1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20
21 /* *************************** Data Structures/Defines ****************** */
22
23
24 enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
26 NVME_FC_Q_LIVE,
27 };
28
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
32 * connection failure.
33 */
34
35 struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
37 struct device *dev;
38 struct blk_mq_hw_ctx *hctx;
39 void *lldd_handle;
40 size_t cmnd_capsule_len;
41 u32 qnum;
42 u32 rqcnt;
43 u32 seqno;
44
45 u64 connection_id;
46 atomic_t csn;
47
48 unsigned long flags;
49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
50
51 enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
54 };
55
56 struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
58
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
61 struct request *rq;
62 u32 flags;
63
64 int ls_error;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
67 bool req_queued;
68 };
69
70 struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
75 u16 rqstdatalen;
76 bool handled;
77 dma_addr_t rspdma;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
80
81 enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
83 FCPOP_STATE_IDLE = 1,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
87 };
88
89 struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
91 * nvme/host/core.c
92 * requires this to be
93 * the 1st element in the
94 * private structure
95 * associated with the
96 * request.
97 */
98 struct nvmefc_fcp_req fcp_req;
99
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
102 struct request *rq;
103
104 atomic_t state;
105 u32 flags;
106 u32 rqno;
107 u32 nents;
108
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
111 };
112
113 struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
116 uint8_t priv[];
117 };
118
119 struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
121
122 struct ida endp_cnt;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
127 struct kref ref;
128 atomic_t act_rport_cnt;
129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
133
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
141 spinlock_t lock;
142 struct kref ref;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
147
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE 0
150 #define ASSOC_FAILED 1
151 #define FCCTRL_TERMIO 2
152
153 struct nvme_fc_ctrl {
154 spinlock_t lock;
155 struct nvme_fc_queue *queues;
156 struct device *dev;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
159 u32 cnum;
160
161 bool ioq_live;
162 u64 association_id;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
164
165 struct list_head ctrl_list; /* rport->ctrl_list */
166
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
169
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
172
173 struct kref ref;
174 unsigned long flags;
175 u32 iocnt;
176 wait_queue_head_t ioabort_wait;
177
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
179
180 struct nvme_ctrl ctrl;
181 };
182
183 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188
189 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192 return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194
195 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200
201 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206
207 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224 static struct workqueue_struct *nvme_fc_wq;
225
226 static bool nvme_fc_waiting_to_unload;
227 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
228
229 /*
230 * These items are short-term. They will eventually be moved into
231 * a generic FC class. See comments in module init.
232 */
233 static struct device *fc_udev_device;
234
235 static void nvme_fc_complete_rq(struct request *rq);
236
237 /* *********************** FC-NVME Port Management ************************ */
238
239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240 struct nvme_fc_queue *, unsigned int);
241
242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
243
244
245 static void
nvme_fc_free_lport(struct kref * ref)246 nvme_fc_free_lport(struct kref *ref)
247 {
248 struct nvme_fc_lport *lport =
249 container_of(ref, struct nvme_fc_lport, ref);
250 unsigned long flags;
251
252 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253 WARN_ON(!list_empty(&lport->endp_list));
254
255 /* remove from transport list */
256 spin_lock_irqsave(&nvme_fc_lock, flags);
257 list_del(&lport->port_list);
258 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259 complete(&nvme_fc_unload_proceed);
260 spin_unlock_irqrestore(&nvme_fc_lock, flags);
261
262 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
263 ida_destroy(&lport->endp_cnt);
264
265 put_device(lport->dev);
266
267 kfree(lport);
268 }
269
270 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)271 nvme_fc_lport_put(struct nvme_fc_lport *lport)
272 {
273 kref_put(&lport->ref, nvme_fc_free_lport);
274 }
275
276 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)277 nvme_fc_lport_get(struct nvme_fc_lport *lport)
278 {
279 return kref_get_unless_zero(&lport->ref);
280 }
281
282
283 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285 struct nvme_fc_port_template *ops,
286 struct device *dev)
287 {
288 struct nvme_fc_lport *lport;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nvme_fc_lock, flags);
292
293 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294 if (lport->localport.node_name != pinfo->node_name ||
295 lport->localport.port_name != pinfo->port_name)
296 continue;
297
298 if (lport->dev != dev) {
299 lport = ERR_PTR(-EXDEV);
300 goto out_done;
301 }
302
303 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304 lport = ERR_PTR(-EEXIST);
305 goto out_done;
306 }
307
308 if (!nvme_fc_lport_get(lport)) {
309 /*
310 * fails if ref cnt already 0. If so,
311 * act as if lport already deleted
312 */
313 lport = NULL;
314 goto out_done;
315 }
316
317 /* resume the lport */
318
319 lport->ops = ops;
320 lport->localport.port_role = pinfo->port_role;
321 lport->localport.port_id = pinfo->port_id;
322 lport->localport.port_state = FC_OBJSTATE_ONLINE;
323
324 spin_unlock_irqrestore(&nvme_fc_lock, flags);
325
326 return lport;
327 }
328
329 lport = NULL;
330
331 out_done:
332 spin_unlock_irqrestore(&nvme_fc_lock, flags);
333
334 return lport;
335 }
336
337 /**
338 * nvme_fc_register_localport - transport entry point called by an
339 * LLDD to register the existence of a NVME
340 * host FC port.
341 * @pinfo: pointer to information about the port to be registered
342 * @template: LLDD entrypoints and operational parameters for the port
343 * @dev: physical hardware device node port corresponds to. Will be
344 * used for DMA mappings
345 * @portptr: pointer to a local port pointer. Upon success, the routine
346 * will allocate a nvme_fc_local_port structure and place its
347 * address in the local port pointer. Upon failure, local port
348 * pointer will be set to 0.
349 *
350 * Returns:
351 * a completion status. Must be 0 upon success; a negative errno
352 * (ex: -ENXIO) upon failure.
353 */
354 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356 struct nvme_fc_port_template *template,
357 struct device *dev,
358 struct nvme_fc_local_port **portptr)
359 {
360 struct nvme_fc_lport *newrec;
361 unsigned long flags;
362 int ret, idx;
363
364 if (!template->localport_delete || !template->remoteport_delete ||
365 !template->ls_req || !template->fcp_io ||
366 !template->ls_abort || !template->fcp_abort ||
367 !template->max_hw_queues || !template->max_sgl_segments ||
368 !template->max_dif_sgl_segments || !template->dma_boundary) {
369 ret = -EINVAL;
370 goto out_reghost_failed;
371 }
372
373 /*
374 * look to see if there is already a localport that had been
375 * deregistered and in the process of waiting for all the
376 * references to fully be removed. If the references haven't
377 * expired, we can simply re-enable the localport. Remoteports
378 * and controller reconnections should resume naturally.
379 */
380 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
381
382 /* found an lport, but something about its state is bad */
383 if (IS_ERR(newrec)) {
384 ret = PTR_ERR(newrec);
385 goto out_reghost_failed;
386
387 /* found existing lport, which was resumed */
388 } else if (newrec) {
389 *portptr = &newrec->localport;
390 return 0;
391 }
392
393 /* nothing found - allocate a new localport struct */
394
395 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
396 GFP_KERNEL);
397 if (!newrec) {
398 ret = -ENOMEM;
399 goto out_reghost_failed;
400 }
401
402 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
403 if (idx < 0) {
404 ret = -ENOSPC;
405 goto out_fail_kfree;
406 }
407
408 if (!get_device(dev) && dev) {
409 ret = -ENODEV;
410 goto out_ida_put;
411 }
412
413 INIT_LIST_HEAD(&newrec->port_list);
414 INIT_LIST_HEAD(&newrec->endp_list);
415 kref_init(&newrec->ref);
416 atomic_set(&newrec->act_rport_cnt, 0);
417 newrec->ops = template;
418 newrec->dev = dev;
419 ida_init(&newrec->endp_cnt);
420 if (template->local_priv_sz)
421 newrec->localport.private = &newrec[1];
422 else
423 newrec->localport.private = NULL;
424 newrec->localport.node_name = pinfo->node_name;
425 newrec->localport.port_name = pinfo->port_name;
426 newrec->localport.port_role = pinfo->port_role;
427 newrec->localport.port_id = pinfo->port_id;
428 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429 newrec->localport.port_num = idx;
430
431 spin_lock_irqsave(&nvme_fc_lock, flags);
432 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433 spin_unlock_irqrestore(&nvme_fc_lock, flags);
434
435 if (dev)
436 dma_set_seg_boundary(dev, template->dma_boundary);
437
438 *portptr = &newrec->localport;
439 return 0;
440
441 out_ida_put:
442 ida_free(&nvme_fc_local_port_cnt, idx);
443 out_fail_kfree:
444 kfree(newrec);
445 out_reghost_failed:
446 *portptr = NULL;
447
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
451
452 /**
453 * nvme_fc_unregister_localport - transport entry point called by an
454 * LLDD to deregister/remove a previously
455 * registered a NVME host FC port.
456 * @portptr: pointer to the (registered) local port that is to be deregistered.
457 *
458 * Returns:
459 * a completion status. Must be 0 upon success; a negative errno
460 * (ex: -ENXIO) upon failure.
461 */
462 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
464 {
465 struct nvme_fc_lport *lport = localport_to_lport(portptr);
466 unsigned long flags;
467
468 if (!portptr)
469 return -EINVAL;
470
471 spin_lock_irqsave(&nvme_fc_lock, flags);
472
473 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474 spin_unlock_irqrestore(&nvme_fc_lock, flags);
475 return -EINVAL;
476 }
477 portptr->port_state = FC_OBJSTATE_DELETED;
478
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481 if (atomic_read(&lport->act_rport_cnt) == 0)
482 lport->ops->localport_delete(&lport->localport);
483
484 nvme_fc_lport_put(lport);
485
486 return 0;
487 }
488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
489
490 /*
491 * TRADDR strings, per FC-NVME are fixed format:
492 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493 * udev event will only differ by prefix of what field is
494 * being specified:
495 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496 * 19 + 43 + null_fudge = 64 characters
497 */
498 #define FCNVME_TRADDR_LENGTH 64
499
500 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502 struct nvme_fc_rport *rport)
503 {
504 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
505 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
506 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
507
508 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
509 return;
510
511 snprintf(hostaddr, sizeof(hostaddr),
512 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513 lport->localport.node_name, lport->localport.port_name);
514 snprintf(tgtaddr, sizeof(tgtaddr),
515 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516 rport->remoteport.node_name, rport->remoteport.port_name);
517 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
518 }
519
520 static void
nvme_fc_free_rport(struct kref * ref)521 nvme_fc_free_rport(struct kref *ref)
522 {
523 struct nvme_fc_rport *rport =
524 container_of(ref, struct nvme_fc_rport, ref);
525 struct nvme_fc_lport *lport =
526 localport_to_lport(rport->remoteport.localport);
527 unsigned long flags;
528
529 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530 WARN_ON(!list_empty(&rport->ctrl_list));
531
532 /* remove from lport list */
533 spin_lock_irqsave(&nvme_fc_lock, flags);
534 list_del(&rport->endp_list);
535 spin_unlock_irqrestore(&nvme_fc_lock, flags);
536
537 WARN_ON(!list_empty(&rport->disc_list));
538 ida_free(&lport->endp_cnt, rport->remoteport.port_num);
539
540 kfree(rport);
541
542 nvme_fc_lport_put(lport);
543 }
544
545 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)546 nvme_fc_rport_put(struct nvme_fc_rport *rport)
547 {
548 kref_put(&rport->ref, nvme_fc_free_rport);
549 }
550
551 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)552 nvme_fc_rport_get(struct nvme_fc_rport *rport)
553 {
554 return kref_get_unless_zero(&rport->ref);
555 }
556
557 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
559 {
560 switch (ctrl->ctrl.state) {
561 case NVME_CTRL_NEW:
562 case NVME_CTRL_CONNECTING:
563 /*
564 * As all reconnects were suppressed, schedule a
565 * connect.
566 */
567 dev_info(ctrl->ctrl.device,
568 "NVME-FC{%d}: connectivity re-established. "
569 "Attempting reconnect\n", ctrl->cnum);
570
571 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
572 break;
573
574 case NVME_CTRL_RESETTING:
575 /*
576 * Controller is already in the process of terminating the
577 * association. No need to do anything further. The reconnect
578 * step will naturally occur after the reset completes.
579 */
580 break;
581
582 default:
583 /* no action to take - let it delete */
584 break;
585 }
586 }
587
588 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590 struct nvme_fc_port_info *pinfo)
591 {
592 struct nvme_fc_rport *rport;
593 struct nvme_fc_ctrl *ctrl;
594 unsigned long flags;
595
596 spin_lock_irqsave(&nvme_fc_lock, flags);
597
598 list_for_each_entry(rport, &lport->endp_list, endp_list) {
599 if (rport->remoteport.node_name != pinfo->node_name ||
600 rport->remoteport.port_name != pinfo->port_name)
601 continue;
602
603 if (!nvme_fc_rport_get(rport)) {
604 rport = ERR_PTR(-ENOLCK);
605 goto out_done;
606 }
607
608 spin_unlock_irqrestore(&nvme_fc_lock, flags);
609
610 spin_lock_irqsave(&rport->lock, flags);
611
612 /* has it been unregistered */
613 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614 /* means lldd called us twice */
615 spin_unlock_irqrestore(&rport->lock, flags);
616 nvme_fc_rport_put(rport);
617 return ERR_PTR(-ESTALE);
618 }
619
620 rport->remoteport.port_role = pinfo->port_role;
621 rport->remoteport.port_id = pinfo->port_id;
622 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623 rport->dev_loss_end = 0;
624
625 /*
626 * kick off a reconnect attempt on all associations to the
627 * remote port. A successful reconnects will resume i/o.
628 */
629 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630 nvme_fc_resume_controller(ctrl);
631
632 spin_unlock_irqrestore(&rport->lock, flags);
633
634 return rport;
635 }
636
637 rport = NULL;
638
639 out_done:
640 spin_unlock_irqrestore(&nvme_fc_lock, flags);
641
642 return rport;
643 }
644
645 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647 struct nvme_fc_port_info *pinfo)
648 {
649 if (pinfo->dev_loss_tmo)
650 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
651 else
652 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
653 }
654
655 /**
656 * nvme_fc_register_remoteport - transport entry point called by an
657 * LLDD to register the existence of a NVME
658 * subsystem FC port on its fabric.
659 * @localport: pointer to the (registered) local port that the remote
660 * subsystem port is connected to.
661 * @pinfo: pointer to information about the port to be registered
662 * @portptr: pointer to a remote port pointer. Upon success, the routine
663 * will allocate a nvme_fc_remote_port structure and place its
664 * address in the remote port pointer. Upon failure, remote port
665 * pointer will be set to 0.
666 *
667 * Returns:
668 * a completion status. Must be 0 upon success; a negative errno
669 * (ex: -ENXIO) upon failure.
670 */
671 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673 struct nvme_fc_port_info *pinfo,
674 struct nvme_fc_remote_port **portptr)
675 {
676 struct nvme_fc_lport *lport = localport_to_lport(localport);
677 struct nvme_fc_rport *newrec;
678 unsigned long flags;
679 int ret, idx;
680
681 if (!nvme_fc_lport_get(lport)) {
682 ret = -ESHUTDOWN;
683 goto out_reghost_failed;
684 }
685
686 /*
687 * look to see if there is already a remoteport that is waiting
688 * for a reconnect (within dev_loss_tmo) with the same WWN's.
689 * If so, transition to it and reconnect.
690 */
691 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
692
693 /* found an rport, but something about its state is bad */
694 if (IS_ERR(newrec)) {
695 ret = PTR_ERR(newrec);
696 goto out_lport_put;
697
698 /* found existing rport, which was resumed */
699 } else if (newrec) {
700 nvme_fc_lport_put(lport);
701 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702 nvme_fc_signal_discovery_scan(lport, newrec);
703 *portptr = &newrec->remoteport;
704 return 0;
705 }
706
707 /* nothing found - allocate a new remoteport struct */
708
709 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
710 GFP_KERNEL);
711 if (!newrec) {
712 ret = -ENOMEM;
713 goto out_lport_put;
714 }
715
716 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
717 if (idx < 0) {
718 ret = -ENOSPC;
719 goto out_kfree_rport;
720 }
721
722 INIT_LIST_HEAD(&newrec->endp_list);
723 INIT_LIST_HEAD(&newrec->ctrl_list);
724 INIT_LIST_HEAD(&newrec->ls_req_list);
725 INIT_LIST_HEAD(&newrec->disc_list);
726 kref_init(&newrec->ref);
727 atomic_set(&newrec->act_ctrl_cnt, 0);
728 spin_lock_init(&newrec->lock);
729 newrec->remoteport.localport = &lport->localport;
730 INIT_LIST_HEAD(&newrec->ls_rcv_list);
731 newrec->dev = lport->dev;
732 newrec->lport = lport;
733 if (lport->ops->remote_priv_sz)
734 newrec->remoteport.private = &newrec[1];
735 else
736 newrec->remoteport.private = NULL;
737 newrec->remoteport.port_role = pinfo->port_role;
738 newrec->remoteport.node_name = pinfo->node_name;
739 newrec->remoteport.port_name = pinfo->port_name;
740 newrec->remoteport.port_id = pinfo->port_id;
741 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742 newrec->remoteport.port_num = idx;
743 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
745
746 spin_lock_irqsave(&nvme_fc_lock, flags);
747 list_add_tail(&newrec->endp_list, &lport->endp_list);
748 spin_unlock_irqrestore(&nvme_fc_lock, flags);
749
750 nvme_fc_signal_discovery_scan(lport, newrec);
751
752 *portptr = &newrec->remoteport;
753 return 0;
754
755 out_kfree_rport:
756 kfree(newrec);
757 out_lport_put:
758 nvme_fc_lport_put(lport);
759 out_reghost_failed:
760 *portptr = NULL;
761 return ret;
762 }
763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
764
765 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
767 {
768 struct nvmefc_ls_req_op *lsop;
769 unsigned long flags;
770
771 restart:
772 spin_lock_irqsave(&rport->lock, flags);
773
774 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776 lsop->flags |= FCOP_FLAGS_TERMIO;
777 spin_unlock_irqrestore(&rport->lock, flags);
778 rport->lport->ops->ls_abort(&rport->lport->localport,
779 &rport->remoteport,
780 &lsop->ls_req);
781 goto restart;
782 }
783 }
784 spin_unlock_irqrestore(&rport->lock, flags);
785
786 return 0;
787 }
788
789 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
791 {
792 dev_info(ctrl->ctrl.device,
793 "NVME-FC{%d}: controller connectivity lost. Awaiting "
794 "Reconnect", ctrl->cnum);
795
796 switch (ctrl->ctrl.state) {
797 case NVME_CTRL_NEW:
798 case NVME_CTRL_LIVE:
799 /*
800 * Schedule a controller reset. The reset will terminate the
801 * association and schedule the reconnect timer. Reconnects
802 * will be attempted until either the ctlr_loss_tmo
803 * (max_retries * connect_delay) expires or the remoteport's
804 * dev_loss_tmo expires.
805 */
806 if (nvme_reset_ctrl(&ctrl->ctrl)) {
807 dev_warn(ctrl->ctrl.device,
808 "NVME-FC{%d}: Couldn't schedule reset.\n",
809 ctrl->cnum);
810 nvme_delete_ctrl(&ctrl->ctrl);
811 }
812 break;
813
814 case NVME_CTRL_CONNECTING:
815 /*
816 * The association has already been terminated and the
817 * controller is attempting reconnects. No need to do anything
818 * futher. Reconnects will be attempted until either the
819 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820 * remoteport's dev_loss_tmo expires.
821 */
822 break;
823
824 case NVME_CTRL_RESETTING:
825 /*
826 * Controller is already in the process of terminating the
827 * association. No need to do anything further. The reconnect
828 * step will kick in naturally after the association is
829 * terminated.
830 */
831 break;
832
833 case NVME_CTRL_DELETING:
834 case NVME_CTRL_DELETING_NOIO:
835 default:
836 /* no action to take - let it delete */
837 break;
838 }
839 }
840
841 /**
842 * nvme_fc_unregister_remoteport - transport entry point called by an
843 * LLDD to deregister/remove a previously
844 * registered a NVME subsystem FC port.
845 * @portptr: pointer to the (registered) remote port that is to be
846 * deregistered.
847 *
848 * Returns:
849 * a completion status. Must be 0 upon success; a negative errno
850 * (ex: -ENXIO) upon failure.
851 */
852 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
854 {
855 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856 struct nvme_fc_ctrl *ctrl;
857 unsigned long flags;
858
859 if (!portptr)
860 return -EINVAL;
861
862 spin_lock_irqsave(&rport->lock, flags);
863
864 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865 spin_unlock_irqrestore(&rport->lock, flags);
866 return -EINVAL;
867 }
868 portptr->port_state = FC_OBJSTATE_DELETED;
869
870 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
871
872 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873 /* if dev_loss_tmo==0, dev loss is immediate */
874 if (!portptr->dev_loss_tmo) {
875 dev_warn(ctrl->ctrl.device,
876 "NVME-FC{%d}: controller connectivity lost.\n",
877 ctrl->cnum);
878 nvme_delete_ctrl(&ctrl->ctrl);
879 } else
880 nvme_fc_ctrl_connectivity_loss(ctrl);
881 }
882
883 spin_unlock_irqrestore(&rport->lock, flags);
884
885 nvme_fc_abort_lsops(rport);
886
887 if (atomic_read(&rport->act_ctrl_cnt) == 0)
888 rport->lport->ops->remoteport_delete(portptr);
889
890 /*
891 * release the reference, which will allow, if all controllers
892 * go away, which should only occur after dev_loss_tmo occurs,
893 * for the rport to be torn down.
894 */
895 nvme_fc_rport_put(rport);
896
897 return 0;
898 }
899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
900
901 /**
902 * nvme_fc_rescan_remoteport - transport entry point called by an
903 * LLDD to request a nvme device rescan.
904 * @remoteport: pointer to the (registered) remote port that is to be
905 * rescanned.
906 *
907 * Returns: N/A
908 */
909 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
911 {
912 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
913
914 nvme_fc_signal_discovery_scan(rport->lport, rport);
915 }
916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
917
918 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
920 u32 dev_loss_tmo)
921 {
922 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
923 unsigned long flags;
924
925 spin_lock_irqsave(&rport->lock, flags);
926
927 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928 spin_unlock_irqrestore(&rport->lock, flags);
929 return -EINVAL;
930 }
931
932 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
934
935 spin_unlock_irqrestore(&rport->lock, flags);
936
937 return 0;
938 }
939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
940
941
942 /* *********************** FC-NVME DMA Handling **************************** */
943
944 /*
945 * The fcloop device passes in a NULL device pointer. Real LLD's will
946 * pass in a valid device pointer. If NULL is passed to the dma mapping
947 * routines, depending on the platform, it may or may not succeed, and
948 * may crash.
949 *
950 * As such:
951 * Wrapper all the dma routines and check the dev pointer.
952 *
953 * If simple mappings (return just a dma address, we'll noop them,
954 * returning a dma address of 0.
955 *
956 * On more complex mappings (dma_map_sg), a pseudo routine fills
957 * in the scatter list, setting all dma addresses to 0.
958 */
959
960 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)961 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962 enum dma_data_direction dir)
963 {
964 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
965 }
966
967 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
969 {
970 return dev ? dma_mapping_error(dev, dma_addr) : 0;
971 }
972
973 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975 enum dma_data_direction dir)
976 {
977 if (dev)
978 dma_unmap_single(dev, addr, size, dir);
979 }
980
981 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983 enum dma_data_direction dir)
984 {
985 if (dev)
986 dma_sync_single_for_cpu(dev, addr, size, dir);
987 }
988
989 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991 enum dma_data_direction dir)
992 {
993 if (dev)
994 dma_sync_single_for_device(dev, addr, size, dir);
995 }
996
997 /* pseudo dma_map_sg call */
998 static int
fc_map_sg(struct scatterlist * sg,int nents)999 fc_map_sg(struct scatterlist *sg, int nents)
1000 {
1001 struct scatterlist *s;
1002 int i;
1003
1004 WARN_ON(nents == 0 || sg[0].length == 0);
1005
1006 for_each_sg(sg, s, nents, i) {
1007 s->dma_address = 0L;
1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1009 s->dma_length = s->length;
1010 #endif
1011 }
1012 return nents;
1013 }
1014
1015 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 enum dma_data_direction dir)
1018 {
1019 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1020 }
1021
1022 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024 enum dma_data_direction dir)
1025 {
1026 if (dev)
1027 dma_unmap_sg(dev, sg, nents, dir);
1028 }
1029
1030 /* *********************** FC-NVME LS Handling **************************** */
1031
1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1034
1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1036
1037 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1039 {
1040 struct nvme_fc_rport *rport = lsop->rport;
1041 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&rport->lock, flags);
1045
1046 if (!lsop->req_queued) {
1047 spin_unlock_irqrestore(&rport->lock, flags);
1048 return;
1049 }
1050
1051 list_del(&lsop->lsreq_list);
1052
1053 lsop->req_queued = false;
1054
1055 spin_unlock_irqrestore(&rport->lock, flags);
1056
1057 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058 (lsreq->rqstlen + lsreq->rsplen),
1059 DMA_BIDIRECTIONAL);
1060
1061 nvme_fc_rport_put(rport);
1062 }
1063
1064 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066 struct nvmefc_ls_req_op *lsop,
1067 void (*done)(struct nvmefc_ls_req *req, int status))
1068 {
1069 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070 unsigned long flags;
1071 int ret = 0;
1072
1073 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074 return -ECONNREFUSED;
1075
1076 if (!nvme_fc_rport_get(rport))
1077 return -ESHUTDOWN;
1078
1079 lsreq->done = done;
1080 lsop->rport = rport;
1081 lsop->req_queued = false;
1082 INIT_LIST_HEAD(&lsop->lsreq_list);
1083 init_completion(&lsop->ls_done);
1084
1085 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086 lsreq->rqstlen + lsreq->rsplen,
1087 DMA_BIDIRECTIONAL);
1088 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1089 ret = -EFAULT;
1090 goto out_putrport;
1091 }
1092 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1093
1094 spin_lock_irqsave(&rport->lock, flags);
1095
1096 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1097
1098 lsop->req_queued = true;
1099
1100 spin_unlock_irqrestore(&rport->lock, flags);
1101
1102 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103 &rport->remoteport, lsreq);
1104 if (ret)
1105 goto out_unlink;
1106
1107 return 0;
1108
1109 out_unlink:
1110 lsop->ls_error = ret;
1111 spin_lock_irqsave(&rport->lock, flags);
1112 lsop->req_queued = false;
1113 list_del(&lsop->lsreq_list);
1114 spin_unlock_irqrestore(&rport->lock, flags);
1115 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116 (lsreq->rqstlen + lsreq->rsplen),
1117 DMA_BIDIRECTIONAL);
1118 out_putrport:
1119 nvme_fc_rport_put(rport);
1120
1121 return ret;
1122 }
1123
1124 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1126 {
1127 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1128
1129 lsop->ls_error = status;
1130 complete(&lsop->ls_done);
1131 }
1132
1133 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1135 {
1136 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1138 int ret;
1139
1140 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1141
1142 if (!ret) {
1143 /*
1144 * No timeout/not interruptible as we need the struct
1145 * to exist until the lldd calls us back. Thus mandate
1146 * wait until driver calls back. lldd responsible for
1147 * the timeout action
1148 */
1149 wait_for_completion(&lsop->ls_done);
1150
1151 __nvme_fc_finish_ls_req(lsop);
1152
1153 ret = lsop->ls_error;
1154 }
1155
1156 if (ret)
1157 return ret;
1158
1159 /* ACC or RJT payload ? */
1160 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1161 return -ENXIO;
1162
1163 return 0;
1164 }
1165
1166 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168 struct nvmefc_ls_req_op *lsop,
1169 void (*done)(struct nvmefc_ls_req *req, int status))
1170 {
1171 /* don't wait for completion */
1172
1173 return __nvme_fc_send_ls_req(rport, lsop, done);
1174 }
1175
1176 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180 struct nvmefc_ls_req_op *lsop;
1181 struct nvmefc_ls_req *lsreq;
1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 unsigned long flags;
1185 int ret, fcret = 0;
1186
1187 lsop = kzalloc((sizeof(*lsop) +
1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1190 if (!lsop) {
1191 dev_info(ctrl->ctrl.device,
1192 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1193 ctrl->cnum);
1194 ret = -ENOMEM;
1195 goto out_no_memory;
1196 }
1197
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 lsreq = &lsop->ls_req;
1201 if (ctrl->lport->ops->lsrqst_priv_sz)
1202 lsreq->private = &assoc_acc[1];
1203 else
1204 lsreq->private = NULL;
1205
1206 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207 assoc_rqst->desc_list_len =
1208 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209
1210 assoc_rqst->assoc_cmd.desc_tag =
1211 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212 assoc_rqst->assoc_cmd.desc_len =
1213 fcnvme_lsdesc_len(
1214 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1215
1216 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218 /* Linux supports only Dynamic controllers */
1219 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1225
1226 lsop->queue = queue;
1227 lsreq->rqstaddr = assoc_rqst;
1228 lsreq->rqstlen = sizeof(*assoc_rqst);
1229 lsreq->rspaddr = assoc_acc;
1230 lsreq->rsplen = sizeof(*assoc_acc);
1231 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1232
1233 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1234 if (ret)
1235 goto out_free_buffer;
1236
1237 /* process connect LS completion */
1238
1239 /* validate the ACC response */
1240 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1241 fcret = VERR_LSACC;
1242 else if (assoc_acc->hdr.desc_list_len !=
1243 fcnvme_lsdesc_len(
1244 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245 fcret = VERR_CR_ASSOC_ACC_LEN;
1246 else if (assoc_acc->hdr.rqst.desc_tag !=
1247 cpu_to_be32(FCNVME_LSDESC_RQST))
1248 fcret = VERR_LSDESC_RQST;
1249 else if (assoc_acc->hdr.rqst.desc_len !=
1250 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251 fcret = VERR_LSDESC_RQST_LEN;
1252 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253 fcret = VERR_CR_ASSOC;
1254 else if (assoc_acc->associd.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256 fcret = VERR_ASSOC_ID;
1257 else if (assoc_acc->associd.desc_len !=
1258 fcnvme_lsdesc_len(
1259 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260 fcret = VERR_ASSOC_ID_LEN;
1261 else if (assoc_acc->connectid.desc_tag !=
1262 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263 fcret = VERR_CONN_ID;
1264 else if (assoc_acc->connectid.desc_len !=
1265 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266 fcret = VERR_CONN_ID_LEN;
1267
1268 if (fcret) {
1269 ret = -EBADF;
1270 dev_err(ctrl->dev,
1271 "q %d Create Association LS failed: %s\n",
1272 queue->qnum, validation_errors[fcret]);
1273 } else {
1274 spin_lock_irqsave(&ctrl->lock, flags);
1275 ctrl->association_id =
1276 be64_to_cpu(assoc_acc->associd.association_id);
1277 queue->connection_id =
1278 be64_to_cpu(assoc_acc->connectid.connection_id);
1279 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 spin_unlock_irqrestore(&ctrl->lock, flags);
1281 }
1282
1283 out_free_buffer:
1284 kfree(lsop);
1285 out_no_memory:
1286 if (ret)
1287 dev_err(ctrl->dev,
1288 "queue %d connect admin queue failed (%d).\n",
1289 queue->qnum, ret);
1290 return ret;
1291 }
1292
1293 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295 u16 qsize, u16 ersp_ratio)
1296 {
1297 struct nvmefc_ls_req_op *lsop;
1298 struct nvmefc_ls_req *lsreq;
1299 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300 struct fcnvme_ls_cr_conn_acc *conn_acc;
1301 int ret, fcret = 0;
1302
1303 lsop = kzalloc((sizeof(*lsop) +
1304 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1306 if (!lsop) {
1307 dev_info(ctrl->ctrl.device,
1308 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1309 ctrl->cnum);
1310 ret = -ENOMEM;
1311 goto out_no_memory;
1312 }
1313
1314 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316 lsreq = &lsop->ls_req;
1317 if (ctrl->lport->ops->lsrqst_priv_sz)
1318 lsreq->private = (void *)&conn_acc[1];
1319 else
1320 lsreq->private = NULL;
1321
1322 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323 conn_rqst->desc_list_len = cpu_to_be32(
1324 sizeof(struct fcnvme_lsdesc_assoc_id) +
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326
1327 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328 conn_rqst->associd.desc_len =
1329 fcnvme_lsdesc_len(
1330 sizeof(struct fcnvme_lsdesc_assoc_id));
1331 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332 conn_rqst->connect_cmd.desc_tag =
1333 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334 conn_rqst->connect_cmd.desc_len =
1335 fcnvme_lsdesc_len(
1336 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1339 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1340
1341 lsop->queue = queue;
1342 lsreq->rqstaddr = conn_rqst;
1343 lsreq->rqstlen = sizeof(*conn_rqst);
1344 lsreq->rspaddr = conn_acc;
1345 lsreq->rsplen = sizeof(*conn_acc);
1346 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1347
1348 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1349 if (ret)
1350 goto out_free_buffer;
1351
1352 /* process connect LS completion */
1353
1354 /* validate the ACC response */
1355 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1356 fcret = VERR_LSACC;
1357 else if (conn_acc->hdr.desc_list_len !=
1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359 fcret = VERR_CR_CONN_ACC_LEN;
1360 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361 fcret = VERR_LSDESC_RQST;
1362 else if (conn_acc->hdr.rqst.desc_len !=
1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364 fcret = VERR_LSDESC_RQST_LEN;
1365 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366 fcret = VERR_CR_CONN;
1367 else if (conn_acc->connectid.desc_tag !=
1368 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369 fcret = VERR_CONN_ID;
1370 else if (conn_acc->connectid.desc_len !=
1371 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372 fcret = VERR_CONN_ID_LEN;
1373
1374 if (fcret) {
1375 ret = -EBADF;
1376 dev_err(ctrl->dev,
1377 "q %d Create I/O Connection LS failed: %s\n",
1378 queue->qnum, validation_errors[fcret]);
1379 } else {
1380 queue->connection_id =
1381 be64_to_cpu(conn_acc->connectid.connection_id);
1382 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1383 }
1384
1385 out_free_buffer:
1386 kfree(lsop);
1387 out_no_memory:
1388 if (ret)
1389 dev_err(ctrl->dev,
1390 "queue %d connect I/O queue failed (%d).\n",
1391 queue->qnum, ret);
1392 return ret;
1393 }
1394
1395 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1397 {
1398 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1399
1400 __nvme_fc_finish_ls_req(lsop);
1401
1402 /* fc-nvme initiator doesn't care about success or failure of cmd */
1403
1404 kfree(lsop);
1405 }
1406
1407 /*
1408 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409 * the FC-NVME Association. Terminating the association also
1410 * terminates the FC-NVME connections (per queue, both admin and io
1411 * queues) that are part of the association. E.g. things are torn
1412 * down, and the related FC-NVME Association ID and Connection IDs
1413 * become invalid.
1414 *
1415 * The behavior of the fc-nvme initiator is such that it's
1416 * understanding of the association and connections will implicitly
1417 * be torn down. The action is implicit as it may be due to a loss of
1418 * connectivity with the fc-nvme target, so you may never get a
1419 * response even if you tried. As such, the action of this routine
1420 * is to asynchronously send the LS, ignore any results of the LS, and
1421 * continue on with terminating the association. If the fc-nvme target
1422 * is present and receives the LS, it too can tear down.
1423 */
1424 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1426 {
1427 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429 struct nvmefc_ls_req_op *lsop;
1430 struct nvmefc_ls_req *lsreq;
1431 int ret;
1432
1433 lsop = kzalloc((sizeof(*lsop) +
1434 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1436 if (!lsop) {
1437 dev_info(ctrl->ctrl.device,
1438 "NVME-FC{%d}: send Disconnect Association "
1439 "failed: ENOMEM\n",
1440 ctrl->cnum);
1441 return;
1442 }
1443
1444 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446 lsreq = &lsop->ls_req;
1447 if (ctrl->lport->ops->lsrqst_priv_sz)
1448 lsreq->private = (void *)&discon_acc[1];
1449 else
1450 lsreq->private = NULL;
1451
1452 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453 ctrl->association_id);
1454
1455 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456 nvme_fc_disconnect_assoc_done);
1457 if (ret)
1458 kfree(lsop);
1459 }
1460
1461 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1463 {
1464 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465 struct nvme_fc_rport *rport = lsop->rport;
1466 struct nvme_fc_lport *lport = rport->lport;
1467 unsigned long flags;
1468
1469 spin_lock_irqsave(&rport->lock, flags);
1470 list_del(&lsop->lsrcv_list);
1471 spin_unlock_irqrestore(&rport->lock, flags);
1472
1473 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1477
1478 kfree(lsop);
1479
1480 nvme_fc_rport_put(rport);
1481 }
1482
1483 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1484 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1485 {
1486 struct nvme_fc_rport *rport = lsop->rport;
1487 struct nvme_fc_lport *lport = rport->lport;
1488 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1489 int ret;
1490
1491 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1492 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1493
1494 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1495 lsop->lsrsp);
1496 if (ret) {
1497 dev_warn(lport->dev,
1498 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1499 w0->ls_cmd, ret);
1500 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1501 return;
1502 }
1503 }
1504
1505 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1506 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1507 struct nvmefc_ls_rcv_op *lsop)
1508 {
1509 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1510 &lsop->rqstbuf->rq_dis_assoc;
1511 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1512 struct nvmefc_ls_rcv_op *oldls = NULL;
1513 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&rport->lock, flags);
1517
1518 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1519 if (!nvme_fc_ctrl_get(ctrl))
1520 continue;
1521 spin_lock(&ctrl->lock);
1522 if (association_id == ctrl->association_id) {
1523 oldls = ctrl->rcv_disconn;
1524 ctrl->rcv_disconn = lsop;
1525 ret = ctrl;
1526 }
1527 spin_unlock(&ctrl->lock);
1528 if (ret)
1529 /* leave the ctrl get reference */
1530 break;
1531 nvme_fc_ctrl_put(ctrl);
1532 }
1533
1534 spin_unlock_irqrestore(&rport->lock, flags);
1535
1536 /* transmit a response for anything that was pending */
1537 if (oldls) {
1538 dev_info(rport->lport->dev,
1539 "NVME-FC{%d}: Multiple Disconnect Association "
1540 "LS's received\n", ctrl->cnum);
1541 /* overwrite good response with bogus failure */
1542 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1543 sizeof(*oldls->rspbuf),
1544 rqst->w0.ls_cmd,
1545 FCNVME_RJT_RC_UNAB,
1546 FCNVME_RJT_EXP_NONE, 0);
1547 nvme_fc_xmt_ls_rsp(oldls);
1548 }
1549
1550 return ret;
1551 }
1552
1553 /*
1554 * returns true to mean LS handled and ls_rsp can be sent
1555 * returns false to defer ls_rsp xmt (will be done as part of
1556 * association termination)
1557 */
1558 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1559 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1560 {
1561 struct nvme_fc_rport *rport = lsop->rport;
1562 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1563 &lsop->rqstbuf->rq_dis_assoc;
1564 struct fcnvme_ls_disconnect_assoc_acc *acc =
1565 &lsop->rspbuf->rsp_dis_assoc;
1566 struct nvme_fc_ctrl *ctrl = NULL;
1567 int ret = 0;
1568
1569 memset(acc, 0, sizeof(*acc));
1570
1571 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1572 if (!ret) {
1573 /* match an active association */
1574 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1575 if (!ctrl)
1576 ret = VERR_NO_ASSOC;
1577 }
1578
1579 if (ret) {
1580 dev_info(rport->lport->dev,
1581 "Disconnect LS failed: %s\n",
1582 validation_errors[ret]);
1583 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1584 sizeof(*acc), rqst->w0.ls_cmd,
1585 (ret == VERR_NO_ASSOC) ?
1586 FCNVME_RJT_RC_INV_ASSOC :
1587 FCNVME_RJT_RC_LOGIC,
1588 FCNVME_RJT_EXP_NONE, 0);
1589 return true;
1590 }
1591
1592 /* format an ACCept response */
1593
1594 lsop->lsrsp->rsplen = sizeof(*acc);
1595
1596 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1597 fcnvme_lsdesc_len(
1598 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1599 FCNVME_LS_DISCONNECT_ASSOC);
1600
1601 /*
1602 * the transmit of the response will occur after the exchanges
1603 * for the association have been ABTS'd by
1604 * nvme_fc_delete_association().
1605 */
1606
1607 /* fail the association */
1608 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1609
1610 /* release the reference taken by nvme_fc_match_disconn_ls() */
1611 nvme_fc_ctrl_put(ctrl);
1612
1613 return false;
1614 }
1615
1616 /*
1617 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1618 * returns true if a response should be sent afterward, false if rsp will
1619 * be sent asynchronously.
1620 */
1621 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1622 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1623 {
1624 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1625 bool ret = true;
1626
1627 lsop->lsrsp->nvme_fc_private = lsop;
1628 lsop->lsrsp->rspbuf = lsop->rspbuf;
1629 lsop->lsrsp->rspdma = lsop->rspdma;
1630 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1631 /* Be preventative. handlers will later set to valid length */
1632 lsop->lsrsp->rsplen = 0;
1633
1634 /*
1635 * handlers:
1636 * parse request input, execute the request, and format the
1637 * LS response
1638 */
1639 switch (w0->ls_cmd) {
1640 case FCNVME_LS_DISCONNECT_ASSOC:
1641 ret = nvme_fc_ls_disconnect_assoc(lsop);
1642 break;
1643 case FCNVME_LS_DISCONNECT_CONN:
1644 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1645 sizeof(*lsop->rspbuf), w0->ls_cmd,
1646 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1647 break;
1648 case FCNVME_LS_CREATE_ASSOCIATION:
1649 case FCNVME_LS_CREATE_CONNECTION:
1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651 sizeof(*lsop->rspbuf), w0->ls_cmd,
1652 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1653 break;
1654 default:
1655 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1656 sizeof(*lsop->rspbuf), w0->ls_cmd,
1657 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1658 break;
1659 }
1660
1661 return(ret);
1662 }
1663
1664 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1665 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1666 {
1667 struct nvme_fc_rport *rport =
1668 container_of(work, struct nvme_fc_rport, lsrcv_work);
1669 struct fcnvme_ls_rqst_w0 *w0;
1670 struct nvmefc_ls_rcv_op *lsop;
1671 unsigned long flags;
1672 bool sendrsp;
1673
1674 restart:
1675 sendrsp = true;
1676 spin_lock_irqsave(&rport->lock, flags);
1677 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1678 if (lsop->handled)
1679 continue;
1680
1681 lsop->handled = true;
1682 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1683 spin_unlock_irqrestore(&rport->lock, flags);
1684 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1685 } else {
1686 spin_unlock_irqrestore(&rport->lock, flags);
1687 w0 = &lsop->rqstbuf->w0;
1688 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1689 lsop->rspbuf,
1690 sizeof(*lsop->rspbuf),
1691 w0->ls_cmd,
1692 FCNVME_RJT_RC_UNAB,
1693 FCNVME_RJT_EXP_NONE, 0);
1694 }
1695 if (sendrsp)
1696 nvme_fc_xmt_ls_rsp(lsop);
1697 goto restart;
1698 }
1699 spin_unlock_irqrestore(&rport->lock, flags);
1700 }
1701
1702 /**
1703 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1704 * upon the reception of a NVME LS request.
1705 *
1706 * The nvme-fc layer will copy payload to an internal structure for
1707 * processing. As such, upon completion of the routine, the LLDD may
1708 * immediately free/reuse the LS request buffer passed in the call.
1709 *
1710 * If this routine returns error, the LLDD should abort the exchange.
1711 *
1712 * @portptr: pointer to the (registered) remote port that the LS
1713 * was received from. The remoteport is associated with
1714 * a specific localport.
1715 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1716 * used to reference the exchange corresponding to the LS
1717 * when issuing an ls response.
1718 * @lsreqbuf: pointer to the buffer containing the LS Request
1719 * @lsreqbuf_len: length, in bytes, of the received LS request
1720 */
1721 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1722 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1723 struct nvmefc_ls_rsp *lsrsp,
1724 void *lsreqbuf, u32 lsreqbuf_len)
1725 {
1726 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1727 struct nvme_fc_lport *lport = rport->lport;
1728 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1729 struct nvmefc_ls_rcv_op *lsop;
1730 unsigned long flags;
1731 int ret;
1732
1733 nvme_fc_rport_get(rport);
1734
1735 /* validate there's a routine to transmit a response */
1736 if (!lport->ops->xmt_ls_rsp) {
1737 dev_info(lport->dev,
1738 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1739 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1740 nvmefc_ls_names[w0->ls_cmd] : "");
1741 ret = -EINVAL;
1742 goto out_put;
1743 }
1744
1745 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1746 dev_info(lport->dev,
1747 "RCV %s LS failed: payload too large\n",
1748 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1749 nvmefc_ls_names[w0->ls_cmd] : "");
1750 ret = -E2BIG;
1751 goto out_put;
1752 }
1753
1754 lsop = kzalloc(sizeof(*lsop) +
1755 sizeof(union nvmefc_ls_requests) +
1756 sizeof(union nvmefc_ls_responses),
1757 GFP_KERNEL);
1758 if (!lsop) {
1759 dev_info(lport->dev,
1760 "RCV %s LS failed: No memory\n",
1761 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1762 nvmefc_ls_names[w0->ls_cmd] : "");
1763 ret = -ENOMEM;
1764 goto out_put;
1765 }
1766 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1767 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1768
1769 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1770 sizeof(*lsop->rspbuf),
1771 DMA_TO_DEVICE);
1772 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1773 dev_info(lport->dev,
1774 "RCV %s LS failed: DMA mapping failure\n",
1775 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1776 nvmefc_ls_names[w0->ls_cmd] : "");
1777 ret = -EFAULT;
1778 goto out_free;
1779 }
1780
1781 lsop->rport = rport;
1782 lsop->lsrsp = lsrsp;
1783
1784 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1785 lsop->rqstdatalen = lsreqbuf_len;
1786
1787 spin_lock_irqsave(&rport->lock, flags);
1788 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1789 spin_unlock_irqrestore(&rport->lock, flags);
1790 ret = -ENOTCONN;
1791 goto out_unmap;
1792 }
1793 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1794 spin_unlock_irqrestore(&rport->lock, flags);
1795
1796 schedule_work(&rport->lsrcv_work);
1797
1798 return 0;
1799
1800 out_unmap:
1801 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1802 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1803 out_free:
1804 kfree(lsop);
1805 out_put:
1806 nvme_fc_rport_put(rport);
1807 return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1810
1811
1812 /* *********************** NVME Ctrl Routines **************************** */
1813
1814 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1815 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1816 struct nvme_fc_fcp_op *op)
1817 {
1818 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1819 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1820 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1821 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1822
1823 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1824 }
1825
1826 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1827 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1828 unsigned int hctx_idx)
1829 {
1830 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1831
1832 return __nvme_fc_exit_request(set->driver_data, op);
1833 }
1834
1835 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1836 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1837 {
1838 unsigned long flags;
1839 int opstate;
1840
1841 spin_lock_irqsave(&ctrl->lock, flags);
1842 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1843 if (opstate != FCPOP_STATE_ACTIVE)
1844 atomic_set(&op->state, opstate);
1845 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1846 op->flags |= FCOP_FLAGS_TERMIO;
1847 ctrl->iocnt++;
1848 }
1849 spin_unlock_irqrestore(&ctrl->lock, flags);
1850
1851 if (opstate != FCPOP_STATE_ACTIVE)
1852 return -ECANCELED;
1853
1854 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1855 &ctrl->rport->remoteport,
1856 op->queue->lldd_handle,
1857 &op->fcp_req);
1858
1859 return 0;
1860 }
1861
1862 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1863 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1864 {
1865 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1866 int i;
1867
1868 /* ensure we've initialized the ops once */
1869 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1870 return;
1871
1872 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1873 __nvme_fc_abort_op(ctrl, aen_op);
1874 }
1875
1876 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1877 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1878 struct nvme_fc_fcp_op *op, int opstate)
1879 {
1880 unsigned long flags;
1881
1882 if (opstate == FCPOP_STATE_ABORTED) {
1883 spin_lock_irqsave(&ctrl->lock, flags);
1884 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1885 op->flags & FCOP_FLAGS_TERMIO) {
1886 if (!--ctrl->iocnt)
1887 wake_up(&ctrl->ioabort_wait);
1888 }
1889 spin_unlock_irqrestore(&ctrl->lock, flags);
1890 }
1891 }
1892
1893 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1894 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1895 {
1896 struct nvme_fc_ctrl *ctrl =
1897 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1898
1899 nvme_fc_error_recovery(ctrl, "transport detected io error");
1900 }
1901
1902 /*
1903 * nvme_fc_io_getuuid - Routine called to get the appid field
1904 * associated with request by the lldd
1905 * @req:IO request from nvme fc to driver
1906 * Returns: UUID if there is an appid associated with VM or
1907 * NULL if the user/libvirt has not set the appid to VM
1908 */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1909 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1910 {
1911 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1912 struct request *rq = op->rq;
1913
1914 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq->bio)
1915 return NULL;
1916 return blkcg_get_fc_appid(rq->bio);
1917 }
1918 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1919
1920 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1921 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1922 {
1923 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1924 struct request *rq = op->rq;
1925 struct nvmefc_fcp_req *freq = &op->fcp_req;
1926 struct nvme_fc_ctrl *ctrl = op->ctrl;
1927 struct nvme_fc_queue *queue = op->queue;
1928 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1929 struct nvme_command *sqe = &op->cmd_iu.sqe;
1930 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1931 union nvme_result result;
1932 bool terminate_assoc = true;
1933 int opstate;
1934
1935 /*
1936 * WARNING:
1937 * The current linux implementation of a nvme controller
1938 * allocates a single tag set for all io queues and sizes
1939 * the io queues to fully hold all possible tags. Thus, the
1940 * implementation does not reference or care about the sqhd
1941 * value as it never needs to use the sqhd/sqtail pointers
1942 * for submission pacing.
1943 *
1944 * This affects the FC-NVME implementation in two ways:
1945 * 1) As the value doesn't matter, we don't need to waste
1946 * cycles extracting it from ERSPs and stamping it in the
1947 * cases where the transport fabricates CQEs on successful
1948 * completions.
1949 * 2) The FC-NVME implementation requires that delivery of
1950 * ERSP completions are to go back to the nvme layer in order
1951 * relative to the rsn, such that the sqhd value will always
1952 * be "in order" for the nvme layer. As the nvme layer in
1953 * linux doesn't care about sqhd, there's no need to return
1954 * them in order.
1955 *
1956 * Additionally:
1957 * As the core nvme layer in linux currently does not look at
1958 * every field in the cqe - in cases where the FC transport must
1959 * fabricate a CQE, the following fields will not be set as they
1960 * are not referenced:
1961 * cqe.sqid, cqe.sqhd, cqe.command_id
1962 *
1963 * Failure or error of an individual i/o, in a transport
1964 * detected fashion unrelated to the nvme completion status,
1965 * potentially cause the initiator and target sides to get out
1966 * of sync on SQ head/tail (aka outstanding io count allowed).
1967 * Per FC-NVME spec, failure of an individual command requires
1968 * the connection to be terminated, which in turn requires the
1969 * association to be terminated.
1970 */
1971
1972 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1973
1974 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1975 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1976
1977 if (opstate == FCPOP_STATE_ABORTED)
1978 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1979 else if (freq->status) {
1980 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1981 dev_info(ctrl->ctrl.device,
1982 "NVME-FC{%d}: io failed due to lldd error %d\n",
1983 ctrl->cnum, freq->status);
1984 }
1985
1986 /*
1987 * For the linux implementation, if we have an unsuccesful
1988 * status, they blk-mq layer can typically be called with the
1989 * non-zero status and the content of the cqe isn't important.
1990 */
1991 if (status)
1992 goto done;
1993
1994 /*
1995 * command completed successfully relative to the wire
1996 * protocol. However, validate anything received and
1997 * extract the status and result from the cqe (create it
1998 * where necessary).
1999 */
2000
2001 switch (freq->rcv_rsplen) {
2002
2003 case 0:
2004 case NVME_FC_SIZEOF_ZEROS_RSP:
2005 /*
2006 * No response payload or 12 bytes of payload (which
2007 * should all be zeros) are considered successful and
2008 * no payload in the CQE by the transport.
2009 */
2010 if (freq->transferred_length !=
2011 be32_to_cpu(op->cmd_iu.data_len)) {
2012 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2013 dev_info(ctrl->ctrl.device,
2014 "NVME-FC{%d}: io failed due to bad transfer "
2015 "length: %d vs expected %d\n",
2016 ctrl->cnum, freq->transferred_length,
2017 be32_to_cpu(op->cmd_iu.data_len));
2018 goto done;
2019 }
2020 result.u64 = 0;
2021 break;
2022
2023 case sizeof(struct nvme_fc_ersp_iu):
2024 /*
2025 * The ERSP IU contains a full completion with CQE.
2026 * Validate ERSP IU and look at cqe.
2027 */
2028 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2029 (freq->rcv_rsplen / 4) ||
2030 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2031 freq->transferred_length ||
2032 op->rsp_iu.ersp_result ||
2033 sqe->common.command_id != cqe->command_id)) {
2034 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2035 dev_info(ctrl->ctrl.device,
2036 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2037 "iu len %d, xfr len %d vs %d, status code "
2038 "%d, cmdid %d vs %d\n",
2039 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2040 be32_to_cpu(op->rsp_iu.xfrd_len),
2041 freq->transferred_length,
2042 op->rsp_iu.ersp_result,
2043 sqe->common.command_id,
2044 cqe->command_id);
2045 goto done;
2046 }
2047 result = cqe->result;
2048 status = cqe->status;
2049 break;
2050
2051 default:
2052 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2053 dev_info(ctrl->ctrl.device,
2054 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2055 "len %d\n",
2056 ctrl->cnum, freq->rcv_rsplen);
2057 goto done;
2058 }
2059
2060 terminate_assoc = false;
2061
2062 done:
2063 if (op->flags & FCOP_FLAGS_AEN) {
2064 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2065 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2066 atomic_set(&op->state, FCPOP_STATE_IDLE);
2067 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2068 nvme_fc_ctrl_put(ctrl);
2069 goto check_error;
2070 }
2071
2072 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2073 if (!nvme_try_complete_req(rq, status, result))
2074 nvme_fc_complete_rq(rq);
2075
2076 check_error:
2077 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2078 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2079 }
2080
2081 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2082 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2083 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2084 struct request *rq, u32 rqno)
2085 {
2086 struct nvme_fcp_op_w_sgl *op_w_sgl =
2087 container_of(op, typeof(*op_w_sgl), op);
2088 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2089 int ret = 0;
2090
2091 memset(op, 0, sizeof(*op));
2092 op->fcp_req.cmdaddr = &op->cmd_iu;
2093 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2094 op->fcp_req.rspaddr = &op->rsp_iu;
2095 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2096 op->fcp_req.done = nvme_fc_fcpio_done;
2097 op->ctrl = ctrl;
2098 op->queue = queue;
2099 op->rq = rq;
2100 op->rqno = rqno;
2101
2102 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2103 cmdiu->fc_id = NVME_CMD_FC_ID;
2104 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2105 if (queue->qnum)
2106 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2107 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2108 else
2109 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2110
2111 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2112 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2113 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2114 dev_err(ctrl->dev,
2115 "FCP Op failed - cmdiu dma mapping failed.\n");
2116 ret = -EFAULT;
2117 goto out_on_error;
2118 }
2119
2120 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2121 &op->rsp_iu, sizeof(op->rsp_iu),
2122 DMA_FROM_DEVICE);
2123 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2124 dev_err(ctrl->dev,
2125 "FCP Op failed - rspiu dma mapping failed.\n");
2126 ret = -EFAULT;
2127 }
2128
2129 atomic_set(&op->state, FCPOP_STATE_IDLE);
2130 out_on_error:
2131 return ret;
2132 }
2133
2134 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2135 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2136 unsigned int hctx_idx, unsigned int numa_node)
2137 {
2138 struct nvme_fc_ctrl *ctrl = set->driver_data;
2139 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2140 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2141 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2142 int res;
2143
2144 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2145 if (res)
2146 return res;
2147 op->op.fcp_req.first_sgl = op->sgl;
2148 op->op.fcp_req.private = &op->priv[0];
2149 nvme_req(rq)->ctrl = &ctrl->ctrl;
2150 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2151 return res;
2152 }
2153
2154 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2155 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2156 {
2157 struct nvme_fc_fcp_op *aen_op;
2158 struct nvme_fc_cmd_iu *cmdiu;
2159 struct nvme_command *sqe;
2160 void *private = NULL;
2161 int i, ret;
2162
2163 aen_op = ctrl->aen_ops;
2164 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2165 if (ctrl->lport->ops->fcprqst_priv_sz) {
2166 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2167 GFP_KERNEL);
2168 if (!private)
2169 return -ENOMEM;
2170 }
2171
2172 cmdiu = &aen_op->cmd_iu;
2173 sqe = &cmdiu->sqe;
2174 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2175 aen_op, (struct request *)NULL,
2176 (NVME_AQ_BLK_MQ_DEPTH + i));
2177 if (ret) {
2178 kfree(private);
2179 return ret;
2180 }
2181
2182 aen_op->flags = FCOP_FLAGS_AEN;
2183 aen_op->fcp_req.private = private;
2184
2185 memset(sqe, 0, sizeof(*sqe));
2186 sqe->common.opcode = nvme_admin_async_event;
2187 /* Note: core layer may overwrite the sqe.command_id value */
2188 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2189 }
2190 return 0;
2191 }
2192
2193 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2194 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2195 {
2196 struct nvme_fc_fcp_op *aen_op;
2197 int i;
2198
2199 cancel_work_sync(&ctrl->ctrl.async_event_work);
2200 aen_op = ctrl->aen_ops;
2201 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2202 __nvme_fc_exit_request(ctrl, aen_op);
2203
2204 kfree(aen_op->fcp_req.private);
2205 aen_op->fcp_req.private = NULL;
2206 }
2207 }
2208
2209 static inline void
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,struct nvme_fc_ctrl * ctrl,unsigned int qidx)2210 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2211 unsigned int qidx)
2212 {
2213 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2214
2215 hctx->driver_data = queue;
2216 queue->hctx = hctx;
2217 }
2218
2219 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2220 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2221 unsigned int hctx_idx)
2222 {
2223 struct nvme_fc_ctrl *ctrl = data;
2224
2225 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2226
2227 return 0;
2228 }
2229
2230 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2231 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2232 unsigned int hctx_idx)
2233 {
2234 struct nvme_fc_ctrl *ctrl = data;
2235
2236 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2237
2238 return 0;
2239 }
2240
2241 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2242 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2243 {
2244 struct nvme_fc_queue *queue;
2245
2246 queue = &ctrl->queues[idx];
2247 memset(queue, 0, sizeof(*queue));
2248 queue->ctrl = ctrl;
2249 queue->qnum = idx;
2250 atomic_set(&queue->csn, 0);
2251 queue->dev = ctrl->dev;
2252
2253 if (idx > 0)
2254 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2255 else
2256 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2257
2258 /*
2259 * Considered whether we should allocate buffers for all SQEs
2260 * and CQEs and dma map them - mapping their respective entries
2261 * into the request structures (kernel vm addr and dma address)
2262 * thus the driver could use the buffers/mappings directly.
2263 * It only makes sense if the LLDD would use them for its
2264 * messaging api. It's very unlikely most adapter api's would use
2265 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2266 * structures were used instead.
2267 */
2268 }
2269
2270 /*
2271 * This routine terminates a queue at the transport level.
2272 * The transport has already ensured that all outstanding ios on
2273 * the queue have been terminated.
2274 * The transport will send a Disconnect LS request to terminate
2275 * the queue's connection. Termination of the admin queue will also
2276 * terminate the association at the target.
2277 */
2278 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2279 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2280 {
2281 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2282 return;
2283
2284 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2285 /*
2286 * Current implementation never disconnects a single queue.
2287 * It always terminates a whole association. So there is never
2288 * a disconnect(queue) LS sent to the target.
2289 */
2290
2291 queue->connection_id = 0;
2292 atomic_set(&queue->csn, 0);
2293 }
2294
2295 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2296 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2297 struct nvme_fc_queue *queue, unsigned int qidx)
2298 {
2299 if (ctrl->lport->ops->delete_queue)
2300 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2301 queue->lldd_handle);
2302 queue->lldd_handle = NULL;
2303 }
2304
2305 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2306 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2307 {
2308 int i;
2309
2310 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2311 nvme_fc_free_queue(&ctrl->queues[i]);
2312 }
2313
2314 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2315 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2316 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2317 {
2318 int ret = 0;
2319
2320 queue->lldd_handle = NULL;
2321 if (ctrl->lport->ops->create_queue)
2322 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2323 qidx, qsize, &queue->lldd_handle);
2324
2325 return ret;
2326 }
2327
2328 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2329 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2330 {
2331 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2332 int i;
2333
2334 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2335 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2336 }
2337
2338 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2339 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2340 {
2341 struct nvme_fc_queue *queue = &ctrl->queues[1];
2342 int i, ret;
2343
2344 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2345 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2346 if (ret)
2347 goto delete_queues;
2348 }
2349
2350 return 0;
2351
2352 delete_queues:
2353 for (; i > 0; i--)
2354 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2355 return ret;
2356 }
2357
2358 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2359 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2360 {
2361 int i, ret = 0;
2362
2363 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2364 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2365 (qsize / 5));
2366 if (ret)
2367 break;
2368 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2369 if (ret)
2370 break;
2371
2372 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2373 }
2374
2375 return ret;
2376 }
2377
2378 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2379 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2380 {
2381 int i;
2382
2383 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2384 nvme_fc_init_queue(ctrl, i);
2385 }
2386
2387 static void
nvme_fc_ctrl_free(struct kref * ref)2388 nvme_fc_ctrl_free(struct kref *ref)
2389 {
2390 struct nvme_fc_ctrl *ctrl =
2391 container_of(ref, struct nvme_fc_ctrl, ref);
2392 unsigned long flags;
2393
2394 if (ctrl->ctrl.tagset) {
2395 blk_cleanup_queue(ctrl->ctrl.connect_q);
2396 blk_mq_free_tag_set(&ctrl->tag_set);
2397 }
2398
2399 /* remove from rport list */
2400 spin_lock_irqsave(&ctrl->rport->lock, flags);
2401 list_del(&ctrl->ctrl_list);
2402 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2403
2404 nvme_start_admin_queue(&ctrl->ctrl);
2405 blk_cleanup_queue(ctrl->ctrl.admin_q);
2406 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2407 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2408
2409 kfree(ctrl->queues);
2410
2411 put_device(ctrl->dev);
2412 nvme_fc_rport_put(ctrl->rport);
2413
2414 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2415 if (ctrl->ctrl.opts)
2416 nvmf_free_options(ctrl->ctrl.opts);
2417 kfree(ctrl);
2418 }
2419
2420 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2421 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2422 {
2423 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2424 }
2425
2426 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2427 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2428 {
2429 return kref_get_unless_zero(&ctrl->ref);
2430 }
2431
2432 /*
2433 * All accesses from nvme core layer done - can now free the
2434 * controller. Called after last nvme_put_ctrl() call
2435 */
2436 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2437 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2438 {
2439 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2440
2441 WARN_ON(nctrl != &ctrl->ctrl);
2442
2443 nvme_fc_ctrl_put(ctrl);
2444 }
2445
2446 /*
2447 * This routine is used by the transport when it needs to find active
2448 * io on a queue that is to be terminated. The transport uses
2449 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2450 * this routine to kill them on a 1 by 1 basis.
2451 *
2452 * As FC allocates FC exchange for each io, the transport must contact
2453 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2454 * After terminating the exchange the LLDD will call the transport's
2455 * normal io done path for the request, but it will have an aborted
2456 * status. The done path will return the io request back to the block
2457 * layer with an error status.
2458 */
2459 static bool
nvme_fc_terminate_exchange(struct request * req,void * data,bool reserved)2460 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2461 {
2462 struct nvme_ctrl *nctrl = data;
2463 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2464 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2465
2466 op->nreq.flags |= NVME_REQ_CANCELLED;
2467 __nvme_fc_abort_op(ctrl, op);
2468 return true;
2469 }
2470
2471 /*
2472 * This routine runs through all outstanding commands on the association
2473 * and aborts them. This routine is typically be called by the
2474 * delete_association routine. It is also called due to an error during
2475 * reconnect. In that scenario, it is most likely a command that initializes
2476 * the controller, including fabric Connect commands on io queues, that
2477 * may have timed out or failed thus the io must be killed for the connect
2478 * thread to see the error.
2479 */
2480 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2481 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2482 {
2483 int q;
2484
2485 /*
2486 * if aborting io, the queues are no longer good, mark them
2487 * all as not live.
2488 */
2489 if (ctrl->ctrl.queue_count > 1) {
2490 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2491 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2492 }
2493 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2494
2495 /*
2496 * If io queues are present, stop them and terminate all outstanding
2497 * ios on them. As FC allocates FC exchange for each io, the
2498 * transport must contact the LLDD to terminate the exchange,
2499 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2500 * to tell us what io's are busy and invoke a transport routine
2501 * to kill them with the LLDD. After terminating the exchange
2502 * the LLDD will call the transport's normal io done path, but it
2503 * will have an aborted status. The done path will return the
2504 * io requests back to the block layer as part of normal completions
2505 * (but with error status).
2506 */
2507 if (ctrl->ctrl.queue_count > 1) {
2508 nvme_stop_queues(&ctrl->ctrl);
2509 nvme_sync_io_queues(&ctrl->ctrl);
2510 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2511 nvme_fc_terminate_exchange, &ctrl->ctrl);
2512 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2513 if (start_queues)
2514 nvme_start_queues(&ctrl->ctrl);
2515 }
2516
2517 /*
2518 * Other transports, which don't have link-level contexts bound
2519 * to sqe's, would try to gracefully shutdown the controller by
2520 * writing the registers for shutdown and polling (call
2521 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2522 * just aborted and we will wait on those contexts, and given
2523 * there was no indication of how live the controlelr is on the
2524 * link, don't send more io to create more contexts for the
2525 * shutdown. Let the controller fail via keepalive failure if
2526 * its still present.
2527 */
2528
2529 /*
2530 * clean up the admin queue. Same thing as above.
2531 */
2532 nvme_stop_admin_queue(&ctrl->ctrl);
2533 blk_sync_queue(ctrl->ctrl.admin_q);
2534 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2535 nvme_fc_terminate_exchange, &ctrl->ctrl);
2536 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2537 }
2538
2539 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2540 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2541 {
2542 /*
2543 * if an error (io timeout, etc) while (re)connecting, the remote
2544 * port requested terminating of the association (disconnect_ls)
2545 * or an error (timeout or abort) occurred on an io while creating
2546 * the controller. Abort any ios on the association and let the
2547 * create_association error path resolve things.
2548 */
2549 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2550 __nvme_fc_abort_outstanding_ios(ctrl, true);
2551 set_bit(ASSOC_FAILED, &ctrl->flags);
2552 return;
2553 }
2554
2555 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2556 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2557 return;
2558
2559 dev_warn(ctrl->ctrl.device,
2560 "NVME-FC{%d}: transport association event: %s\n",
2561 ctrl->cnum, errmsg);
2562 dev_warn(ctrl->ctrl.device,
2563 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2564
2565 nvme_reset_ctrl(&ctrl->ctrl);
2566 }
2567
2568 static enum blk_eh_timer_return
nvme_fc_timeout(struct request * rq,bool reserved)2569 nvme_fc_timeout(struct request *rq, bool reserved)
2570 {
2571 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2572 struct nvme_fc_ctrl *ctrl = op->ctrl;
2573 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2574 struct nvme_command *sqe = &cmdiu->sqe;
2575
2576 /*
2577 * Attempt to abort the offending command. Command completion
2578 * will detect the aborted io and will fail the connection.
2579 */
2580 dev_info(ctrl->ctrl.device,
2581 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2582 "x%08x/x%08x\n",
2583 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2584 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2585 if (__nvme_fc_abort_op(ctrl, op))
2586 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2587
2588 /*
2589 * the io abort has been initiated. Have the reset timer
2590 * restarted and the abort completion will complete the io
2591 * shortly. Avoids a synchronous wait while the abort finishes.
2592 */
2593 return BLK_EH_RESET_TIMER;
2594 }
2595
2596 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2597 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2598 struct nvme_fc_fcp_op *op)
2599 {
2600 struct nvmefc_fcp_req *freq = &op->fcp_req;
2601 int ret;
2602
2603 freq->sg_cnt = 0;
2604
2605 if (!blk_rq_nr_phys_segments(rq))
2606 return 0;
2607
2608 freq->sg_table.sgl = freq->first_sgl;
2609 ret = sg_alloc_table_chained(&freq->sg_table,
2610 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2611 NVME_INLINE_SG_CNT);
2612 if (ret)
2613 return -ENOMEM;
2614
2615 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2616 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2617 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2618 op->nents, rq_dma_dir(rq));
2619 if (unlikely(freq->sg_cnt <= 0)) {
2620 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2621 freq->sg_cnt = 0;
2622 return -EFAULT;
2623 }
2624
2625 /*
2626 * TODO: blk_integrity_rq(rq) for DIF
2627 */
2628 return 0;
2629 }
2630
2631 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2632 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2633 struct nvme_fc_fcp_op *op)
2634 {
2635 struct nvmefc_fcp_req *freq = &op->fcp_req;
2636
2637 if (!freq->sg_cnt)
2638 return;
2639
2640 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2641 rq_dma_dir(rq));
2642
2643 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2644
2645 freq->sg_cnt = 0;
2646 }
2647
2648 /*
2649 * In FC, the queue is a logical thing. At transport connect, the target
2650 * creates its "queue" and returns a handle that is to be given to the
2651 * target whenever it posts something to the corresponding SQ. When an
2652 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2653 * command contained within the SQE, an io, and assigns a FC exchange
2654 * to it. The SQE and the associated SQ handle are sent in the initial
2655 * CMD IU sents on the exchange. All transfers relative to the io occur
2656 * as part of the exchange. The CQE is the last thing for the io,
2657 * which is transferred (explicitly or implicitly) with the RSP IU
2658 * sent on the exchange. After the CQE is received, the FC exchange is
2659 * terminaed and the Exchange may be used on a different io.
2660 *
2661 * The transport to LLDD api has the transport making a request for a
2662 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2663 * resource and transfers the command. The LLDD will then process all
2664 * steps to complete the io. Upon completion, the transport done routine
2665 * is called.
2666 *
2667 * So - while the operation is outstanding to the LLDD, there is a link
2668 * level FC exchange resource that is also outstanding. This must be
2669 * considered in all cleanup operations.
2670 */
2671 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2672 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2673 struct nvme_fc_fcp_op *op, u32 data_len,
2674 enum nvmefc_fcp_datadir io_dir)
2675 {
2676 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2677 struct nvme_command *sqe = &cmdiu->sqe;
2678 int ret, opstate;
2679
2680 /*
2681 * before attempting to send the io, check to see if we believe
2682 * the target device is present
2683 */
2684 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2685 return BLK_STS_RESOURCE;
2686
2687 if (!nvme_fc_ctrl_get(ctrl))
2688 return BLK_STS_IOERR;
2689
2690 /* format the FC-NVME CMD IU and fcp_req */
2691 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2692 cmdiu->data_len = cpu_to_be32(data_len);
2693 switch (io_dir) {
2694 case NVMEFC_FCP_WRITE:
2695 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2696 break;
2697 case NVMEFC_FCP_READ:
2698 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2699 break;
2700 case NVMEFC_FCP_NODATA:
2701 cmdiu->flags = 0;
2702 break;
2703 }
2704 op->fcp_req.payload_length = data_len;
2705 op->fcp_req.io_dir = io_dir;
2706 op->fcp_req.transferred_length = 0;
2707 op->fcp_req.rcv_rsplen = 0;
2708 op->fcp_req.status = NVME_SC_SUCCESS;
2709 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2710
2711 /*
2712 * validate per fabric rules, set fields mandated by fabric spec
2713 * as well as those by FC-NVME spec.
2714 */
2715 WARN_ON_ONCE(sqe->common.metadata);
2716 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2717
2718 /*
2719 * format SQE DPTR field per FC-NVME rules:
2720 * type=0x5 Transport SGL Data Block Descriptor
2721 * subtype=0xA Transport-specific value
2722 * address=0
2723 * length=length of the data series
2724 */
2725 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2726 NVME_SGL_FMT_TRANSPORT_A;
2727 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2728 sqe->rw.dptr.sgl.addr = 0;
2729
2730 if (!(op->flags & FCOP_FLAGS_AEN)) {
2731 ret = nvme_fc_map_data(ctrl, op->rq, op);
2732 if (ret < 0) {
2733 nvme_cleanup_cmd(op->rq);
2734 nvme_fc_ctrl_put(ctrl);
2735 if (ret == -ENOMEM || ret == -EAGAIN)
2736 return BLK_STS_RESOURCE;
2737 return BLK_STS_IOERR;
2738 }
2739 }
2740
2741 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2742 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2743
2744 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2745
2746 if (!(op->flags & FCOP_FLAGS_AEN))
2747 blk_mq_start_request(op->rq);
2748
2749 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2750 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2751 &ctrl->rport->remoteport,
2752 queue->lldd_handle, &op->fcp_req);
2753
2754 if (ret) {
2755 /*
2756 * If the lld fails to send the command is there an issue with
2757 * the csn value? If the command that fails is the Connect,
2758 * no - as the connection won't be live. If it is a command
2759 * post-connect, it's possible a gap in csn may be created.
2760 * Does this matter? As Linux initiators don't send fused
2761 * commands, no. The gap would exist, but as there's nothing
2762 * that depends on csn order to be delivered on the target
2763 * side, it shouldn't hurt. It would be difficult for a
2764 * target to even detect the csn gap as it has no idea when the
2765 * cmd with the csn was supposed to arrive.
2766 */
2767 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2768 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2769
2770 if (!(op->flags & FCOP_FLAGS_AEN)) {
2771 nvme_fc_unmap_data(ctrl, op->rq, op);
2772 nvme_cleanup_cmd(op->rq);
2773 }
2774
2775 nvme_fc_ctrl_put(ctrl);
2776
2777 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2778 ret != -EBUSY)
2779 return BLK_STS_IOERR;
2780
2781 return BLK_STS_RESOURCE;
2782 }
2783
2784 return BLK_STS_OK;
2785 }
2786
2787 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2788 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2789 const struct blk_mq_queue_data *bd)
2790 {
2791 struct nvme_ns *ns = hctx->queue->queuedata;
2792 struct nvme_fc_queue *queue = hctx->driver_data;
2793 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2794 struct request *rq = bd->rq;
2795 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2796 enum nvmefc_fcp_datadir io_dir;
2797 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2798 u32 data_len;
2799 blk_status_t ret;
2800
2801 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2802 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2803 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2804
2805 ret = nvme_setup_cmd(ns, rq);
2806 if (ret)
2807 return ret;
2808
2809 /*
2810 * nvme core doesn't quite treat the rq opaquely. Commands such
2811 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2812 * there is no actual payload to be transferred.
2813 * To get it right, key data transmission on there being 1 or
2814 * more physical segments in the sg list. If there is no
2815 * physical segments, there is no payload.
2816 */
2817 if (blk_rq_nr_phys_segments(rq)) {
2818 data_len = blk_rq_payload_bytes(rq);
2819 io_dir = ((rq_data_dir(rq) == WRITE) ?
2820 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2821 } else {
2822 data_len = 0;
2823 io_dir = NVMEFC_FCP_NODATA;
2824 }
2825
2826
2827 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2828 }
2829
2830 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2831 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2832 {
2833 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2834 struct nvme_fc_fcp_op *aen_op;
2835 blk_status_t ret;
2836
2837 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2838 return;
2839
2840 aen_op = &ctrl->aen_ops[0];
2841
2842 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2843 NVMEFC_FCP_NODATA);
2844 if (ret)
2845 dev_err(ctrl->ctrl.device,
2846 "failed async event work\n");
2847 }
2848
2849 static void
nvme_fc_complete_rq(struct request * rq)2850 nvme_fc_complete_rq(struct request *rq)
2851 {
2852 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2853 struct nvme_fc_ctrl *ctrl = op->ctrl;
2854
2855 atomic_set(&op->state, FCPOP_STATE_IDLE);
2856 op->flags &= ~FCOP_FLAGS_TERMIO;
2857
2858 nvme_fc_unmap_data(ctrl, rq, op);
2859 nvme_complete_rq(rq);
2860 nvme_fc_ctrl_put(ctrl);
2861 }
2862
nvme_fc_map_queues(struct blk_mq_tag_set * set)2863 static int nvme_fc_map_queues(struct blk_mq_tag_set *set)
2864 {
2865 struct nvme_fc_ctrl *ctrl = set->driver_data;
2866 int i;
2867
2868 for (i = 0; i < set->nr_maps; i++) {
2869 struct blk_mq_queue_map *map = &set->map[i];
2870
2871 if (!map->nr_queues) {
2872 WARN_ON(i == HCTX_TYPE_DEFAULT);
2873 continue;
2874 }
2875
2876 /* Call LLDD map queue functionality if defined */
2877 if (ctrl->lport->ops->map_queues)
2878 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2879 map);
2880 else
2881 blk_mq_map_queues(map);
2882 }
2883 return 0;
2884 }
2885
2886 static const struct blk_mq_ops nvme_fc_mq_ops = {
2887 .queue_rq = nvme_fc_queue_rq,
2888 .complete = nvme_fc_complete_rq,
2889 .init_request = nvme_fc_init_request,
2890 .exit_request = nvme_fc_exit_request,
2891 .init_hctx = nvme_fc_init_hctx,
2892 .timeout = nvme_fc_timeout,
2893 .map_queues = nvme_fc_map_queues,
2894 };
2895
2896 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2897 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2898 {
2899 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2900 unsigned int nr_io_queues;
2901 int ret;
2902
2903 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2904 ctrl->lport->ops->max_hw_queues);
2905 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2906 if (ret) {
2907 dev_info(ctrl->ctrl.device,
2908 "set_queue_count failed: %d\n", ret);
2909 return ret;
2910 }
2911
2912 ctrl->ctrl.queue_count = nr_io_queues + 1;
2913 if (!nr_io_queues)
2914 return 0;
2915
2916 nvme_fc_init_io_queues(ctrl);
2917
2918 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2919 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2920 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2921 ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
2922 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2923 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2924 ctrl->tag_set.cmd_size =
2925 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2926 ctrl->lport->ops->fcprqst_priv_sz);
2927 ctrl->tag_set.driver_data = ctrl;
2928 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2929 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2930
2931 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2932 if (ret)
2933 return ret;
2934
2935 ctrl->ctrl.tagset = &ctrl->tag_set;
2936
2937 ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl));
2938 if (ret)
2939 goto out_free_tag_set;
2940
2941 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2942 if (ret)
2943 goto out_cleanup_blk_queue;
2944
2945 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2946 if (ret)
2947 goto out_delete_hw_queues;
2948
2949 ctrl->ioq_live = true;
2950
2951 return 0;
2952
2953 out_delete_hw_queues:
2954 nvme_fc_delete_hw_io_queues(ctrl);
2955 out_cleanup_blk_queue:
2956 blk_cleanup_queue(ctrl->ctrl.connect_q);
2957 out_free_tag_set:
2958 blk_mq_free_tag_set(&ctrl->tag_set);
2959 nvme_fc_free_io_queues(ctrl);
2960
2961 /* force put free routine to ignore io queues */
2962 ctrl->ctrl.tagset = NULL;
2963
2964 return ret;
2965 }
2966
2967 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2968 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2969 {
2970 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2971 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2972 unsigned int nr_io_queues;
2973 int ret;
2974
2975 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2976 ctrl->lport->ops->max_hw_queues);
2977 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2978 if (ret) {
2979 dev_info(ctrl->ctrl.device,
2980 "set_queue_count failed: %d\n", ret);
2981 return ret;
2982 }
2983
2984 if (!nr_io_queues && prior_ioq_cnt) {
2985 dev_info(ctrl->ctrl.device,
2986 "Fail Reconnect: At least 1 io queue "
2987 "required (was %d)\n", prior_ioq_cnt);
2988 return -ENOSPC;
2989 }
2990
2991 ctrl->ctrl.queue_count = nr_io_queues + 1;
2992 /* check for io queues existing */
2993 if (ctrl->ctrl.queue_count == 1)
2994 return 0;
2995
2996 if (prior_ioq_cnt != nr_io_queues) {
2997 dev_info(ctrl->ctrl.device,
2998 "reconnect: revising io queue count from %d to %d\n",
2999 prior_ioq_cnt, nr_io_queues);
3000 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
3001 }
3002
3003 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3004 if (ret)
3005 goto out_free_io_queues;
3006
3007 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3008 if (ret)
3009 goto out_delete_hw_queues;
3010
3011 return 0;
3012
3013 out_delete_hw_queues:
3014 nvme_fc_delete_hw_io_queues(ctrl);
3015 out_free_io_queues:
3016 nvme_fc_free_io_queues(ctrl);
3017 return ret;
3018 }
3019
3020 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)3021 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3022 {
3023 struct nvme_fc_lport *lport = rport->lport;
3024
3025 atomic_inc(&lport->act_rport_cnt);
3026 }
3027
3028 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)3029 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3030 {
3031 struct nvme_fc_lport *lport = rport->lport;
3032 u32 cnt;
3033
3034 cnt = atomic_dec_return(&lport->act_rport_cnt);
3035 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3036 lport->ops->localport_delete(&lport->localport);
3037 }
3038
3039 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)3040 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3041 {
3042 struct nvme_fc_rport *rport = ctrl->rport;
3043 u32 cnt;
3044
3045 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3046 return 1;
3047
3048 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3049 if (cnt == 1)
3050 nvme_fc_rport_active_on_lport(rport);
3051
3052 return 0;
3053 }
3054
3055 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)3056 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3057 {
3058 struct nvme_fc_rport *rport = ctrl->rport;
3059 struct nvme_fc_lport *lport = rport->lport;
3060 u32 cnt;
3061
3062 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3063
3064 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3065 if (cnt == 0) {
3066 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3067 lport->ops->remoteport_delete(&rport->remoteport);
3068 nvme_fc_rport_inactive_on_lport(rport);
3069 }
3070
3071 return 0;
3072 }
3073
3074 /*
3075 * This routine restarts the controller on the host side, and
3076 * on the link side, recreates the controller association.
3077 */
3078 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3079 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3080 {
3081 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3082 struct nvmefc_ls_rcv_op *disls = NULL;
3083 unsigned long flags;
3084 int ret;
3085 bool changed;
3086
3087 ++ctrl->ctrl.nr_reconnects;
3088
3089 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3090 return -ENODEV;
3091
3092 if (nvme_fc_ctlr_active_on_rport(ctrl))
3093 return -ENOTUNIQ;
3094
3095 dev_info(ctrl->ctrl.device,
3096 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3097 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3098 ctrl->cnum, ctrl->lport->localport.port_name,
3099 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3100
3101 clear_bit(ASSOC_FAILED, &ctrl->flags);
3102
3103 /*
3104 * Create the admin queue
3105 */
3106
3107 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3108 NVME_AQ_DEPTH);
3109 if (ret)
3110 goto out_free_queue;
3111
3112 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3113 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3114 if (ret)
3115 goto out_delete_hw_queue;
3116
3117 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3118 if (ret)
3119 goto out_disconnect_admin_queue;
3120
3121 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3122
3123 /*
3124 * Check controller capabilities
3125 *
3126 * todo:- add code to check if ctrl attributes changed from
3127 * prior connection values
3128 */
3129
3130 ret = nvme_enable_ctrl(&ctrl->ctrl);
3131 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3132 goto out_disconnect_admin_queue;
3133
3134 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3135 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3136 (ilog2(SZ_4K) - 9);
3137
3138 nvme_start_admin_queue(&ctrl->ctrl);
3139
3140 ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3141 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3142 goto out_disconnect_admin_queue;
3143
3144 /* sanity checks */
3145
3146 /* FC-NVME does not have other data in the capsule */
3147 if (ctrl->ctrl.icdoff) {
3148 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3149 ctrl->ctrl.icdoff);
3150 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3151 goto out_disconnect_admin_queue;
3152 }
3153
3154 /* FC-NVME supports normal SGL Data Block Descriptors */
3155 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3156 dev_err(ctrl->ctrl.device,
3157 "Mandatory sgls are not supported!\n");
3158 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3159 goto out_disconnect_admin_queue;
3160 }
3161
3162 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3163 /* warn if maxcmd is lower than queue_size */
3164 dev_warn(ctrl->ctrl.device,
3165 "queue_size %zu > ctrl maxcmd %u, reducing "
3166 "to maxcmd\n",
3167 opts->queue_size, ctrl->ctrl.maxcmd);
3168 opts->queue_size = ctrl->ctrl.maxcmd;
3169 }
3170
3171 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3172 /* warn if sqsize is lower than queue_size */
3173 dev_warn(ctrl->ctrl.device,
3174 "queue_size %zu > ctrl sqsize %u, reducing "
3175 "to sqsize\n",
3176 opts->queue_size, ctrl->ctrl.sqsize + 1);
3177 opts->queue_size = ctrl->ctrl.sqsize + 1;
3178 }
3179
3180 ret = nvme_fc_init_aen_ops(ctrl);
3181 if (ret)
3182 goto out_term_aen_ops;
3183
3184 /*
3185 * Create the io queues
3186 */
3187
3188 if (ctrl->ctrl.queue_count > 1) {
3189 if (!ctrl->ioq_live)
3190 ret = nvme_fc_create_io_queues(ctrl);
3191 else
3192 ret = nvme_fc_recreate_io_queues(ctrl);
3193 }
3194 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3195 goto out_term_aen_ops;
3196
3197 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3198
3199 ctrl->ctrl.nr_reconnects = 0;
3200
3201 if (changed)
3202 nvme_start_ctrl(&ctrl->ctrl);
3203
3204 return 0; /* Success */
3205
3206 out_term_aen_ops:
3207 nvme_fc_term_aen_ops(ctrl);
3208 out_disconnect_admin_queue:
3209 /* send a Disconnect(association) LS to fc-nvme target */
3210 nvme_fc_xmt_disconnect_assoc(ctrl);
3211 spin_lock_irqsave(&ctrl->lock, flags);
3212 ctrl->association_id = 0;
3213 disls = ctrl->rcv_disconn;
3214 ctrl->rcv_disconn = NULL;
3215 spin_unlock_irqrestore(&ctrl->lock, flags);
3216 if (disls)
3217 nvme_fc_xmt_ls_rsp(disls);
3218 out_delete_hw_queue:
3219 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3220 out_free_queue:
3221 nvme_fc_free_queue(&ctrl->queues[0]);
3222 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3223 nvme_fc_ctlr_inactive_on_rport(ctrl);
3224
3225 return ret;
3226 }
3227
3228
3229 /*
3230 * This routine stops operation of the controller on the host side.
3231 * On the host os stack side: Admin and IO queues are stopped,
3232 * outstanding ios on them terminated via FC ABTS.
3233 * On the link side: the association is terminated.
3234 */
3235 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3236 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3237 {
3238 struct nvmefc_ls_rcv_op *disls = NULL;
3239 unsigned long flags;
3240
3241 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3242 return;
3243
3244 spin_lock_irqsave(&ctrl->lock, flags);
3245 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3246 ctrl->iocnt = 0;
3247 spin_unlock_irqrestore(&ctrl->lock, flags);
3248
3249 __nvme_fc_abort_outstanding_ios(ctrl, false);
3250
3251 /* kill the aens as they are a separate path */
3252 nvme_fc_abort_aen_ops(ctrl);
3253
3254 /* wait for all io that had to be aborted */
3255 spin_lock_irq(&ctrl->lock);
3256 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3257 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3258 spin_unlock_irq(&ctrl->lock);
3259
3260 nvme_fc_term_aen_ops(ctrl);
3261
3262 /*
3263 * send a Disconnect(association) LS to fc-nvme target
3264 * Note: could have been sent at top of process, but
3265 * cleaner on link traffic if after the aborts complete.
3266 * Note: if association doesn't exist, association_id will be 0
3267 */
3268 if (ctrl->association_id)
3269 nvme_fc_xmt_disconnect_assoc(ctrl);
3270
3271 spin_lock_irqsave(&ctrl->lock, flags);
3272 ctrl->association_id = 0;
3273 disls = ctrl->rcv_disconn;
3274 ctrl->rcv_disconn = NULL;
3275 spin_unlock_irqrestore(&ctrl->lock, flags);
3276 if (disls)
3277 /*
3278 * if a Disconnect Request was waiting for a response, send
3279 * now that all ABTS's have been issued (and are complete).
3280 */
3281 nvme_fc_xmt_ls_rsp(disls);
3282
3283 if (ctrl->ctrl.tagset) {
3284 nvme_fc_delete_hw_io_queues(ctrl);
3285 nvme_fc_free_io_queues(ctrl);
3286 }
3287
3288 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3289 nvme_fc_free_queue(&ctrl->queues[0]);
3290
3291 /* re-enable the admin_q so anything new can fast fail */
3292 nvme_start_admin_queue(&ctrl->ctrl);
3293
3294 /* resume the io queues so that things will fast fail */
3295 nvme_start_queues(&ctrl->ctrl);
3296
3297 nvme_fc_ctlr_inactive_on_rport(ctrl);
3298 }
3299
3300 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3301 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3302 {
3303 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3304
3305 cancel_work_sync(&ctrl->ioerr_work);
3306 cancel_delayed_work_sync(&ctrl->connect_work);
3307 /*
3308 * kill the association on the link side. this will block
3309 * waiting for io to terminate
3310 */
3311 nvme_fc_delete_association(ctrl);
3312 }
3313
3314 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3315 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3316 {
3317 struct nvme_fc_rport *rport = ctrl->rport;
3318 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3319 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3320 bool recon = true;
3321
3322 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3323 return;
3324
3325 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3326 dev_info(ctrl->ctrl.device,
3327 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3328 ctrl->cnum, status);
3329 if (status > 0 && (status & NVME_SC_DNR))
3330 recon = false;
3331 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3332 recon = false;
3333
3334 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3335 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3336 dev_info(ctrl->ctrl.device,
3337 "NVME-FC{%d}: Reconnect attempt in %ld "
3338 "seconds\n",
3339 ctrl->cnum, recon_delay / HZ);
3340 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3341 recon_delay = rport->dev_loss_end - jiffies;
3342
3343 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3344 } else {
3345 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3346 if (status > 0 && (status & NVME_SC_DNR))
3347 dev_warn(ctrl->ctrl.device,
3348 "NVME-FC{%d}: reconnect failure\n",
3349 ctrl->cnum);
3350 else
3351 dev_warn(ctrl->ctrl.device,
3352 "NVME-FC{%d}: Max reconnect attempts "
3353 "(%d) reached.\n",
3354 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3355 } else
3356 dev_warn(ctrl->ctrl.device,
3357 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3358 "while waiting for remoteport connectivity.\n",
3359 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3360 (ctrl->ctrl.opts->max_reconnects *
3361 ctrl->ctrl.opts->reconnect_delay)));
3362 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3363 }
3364 }
3365
3366 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3367 nvme_fc_reset_ctrl_work(struct work_struct *work)
3368 {
3369 struct nvme_fc_ctrl *ctrl =
3370 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3371
3372 nvme_stop_ctrl(&ctrl->ctrl);
3373
3374 /* will block will waiting for io to terminate */
3375 nvme_fc_delete_association(ctrl);
3376
3377 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3378 dev_err(ctrl->ctrl.device,
3379 "NVME-FC{%d}: error_recovery: Couldn't change state "
3380 "to CONNECTING\n", ctrl->cnum);
3381
3382 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3383 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3384 dev_err(ctrl->ctrl.device,
3385 "NVME-FC{%d}: failed to schedule connect "
3386 "after reset\n", ctrl->cnum);
3387 } else {
3388 flush_delayed_work(&ctrl->connect_work);
3389 }
3390 } else {
3391 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3392 }
3393 }
3394
3395
3396 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3397 .name = "fc",
3398 .module = THIS_MODULE,
3399 .flags = NVME_F_FABRICS,
3400 .reg_read32 = nvmf_reg_read32,
3401 .reg_read64 = nvmf_reg_read64,
3402 .reg_write32 = nvmf_reg_write32,
3403 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3404 .submit_async_event = nvme_fc_submit_async_event,
3405 .delete_ctrl = nvme_fc_delete_ctrl,
3406 .get_address = nvmf_get_address,
3407 };
3408
3409 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3410 nvme_fc_connect_ctrl_work(struct work_struct *work)
3411 {
3412 int ret;
3413
3414 struct nvme_fc_ctrl *ctrl =
3415 container_of(to_delayed_work(work),
3416 struct nvme_fc_ctrl, connect_work);
3417
3418 ret = nvme_fc_create_association(ctrl);
3419 if (ret)
3420 nvme_fc_reconnect_or_delete(ctrl, ret);
3421 else
3422 dev_info(ctrl->ctrl.device,
3423 "NVME-FC{%d}: controller connect complete\n",
3424 ctrl->cnum);
3425 }
3426
3427
3428 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3429 .queue_rq = nvme_fc_queue_rq,
3430 .complete = nvme_fc_complete_rq,
3431 .init_request = nvme_fc_init_request,
3432 .exit_request = nvme_fc_exit_request,
3433 .init_hctx = nvme_fc_init_admin_hctx,
3434 .timeout = nvme_fc_timeout,
3435 };
3436
3437
3438 /*
3439 * Fails a controller request if it matches an existing controller
3440 * (association) with the same tuple:
3441 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3442 *
3443 * The ports don't need to be compared as they are intrinsically
3444 * already matched by the port pointers supplied.
3445 */
3446 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3447 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3448 struct nvmf_ctrl_options *opts)
3449 {
3450 struct nvme_fc_ctrl *ctrl;
3451 unsigned long flags;
3452 bool found = false;
3453
3454 spin_lock_irqsave(&rport->lock, flags);
3455 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3456 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3457 if (found)
3458 break;
3459 }
3460 spin_unlock_irqrestore(&rport->lock, flags);
3461
3462 return found;
3463 }
3464
3465 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3466 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3467 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3468 {
3469 struct nvme_fc_ctrl *ctrl;
3470 unsigned long flags;
3471 int ret, idx, ctrl_loss_tmo;
3472
3473 if (!(rport->remoteport.port_role &
3474 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3475 ret = -EBADR;
3476 goto out_fail;
3477 }
3478
3479 if (!opts->duplicate_connect &&
3480 nvme_fc_existing_controller(rport, opts)) {
3481 ret = -EALREADY;
3482 goto out_fail;
3483 }
3484
3485 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3486 if (!ctrl) {
3487 ret = -ENOMEM;
3488 goto out_fail;
3489 }
3490
3491 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3492 if (idx < 0) {
3493 ret = -ENOSPC;
3494 goto out_free_ctrl;
3495 }
3496
3497 /*
3498 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3499 * is being used, change to a shorter reconnect delay for FC.
3500 */
3501 if (opts->max_reconnects != -1 &&
3502 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3503 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3504 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3505 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3506 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3507 opts->reconnect_delay);
3508 }
3509
3510 ctrl->ctrl.opts = opts;
3511 ctrl->ctrl.nr_reconnects = 0;
3512 if (lport->dev)
3513 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3514 else
3515 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3516 INIT_LIST_HEAD(&ctrl->ctrl_list);
3517 ctrl->lport = lport;
3518 ctrl->rport = rport;
3519 ctrl->dev = lport->dev;
3520 ctrl->cnum = idx;
3521 ctrl->ioq_live = false;
3522 init_waitqueue_head(&ctrl->ioabort_wait);
3523
3524 get_device(ctrl->dev);
3525 kref_init(&ctrl->ref);
3526
3527 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3528 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3529 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3530 spin_lock_init(&ctrl->lock);
3531
3532 /* io queue count */
3533 ctrl->ctrl.queue_count = min_t(unsigned int,
3534 opts->nr_io_queues,
3535 lport->ops->max_hw_queues);
3536 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3537
3538 ctrl->ctrl.sqsize = opts->queue_size - 1;
3539 ctrl->ctrl.kato = opts->kato;
3540 ctrl->ctrl.cntlid = 0xffff;
3541
3542 ret = -ENOMEM;
3543 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3544 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3545 if (!ctrl->queues)
3546 goto out_free_ida;
3547
3548 nvme_fc_init_queue(ctrl, 0);
3549
3550 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3551 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3552 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3553 ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
3554 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3555 ctrl->admin_tag_set.cmd_size =
3556 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3557 ctrl->lport->ops->fcprqst_priv_sz);
3558 ctrl->admin_tag_set.driver_data = ctrl;
3559 ctrl->admin_tag_set.nr_hw_queues = 1;
3560 ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
3561 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3562
3563 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3564 if (ret)
3565 goto out_free_queues;
3566 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3567
3568 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3569 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3570 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3571 goto out_free_admin_tag_set;
3572 }
3573
3574 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3575 if (IS_ERR(ctrl->ctrl.admin_q)) {
3576 ret = PTR_ERR(ctrl->ctrl.admin_q);
3577 goto out_cleanup_fabrics_q;
3578 }
3579
3580 /*
3581 * Would have been nice to init io queues tag set as well.
3582 * However, we require interaction from the controller
3583 * for max io queue count before we can do so.
3584 * Defer this to the connect path.
3585 */
3586
3587 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3588 if (ret)
3589 goto out_cleanup_admin_q;
3590
3591 /* at this point, teardown path changes to ref counting on nvme ctrl */
3592
3593 spin_lock_irqsave(&rport->lock, flags);
3594 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3595 spin_unlock_irqrestore(&rport->lock, flags);
3596
3597 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3598 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3599 dev_err(ctrl->ctrl.device,
3600 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3601 goto fail_ctrl;
3602 }
3603
3604 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3605 dev_err(ctrl->ctrl.device,
3606 "NVME-FC{%d}: failed to schedule initial connect\n",
3607 ctrl->cnum);
3608 goto fail_ctrl;
3609 }
3610
3611 flush_delayed_work(&ctrl->connect_work);
3612
3613 dev_info(ctrl->ctrl.device,
3614 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3615 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3616
3617 return &ctrl->ctrl;
3618
3619 fail_ctrl:
3620 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3621 cancel_work_sync(&ctrl->ioerr_work);
3622 cancel_work_sync(&ctrl->ctrl.reset_work);
3623 cancel_delayed_work_sync(&ctrl->connect_work);
3624
3625 ctrl->ctrl.opts = NULL;
3626
3627 /* initiate nvme ctrl ref counting teardown */
3628 nvme_uninit_ctrl(&ctrl->ctrl);
3629
3630 /* Remove core ctrl ref. */
3631 nvme_put_ctrl(&ctrl->ctrl);
3632
3633 /* as we're past the point where we transition to the ref
3634 * counting teardown path, if we return a bad pointer here,
3635 * the calling routine, thinking it's prior to the
3636 * transition, will do an rport put. Since the teardown
3637 * path also does a rport put, we do an extra get here to
3638 * so proper order/teardown happens.
3639 */
3640 nvme_fc_rport_get(rport);
3641
3642 return ERR_PTR(-EIO);
3643
3644 out_cleanup_admin_q:
3645 blk_cleanup_queue(ctrl->ctrl.admin_q);
3646 out_cleanup_fabrics_q:
3647 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3648 out_free_admin_tag_set:
3649 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3650 out_free_queues:
3651 kfree(ctrl->queues);
3652 out_free_ida:
3653 put_device(ctrl->dev);
3654 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3655 out_free_ctrl:
3656 kfree(ctrl);
3657 out_fail:
3658 /* exit via here doesn't follow ctlr ref points */
3659 return ERR_PTR(ret);
3660 }
3661
3662
3663 struct nvmet_fc_traddr {
3664 u64 nn;
3665 u64 pn;
3666 };
3667
3668 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3669 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3670 {
3671 u64 token64;
3672
3673 if (match_u64(sstr, &token64))
3674 return -EINVAL;
3675 *val = token64;
3676
3677 return 0;
3678 }
3679
3680 /*
3681 * This routine validates and extracts the WWN's from the TRADDR string.
3682 * As kernel parsers need the 0x to determine number base, universally
3683 * build string to parse with 0x prefix before parsing name strings.
3684 */
3685 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3686 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3687 {
3688 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3689 substring_t wwn = { name, &name[sizeof(name)-1] };
3690 int nnoffset, pnoffset;
3691
3692 /* validate if string is one of the 2 allowed formats */
3693 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3694 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3695 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3696 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3697 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3698 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3699 NVME_FC_TRADDR_OXNNLEN;
3700 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3701 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3702 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3703 "pn-", NVME_FC_TRADDR_NNLEN))) {
3704 nnoffset = NVME_FC_TRADDR_NNLEN;
3705 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3706 } else
3707 goto out_einval;
3708
3709 name[0] = '0';
3710 name[1] = 'x';
3711 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3712
3713 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3714 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3715 goto out_einval;
3716
3717 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3718 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3719 goto out_einval;
3720
3721 return 0;
3722
3723 out_einval:
3724 pr_warn("%s: bad traddr string\n", __func__);
3725 return -EINVAL;
3726 }
3727
3728 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3729 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3730 {
3731 struct nvme_fc_lport *lport;
3732 struct nvme_fc_rport *rport;
3733 struct nvme_ctrl *ctrl;
3734 struct nvmet_fc_traddr laddr = { 0L, 0L };
3735 struct nvmet_fc_traddr raddr = { 0L, 0L };
3736 unsigned long flags;
3737 int ret;
3738
3739 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3740 if (ret || !raddr.nn || !raddr.pn)
3741 return ERR_PTR(-EINVAL);
3742
3743 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3744 if (ret || !laddr.nn || !laddr.pn)
3745 return ERR_PTR(-EINVAL);
3746
3747 /* find the host and remote ports to connect together */
3748 spin_lock_irqsave(&nvme_fc_lock, flags);
3749 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3750 if (lport->localport.node_name != laddr.nn ||
3751 lport->localport.port_name != laddr.pn ||
3752 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3753 continue;
3754
3755 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3756 if (rport->remoteport.node_name != raddr.nn ||
3757 rport->remoteport.port_name != raddr.pn ||
3758 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3759 continue;
3760
3761 /* if fail to get reference fall through. Will error */
3762 if (!nvme_fc_rport_get(rport))
3763 break;
3764
3765 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3766
3767 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3768 if (IS_ERR(ctrl))
3769 nvme_fc_rport_put(rport);
3770 return ctrl;
3771 }
3772 }
3773 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3774
3775 pr_warn("%s: %s - %s combination not found\n",
3776 __func__, opts->traddr, opts->host_traddr);
3777 return ERR_PTR(-ENOENT);
3778 }
3779
3780
3781 static struct nvmf_transport_ops nvme_fc_transport = {
3782 .name = "fc",
3783 .module = THIS_MODULE,
3784 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3785 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3786 .create_ctrl = nvme_fc_create_ctrl,
3787 };
3788
3789 /* Arbitrary successive failures max. With lots of subsystems could be high */
3790 #define DISCOVERY_MAX_FAIL 20
3791
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3792 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3793 struct device_attribute *attr, const char *buf, size_t count)
3794 {
3795 unsigned long flags;
3796 LIST_HEAD(local_disc_list);
3797 struct nvme_fc_lport *lport;
3798 struct nvme_fc_rport *rport;
3799 int failcnt = 0;
3800
3801 spin_lock_irqsave(&nvme_fc_lock, flags);
3802 restart:
3803 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3804 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3805 if (!nvme_fc_lport_get(lport))
3806 continue;
3807 if (!nvme_fc_rport_get(rport)) {
3808 /*
3809 * This is a temporary condition. Upon restart
3810 * this rport will be gone from the list.
3811 *
3812 * Revert the lport put and retry. Anything
3813 * added to the list already will be skipped (as
3814 * they are no longer list_empty). Loops should
3815 * resume at rports that were not yet seen.
3816 */
3817 nvme_fc_lport_put(lport);
3818
3819 if (failcnt++ < DISCOVERY_MAX_FAIL)
3820 goto restart;
3821
3822 pr_err("nvme_discovery: too many reference "
3823 "failures\n");
3824 goto process_local_list;
3825 }
3826 if (list_empty(&rport->disc_list))
3827 list_add_tail(&rport->disc_list,
3828 &local_disc_list);
3829 }
3830 }
3831
3832 process_local_list:
3833 while (!list_empty(&local_disc_list)) {
3834 rport = list_first_entry(&local_disc_list,
3835 struct nvme_fc_rport, disc_list);
3836 list_del_init(&rport->disc_list);
3837 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3838
3839 lport = rport->lport;
3840 /* signal discovery. Won't hurt if it repeats */
3841 nvme_fc_signal_discovery_scan(lport, rport);
3842 nvme_fc_rport_put(rport);
3843 nvme_fc_lport_put(lport);
3844
3845 spin_lock_irqsave(&nvme_fc_lock, flags);
3846 }
3847 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3848
3849 return count;
3850 }
3851
3852 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3853
3854 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3855 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3856 static int fc_parse_cgrpid(const char *buf, u64 *id)
3857 {
3858 char cgrp_id[16+1];
3859 int cgrpid_len, j;
3860
3861 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3862 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3863 if (buf[cgrpid_len] != ':')
3864 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3865 else {
3866 j = 1;
3867 break;
3868 }
3869 }
3870 if (!j)
3871 return -EINVAL;
3872 if (kstrtou64(cgrp_id, 16, id) < 0)
3873 return -EINVAL;
3874 return cgrpid_len;
3875 }
3876
3877 /*
3878 * Parse and update the appid in the blkcg associated with the cgroupid.
3879 */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3880 static ssize_t fc_appid_store(struct device *dev,
3881 struct device_attribute *attr, const char *buf, size_t count)
3882 {
3883 size_t orig_count = count;
3884 u64 cgrp_id;
3885 int appid_len = 0;
3886 int cgrpid_len = 0;
3887 char app_id[FC_APPID_LEN];
3888 int ret = 0;
3889
3890 if (buf[count-1] == '\n')
3891 count--;
3892
3893 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3894 return -EINVAL;
3895
3896 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3897 if (cgrpid_len < 0)
3898 return -EINVAL;
3899 appid_len = count - cgrpid_len - 1;
3900 if (appid_len > FC_APPID_LEN)
3901 return -EINVAL;
3902
3903 memset(app_id, 0x0, sizeof(app_id));
3904 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3905 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3906 if (ret < 0)
3907 return ret;
3908 return orig_count;
3909 }
3910 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3911 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3912
3913 static struct attribute *nvme_fc_attrs[] = {
3914 &dev_attr_nvme_discovery.attr,
3915 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3916 &dev_attr_appid_store.attr,
3917 #endif
3918 NULL
3919 };
3920
3921 static const struct attribute_group nvme_fc_attr_group = {
3922 .attrs = nvme_fc_attrs,
3923 };
3924
3925 static const struct attribute_group *nvme_fc_attr_groups[] = {
3926 &nvme_fc_attr_group,
3927 NULL
3928 };
3929
3930 static struct class fc_class = {
3931 .name = "fc",
3932 .dev_groups = nvme_fc_attr_groups,
3933 .owner = THIS_MODULE,
3934 };
3935
nvme_fc_init_module(void)3936 static int __init nvme_fc_init_module(void)
3937 {
3938 int ret;
3939
3940 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3941 if (!nvme_fc_wq)
3942 return -ENOMEM;
3943
3944 /*
3945 * NOTE:
3946 * It is expected that in the future the kernel will combine
3947 * the FC-isms that are currently under scsi and now being
3948 * added to by NVME into a new standalone FC class. The SCSI
3949 * and NVME protocols and their devices would be under this
3950 * new FC class.
3951 *
3952 * As we need something to post FC-specific udev events to,
3953 * specifically for nvme probe events, start by creating the
3954 * new device class. When the new standalone FC class is
3955 * put in place, this code will move to a more generic
3956 * location for the class.
3957 */
3958 ret = class_register(&fc_class);
3959 if (ret) {
3960 pr_err("couldn't register class fc\n");
3961 goto out_destroy_wq;
3962 }
3963
3964 /*
3965 * Create a device for the FC-centric udev events
3966 */
3967 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3968 "fc_udev_device");
3969 if (IS_ERR(fc_udev_device)) {
3970 pr_err("couldn't create fc_udev device!\n");
3971 ret = PTR_ERR(fc_udev_device);
3972 goto out_destroy_class;
3973 }
3974
3975 ret = nvmf_register_transport(&nvme_fc_transport);
3976 if (ret)
3977 goto out_destroy_device;
3978
3979 return 0;
3980
3981 out_destroy_device:
3982 device_destroy(&fc_class, MKDEV(0, 0));
3983 out_destroy_class:
3984 class_unregister(&fc_class);
3985 out_destroy_wq:
3986 destroy_workqueue(nvme_fc_wq);
3987
3988 return ret;
3989 }
3990
3991 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3992 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3993 {
3994 struct nvme_fc_ctrl *ctrl;
3995
3996 spin_lock(&rport->lock);
3997 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3998 dev_warn(ctrl->ctrl.device,
3999 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
4000 ctrl->cnum);
4001 nvme_delete_ctrl(&ctrl->ctrl);
4002 }
4003 spin_unlock(&rport->lock);
4004 }
4005
4006 static void
nvme_fc_cleanup_for_unload(void)4007 nvme_fc_cleanup_for_unload(void)
4008 {
4009 struct nvme_fc_lport *lport;
4010 struct nvme_fc_rport *rport;
4011
4012 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
4013 list_for_each_entry(rport, &lport->endp_list, endp_list) {
4014 nvme_fc_delete_controllers(rport);
4015 }
4016 }
4017 }
4018
nvme_fc_exit_module(void)4019 static void __exit nvme_fc_exit_module(void)
4020 {
4021 unsigned long flags;
4022 bool need_cleanup = false;
4023
4024 spin_lock_irqsave(&nvme_fc_lock, flags);
4025 nvme_fc_waiting_to_unload = true;
4026 if (!list_empty(&nvme_fc_lport_list)) {
4027 need_cleanup = true;
4028 nvme_fc_cleanup_for_unload();
4029 }
4030 spin_unlock_irqrestore(&nvme_fc_lock, flags);
4031 if (need_cleanup) {
4032 pr_info("%s: waiting for ctlr deletes\n", __func__);
4033 wait_for_completion(&nvme_fc_unload_proceed);
4034 pr_info("%s: ctrl deletes complete\n", __func__);
4035 }
4036
4037 nvmf_unregister_transport(&nvme_fc_transport);
4038
4039 ida_destroy(&nvme_fc_local_port_cnt);
4040 ida_destroy(&nvme_fc_ctrl_cnt);
4041
4042 device_destroy(&fc_class, MKDEV(0, 0));
4043 class_unregister(&fc_class);
4044 destroy_workqueue(nvme_fc_wq);
4045 }
4046
4047 module_init(nvme_fc_init_module);
4048 module_exit(nvme_fc_exit_module);
4049
4050 MODULE_LICENSE("GPL v2");
4051