;
299 u32 queue_count;
300
301 u64 cap;
302 u32 max_hw_sectors;
303 u32 max_segments;
304 u32 max_integrity_segments;
305 u32 max_discard_sectors;
306 u32 max_discard_segments;
307 u32 max_zeroes_sectors;
308 #ifdef CONFIG_BLK_DEV_ZONED
309 u32 max_zone_append;
310 #endif
311 u16 crdt[3];
312 u16 oncs;
313 u32 dmrsl;
314 u16 oacs;
315 u16 sqsize;
316 u32 max_namespaces;
317 atomic_t abort_limit;
318 u8 vwc;
319 u32 vs;
320 u32 sgls;
321 u16 kas;
322 u8 npss;
323 u8 apsta;
324 u16 wctemp;
325 u16 cctemp;
326 u32 oaes;
327 u32 aen_result;
328 u32 ctratt;
329 unsigned int shutdown_timeout;
330 unsigned int kato;
331 bool subsystem;
332 unsigned long quirks;
333 struct nvme_id_power_state psd[32];
334 struct nvme_effects_log *effects;
335 struct xarray cels;
336 struct work_struct scan_work;
337 struct work_struct async_event_work;
338 struct delayed_work ka_work;
339 struct delayed_work failfast_work;
340 struct nvme_command ka_cmd;
341 unsigned long ka_last_check_time;
342 struct work_struct fw_act_work;
343 unsigned long events;
344
345 #ifdef CONFIG_NVME_MULTIPATH
346 /* asymmetric namespace access: */
347 u8 anacap;
348 u8 anatt;
349 u32 anagrpmax;
350 u32 nanagrpid;
351 struct mutex ana_lock;
352 struct nvme_ana_rsp_hdr *ana_log_buf;
353 size_t ana_log_size;
354 struct timer_list anatt_timer;
355 struct work_struct ana_work;
356 #endif
357
358 #ifdef CONFIG_NVME_AUTH
359 struct work_struct dhchap_auth_work;
360 struct mutex dhchap_auth_mutex;
361 struct nvme_dhchap_queue_context *dhchap_ctxs;
362 struct nvme_dhchap_key *host_key;
363 struct nvme_dhchap_key *ctrl_key;
364 u16 transaction;
365 #endif
366
367 /* Power saving configuration */
368 u64 ps_max_latency_us;
369 bool apst_enabled;
370
371 /* PCIe only: */
372 u16 hmmaxd;
373 u32 hmpre;
374 u32 hmmin;
375 u32 hmminds;
376
377 /* Fabrics only */
378 u32 ioccsz;
379 u32 iorcsz;
380 u16 icdoff;
381 u16 maxcmd;
382 int nr_reconnects;
383 unsigned long flags;
384 struct nvmf_ctrl_options *opts;
385
386 struct page *discard_page;
387 unsigned long discard_page_busy;
388
389 struct nvme_fault_inject fault_inject;
390
391 enum nvme_ctrl_type cntrltype;
392 enum nvme_dctype dctype;
393 };
394
nvme_ctrl_state(struct nvme_ctrl * ctrl)395 static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl)
396 {
397 return READ_ONCE(ctrl->state);
398 }
399
400 enum nvme_iopolicy {
401 NVME_IOPOLICY_NUMA,
402 NVME_IOPOLICY_RR,
403 };
404
405 struct nvme_subsystem {
406 int instance;
407 struct device dev;
408 /*
409 * Because we unregister the device on the last put we need
410 * a separate refcount.
411 */
412 struct kref ref;
413 struct list_head entry;
414 struct mutex lock;
415 struct list_head ctrls;
416 struct list_head nsheads;
417 char subnqn[NVMF_NQN_SIZE];
418 char serial[20];
419 char model[40];
420 char firmware_rev[8];
421 u8 cmic;
422 enum nvme_subsys_type subtype;
423 u16 vendor_id;
424 u16 awupf; /* 0's based awupf value. */
425 struct ida ns_ida;
426 #ifdef CONFIG_NVME_MULTIPATH
427 enum nvme_iopolicy iopolicy;
428 #endif
429 };
430
431 /*
432 * Container structure for uniqueue namespace identifiers.
433 */
434 struct nvme_ns_ids {
435 u8 eui64[8];
436 u8 nguid[16];
437 uuid_t uuid;
438 u8 csi;
439 };
440
441 /*
442 * Anchor structure for namespaces. There is one for each namespace in a
443 * NVMe subsystem that any of our controllers can see, and the namespace
444 * structure for each controller is chained of it. For private namespaces
445 * there is a 1:1 relation to our namespace structures, that is ->list
446 * only ever has a single entry for private namespaces.
447 */
448 struct nvme_ns_head {
449 struct list_head list;
450 struct srcu_struct srcu;
451 struct nvme_subsystem *subsys;
452 unsigned ns_id;
453 struct nvme_ns_ids ids;
454 struct list_head entry;
455 struct kref ref;
456 bool shared;
457 int instance;
458 struct nvme_effects_log *effects;
459
460 struct cdev cdev;
461 struct device cdev_device;
462
463 struct gendisk *disk;
464 #ifdef CONFIG_NVME_MULTIPATH
465 struct bio_list requeue_list;
466 spinlock_t requeue_lock;
467 struct work_struct requeue_work;
468 struct mutex lock;
469 unsigned long flags;
470 #define NVME_NSHEAD_DISK_LIVE 0
471 struct nvme_ns __rcu *current_path[];
472 #endif
473 };
474
nvme_ns_head_multipath(struct nvme_ns_head * head)475 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
476 {
477 return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
478 }
479
480 enum nvme_ns_features {
481 NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
482 NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
483 NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */
484 };
485
486 struct nvme_ns {
487 struct list_head list;
488
489 struct nvme_ctrl *ctrl;
490 struct request_queue *queue;
491 struct gendisk *disk;
492 #ifdef CONFIG_NVME_MULTIPATH
493 enum nvme_ana_state ana_state;
494 u32 ana_grpid;
495 #endif
496 struct list_head siblings;
497 struct kref kref;
498 struct nvme_ns_head *head;
499
500 int lba_shift;
501 u16 ms;
502 u16 pi_size;
503 u16 sgs;
504 u32 sws;
505 u8 pi_type;
506 u8 guard_type;
507 #ifdef CONFIG_BLK_DEV_ZONED
508 u64 zsze;
509 #endif
510 unsigned long features;
511 unsigned long flags;
512 #define NVME_NS_REMOVING 0
513 #define NVME_NS_ANA_PENDING 2
514 #define NVME_NS_FORCE_RO 3
515 #define NVME_NS_READY 4
516
517 struct cdev cdev;
518 struct device cdev_device;
519
520 struct nvme_fault_inject fault_inject;
521
522 };
523
524 /* NVMe ns supports metadata actions by the controller (generate/strip) */
nvme_ns_has_pi(struct nvme_ns * ns)525 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
526 {
527 return ns->pi_type && ns->ms == ns->pi_size;
528 }
529
530 struct nvme_ctrl_ops {
531 const char *name;
532 struct module *module;
533 unsigned int flags;
534 #define NVME_F_FABRICS (1 << 0)
535 #define NVME_F_METADATA_SUPPORTED (1 << 1)
536 #define NVME_F_BLOCKING (1 << 2)
537
538 const struct attribute_group **dev_attr_groups;
539 int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
540 int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
541 int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
542 void (*free_ctrl)(struct nvme_ctrl *ctrl);
543 void (*submit_async_event)(struct nvme_ctrl *ctrl);
544 void (*delete_ctrl)(struct nvme_ctrl *ctrl);
545 void (*stop_ctrl)(struct nvme_ctrl *ctrl);
546 int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
547 void (*print_device_info)(struct nvme_ctrl *ctrl);
548 bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
549 };
550
551 /*
552 * nvme command_id is constructed as such:
553 * | xxxx | xxxxxxxxxxxx |
554 * gen request tag
555 */
556 #define nvme_genctr_mask(gen) (gen & 0xf)
557 #define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12)
558 #define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12)
559 #define nvme_tag_from_cid(cid) (cid & 0xfff)
560
nvme_cid(struct request * rq)561 static inline u16 nvme_cid(struct request *rq)
562 {
563 return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
564 }
565
nvme_find_rq(struct blk_mq_tags * tags,u16 command_id)566 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
567 u16 command_id)
568 {
569 u8 genctr = nvme_genctr_from_cid(command_id);
570 u16 tag = nvme_tag_from_cid(command_id);
571 struct request *rq;
572
573 rq = blk_mq_tag_to_rq(tags, tag);
574 if (unlikely(!rq)) {
575 pr_err("could not locate request for tag %#x\n",
576 tag);
577 return NULL;
578 }
579 if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
580 dev_err(nvme_req(rq)->ctrl->device,
581 "request %#x genctr mismatch (got %#x expected %#x)\n",
582 tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
583 return NULL;
584 }
585 return rq;
586 }
587
nvme_cid_to_rq(struct blk_mq_tags * tags,u16 command_id)588 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
589 u16 command_id)
590 {
591 return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
592 }
593
594 /*
595 * Return the length of the string without the space padding
596 */
nvme_strlen(char * s,int len)597 static inline int nvme_strlen(char *s, int len)
598 {
599 while (s[len - 1] == ' ')
600 len--;
601 return len;
602 }
603
nvme_print_device_info(struct nvme_ctrl * ctrl)604 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
605 {
606 struct nvme_subsystem *subsys = ctrl->subsys;
607
608 if (ctrl->ops->print_device_info) {
609 ctrl->ops->print_device_info(ctrl);
610 return;
611 }
612
613 dev_err(ctrl->device,
614 "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
615 nvme_strlen(subsys->model, sizeof(subsys->model)),
616 subsys->model, nvme_strlen(subsys->firmware_rev,
617 sizeof(subsys->firmware_rev)),
618 subsys->firmware_rev);
619 }
620
621 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
622 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
623 const char *dev_name);
624 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
625 void nvme_should_fail(struct request *req);
626 #else
nvme_fault_inject_init(struct nvme_fault_inject * fault_inj,const char * dev_name)627 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
628 const char *dev_name)
629 {
630 }
nvme_fault_inject_fini(struct nvme_fault_inject * fault_inj)631 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
632 {
633 }
nvme_should_fail(struct request * req)634 static inline void nvme_should_fail(struct request *req) {}
635 #endif
636
637 bool nvme_wait_reset(struct nvme_ctrl *ctrl);
638 int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
639
nvme_reset_subsystem(struct nvme_ctrl * ctrl)640 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
641 {
642 int ret;
643
644 if (!ctrl->subsystem)
645 return -ENOTTY;
646 if (!nvme_wait_reset(ctrl))
647 return -EBUSY;
648
649 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
650 if (ret)
651 return ret;
652
653 return nvme_try_sched_reset(ctrl);
654 }
655
656 /*
657 * Convert a 512B sector number to a device logical block number.
658 */
nvme_sect_to_lba(struct nvme_ns * ns,sector_t sector)659 static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
660 {
661 return sector >> (ns->lba_shift - SECTOR_SHIFT);
662 }
663
664 /*
665 * Convert a device logical block number to a 512B sector number.
666 */
nvme_lba_to_sect(struct nvme_ns * ns,u64 lba)667 static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
668 {
669 return lba << (ns->lba_shift - SECTOR_SHIFT);
670 }
671
672 /*
673 * Convert byte length to nvme's 0-based num dwords
674 */
nvme_bytes_to_numd(size_t len)675 static inline u32 nvme_bytes_to_numd(size_t len)
676 {
677 return (len >> 2) - 1;
678 }
679
nvme_is_ana_error(u16 status)680 static inline bool nvme_is_ana_error(u16 status)
681 {
682 switch (status & 0x7ff) {
683 case NVME_SC_ANA_TRANSITION:
684 case NVME_SC_ANA_INACCESSIBLE:
685 case NVME_SC_ANA_PERSISTENT_LOSS:
686 return true;
687 default:
688 return false;
689 }
690 }
691
nvme_is_path_error(u16 status)692 static inline bool nvme_is_path_error(u16 status)
693 {
694 /* check for a status code type of 'path related status' */
695 return (status & 0x700) == 0x300;
696 }
697
698 /*
699 * Fill in the status and result information from the CQE, and then figure out
700 * if blk-mq will need to use IPI magic to complete the request, and if yes do
701 * so. If not let the caller complete the request without an indirect function
702 * call.
703 */
nvme_try_complete_req(struct request * req,__le16 status,union nvme_result result)704 static inline bool nvme_try_complete_req(struct request *req, __le16 status,
705 union nvme_result result)
706 {
707 struct nvme_request *rq = nvme_req(req);
708 struct nvme_ctrl *ctrl = rq->ctrl;
709
710 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
711 rq->genctr++;
712
713 rq->status = le16_to_cpu(status) >> 1;
714 rq->result = result;
715 /* inject error when permitted by fault injection framework */
716 nvme_should_fail(req);
717 if (unlikely(blk_should_fake_timeout(req->q)))
718 return true;
719 return blk_mq_complete_request_remote(req);
720 }
721
nvme_get_ctrl(struct nvme_ctrl * ctrl)722 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
723 {
724 get_device(ctrl->device);
725 }
726
nvme_put_ctrl(struct nvme_ctrl * ctrl)727 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
728 {
729 put_device(ctrl->device);
730 }
731
nvme_is_aen_req(u16 qid,__u16 command_id)732 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
733 {
734 return !qid &&
735 nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
736 }
737
738 void nvme_complete_rq(struct request *req);
739 void nvme_complete_batch_req(struct request *req);
740
nvme_complete_batch(struct io_comp_batch * iob,void (* fn)(struct request * rq))741 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
742 void (*fn)(struct request *rq))
743 {
744 struct request *req;
745
746 rq_list_for_each(&iob->req_list, req) {
747 fn(req);
748 nvme_complete_batch_req(req);
749 }
750 blk_mq_end_request_batch(iob);
751 }
752
753 blk_status_t nvme_host_path_error(struct request *req);
754 bool nvme_cancel_request(struct request *req, void *data);
755 void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
756 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
757 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
758 enum nvme_ctrl_state new_state);
759 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
760 int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
761 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
762 const struct nvme_ctrl_ops *ops, unsigned long quirks);
763 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
764 void nvme_start_ctrl(struct nvme_ctrl *ctrl);
765 void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
766 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
767 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
768 const struct blk_mq_ops *ops, unsigned int cmd_size);
769 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
770 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
771 const struct blk_mq_ops *ops, unsigned int nr_maps,
772 unsigned int cmd_size);
773 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
774
775 void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
776
777 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
778 volatile union nvme_result *res);
779
780 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
781 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
782 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
783 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
784 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
785 void nvme_sync_queues(struct nvme_ctrl *ctrl);
786 void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
787 void nvme_unfreeze(struct nvme_ctrl *ctrl);
788 void nvme_wait_freeze(struct nvme_ctrl *ctrl);
789 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
790 void nvme_start_freeze(struct nvme_ctrl *ctrl);
791
nvme_req_op(struct nvme_command * cmd)792 static inline enum req_op nvme_req_op(struct nvme_command *cmd)
793 {
794 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
795 }
796
797 #define NVME_QID_ANY -1
798 void nvme_init_request(struct request *req, struct nvme_command *cmd);
799 void nvme_cleanup_cmd(struct request *req);
800 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
801 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
802 struct request *req);
803 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
804 bool queue_live);
805
nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)806 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
807 bool queue_live)
808 {
809 if (likely(ctrl->state == NVME_CTRL_LIVE))
810 return true;
811 if (ctrl->ops->flags & NVME_F_FABRICS &&
812 ctrl->state == NVME_CTRL_DELETING)
813 return queue_live;
814 return __nvme_check_ready(ctrl, rq, queue_live);
815 }
816
817 /*
818 * NSID shall be unique for all shared namespaces, or if at least one of the
819 * following conditions is met:
820 * 1. Namespace Management is supported by the controller
821 * 2. ANA is supported by the controller
822 * 3. NVM Set are supported by the controller
823 *
824 * In other case, private namespace are not required to report a unique NSID.
825 */
nvme_is_unique_nsid(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)826 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
827 struct nvme_ns_head *head)
828 {
829 return head->shared ||
830 (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
831 (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
832 (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
833 }
834
835 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
836 void *buf, unsigned bufflen);
837 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
838 union nvme_result *result, void *buffer, unsigned bufflen,
839 int qid, int at_head,
840 blk_mq_req_flags_t flags);
841 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
842 unsigned int dword11, void *buffer, size_t buflen,
843 u32 *result);
844 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
845 unsigned int dword11, void *buffer, size_t buflen,
846 u32 *result);
847 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
848 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
849 int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
850 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
851 int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
852 void nvme_queue_scan(struct nvme_ctrl *ctrl);
853 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
854 void *log, size_t size, u64 offset);
855 bool nvme_tryget_ns_head(struct nvme_ns_head *head);
856 void nvme_put_ns_head(struct nvme_ns_head *head);
857 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
858 const struct file_operations *fops, struct module *owner);
859 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
860 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
861 unsigned int cmd, unsigned long arg);
862 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
863 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
864 unsigned int cmd, unsigned long arg);
865 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
866 unsigned long arg);
867 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
868 unsigned long arg);
869 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
870 struct io_comp_batch *iob, unsigned int poll_flags);
871 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
872 unsigned int issue_flags);
873 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
874 unsigned int issue_flags);
875 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
876 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
877
878 extern const struct attribute_group *nvme_ns_id_attr_groups[];
879 extern const struct pr_ops nvme_pr_ops;
880 extern const struct block_device_operations nvme_ns_head_ops;
881 extern const struct attribute_group nvme_dev_attrs_group;
882 extern const struct attribute_group *nvme_subsys_attrs_groups[];
883 extern const struct attribute_group *nvme_dev_attr_groups[];
884 extern const struct block_device_operations nvme_bdev_ops;
885
886 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
887 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
888 #ifdef CONFIG_NVME_MULTIPATH
nvme_ctrl_use_ana(struct nvme_ctrl * ctrl)889 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
890 {
891 return ctrl->ana_log_buf != NULL;
892 }
893
894 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
895 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
896 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
897 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
898 void nvme_failover_req(struct request *req);
899 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
900 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
901 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
902 void nvme_mpath_remove_disk(struct nvme_ns_head *head);
903 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
904 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
905 void nvme_mpath_update(struct nvme_ctrl *ctrl);
906 void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
907 void nvme_mpath_stop(struct nvme_ctrl *ctrl);
908 bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
909 void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
910 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
911 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
912 void nvme_mpath_start_request(struct request *rq);
913 void nvme_mpath_end_request(struct request *rq);
914
nvme_trace_bio_complete(struct request * req)915 static inline void nvme_trace_bio_complete(struct request *req)
916 {
917 struct nvme_ns *ns = req->q->queuedata;
918
919 if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
920 trace_block_bio_complete(ns->head->disk->queue, req->bio);
921 }
922
923 extern bool multipath;
924 extern struct device_attribute dev_attr_ana_grpid;
925 extern struct device_attribute dev_attr_ana_state;
926 extern struct device_attribute subsys_attr_iopolicy;
927
928 #else
929 #define multipath false
nvme_ctrl_use_ana(struct nvme_ctrl * ctrl)930 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
931 {
932 return false;
933 }
nvme_failover_req(struct request * req)934 static inline void nvme_failover_req(struct request *req)
935 {
936 }
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)937 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
938 {
939 }
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)940 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
941 struct nvme_ns_head *head)
942 {
943 return 0;
944 }
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)945 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
946 {
947 }
nvme_mpath_remove_disk(struct nvme_ns_head * head)948 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
949 {
950 }
nvme_mpath_clear_current_path(struct nvme_ns * ns)951 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
952 {
953 return false;
954 }
nvme_mpath_revalidate_paths(struct nvme_ns * ns)955 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
956 {
957 }
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)958 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
959 {
960 }
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)961 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
962 {
963 }
nvme_trace_bio_complete(struct request * req)964 static inline void nvme_trace_bio_complete(struct request *req)
965 {
966 }
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)967 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
968 {
969 }
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)970 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
971 struct nvme_id_ctrl *id)
972 {
973 if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
974 dev_warn(ctrl->device,
975 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
976 return 0;
977 }
nvme_mpath_update(struct nvme_ctrl * ctrl)978 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
979 {
980 }
nvme_mpath_uninit(struct nvme_ctrl * ctrl)981 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
982 {
983 }
nvme_mpath_stop(struct nvme_ctrl * ctrl)984 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
985 {
986 }
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)987 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
988 {
989 }
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)990 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
991 {
992 }
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)993 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
994 {
995 }
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)996 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
997 {
998 }
nvme_mpath_start_request(struct request * rq)999 static inline void nvme_mpath_start_request(struct request *rq)
1000 {
1001 }
nvme_mpath_end_request(struct request * rq)1002 static inline void nvme_mpath_end_request(struct request *rq)
1003 {
1004 }
1005 #endif /* CONFIG_NVME_MULTIPATH */
1006
1007 int nvme_revalidate_zones(struct nvme_ns *ns);
1008 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
1009 unsigned int nr_zones, report_zones_cb cb, void *data);
1010 #ifdef CONFIG_BLK_DEV_ZONED
1011 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
1012 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
1013 struct nvme_command *cmnd,
1014 enum nvme_zone_mgmt_action action);
1015 #else
nvme_setup_zone_mgmt_send(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_zone_mgmt_action action)1016 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
1017 struct request *req, struct nvme_command *cmnd,
1018 enum nvme_zone_mgmt_action action)
1019 {
1020 return BLK_STS_NOTSUPP;
1021 }
1022
nvme_update_zone_info(struct nvme_ns * ns,unsigned lbaf)1023 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
1024 {
1025 dev_warn(ns->ctrl->device,
1026 "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
1027 return -EPROTONOSUPPORT;
1028 }
1029 #endif
1030
nvme_get_ns_from_dev(struct device * dev)1031 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
1032 {
1033 return dev_to_disk(dev)->private_data;
1034 }
1035
1036 #ifdef CONFIG_NVME_HWMON
1037 int nvme_hwmon_init(struct nvme_ctrl *ctrl);
1038 void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
1039 #else
nvme_hwmon_init(struct nvme_ctrl * ctrl)1040 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
1041 {
1042 return 0;
1043 }
1044
nvme_hwmon_exit(struct nvme_ctrl * ctrl)1045 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
1046 {
1047 }
1048 #endif
1049
nvme_start_request(struct request * rq)1050 static inline void nvme_start_request(struct request *rq)
1051 {
1052 if (rq->cmd_flags & REQ_NVME_MPATH)
1053 nvme_mpath_start_request(rq);
1054 blk_mq_start_request(rq);
1055 }
1056
nvme_ctrl_sgl_supported(struct nvme_ctrl * ctrl)1057 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
1058 {
1059 return ctrl->sgls & ((1 << 0) | (1 << 1));
1060 }
1061
1062 #ifdef CONFIG_NVME_AUTH
1063 int __init nvme_init_auth(void);
1064 void __exit nvme_exit_auth(void);
1065 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
1066 void nvme_auth_stop(struct nvme_ctrl *ctrl);
1067 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
1068 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
1069 void nvme_auth_free(struct nvme_ctrl *ctrl);
1070 #else
nvme_auth_init_ctrl(struct nvme_ctrl * ctrl)1071 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
1072 {
1073 return 0;
1074 }
nvme_init_auth(void)1075 static inline int __init nvme_init_auth(void)
1076 {
1077 return 0;
1078 }
nvme_exit_auth(void)1079 static inline void __exit nvme_exit_auth(void)
1080 {
1081 }
nvme_auth_stop(struct nvme_ctrl * ctrl)1082 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
nvme_auth_negotiate(struct nvme_ctrl * ctrl,int qid)1083 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
1084 {
1085 return -EPROTONOSUPPORT;
1086 }
nvme_auth_wait(struct nvme_ctrl * ctrl,int qid)1087 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
1088 {
1089 return NVME_SC_AUTH_REQUIRED;
1090 }
nvme_auth_free(struct nvme_ctrl * ctrl)1091 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
1092 #endif
1093
1094 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1095 u8 opcode);
1096 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
1097 int nvme_execute_rq(struct request *rq, bool at_head);
1098 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1099 struct nvme_command *cmd, int status);
1100 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
1101 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
1102 void nvme_put_ns(struct nvme_ns *ns);
1103
nvme_multi_css(struct nvme_ctrl * ctrl)1104 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
1105 {
1106 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1107 }
1108
1109 #ifdef CONFIG_NVME_VERBOSE_ERRORS
1110 const unsigned char *nvme_get_error_status_str(u16 status);
1111 const unsigned char *nvme_get_opcode_str(u8 opcode);
1112 const unsigned char *nvme_get_admin_opcode_str(u8 opcode);
1113 const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode);
1114 #else /* CONFIG_NVME_VERBOSE_ERRORS */
nvme_get_error_status_str(u16 status)1115 static inline const unsigned char *nvme_get_error_status_str(u16 status)
1116 {
1117 return "I/O Error";
1118 }
nvme_get_opcode_str(u8 opcode)1119 static inline const unsigned char *nvme_get_opcode_str(u8 opcode)
1120 {
1121 return "I/O Cmd";
1122 }
nvme_get_admin_opcode_str(u8 opcode)1123 static inline const unsigned char *nvme_get_admin_opcode_str(u8 opcode)
1124 {
1125 return "Admin Cmd";
1126 }
1127
nvme_get_fabrics_opcode_str(u8 opcode)1128 static inline const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode)
1129 {
1130 return "Fabrics Cmd";
1131 }
1132 #endif /* CONFIG_NVME_VERBOSE_ERRORS */
1133
nvme_opcode_str(int qid,u8 opcode,u8 fctype)1134 static inline const unsigned char *nvme_opcode_str(int qid, u8 opcode, u8 fctype)
1135 {
1136 if (opcode == nvme_fabrics_command)
1137 return nvme_get_fabrics_opcode_str(fctype);
1138 return qid ? nvme_get_opcode_str(opcode) :
1139 nvme_get_admin_opcode_str(opcode);
1140 }
1141 #endif /* _NVME_H */
1142