1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 "secondary APST latency tolerance in us");
79
80 /*
81 * nvme_wq - hosts nvme related works that are not reset or delete
82 * nvme_reset_wq - hosts nvme reset works
83 * nvme_delete_wq - hosts nvme delete works
84 *
85 * nvme_wq will host works such as scan, aen handling, fw activation,
86 * keep-alive, periodic reconnects etc. nvme_reset_wq
87 * runs reset works which also flush works hosted on nvme_wq for
88 * serialization purposes. nvme_delete_wq host controller deletion
89 * works which flush reset works for serialization.
90 */
91 struct workqueue_struct *nvme_wq;
92 EXPORT_SYMBOL_GPL(nvme_wq);
93
94 struct workqueue_struct *nvme_reset_wq;
95 EXPORT_SYMBOL_GPL(nvme_reset_wq);
96
97 struct workqueue_struct *nvme_delete_wq;
98 EXPORT_SYMBOL_GPL(nvme_delete_wq);
99
100 static LIST_HEAD(nvme_subsystems);
101 static DEFINE_MUTEX(nvme_subsystems_lock);
102
103 static DEFINE_IDA(nvme_instance_ida);
104 static dev_t nvme_ctrl_base_chr_devt;
105 static struct class *nvme_class;
106 static struct class *nvme_subsys_class;
107
108 static DEFINE_IDA(nvme_ns_chr_minor_ida);
109 static dev_t nvme_ns_chr_devt;
110 static struct class *nvme_ns_chr_class;
111
112 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
114 unsigned nsid);
115 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
116 struct nvme_command *cmd);
117
nvme_queue_scan(struct nvme_ctrl * ctrl)118 void nvme_queue_scan(struct nvme_ctrl *ctrl)
119 {
120 /*
121 * Only new queue scan work when admin and IO queues are both alive
122 */
123 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
124 queue_work(nvme_wq, &ctrl->scan_work);
125 }
126
127 /*
128 * Use this function to proceed with scheduling reset_work for a controller
129 * that had previously been set to the resetting state. This is intended for
130 * code paths that can't be interrupted by other reset attempts. A hot removal
131 * may prevent this from succeeding.
132 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)133 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
134 {
135 if (ctrl->state != NVME_CTRL_RESETTING)
136 return -EBUSY;
137 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
138 return -EBUSY;
139 return 0;
140 }
141 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
142
nvme_failfast_work(struct work_struct * work)143 static void nvme_failfast_work(struct work_struct *work)
144 {
145 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
146 struct nvme_ctrl, failfast_work);
147
148 if (ctrl->state != NVME_CTRL_CONNECTING)
149 return;
150
151 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
152 dev_info(ctrl->device, "failfast expired\n");
153 nvme_kick_requeue_lists(ctrl);
154 }
155
nvme_start_failfast_work(struct nvme_ctrl * ctrl)156 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
157 {
158 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
159 return;
160
161 schedule_delayed_work(&ctrl->failfast_work,
162 ctrl->opts->fast_io_fail_tmo * HZ);
163 }
164
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)165 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
166 {
167 if (!ctrl->opts)
168 return;
169
170 cancel_delayed_work_sync(&ctrl->failfast_work);
171 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
172 }
173
174
nvme_reset_ctrl(struct nvme_ctrl * ctrl)175 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
176 {
177 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
178 return -EBUSY;
179 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
180 return -EBUSY;
181 return 0;
182 }
183 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
184
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)185 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
186 {
187 int ret;
188
189 ret = nvme_reset_ctrl(ctrl);
190 if (!ret) {
191 flush_work(&ctrl->reset_work);
192 if (ctrl->state != NVME_CTRL_LIVE)
193 ret = -ENETRESET;
194 }
195
196 return ret;
197 }
198
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)199 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
200 {
201 dev_info(ctrl->device,
202 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
203
204 flush_work(&ctrl->reset_work);
205 nvme_stop_ctrl(ctrl);
206 nvme_remove_namespaces(ctrl);
207 ctrl->ops->delete_ctrl(ctrl);
208 nvme_uninit_ctrl(ctrl);
209 }
210
nvme_delete_ctrl_work(struct work_struct * work)211 static void nvme_delete_ctrl_work(struct work_struct *work)
212 {
213 struct nvme_ctrl *ctrl =
214 container_of(work, struct nvme_ctrl, delete_work);
215
216 nvme_do_delete_ctrl(ctrl);
217 }
218
nvme_delete_ctrl(struct nvme_ctrl * ctrl)219 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
220 {
221 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
222 return -EBUSY;
223 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
224 return -EBUSY;
225 return 0;
226 }
227 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
228
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)229 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
230 {
231 /*
232 * Keep a reference until nvme_do_delete_ctrl() complete,
233 * since ->delete_ctrl can free the controller.
234 */
235 nvme_get_ctrl(ctrl);
236 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
237 nvme_do_delete_ctrl(ctrl);
238 nvme_put_ctrl(ctrl);
239 }
240
nvme_error_status(u16 status)241 static blk_status_t nvme_error_status(u16 status)
242 {
243 switch (status & 0x7ff) {
244 case NVME_SC_SUCCESS:
245 return BLK_STS_OK;
246 case NVME_SC_CAP_EXCEEDED:
247 return BLK_STS_NOSPC;
248 case NVME_SC_LBA_RANGE:
249 case NVME_SC_CMD_INTERRUPTED:
250 case NVME_SC_NS_NOT_READY:
251 return BLK_STS_TARGET;
252 case NVME_SC_BAD_ATTRIBUTES:
253 case NVME_SC_ONCS_NOT_SUPPORTED:
254 case NVME_SC_INVALID_OPCODE:
255 case NVME_SC_INVALID_FIELD:
256 case NVME_SC_INVALID_NS:
257 return BLK_STS_NOTSUPP;
258 case NVME_SC_WRITE_FAULT:
259 case NVME_SC_READ_ERROR:
260 case NVME_SC_UNWRITTEN_BLOCK:
261 case NVME_SC_ACCESS_DENIED:
262 case NVME_SC_READ_ONLY:
263 case NVME_SC_COMPARE_FAILED:
264 return BLK_STS_MEDIUM;
265 case NVME_SC_GUARD_CHECK:
266 case NVME_SC_APPTAG_CHECK:
267 case NVME_SC_REFTAG_CHECK:
268 case NVME_SC_INVALID_PI:
269 return BLK_STS_PROTECTION;
270 case NVME_SC_RESERVATION_CONFLICT:
271 return BLK_STS_NEXUS;
272 case NVME_SC_HOST_PATH_ERROR:
273 return BLK_STS_TRANSPORT;
274 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
275 return BLK_STS_ZONE_ACTIVE_RESOURCE;
276 case NVME_SC_ZONE_TOO_MANY_OPEN:
277 return BLK_STS_ZONE_OPEN_RESOURCE;
278 default:
279 return BLK_STS_IOERR;
280 }
281 }
282
nvme_retry_req(struct request * req)283 static void nvme_retry_req(struct request *req)
284 {
285 unsigned long delay = 0;
286 u16 crd;
287
288 /* The mask and shift result must be <= 3 */
289 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
290 if (crd)
291 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
292
293 nvme_req(req)->retries++;
294 blk_mq_requeue_request(req, false);
295 blk_mq_delay_kick_requeue_list(req->q, delay);
296 }
297
nvme_log_error(struct request * req)298 static void nvme_log_error(struct request *req)
299 {
300 struct nvme_ns *ns = req->q->queuedata;
301 struct nvme_request *nr = nvme_req(req);
302
303 if (ns) {
304 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
305 ns->disk ? ns->disk->disk_name : "?",
306 nvme_get_opcode_str(nr->cmd->common.opcode),
307 nr->cmd->common.opcode,
308 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
309 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
310 nvme_get_error_status_str(nr->status),
311 nr->status >> 8 & 7, /* Status Code Type */
312 nr->status & 0xff, /* Status Code */
313 nr->status & NVME_SC_MORE ? "MORE " : "",
314 nr->status & NVME_SC_DNR ? "DNR " : "");
315 return;
316 }
317
318 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
319 dev_name(nr->ctrl->device),
320 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
321 nr->cmd->common.opcode,
322 nvme_get_error_status_str(nr->status),
323 nr->status >> 8 & 7, /* Status Code Type */
324 nr->status & 0xff, /* Status Code */
325 nr->status & NVME_SC_MORE ? "MORE " : "",
326 nr->status & NVME_SC_DNR ? "DNR " : "");
327 }
328
329 enum nvme_disposition {
330 COMPLETE,
331 RETRY,
332 FAILOVER,
333 };
334
nvme_decide_disposition(struct request * req)335 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
336 {
337 if (likely(nvme_req(req)->status == 0))
338 return COMPLETE;
339
340 if (blk_noretry_request(req) ||
341 (nvme_req(req)->status & NVME_SC_DNR) ||
342 nvme_req(req)->retries >= nvme_max_retries)
343 return COMPLETE;
344
345 if (req->cmd_flags & REQ_NVME_MPATH) {
346 if (nvme_is_path_error(nvme_req(req)->status) ||
347 blk_queue_dying(req->q))
348 return FAILOVER;
349 } else {
350 if (blk_queue_dying(req->q))
351 return COMPLETE;
352 }
353
354 return RETRY;
355 }
356
nvme_end_req_zoned(struct request * req)357 static inline void nvme_end_req_zoned(struct request *req)
358 {
359 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
360 req_op(req) == REQ_OP_ZONE_APPEND)
361 req->__sector = nvme_lba_to_sect(req->q->queuedata,
362 le64_to_cpu(nvme_req(req)->result.u64));
363 }
364
nvme_end_req(struct request * req)365 static inline void nvme_end_req(struct request *req)
366 {
367 blk_status_t status = nvme_error_status(nvme_req(req)->status);
368
369 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
370 nvme_log_error(req);
371 nvme_end_req_zoned(req);
372 nvme_trace_bio_complete(req);
373 blk_mq_end_request(req, status);
374 }
375
nvme_complete_rq(struct request * req)376 void nvme_complete_rq(struct request *req)
377 {
378 trace_nvme_complete_rq(req);
379 nvme_cleanup_cmd(req);
380
381 if (nvme_req(req)->ctrl->kas)
382 nvme_req(req)->ctrl->comp_seen = true;
383
384 switch (nvme_decide_disposition(req)) {
385 case COMPLETE:
386 nvme_end_req(req);
387 return;
388 case RETRY:
389 nvme_retry_req(req);
390 return;
391 case FAILOVER:
392 nvme_failover_req(req);
393 return;
394 }
395 }
396 EXPORT_SYMBOL_GPL(nvme_complete_rq);
397
nvme_complete_batch_req(struct request * req)398 void nvme_complete_batch_req(struct request *req)
399 {
400 trace_nvme_complete_rq(req);
401 nvme_cleanup_cmd(req);
402 nvme_end_req_zoned(req);
403 }
404 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
405
406 /*
407 * Called to unwind from ->queue_rq on a failed command submission so that the
408 * multipathing code gets called to potentially failover to another path.
409 * The caller needs to unwind all transport specific resource allocations and
410 * must return propagate the return value.
411 */
nvme_host_path_error(struct request * req)412 blk_status_t nvme_host_path_error(struct request *req)
413 {
414 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
415 blk_mq_set_request_complete(req);
416 nvme_complete_rq(req);
417 return BLK_STS_OK;
418 }
419 EXPORT_SYMBOL_GPL(nvme_host_path_error);
420
nvme_cancel_request(struct request * req,void * data,bool reserved)421 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
422 {
423 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
424 "Cancelling I/O %d", req->tag);
425
426 /* don't abort one completed request */
427 if (blk_mq_request_completed(req))
428 return true;
429
430 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
431 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
432 blk_mq_complete_request(req);
433 return true;
434 }
435 EXPORT_SYMBOL_GPL(nvme_cancel_request);
436
nvme_cancel_tagset(struct nvme_ctrl * ctrl)437 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
438 {
439 if (ctrl->tagset) {
440 blk_mq_tagset_busy_iter(ctrl->tagset,
441 nvme_cancel_request, ctrl);
442 blk_mq_tagset_wait_completed_request(ctrl->tagset);
443 }
444 }
445 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
446
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)447 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
448 {
449 if (ctrl->admin_tagset) {
450 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
451 nvme_cancel_request, ctrl);
452 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
453 }
454 }
455 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
456
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)457 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
458 enum nvme_ctrl_state new_state)
459 {
460 enum nvme_ctrl_state old_state;
461 unsigned long flags;
462 bool changed = false;
463
464 spin_lock_irqsave(&ctrl->lock, flags);
465
466 old_state = ctrl->state;
467 switch (new_state) {
468 case NVME_CTRL_LIVE:
469 switch (old_state) {
470 case NVME_CTRL_NEW:
471 case NVME_CTRL_RESETTING:
472 case NVME_CTRL_CONNECTING:
473 changed = true;
474 fallthrough;
475 default:
476 break;
477 }
478 break;
479 case NVME_CTRL_RESETTING:
480 switch (old_state) {
481 case NVME_CTRL_NEW:
482 case NVME_CTRL_LIVE:
483 changed = true;
484 fallthrough;
485 default:
486 break;
487 }
488 break;
489 case NVME_CTRL_CONNECTING:
490 switch (old_state) {
491 case NVME_CTRL_NEW:
492 case NVME_CTRL_RESETTING:
493 changed = true;
494 fallthrough;
495 default:
496 break;
497 }
498 break;
499 case NVME_CTRL_DELETING:
500 switch (old_state) {
501 case NVME_CTRL_LIVE:
502 case NVME_CTRL_RESETTING:
503 case NVME_CTRL_CONNECTING:
504 changed = true;
505 fallthrough;
506 default:
507 break;
508 }
509 break;
510 case NVME_CTRL_DELETING_NOIO:
511 switch (old_state) {
512 case NVME_CTRL_DELETING:
513 case NVME_CTRL_DEAD:
514 changed = true;
515 fallthrough;
516 default:
517 break;
518 }
519 break;
520 case NVME_CTRL_DEAD:
521 switch (old_state) {
522 case NVME_CTRL_DELETING:
523 changed = true;
524 fallthrough;
525 default:
526 break;
527 }
528 break;
529 default:
530 break;
531 }
532
533 if (changed) {
534 ctrl->state = new_state;
535 wake_up_all(&ctrl->state_wq);
536 }
537
538 spin_unlock_irqrestore(&ctrl->lock, flags);
539 if (!changed)
540 return false;
541
542 if (ctrl->state == NVME_CTRL_LIVE) {
543 if (old_state == NVME_CTRL_CONNECTING)
544 nvme_stop_failfast_work(ctrl);
545 nvme_kick_requeue_lists(ctrl);
546 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
547 old_state == NVME_CTRL_RESETTING) {
548 nvme_start_failfast_work(ctrl);
549 }
550 return changed;
551 }
552 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
553
554 /*
555 * Returns true for sink states that can't ever transition back to live.
556 */
nvme_state_terminal(struct nvme_ctrl * ctrl)557 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
558 {
559 switch (ctrl->state) {
560 case NVME_CTRL_NEW:
561 case NVME_CTRL_LIVE:
562 case NVME_CTRL_RESETTING:
563 case NVME_CTRL_CONNECTING:
564 return false;
565 case NVME_CTRL_DELETING:
566 case NVME_CTRL_DELETING_NOIO:
567 case NVME_CTRL_DEAD:
568 return true;
569 default:
570 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
571 return true;
572 }
573 }
574
575 /*
576 * Waits for the controller state to be resetting, or returns false if it is
577 * not possible to ever transition to that state.
578 */
nvme_wait_reset(struct nvme_ctrl * ctrl)579 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
580 {
581 wait_event(ctrl->state_wq,
582 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
583 nvme_state_terminal(ctrl));
584 return ctrl->state == NVME_CTRL_RESETTING;
585 }
586 EXPORT_SYMBOL_GPL(nvme_wait_reset);
587
nvme_free_ns_head(struct kref * ref)588 static void nvme_free_ns_head(struct kref *ref)
589 {
590 struct nvme_ns_head *head =
591 container_of(ref, struct nvme_ns_head, ref);
592
593 nvme_mpath_remove_disk(head);
594 ida_free(&head->subsys->ns_ida, head->instance);
595 cleanup_srcu_struct(&head->srcu);
596 nvme_put_subsystem(head->subsys);
597 kfree(head);
598 }
599
nvme_tryget_ns_head(struct nvme_ns_head * head)600 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
601 {
602 return kref_get_unless_zero(&head->ref);
603 }
604
nvme_put_ns_head(struct nvme_ns_head * head)605 void nvme_put_ns_head(struct nvme_ns_head *head)
606 {
607 kref_put(&head->ref, nvme_free_ns_head);
608 }
609
nvme_free_ns(struct kref * kref)610 static void nvme_free_ns(struct kref *kref)
611 {
612 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
613
614 put_disk(ns->disk);
615 nvme_put_ns_head(ns->head);
616 nvme_put_ctrl(ns->ctrl);
617 kfree(ns);
618 }
619
nvme_get_ns(struct nvme_ns * ns)620 static inline bool nvme_get_ns(struct nvme_ns *ns)
621 {
622 return kref_get_unless_zero(&ns->kref);
623 }
624
nvme_put_ns(struct nvme_ns * ns)625 void nvme_put_ns(struct nvme_ns *ns)
626 {
627 kref_put(&ns->kref, nvme_free_ns);
628 }
629 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
630
nvme_clear_nvme_request(struct request * req)631 static inline void nvme_clear_nvme_request(struct request *req)
632 {
633 nvme_req(req)->status = 0;
634 nvme_req(req)->retries = 0;
635 nvme_req(req)->flags = 0;
636 req->rq_flags |= RQF_DONTPREP;
637 }
638
639 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)640 void nvme_init_request(struct request *req, struct nvme_command *cmd)
641 {
642 if (req->q->queuedata)
643 req->timeout = NVME_IO_TIMEOUT;
644 else /* no queuedata implies admin queue */
645 req->timeout = NVME_ADMIN_TIMEOUT;
646
647 /* passthru commands should let the driver set the SGL flags */
648 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
649
650 req->cmd_flags |= REQ_FAILFAST_DRIVER;
651 if (req->mq_hctx->type == HCTX_TYPE_POLL)
652 req->cmd_flags |= REQ_POLLED;
653 nvme_clear_nvme_request(req);
654 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
655 }
656 EXPORT_SYMBOL_GPL(nvme_init_request);
657
658 /*
659 * For something we're not in a state to send to the device the default action
660 * is to busy it and retry it after the controller state is recovered. However,
661 * if the controller is deleting or if anything is marked for failfast or
662 * nvme multipath it is immediately failed.
663 *
664 * Note: commands used to initialize the controller will be marked for failfast.
665 * Note: nvme cli/ioctl commands are marked for failfast.
666 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)667 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
668 struct request *rq)
669 {
670 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
671 ctrl->state != NVME_CTRL_DELETING &&
672 ctrl->state != NVME_CTRL_DEAD &&
673 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
674 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
675 return BLK_STS_RESOURCE;
676 return nvme_host_path_error(rq);
677 }
678 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
679
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)680 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
681 bool queue_live)
682 {
683 struct nvme_request *req = nvme_req(rq);
684
685 /*
686 * currently we have a problem sending passthru commands
687 * on the admin_q if the controller is not LIVE because we can't
688 * make sure that they are going out after the admin connect,
689 * controller enable and/or other commands in the initialization
690 * sequence. until the controller will be LIVE, fail with
691 * BLK_STS_RESOURCE so that they will be rescheduled.
692 */
693 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
694 return false;
695
696 if (ctrl->ops->flags & NVME_F_FABRICS) {
697 /*
698 * Only allow commands on a live queue, except for the connect
699 * command, which is require to set the queue live in the
700 * appropinquate states.
701 */
702 switch (ctrl->state) {
703 case NVME_CTRL_CONNECTING:
704 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
705 req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
706 return true;
707 break;
708 default:
709 break;
710 case NVME_CTRL_DEAD:
711 return false;
712 }
713 }
714
715 return queue_live;
716 }
717 EXPORT_SYMBOL_GPL(__nvme_check_ready);
718
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)719 static inline void nvme_setup_flush(struct nvme_ns *ns,
720 struct nvme_command *cmnd)
721 {
722 memset(cmnd, 0, sizeof(*cmnd));
723 cmnd->common.opcode = nvme_cmd_flush;
724 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
725 }
726
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)727 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
728 struct nvme_command *cmnd)
729 {
730 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
731 struct nvme_dsm_range *range;
732 struct bio *bio;
733
734 /*
735 * Some devices do not consider the DSM 'Number of Ranges' field when
736 * determining how much data to DMA. Always allocate memory for maximum
737 * number of segments to prevent device reading beyond end of buffer.
738 */
739 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
740
741 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
742 if (!range) {
743 /*
744 * If we fail allocation our range, fallback to the controller
745 * discard page. If that's also busy, it's safe to return
746 * busy, as we know we can make progress once that's freed.
747 */
748 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
749 return BLK_STS_RESOURCE;
750
751 range = page_address(ns->ctrl->discard_page);
752 }
753
754 __rq_for_each_bio(bio, req) {
755 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
756 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
757
758 if (n < segments) {
759 range[n].cattr = cpu_to_le32(0);
760 range[n].nlb = cpu_to_le32(nlb);
761 range[n].slba = cpu_to_le64(slba);
762 }
763 n++;
764 }
765
766 if (WARN_ON_ONCE(n != segments)) {
767 if (virt_to_page(range) == ns->ctrl->discard_page)
768 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
769 else
770 kfree(range);
771 return BLK_STS_IOERR;
772 }
773
774 memset(cmnd, 0, sizeof(*cmnd));
775 cmnd->dsm.opcode = nvme_cmd_dsm;
776 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
777 cmnd->dsm.nr = cpu_to_le32(segments - 1);
778 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
779
780 req->special_vec.bv_page = virt_to_page(range);
781 req->special_vec.bv_offset = offset_in_page(range);
782 req->special_vec.bv_len = alloc_size;
783 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
784
785 return BLK_STS_OK;
786 }
787
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)788 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
789 struct request *req)
790 {
791 u32 upper, lower;
792 u64 ref48;
793
794 /* both rw and write zeroes share the same reftag format */
795 switch (ns->guard_type) {
796 case NVME_NVM_NS_16B_GUARD:
797 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
798 break;
799 case NVME_NVM_NS_64B_GUARD:
800 ref48 = ext_pi_ref_tag(req);
801 lower = lower_32_bits(ref48);
802 upper = upper_32_bits(ref48);
803
804 cmnd->rw.reftag = cpu_to_le32(lower);
805 cmnd->rw.cdw3 = cpu_to_le32(upper);
806 break;
807 default:
808 break;
809 }
810 }
811
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)812 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
813 struct request *req, struct nvme_command *cmnd)
814 {
815 memset(cmnd, 0, sizeof(*cmnd));
816
817 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
818 return nvme_setup_discard(ns, req, cmnd);
819
820 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
821 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
822 cmnd->write_zeroes.slba =
823 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
824 cmnd->write_zeroes.length =
825 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
826
827 if (nvme_ns_has_pi(ns)) {
828 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
829
830 switch (ns->pi_type) {
831 case NVME_NS_DPS_PI_TYPE1:
832 case NVME_NS_DPS_PI_TYPE2:
833 nvme_set_ref_tag(ns, cmnd, req);
834 break;
835 }
836 }
837
838 return BLK_STS_OK;
839 }
840
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)841 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
842 struct request *req, struct nvme_command *cmnd,
843 enum nvme_opcode op)
844 {
845 u16 control = 0;
846 u32 dsmgmt = 0;
847
848 if (req->cmd_flags & REQ_FUA)
849 control |= NVME_RW_FUA;
850 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
851 control |= NVME_RW_LR;
852
853 if (req->cmd_flags & REQ_RAHEAD)
854 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
855
856 cmnd->rw.opcode = op;
857 cmnd->rw.flags = 0;
858 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
859 cmnd->rw.cdw2 = 0;
860 cmnd->rw.cdw3 = 0;
861 cmnd->rw.metadata = 0;
862 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
863 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
864 cmnd->rw.reftag = 0;
865 cmnd->rw.apptag = 0;
866 cmnd->rw.appmask = 0;
867
868 if (ns->ms) {
869 /*
870 * If formated with metadata, the block layer always provides a
871 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
872 * we enable the PRACT bit for protection information or set the
873 * namespace capacity to zero to prevent any I/O.
874 */
875 if (!blk_integrity_rq(req)) {
876 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
877 return BLK_STS_NOTSUPP;
878 control |= NVME_RW_PRINFO_PRACT;
879 }
880
881 switch (ns->pi_type) {
882 case NVME_NS_DPS_PI_TYPE3:
883 control |= NVME_RW_PRINFO_PRCHK_GUARD;
884 break;
885 case NVME_NS_DPS_PI_TYPE1:
886 case NVME_NS_DPS_PI_TYPE2:
887 control |= NVME_RW_PRINFO_PRCHK_GUARD |
888 NVME_RW_PRINFO_PRCHK_REF;
889 if (op == nvme_cmd_zone_append)
890 control |= NVME_RW_APPEND_PIREMAP;
891 nvme_set_ref_tag(ns, cmnd, req);
892 break;
893 }
894 }
895
896 cmnd->rw.control = cpu_to_le16(control);
897 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
898 return 0;
899 }
900
nvme_cleanup_cmd(struct request * req)901 void nvme_cleanup_cmd(struct request *req)
902 {
903 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
904 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
905
906 if (req->special_vec.bv_page == ctrl->discard_page)
907 clear_bit_unlock(0, &ctrl->discard_page_busy);
908 else
909 kfree(bvec_virt(&req->special_vec));
910 }
911 }
912 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
913
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)914 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
915 {
916 struct nvme_command *cmd = nvme_req(req)->cmd;
917 blk_status_t ret = BLK_STS_OK;
918
919 if (!(req->rq_flags & RQF_DONTPREP))
920 nvme_clear_nvme_request(req);
921
922 switch (req_op(req)) {
923 case REQ_OP_DRV_IN:
924 case REQ_OP_DRV_OUT:
925 /* these are setup prior to execution in nvme_init_request() */
926 break;
927 case REQ_OP_FLUSH:
928 nvme_setup_flush(ns, cmd);
929 break;
930 case REQ_OP_ZONE_RESET_ALL:
931 case REQ_OP_ZONE_RESET:
932 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
933 break;
934 case REQ_OP_ZONE_OPEN:
935 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
936 break;
937 case REQ_OP_ZONE_CLOSE:
938 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
939 break;
940 case REQ_OP_ZONE_FINISH:
941 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
942 break;
943 case REQ_OP_WRITE_ZEROES:
944 ret = nvme_setup_write_zeroes(ns, req, cmd);
945 break;
946 case REQ_OP_DISCARD:
947 ret = nvme_setup_discard(ns, req, cmd);
948 break;
949 case REQ_OP_READ:
950 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
951 break;
952 case REQ_OP_WRITE:
953 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
954 break;
955 case REQ_OP_ZONE_APPEND:
956 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
957 break;
958 default:
959 WARN_ON_ONCE(1);
960 return BLK_STS_IOERR;
961 }
962
963 cmd->common.command_id = nvme_cid(req);
964 trace_nvme_setup_cmd(req, cmd);
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
968
969 /*
970 * Return values:
971 * 0: success
972 * >0: nvme controller's cqe status response
973 * <0: kernel error in lieu of controller response
974 */
nvme_execute_rq(struct request * rq,bool at_head)975 static int nvme_execute_rq(struct request *rq, bool at_head)
976 {
977 blk_status_t status;
978
979 status = blk_execute_rq(rq, at_head);
980 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
981 return -EINTR;
982 if (nvme_req(rq)->status)
983 return nvme_req(rq)->status;
984 return blk_status_to_errno(status);
985 }
986
987 /*
988 * Returns 0 on success. If the result is negative, it's a Linux error code;
989 * if the result is positive, it's an NVM Express status code
990 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags)991 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
992 union nvme_result *result, void *buffer, unsigned bufflen,
993 unsigned timeout, int qid, int at_head,
994 blk_mq_req_flags_t flags)
995 {
996 struct request *req;
997 int ret;
998
999 if (qid == NVME_QID_ANY)
1000 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1001 else
1002 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1003 qid ? qid - 1 : 0);
1004
1005 if (IS_ERR(req))
1006 return PTR_ERR(req);
1007 nvme_init_request(req, cmd);
1008
1009 if (timeout)
1010 req->timeout = timeout;
1011
1012 if (buffer && bufflen) {
1013 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1014 if (ret)
1015 goto out;
1016 }
1017
1018 req->rq_flags |= RQF_QUIET;
1019 ret = nvme_execute_rq(req, at_head);
1020 if (result && ret >= 0)
1021 *result = nvme_req(req)->result;
1022 out:
1023 blk_mq_free_request(req);
1024 return ret;
1025 }
1026 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1027
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1028 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1029 void *buffer, unsigned bufflen)
1030 {
1031 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1032 NVME_QID_ANY, 0, 0);
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1035
nvme_known_admin_effects(u8 opcode)1036 static u32 nvme_known_admin_effects(u8 opcode)
1037 {
1038 switch (opcode) {
1039 case nvme_admin_format_nvm:
1040 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1041 NVME_CMD_EFFECTS_CSE_MASK;
1042 case nvme_admin_sanitize_nvm:
1043 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1044 default:
1045 break;
1046 }
1047 return 0;
1048 }
1049
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1050 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1051 {
1052 u32 effects = 0;
1053
1054 if (ns) {
1055 if (ns->head->effects)
1056 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1057 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1058 dev_warn_once(ctrl->device,
1059 "IO command:%02x has unhandled effects:%08x\n",
1060 opcode, effects);
1061 return 0;
1062 }
1063
1064 if (ctrl->effects)
1065 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1066 effects |= nvme_known_admin_effects(opcode);
1067
1068 return effects;
1069 }
1070 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1071
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1072 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1073 u8 opcode)
1074 {
1075 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1076
1077 /*
1078 * For simplicity, IO to all namespaces is quiesced even if the command
1079 * effects say only one namespace is affected.
1080 */
1081 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1082 mutex_lock(&ctrl->scan_lock);
1083 mutex_lock(&ctrl->subsys->lock);
1084 nvme_mpath_start_freeze(ctrl->subsys);
1085 nvme_mpath_wait_freeze(ctrl->subsys);
1086 nvme_start_freeze(ctrl);
1087 nvme_wait_freeze(ctrl);
1088 }
1089 return effects;
1090 }
1091
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects,struct nvme_command * cmd,int status)1092 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1093 struct nvme_command *cmd, int status)
1094 {
1095 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1096 nvme_unfreeze(ctrl);
1097 nvme_mpath_unfreeze(ctrl->subsys);
1098 mutex_unlock(&ctrl->subsys->lock);
1099 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1100 mutex_unlock(&ctrl->scan_lock);
1101 }
1102 if (effects & NVME_CMD_EFFECTS_CCC)
1103 nvme_init_ctrl_finish(ctrl);
1104 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1105 nvme_queue_scan(ctrl);
1106 flush_work(&ctrl->scan_work);
1107 }
1108
1109 switch (cmd->common.opcode) {
1110 case nvme_admin_set_features:
1111 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1112 case NVME_FEAT_KATO:
1113 /*
1114 * Keep alive commands interval on the host should be
1115 * updated when KATO is modified by Set Features
1116 * commands.
1117 */
1118 if (!status)
1119 nvme_update_keep_alive(ctrl, cmd);
1120 break;
1121 default:
1122 break;
1123 }
1124 break;
1125 default:
1126 break;
1127 }
1128 }
1129
nvme_execute_passthru_rq(struct request * rq)1130 int nvme_execute_passthru_rq(struct request *rq)
1131 {
1132 struct nvme_command *cmd = nvme_req(rq)->cmd;
1133 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1134 struct nvme_ns *ns = rq->q->queuedata;
1135 u32 effects;
1136 int ret;
1137
1138 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1139 ret = nvme_execute_rq(rq, false);
1140 if (effects) /* nothing to be done for zero cmd effects */
1141 nvme_passthru_end(ctrl, effects, cmd, ret);
1142
1143 return ret;
1144 }
1145 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1146
1147 /*
1148 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1149 *
1150 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1151 * accounting for transport roundtrip times [..].
1152 */
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1153 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1154 {
1155 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1156 }
1157
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1158 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1159 {
1160 struct nvme_ctrl *ctrl = rq->end_io_data;
1161 unsigned long flags;
1162 bool startka = false;
1163
1164 blk_mq_free_request(rq);
1165
1166 if (status) {
1167 dev_err(ctrl->device,
1168 "failed nvme_keep_alive_end_io error=%d\n",
1169 status);
1170 return;
1171 }
1172
1173 ctrl->comp_seen = false;
1174 spin_lock_irqsave(&ctrl->lock, flags);
1175 if (ctrl->state == NVME_CTRL_LIVE ||
1176 ctrl->state == NVME_CTRL_CONNECTING)
1177 startka = true;
1178 spin_unlock_irqrestore(&ctrl->lock, flags);
1179 if (startka)
1180 nvme_queue_keep_alive_work(ctrl);
1181 }
1182
nvme_keep_alive_work(struct work_struct * work)1183 static void nvme_keep_alive_work(struct work_struct *work)
1184 {
1185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1186 struct nvme_ctrl, ka_work);
1187 bool comp_seen = ctrl->comp_seen;
1188 struct request *rq;
1189
1190 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1191 dev_dbg(ctrl->device,
1192 "reschedule traffic based keep-alive timer\n");
1193 ctrl->comp_seen = false;
1194 nvme_queue_keep_alive_work(ctrl);
1195 return;
1196 }
1197
1198 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1199 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1200 if (IS_ERR(rq)) {
1201 /* allocation failure, reset the controller */
1202 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1203 nvme_reset_ctrl(ctrl);
1204 return;
1205 }
1206 nvme_init_request(rq, &ctrl->ka_cmd);
1207
1208 rq->timeout = ctrl->kato * HZ;
1209 rq->end_io = nvme_keep_alive_end_io;
1210 rq->end_io_data = ctrl;
1211 rq->rq_flags |= RQF_QUIET;
1212 blk_execute_rq_nowait(rq, false);
1213 }
1214
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1215 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1216 {
1217 if (unlikely(ctrl->kato == 0))
1218 return;
1219
1220 nvme_queue_keep_alive_work(ctrl);
1221 }
1222
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1223 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1224 {
1225 if (unlikely(ctrl->kato == 0))
1226 return;
1227
1228 cancel_delayed_work_sync(&ctrl->ka_work);
1229 }
1230 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1231
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1232 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1233 struct nvme_command *cmd)
1234 {
1235 unsigned int new_kato =
1236 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1237
1238 dev_info(ctrl->device,
1239 "keep alive interval updated from %u ms to %u ms\n",
1240 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1241
1242 nvme_stop_keep_alive(ctrl);
1243 ctrl->kato = new_kato;
1244 nvme_start_keep_alive(ctrl);
1245 }
1246
1247 /*
1248 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1249 * flag, thus sending any new CNS opcodes has a big chance of not working.
1250 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1251 * (but not for any later version).
1252 */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1253 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1254 {
1255 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1256 return ctrl->vs < NVME_VS(1, 2, 0);
1257 return ctrl->vs < NVME_VS(1, 1, 0);
1258 }
1259
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1260 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1261 {
1262 struct nvme_command c = { };
1263 int error;
1264
1265 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1266 c.identify.opcode = nvme_admin_identify;
1267 c.identify.cns = NVME_ID_CNS_CTRL;
1268
1269 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1270 if (!*id)
1271 return -ENOMEM;
1272
1273 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1274 sizeof(struct nvme_id_ctrl));
1275 if (error)
1276 kfree(*id);
1277 return error;
1278 }
1279
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1280 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1281 struct nvme_ns_id_desc *cur, bool *csi_seen)
1282 {
1283 const char *warn_str = "ctrl returned bogus length:";
1284 void *data = cur;
1285
1286 switch (cur->nidt) {
1287 case NVME_NIDT_EUI64:
1288 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1289 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1290 warn_str, cur->nidl);
1291 return -1;
1292 }
1293 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1294 return NVME_NIDT_EUI64_LEN;
1295 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1296 return NVME_NIDT_EUI64_LEN;
1297 case NVME_NIDT_NGUID:
1298 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1299 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1300 warn_str, cur->nidl);
1301 return -1;
1302 }
1303 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1304 return NVME_NIDT_NGUID_LEN;
1305 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1306 return NVME_NIDT_NGUID_LEN;
1307 case NVME_NIDT_UUID:
1308 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1309 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1310 warn_str, cur->nidl);
1311 return -1;
1312 }
1313 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1314 return NVME_NIDT_UUID_LEN;
1315 uuid_copy(&ids->uuid, data + sizeof(*cur));
1316 return NVME_NIDT_UUID_LEN;
1317 case NVME_NIDT_CSI:
1318 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1319 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1320 warn_str, cur->nidl);
1321 return -1;
1322 }
1323 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1324 *csi_seen = true;
1325 return NVME_NIDT_CSI_LEN;
1326 default:
1327 /* Skip unknown types */
1328 return cur->nidl;
1329 }
1330 }
1331
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)1332 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1333 struct nvme_ns_ids *ids)
1334 {
1335 struct nvme_command c = { };
1336 bool csi_seen = false;
1337 int status, pos, len;
1338 void *data;
1339
1340 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1341 return 0;
1342 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1343 return 0;
1344
1345 c.identify.opcode = nvme_admin_identify;
1346 c.identify.nsid = cpu_to_le32(nsid);
1347 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1348
1349 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1350 if (!data)
1351 return -ENOMEM;
1352
1353 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1354 NVME_IDENTIFY_DATA_SIZE);
1355 if (status) {
1356 dev_warn(ctrl->device,
1357 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1358 nsid, status);
1359 goto free_data;
1360 }
1361
1362 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1363 struct nvme_ns_id_desc *cur = data + pos;
1364
1365 if (cur->nidl == 0)
1366 break;
1367
1368 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1369 if (len < 0)
1370 break;
1371
1372 len += sizeof(*cur);
1373 }
1374
1375 if (nvme_multi_css(ctrl) && !csi_seen) {
1376 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1377 nsid);
1378 status = -EINVAL;
1379 }
1380
1381 free_data:
1382 kfree(data);
1383 return status;
1384 }
1385
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids,struct nvme_id_ns ** id)1386 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1387 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1388 {
1389 struct nvme_command c = { };
1390 int error;
1391
1392 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1393 c.identify.opcode = nvme_admin_identify;
1394 c.identify.nsid = cpu_to_le32(nsid);
1395 c.identify.cns = NVME_ID_CNS_NS;
1396
1397 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1398 if (!*id)
1399 return -ENOMEM;
1400
1401 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1402 if (error) {
1403 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1404 goto out_free_id;
1405 }
1406
1407 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1408 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1409 goto out_free_id;
1410
1411
1412 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1413 dev_info(ctrl->device,
1414 "Ignoring bogus Namespace Identifiers\n");
1415 } else {
1416 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1417 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1418 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1419 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1420 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1421 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1422 }
1423
1424 return 0;
1425
1426 out_free_id:
1427 kfree(*id);
1428 return error;
1429 }
1430
nvme_identify_ns_cs_indep(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns_cs_indep ** id)1431 static int nvme_identify_ns_cs_indep(struct nvme_ctrl *ctrl, unsigned nsid,
1432 struct nvme_id_ns_cs_indep **id)
1433 {
1434 struct nvme_command c = {
1435 .identify.opcode = nvme_admin_identify,
1436 .identify.nsid = cpu_to_le32(nsid),
1437 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1438 };
1439 int ret;
1440
1441 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1442 if (!*id)
1443 return -ENOMEM;
1444
1445 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1446 if (ret) {
1447 dev_warn(ctrl->device,
1448 "Identify namespace (CS independent) failed (%d)\n",
1449 ret);
1450 kfree(*id);
1451 return ret;
1452 }
1453
1454 return 0;
1455 }
1456
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1457 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1458 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1459 {
1460 union nvme_result res = { 0 };
1461 struct nvme_command c = { };
1462 int ret;
1463
1464 c.features.opcode = op;
1465 c.features.fid = cpu_to_le32(fid);
1466 c.features.dword11 = cpu_to_le32(dword11);
1467
1468 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1469 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1470 if (ret >= 0 && result)
1471 *result = le32_to_cpu(res.u32);
1472 return ret;
1473 }
1474
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1475 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1476 unsigned int dword11, void *buffer, size_t buflen,
1477 u32 *result)
1478 {
1479 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1480 buflen, result);
1481 }
1482 EXPORT_SYMBOL_GPL(nvme_set_features);
1483
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1484 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1485 unsigned int dword11, void *buffer, size_t buflen,
1486 u32 *result)
1487 {
1488 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1489 buflen, result);
1490 }
1491 EXPORT_SYMBOL_GPL(nvme_get_features);
1492
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1493 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1494 {
1495 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1496 u32 result;
1497 int status, nr_io_queues;
1498
1499 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1500 &result);
1501 if (status < 0)
1502 return status;
1503
1504 /*
1505 * Degraded controllers might return an error when setting the queue
1506 * count. We still want to be able to bring them online and offer
1507 * access to the admin queue, as that might be only way to fix them up.
1508 */
1509 if (status > 0) {
1510 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1511 *count = 0;
1512 } else {
1513 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1514 *count = min(*count, nr_io_queues);
1515 }
1516
1517 return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1520
1521 #define NVME_AEN_SUPPORTED \
1522 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1523 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1524
nvme_enable_aen(struct nvme_ctrl * ctrl)1525 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1526 {
1527 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1528 int status;
1529
1530 if (!supported_aens)
1531 return;
1532
1533 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1534 NULL, 0, &result);
1535 if (status)
1536 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1537 supported_aens);
1538
1539 queue_work(nvme_wq, &ctrl->async_event_work);
1540 }
1541
nvme_ns_open(struct nvme_ns * ns)1542 static int nvme_ns_open(struct nvme_ns *ns)
1543 {
1544
1545 /* should never be called due to GENHD_FL_HIDDEN */
1546 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1547 goto fail;
1548 if (!nvme_get_ns(ns))
1549 goto fail;
1550 if (!try_module_get(ns->ctrl->ops->module))
1551 goto fail_put_ns;
1552
1553 return 0;
1554
1555 fail_put_ns:
1556 nvme_put_ns(ns);
1557 fail:
1558 return -ENXIO;
1559 }
1560
nvme_ns_release(struct nvme_ns * ns)1561 static void nvme_ns_release(struct nvme_ns *ns)
1562 {
1563
1564 module_put(ns->ctrl->ops->module);
1565 nvme_put_ns(ns);
1566 }
1567
nvme_open(struct block_device * bdev,fmode_t mode)1568 static int nvme_open(struct block_device *bdev, fmode_t mode)
1569 {
1570 return nvme_ns_open(bdev->bd_disk->private_data);
1571 }
1572
nvme_release(struct gendisk * disk,fmode_t mode)1573 static void nvme_release(struct gendisk *disk, fmode_t mode)
1574 {
1575 nvme_ns_release(disk->private_data);
1576 }
1577
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1578 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1579 {
1580 /* some standard values */
1581 geo->heads = 1 << 6;
1582 geo->sectors = 1 << 5;
1583 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1584 return 0;
1585 }
1586
1587 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1588 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1589 u32 max_integrity_segments)
1590 {
1591 struct blk_integrity integrity = { };
1592
1593 switch (ns->pi_type) {
1594 case NVME_NS_DPS_PI_TYPE3:
1595 switch (ns->guard_type) {
1596 case NVME_NVM_NS_16B_GUARD:
1597 integrity.profile = &t10_pi_type3_crc;
1598 integrity.tag_size = sizeof(u16) + sizeof(u32);
1599 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1600 break;
1601 case NVME_NVM_NS_64B_GUARD:
1602 integrity.profile = &ext_pi_type3_crc64;
1603 integrity.tag_size = sizeof(u16) + 6;
1604 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1605 break;
1606 default:
1607 integrity.profile = NULL;
1608 break;
1609 }
1610 break;
1611 case NVME_NS_DPS_PI_TYPE1:
1612 case NVME_NS_DPS_PI_TYPE2:
1613 switch (ns->guard_type) {
1614 case NVME_NVM_NS_16B_GUARD:
1615 integrity.profile = &t10_pi_type1_crc;
1616 integrity.tag_size = sizeof(u16);
1617 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1618 break;
1619 case NVME_NVM_NS_64B_GUARD:
1620 integrity.profile = &ext_pi_type1_crc64;
1621 integrity.tag_size = sizeof(u16);
1622 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1623 break;
1624 default:
1625 integrity.profile = NULL;
1626 break;
1627 }
1628 break;
1629 default:
1630 integrity.profile = NULL;
1631 break;
1632 }
1633
1634 integrity.tuple_size = ns->ms;
1635 blk_integrity_register(disk, &integrity);
1636 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1637 }
1638 #else
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1639 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1640 u32 max_integrity_segments)
1641 {
1642 }
1643 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1644
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1645 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1646 {
1647 struct nvme_ctrl *ctrl = ns->ctrl;
1648 struct request_queue *queue = disk->queue;
1649 u32 size = queue_logical_block_size(queue);
1650
1651 if (ctrl->max_discard_sectors == 0) {
1652 blk_queue_max_discard_sectors(queue, 0);
1653 return;
1654 }
1655
1656 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1657 NVME_DSM_MAX_RANGES);
1658
1659 queue->limits.discard_granularity = size;
1660
1661 /* If discard is already enabled, don't reset queue limits */
1662 if (queue->limits.max_discard_sectors)
1663 return;
1664
1665 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1666 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1667
1668 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1669 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1670
1671 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1672 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1673 }
1674
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1675 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1676 {
1677 return uuid_equal(&a->uuid, &b->uuid) &&
1678 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1679 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1680 a->csi == b->csi;
1681 }
1682
nvme_init_ms(struct nvme_ns * ns,struct nvme_id_ns * id)1683 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1684 {
1685 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1686 unsigned lbaf = nvme_lbaf_index(id->flbas);
1687 struct nvme_ctrl *ctrl = ns->ctrl;
1688 struct nvme_command c = { };
1689 struct nvme_id_ns_nvm *nvm;
1690 int ret = 0;
1691 u32 elbaf;
1692
1693 ns->pi_size = 0;
1694 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1695 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1696 ns->pi_size = sizeof(struct t10_pi_tuple);
1697 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1698 goto set_pi;
1699 }
1700
1701 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1702 if (!nvm)
1703 return -ENOMEM;
1704
1705 c.identify.opcode = nvme_admin_identify;
1706 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1707 c.identify.cns = NVME_ID_CNS_CS_NS;
1708 c.identify.csi = NVME_CSI_NVM;
1709
1710 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1711 if (ret)
1712 goto free_data;
1713
1714 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1715
1716 /* no support for storage tag formats right now */
1717 if (nvme_elbaf_sts(elbaf))
1718 goto free_data;
1719
1720 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1721 switch (ns->guard_type) {
1722 case NVME_NVM_NS_64B_GUARD:
1723 ns->pi_size = sizeof(struct crc64_pi_tuple);
1724 break;
1725 case NVME_NVM_NS_16B_GUARD:
1726 ns->pi_size = sizeof(struct t10_pi_tuple);
1727 break;
1728 default:
1729 break;
1730 }
1731
1732 free_data:
1733 kfree(nvm);
1734 set_pi:
1735 if (ns->pi_size && (first || ns->ms == ns->pi_size))
1736 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1737 else
1738 ns->pi_type = 0;
1739
1740 return ret;
1741 }
1742
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1743 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1744 {
1745 struct nvme_ctrl *ctrl = ns->ctrl;
1746
1747 if (nvme_init_ms(ns, id))
1748 return;
1749
1750 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1751 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1752 return;
1753
1754 if (ctrl->ops->flags & NVME_F_FABRICS) {
1755 /*
1756 * The NVMe over Fabrics specification only supports metadata as
1757 * part of the extended data LBA. We rely on HCA/HBA support to
1758 * remap the separate metadata buffer from the block layer.
1759 */
1760 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1761 return;
1762
1763 ns->features |= NVME_NS_EXT_LBAS;
1764
1765 /*
1766 * The current fabrics transport drivers support namespace
1767 * metadata formats only if nvme_ns_has_pi() returns true.
1768 * Suppress support for all other formats so the namespace will
1769 * have a 0 capacity and not be usable through the block stack.
1770 *
1771 * Note, this check will need to be modified if any drivers
1772 * gain the ability to use other metadata formats.
1773 */
1774 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1775 ns->features |= NVME_NS_METADATA_SUPPORTED;
1776 } else {
1777 /*
1778 * For PCIe controllers, we can't easily remap the separate
1779 * metadata buffer from the block layer and thus require a
1780 * separate metadata buffer for block layer metadata/PI support.
1781 * We allow extended LBAs for the passthrough interface, though.
1782 */
1783 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1784 ns->features |= NVME_NS_EXT_LBAS;
1785 else
1786 ns->features |= NVME_NS_METADATA_SUPPORTED;
1787 }
1788 }
1789
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1790 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1791 struct request_queue *q)
1792 {
1793 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1794
1795 if (ctrl->max_hw_sectors) {
1796 u32 max_segments =
1797 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1798
1799 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1800 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1801 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1802 }
1803 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1804 blk_queue_dma_alignment(q, 3);
1805 blk_queue_write_cache(q, vwc, vwc);
1806 }
1807
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1808 static void nvme_update_disk_info(struct gendisk *disk,
1809 struct nvme_ns *ns, struct nvme_id_ns *id)
1810 {
1811 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1812 unsigned short bs = 1 << ns->lba_shift;
1813 u32 atomic_bs, phys_bs, io_opt = 0;
1814
1815 /*
1816 * The block layer can't support LBA sizes larger than the page size
1817 * yet, so catch this early and don't allow block I/O.
1818 */
1819 if (ns->lba_shift > PAGE_SHIFT) {
1820 capacity = 0;
1821 bs = (1 << 9);
1822 }
1823
1824 blk_integrity_unregister(disk);
1825
1826 atomic_bs = phys_bs = bs;
1827 if (id->nabo == 0) {
1828 /*
1829 * Bit 1 indicates whether NAWUPF is defined for this namespace
1830 * and whether it should be used instead of AWUPF. If NAWUPF ==
1831 * 0 then AWUPF must be used instead.
1832 */
1833 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1834 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1835 else
1836 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1837 }
1838
1839 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1840 /* NPWG = Namespace Preferred Write Granularity */
1841 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1842 /* NOWS = Namespace Optimal Write Size */
1843 io_opt = bs * (1 + le16_to_cpu(id->nows));
1844 }
1845
1846 blk_queue_logical_block_size(disk->queue, bs);
1847 /*
1848 * Linux filesystems assume writing a single physical block is
1849 * an atomic operation. Hence limit the physical block size to the
1850 * value of the Atomic Write Unit Power Fail parameter.
1851 */
1852 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1853 blk_queue_io_min(disk->queue, phys_bs);
1854 blk_queue_io_opt(disk->queue, io_opt);
1855
1856 /*
1857 * Register a metadata profile for PI, or the plain non-integrity NVMe
1858 * metadata masquerading as Type 0 if supported, otherwise reject block
1859 * I/O to namespaces with metadata except when the namespace supports
1860 * PI, as it can strip/insert in that case.
1861 */
1862 if (ns->ms) {
1863 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1864 (ns->features & NVME_NS_METADATA_SUPPORTED))
1865 nvme_init_integrity(disk, ns,
1866 ns->ctrl->max_integrity_segments);
1867 else if (!nvme_ns_has_pi(ns))
1868 capacity = 0;
1869 }
1870
1871 set_capacity_and_notify(disk, capacity);
1872
1873 nvme_config_discard(disk, ns);
1874 blk_queue_max_write_zeroes_sectors(disk->queue,
1875 ns->ctrl->max_zeroes_sectors);
1876 }
1877
nvme_first_scan(struct gendisk * disk)1878 static inline bool nvme_first_scan(struct gendisk *disk)
1879 {
1880 /* nvme_alloc_ns() scans the disk prior to adding it */
1881 return !disk_live(disk);
1882 }
1883
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)1884 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1885 {
1886 struct nvme_ctrl *ctrl = ns->ctrl;
1887 u32 iob;
1888
1889 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1890 is_power_of_2(ctrl->max_hw_sectors))
1891 iob = ctrl->max_hw_sectors;
1892 else
1893 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1894
1895 if (!iob)
1896 return;
1897
1898 if (!is_power_of_2(iob)) {
1899 if (nvme_first_scan(ns->disk))
1900 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1901 ns->disk->disk_name, iob);
1902 return;
1903 }
1904
1905 if (blk_queue_is_zoned(ns->disk->queue)) {
1906 if (nvme_first_scan(ns->disk))
1907 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1908 ns->disk->disk_name);
1909 return;
1910 }
1911
1912 blk_queue_chunk_sectors(ns->queue, iob);
1913 }
1914
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_id_ns * id)1915 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1916 {
1917 unsigned lbaf = nvme_lbaf_index(id->flbas);
1918 int ret;
1919
1920 blk_mq_freeze_queue(ns->disk->queue);
1921 ns->lba_shift = id->lbaf[lbaf].ds;
1922 nvme_set_queue_limits(ns->ctrl, ns->queue);
1923
1924 nvme_configure_metadata(ns, id);
1925 nvme_set_chunk_sectors(ns, id);
1926 nvme_update_disk_info(ns->disk, ns, id);
1927
1928 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1929 ret = nvme_update_zone_info(ns, lbaf);
1930 if (ret) {
1931 blk_mq_unfreeze_queue(ns->disk->queue);
1932 goto out;
1933 }
1934 }
1935
1936 set_disk_ro(ns->disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1937 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1938 set_bit(NVME_NS_READY, &ns->flags);
1939 blk_mq_unfreeze_queue(ns->disk->queue);
1940
1941 if (blk_queue_is_zoned(ns->queue)) {
1942 ret = nvme_revalidate_zones(ns);
1943 if (ret && !nvme_first_scan(ns->disk))
1944 goto out;
1945 }
1946
1947 if (nvme_ns_head_multipath(ns->head)) {
1948 blk_mq_freeze_queue(ns->head->disk->queue);
1949 nvme_update_disk_info(ns->head->disk, ns, id);
1950 set_disk_ro(ns->head->disk,
1951 (id->nsattr & NVME_NS_ATTR_RO) ||
1952 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1953 nvme_mpath_revalidate_paths(ns);
1954 blk_stack_limits(&ns->head->disk->queue->limits,
1955 &ns->queue->limits, 0);
1956 disk_update_readahead(ns->head->disk);
1957 blk_mq_unfreeze_queue(ns->head->disk->queue);
1958 }
1959
1960 ret = 0;
1961 out:
1962 /*
1963 * If probing fails due an unsupported feature, hide the block device,
1964 * but still allow other access.
1965 */
1966 if (ret == -ENODEV) {
1967 ns->disk->flags |= GENHD_FL_HIDDEN;
1968 set_bit(NVME_NS_READY, &ns->flags);
1969 ret = 0;
1970 }
1971 return ret;
1972 }
1973
nvme_pr_type(enum pr_type type)1974 static char nvme_pr_type(enum pr_type type)
1975 {
1976 switch (type) {
1977 case PR_WRITE_EXCLUSIVE:
1978 return 1;
1979 case PR_EXCLUSIVE_ACCESS:
1980 return 2;
1981 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1982 return 3;
1983 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1984 return 4;
1985 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1986 return 5;
1987 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1988 return 6;
1989 default:
1990 return 0;
1991 }
1992 }
1993
nvme_send_ns_head_pr_command(struct block_device * bdev,struct nvme_command * c,u8 data[16])1994 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1995 struct nvme_command *c, u8 data[16])
1996 {
1997 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1998 int srcu_idx = srcu_read_lock(&head->srcu);
1999 struct nvme_ns *ns = nvme_find_path(head);
2000 int ret = -EWOULDBLOCK;
2001
2002 if (ns) {
2003 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2004 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2005 }
2006 srcu_read_unlock(&head->srcu, srcu_idx);
2007 return ret;
2008 }
2009
nvme_send_ns_pr_command(struct nvme_ns * ns,struct nvme_command * c,u8 data[16])2010 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2011 u8 data[16])
2012 {
2013 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2014 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2015 }
2016
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)2017 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2018 u64 key, u64 sa_key, u8 op)
2019 {
2020 struct nvme_command c = { };
2021 u8 data[16] = { 0, };
2022
2023 put_unaligned_le64(key, &data[0]);
2024 put_unaligned_le64(sa_key, &data[8]);
2025
2026 c.common.opcode = op;
2027 c.common.cdw10 = cpu_to_le32(cdw10);
2028
2029 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2030 bdev->bd_disk->fops == &nvme_ns_head_ops)
2031 return nvme_send_ns_head_pr_command(bdev, &c, data);
2032 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2033 }
2034
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)2035 static int nvme_pr_register(struct block_device *bdev, u64 old,
2036 u64 new, unsigned flags)
2037 {
2038 u32 cdw10;
2039
2040 if (flags & ~PR_FL_IGNORE_KEY)
2041 return -EOPNOTSUPP;
2042
2043 cdw10 = old ? 2 : 0;
2044 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2045 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2046 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2047 }
2048
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)2049 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2050 enum pr_type type, unsigned flags)
2051 {
2052 u32 cdw10;
2053
2054 if (flags & ~PR_FL_IGNORE_KEY)
2055 return -EOPNOTSUPP;
2056
2057 cdw10 = nvme_pr_type(type) << 8;
2058 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2059 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2060 }
2061
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)2062 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2063 enum pr_type type, bool abort)
2064 {
2065 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2066
2067 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2068 }
2069
nvme_pr_clear(struct block_device * bdev,u64 key)2070 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2071 {
2072 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2073
2074 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2075 }
2076
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2077 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2078 {
2079 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2080
2081 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2082 }
2083
2084 const struct pr_ops nvme_pr_ops = {
2085 .pr_register = nvme_pr_register,
2086 .pr_reserve = nvme_pr_reserve,
2087 .pr_release = nvme_pr_release,
2088 .pr_preempt = nvme_pr_preempt,
2089 .pr_clear = nvme_pr_clear,
2090 };
2091
2092 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2093 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2094 bool send)
2095 {
2096 struct nvme_ctrl *ctrl = data;
2097 struct nvme_command cmd = { };
2098
2099 if (send)
2100 cmd.common.opcode = nvme_admin_security_send;
2101 else
2102 cmd.common.opcode = nvme_admin_security_recv;
2103 cmd.common.nsid = 0;
2104 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2105 cmd.common.cdw11 = cpu_to_le32(len);
2106
2107 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2108 NVME_QID_ANY, 1, 0);
2109 }
2110 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2111 #endif /* CONFIG_BLK_SED_OPAL */
2112
2113 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2114 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2115 unsigned int nr_zones, report_zones_cb cb, void *data)
2116 {
2117 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2118 data);
2119 }
2120 #else
2121 #define nvme_report_zones NULL
2122 #endif /* CONFIG_BLK_DEV_ZONED */
2123
2124 static const struct block_device_operations nvme_bdev_ops = {
2125 .owner = THIS_MODULE,
2126 .ioctl = nvme_ioctl,
2127 .compat_ioctl = blkdev_compat_ptr_ioctl,
2128 .open = nvme_open,
2129 .release = nvme_release,
2130 .getgeo = nvme_getgeo,
2131 .report_zones = nvme_report_zones,
2132 .pr_ops = &nvme_pr_ops,
2133 };
2134
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 timeout,bool enabled)2135 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2136 {
2137 unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2138 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2139 int ret;
2140
2141 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2142 if (csts == ~0)
2143 return -ENODEV;
2144 if ((csts & NVME_CSTS_RDY) == bit)
2145 break;
2146
2147 usleep_range(1000, 2000);
2148 if (fatal_signal_pending(current))
2149 return -EINTR;
2150 if (time_after(jiffies, timeout_jiffies)) {
2151 dev_err(ctrl->device,
2152 "Device not ready; aborting %s, CSTS=0x%x\n",
2153 enabled ? "initialisation" : "reset", csts);
2154 return -ENODEV;
2155 }
2156 }
2157
2158 return ret;
2159 }
2160
2161 /*
2162 * If the device has been passed off to us in an enabled state, just clear
2163 * the enabled bit. The spec says we should set the 'shutdown notification
2164 * bits', but doing so may cause the device to complete commands to the
2165 * admin queue ... and we don't know what memory that might be pointing at!
2166 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2167 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2168 {
2169 int ret;
2170
2171 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2172 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2173
2174 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2175 if (ret)
2176 return ret;
2177
2178 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2179 msleep(NVME_QUIRK_DELAY_AMOUNT);
2180
2181 return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2182 }
2183 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2184
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2185 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2186 {
2187 unsigned dev_page_min;
2188 u32 timeout;
2189 int ret;
2190
2191 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2192 if (ret) {
2193 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2194 return ret;
2195 }
2196 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2197
2198 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2199 dev_err(ctrl->device,
2200 "Minimum device page size %u too large for host (%u)\n",
2201 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2202 return -ENODEV;
2203 }
2204
2205 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2206 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2207 else
2208 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2209
2210 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2211 u32 crto;
2212
2213 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2214 if (ret) {
2215 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2216 ret);
2217 return ret;
2218 }
2219
2220 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2221 ctrl->ctrl_config |= NVME_CC_CRIME;
2222 timeout = NVME_CRTO_CRIMT(crto);
2223 } else {
2224 timeout = NVME_CRTO_CRWMT(crto);
2225 }
2226 } else {
2227 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2228 }
2229
2230 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2231 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2232 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2233 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2234 if (ret)
2235 return ret;
2236
2237 /* Flush write to device (required if transport is PCI) */
2238 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2239 if (ret)
2240 return ret;
2241
2242 ctrl->ctrl_config |= NVME_CC_ENABLE;
2243 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2244 if (ret)
2245 return ret;
2246 return nvme_wait_ready(ctrl, timeout, true);
2247 }
2248 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2249
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2250 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2251 {
2252 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2253 u32 csts;
2254 int ret;
2255
2256 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2257 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2258
2259 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2260 if (ret)
2261 return ret;
2262
2263 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2264 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2265 break;
2266
2267 msleep(100);
2268 if (fatal_signal_pending(current))
2269 return -EINTR;
2270 if (time_after(jiffies, timeout)) {
2271 dev_err(ctrl->device,
2272 "Device shutdown incomplete; abort shutdown\n");
2273 return -ENODEV;
2274 }
2275 }
2276
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2280
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2281 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2282 {
2283 __le64 ts;
2284 int ret;
2285
2286 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2287 return 0;
2288
2289 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2290 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2291 NULL);
2292 if (ret)
2293 dev_warn_once(ctrl->device,
2294 "could not set timestamp (%d)\n", ret);
2295 return ret;
2296 }
2297
nvme_configure_host_options(struct nvme_ctrl * ctrl)2298 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2299 {
2300 struct nvme_feat_host_behavior *host;
2301 u8 acre = 0, lbafee = 0;
2302 int ret;
2303
2304 /* Don't bother enabling the feature if retry delay is not reported */
2305 if (ctrl->crdt[0])
2306 acre = NVME_ENABLE_ACRE;
2307 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2308 lbafee = NVME_ENABLE_LBAFEE;
2309
2310 if (!acre && !lbafee)
2311 return 0;
2312
2313 host = kzalloc(sizeof(*host), GFP_KERNEL);
2314 if (!host)
2315 return 0;
2316
2317 host->acre = acre;
2318 host->lbafee = lbafee;
2319 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2320 host, sizeof(*host), NULL);
2321 kfree(host);
2322 return ret;
2323 }
2324
2325 /*
2326 * The function checks whether the given total (exlat + enlat) latency of
2327 * a power state allows the latter to be used as an APST transition target.
2328 * It does so by comparing the latency to the primary and secondary latency
2329 * tolerances defined by module params. If there's a match, the corresponding
2330 * timeout value is returned and the matching tolerance index (1 or 2) is
2331 * reported.
2332 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2333 static bool nvme_apst_get_transition_time(u64 total_latency,
2334 u64 *transition_time, unsigned *last_index)
2335 {
2336 if (total_latency <= apst_primary_latency_tol_us) {
2337 if (*last_index == 1)
2338 return false;
2339 *last_index = 1;
2340 *transition_time = apst_primary_timeout_ms;
2341 return true;
2342 }
2343 if (apst_secondary_timeout_ms &&
2344 total_latency <= apst_secondary_latency_tol_us) {
2345 if (*last_index <= 2)
2346 return false;
2347 *last_index = 2;
2348 *transition_time = apst_secondary_timeout_ms;
2349 return true;
2350 }
2351 return false;
2352 }
2353
2354 /*
2355 * APST (Autonomous Power State Transition) lets us program a table of power
2356 * state transitions that the controller will perform automatically.
2357 *
2358 * Depending on module params, one of the two supported techniques will be used:
2359 *
2360 * - If the parameters provide explicit timeouts and tolerances, they will be
2361 * used to build a table with up to 2 non-operational states to transition to.
2362 * The default parameter values were selected based on the values used by
2363 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2364 * regeneration of the APST table in the event of switching between external
2365 * and battery power, the timeouts and tolerances reflect a compromise
2366 * between values used by Microsoft for AC and battery scenarios.
2367 * - If not, we'll configure the table with a simple heuristic: we are willing
2368 * to spend at most 2% of the time transitioning between power states.
2369 * Therefore, when running in any given state, we will enter the next
2370 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2371 * microseconds, as long as that state's exit latency is under the requested
2372 * maximum latency.
2373 *
2374 * We will not autonomously enter any non-operational state for which the total
2375 * latency exceeds ps_max_latency_us.
2376 *
2377 * Users can set ps_max_latency_us to zero to turn off APST.
2378 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2379 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2380 {
2381 struct nvme_feat_auto_pst *table;
2382 unsigned apste = 0;
2383 u64 max_lat_us = 0;
2384 __le64 target = 0;
2385 int max_ps = -1;
2386 int state;
2387 int ret;
2388 unsigned last_lt_index = UINT_MAX;
2389
2390 /*
2391 * If APST isn't supported or if we haven't been initialized yet,
2392 * then don't do anything.
2393 */
2394 if (!ctrl->apsta)
2395 return 0;
2396
2397 if (ctrl->npss > 31) {
2398 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2399 return 0;
2400 }
2401
2402 table = kzalloc(sizeof(*table), GFP_KERNEL);
2403 if (!table)
2404 return 0;
2405
2406 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2407 /* Turn off APST. */
2408 dev_dbg(ctrl->device, "APST disabled\n");
2409 goto done;
2410 }
2411
2412 /*
2413 * Walk through all states from lowest- to highest-power.
2414 * According to the spec, lower-numbered states use more power. NPSS,
2415 * despite the name, is the index of the lowest-power state, not the
2416 * number of states.
2417 */
2418 for (state = (int)ctrl->npss; state >= 0; state--) {
2419 u64 total_latency_us, exit_latency_us, transition_ms;
2420
2421 if (target)
2422 table->entries[state] = target;
2423
2424 /*
2425 * Don't allow transitions to the deepest state if it's quirked
2426 * off.
2427 */
2428 if (state == ctrl->npss &&
2429 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2430 continue;
2431
2432 /*
2433 * Is this state a useful non-operational state for higher-power
2434 * states to autonomously transition to?
2435 */
2436 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2437 continue;
2438
2439 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2440 if (exit_latency_us > ctrl->ps_max_latency_us)
2441 continue;
2442
2443 total_latency_us = exit_latency_us +
2444 le32_to_cpu(ctrl->psd[state].entry_lat);
2445
2446 /*
2447 * This state is good. It can be used as the APST idle target
2448 * for higher power states.
2449 */
2450 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2451 if (!nvme_apst_get_transition_time(total_latency_us,
2452 &transition_ms, &last_lt_index))
2453 continue;
2454 } else {
2455 transition_ms = total_latency_us + 19;
2456 do_div(transition_ms, 20);
2457 if (transition_ms > (1 << 24) - 1)
2458 transition_ms = (1 << 24) - 1;
2459 }
2460
2461 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2462 if (max_ps == -1)
2463 max_ps = state;
2464 if (total_latency_us > max_lat_us)
2465 max_lat_us = total_latency_us;
2466 }
2467
2468 if (max_ps == -1)
2469 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2470 else
2471 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2472 max_ps, max_lat_us, (int)sizeof(*table), table);
2473 apste = 1;
2474
2475 done:
2476 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2477 table, sizeof(*table), NULL);
2478 if (ret)
2479 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2480 kfree(table);
2481 return ret;
2482 }
2483
nvme_set_latency_tolerance(struct device * dev,s32 val)2484 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2485 {
2486 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2487 u64 latency;
2488
2489 switch (val) {
2490 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2491 case PM_QOS_LATENCY_ANY:
2492 latency = U64_MAX;
2493 break;
2494
2495 default:
2496 latency = val;
2497 }
2498
2499 if (ctrl->ps_max_latency_us != latency) {
2500 ctrl->ps_max_latency_us = latency;
2501 if (ctrl->state == NVME_CTRL_LIVE)
2502 nvme_configure_apst(ctrl);
2503 }
2504 }
2505
2506 struct nvme_core_quirk_entry {
2507 /*
2508 * NVMe model and firmware strings are padded with spaces. For
2509 * simplicity, strings in the quirk table are padded with NULLs
2510 * instead.
2511 */
2512 u16 vid;
2513 const char *mn;
2514 const char *fr;
2515 unsigned long quirks;
2516 };
2517
2518 static const struct nvme_core_quirk_entry core_quirks[] = {
2519 {
2520 /*
2521 * This Toshiba device seems to die using any APST states. See:
2522 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2523 */
2524 .vid = 0x1179,
2525 .mn = "THNSF5256GPUK TOSHIBA",
2526 .quirks = NVME_QUIRK_NO_APST,
2527 },
2528 {
2529 /*
2530 * This LiteON CL1-3D*-Q11 firmware version has a race
2531 * condition associated with actions related to suspend to idle
2532 * LiteON has resolved the problem in future firmware
2533 */
2534 .vid = 0x14a4,
2535 .fr = "22301111",
2536 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2537 },
2538 {
2539 /*
2540 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2541 * aborts I/O during any load, but more easily reproducible
2542 * with discards (fstrim).
2543 *
2544 * The device is left in a state where it is also not possible
2545 * to use "nvme set-feature" to disable APST, but booting with
2546 * nvme_core.default_ps_max_latency=0 works.
2547 */
2548 .vid = 0x1e0f,
2549 .mn = "KCD6XVUL6T40",
2550 .quirks = NVME_QUIRK_NO_APST,
2551 },
2552 {
2553 /*
2554 * The external Samsung X5 SSD fails initialization without a
2555 * delay before checking if it is ready and has a whole set of
2556 * other problems. To make this even more interesting, it
2557 * shares the PCI ID with internal Samsung 970 Evo Plus that
2558 * does not need or want these quirks.
2559 */
2560 .vid = 0x144d,
2561 .mn = "Samsung Portable SSD X5",
2562 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2563 NVME_QUIRK_NO_DEEPEST_PS |
2564 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2565 }
2566 };
2567
2568 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2569 static bool string_matches(const char *idstr, const char *match, size_t len)
2570 {
2571 size_t matchlen;
2572
2573 if (!match)
2574 return true;
2575
2576 matchlen = strlen(match);
2577 WARN_ON_ONCE(matchlen > len);
2578
2579 if (memcmp(idstr, match, matchlen))
2580 return false;
2581
2582 for (; matchlen < len; matchlen++)
2583 if (idstr[matchlen] != ' ')
2584 return false;
2585
2586 return true;
2587 }
2588
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2589 static bool quirk_matches(const struct nvme_id_ctrl *id,
2590 const struct nvme_core_quirk_entry *q)
2591 {
2592 return q->vid == le16_to_cpu(id->vid) &&
2593 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2594 string_matches(id->fr, q->fr, sizeof(id->fr));
2595 }
2596
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2597 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2598 struct nvme_id_ctrl *id)
2599 {
2600 size_t nqnlen;
2601 int off;
2602
2603 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2604 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2605 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2606 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2607 return;
2608 }
2609
2610 if (ctrl->vs >= NVME_VS(1, 2, 1))
2611 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2612 }
2613
2614 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2615 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2616 "nqn.2014.08.org.nvmexpress:%04x%04x",
2617 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2618 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2619 off += sizeof(id->sn);
2620 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2621 off += sizeof(id->mn);
2622 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2623 }
2624
nvme_release_subsystem(struct device * dev)2625 static void nvme_release_subsystem(struct device *dev)
2626 {
2627 struct nvme_subsystem *subsys =
2628 container_of(dev, struct nvme_subsystem, dev);
2629
2630 if (subsys->instance >= 0)
2631 ida_free(&nvme_instance_ida, subsys->instance);
2632 kfree(subsys);
2633 }
2634
nvme_destroy_subsystem(struct kref * ref)2635 static void nvme_destroy_subsystem(struct kref *ref)
2636 {
2637 struct nvme_subsystem *subsys =
2638 container_of(ref, struct nvme_subsystem, ref);
2639
2640 mutex_lock(&nvme_subsystems_lock);
2641 list_del(&subsys->entry);
2642 mutex_unlock(&nvme_subsystems_lock);
2643
2644 ida_destroy(&subsys->ns_ida);
2645 device_del(&subsys->dev);
2646 put_device(&subsys->dev);
2647 }
2648
nvme_put_subsystem(struct nvme_subsystem * subsys)2649 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2650 {
2651 kref_put(&subsys->ref, nvme_destroy_subsystem);
2652 }
2653
__nvme_find_get_subsystem(const char * subsysnqn)2654 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2655 {
2656 struct nvme_subsystem *subsys;
2657
2658 lockdep_assert_held(&nvme_subsystems_lock);
2659
2660 /*
2661 * Fail matches for discovery subsystems. This results
2662 * in each discovery controller bound to a unique subsystem.
2663 * This avoids issues with validating controller values
2664 * that can only be true when there is a single unique subsystem.
2665 * There may be multiple and completely independent entities
2666 * that provide discovery controllers.
2667 */
2668 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2669 return NULL;
2670
2671 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2672 if (strcmp(subsys->subnqn, subsysnqn))
2673 continue;
2674 if (!kref_get_unless_zero(&subsys->ref))
2675 continue;
2676 return subsys;
2677 }
2678
2679 return NULL;
2680 }
2681
2682 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2683 struct device_attribute subsys_attr_##_name = \
2684 __ATTR(_name, _mode, _show, NULL)
2685
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2686 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2687 struct device_attribute *attr,
2688 char *buf)
2689 {
2690 struct nvme_subsystem *subsys =
2691 container_of(dev, struct nvme_subsystem, dev);
2692
2693 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2694 }
2695 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2696
nvme_subsys_show_type(struct device * dev,struct device_attribute * attr,char * buf)2697 static ssize_t nvme_subsys_show_type(struct device *dev,
2698 struct device_attribute *attr,
2699 char *buf)
2700 {
2701 struct nvme_subsystem *subsys =
2702 container_of(dev, struct nvme_subsystem, dev);
2703
2704 switch (subsys->subtype) {
2705 case NVME_NQN_DISC:
2706 return sysfs_emit(buf, "discovery\n");
2707 case NVME_NQN_NVME:
2708 return sysfs_emit(buf, "nvm\n");
2709 default:
2710 return sysfs_emit(buf, "reserved\n");
2711 }
2712 }
2713 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2714
2715 #define nvme_subsys_show_str_function(field) \
2716 static ssize_t subsys_##field##_show(struct device *dev, \
2717 struct device_attribute *attr, char *buf) \
2718 { \
2719 struct nvme_subsystem *subsys = \
2720 container_of(dev, struct nvme_subsystem, dev); \
2721 return sysfs_emit(buf, "%.*s\n", \
2722 (int)sizeof(subsys->field), subsys->field); \
2723 } \
2724 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2725
2726 nvme_subsys_show_str_function(model);
2727 nvme_subsys_show_str_function(serial);
2728 nvme_subsys_show_str_function(firmware_rev);
2729
2730 static struct attribute *nvme_subsys_attrs[] = {
2731 &subsys_attr_model.attr,
2732 &subsys_attr_serial.attr,
2733 &subsys_attr_firmware_rev.attr,
2734 &subsys_attr_subsysnqn.attr,
2735 &subsys_attr_subsystype.attr,
2736 #ifdef CONFIG_NVME_MULTIPATH
2737 &subsys_attr_iopolicy.attr,
2738 #endif
2739 NULL,
2740 };
2741
2742 static const struct attribute_group nvme_subsys_attrs_group = {
2743 .attrs = nvme_subsys_attrs,
2744 };
2745
2746 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2747 &nvme_subsys_attrs_group,
2748 NULL,
2749 };
2750
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2751 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2752 {
2753 return ctrl->opts && ctrl->opts->discovery_nqn;
2754 }
2755
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2756 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2757 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2758 {
2759 struct nvme_ctrl *tmp;
2760
2761 lockdep_assert_held(&nvme_subsystems_lock);
2762
2763 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2764 if (nvme_state_terminal(tmp))
2765 continue;
2766
2767 if (tmp->cntlid == ctrl->cntlid) {
2768 dev_err(ctrl->device,
2769 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2770 ctrl->cntlid, dev_name(tmp->device),
2771 subsys->subnqn);
2772 return false;
2773 }
2774
2775 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2776 nvme_discovery_ctrl(ctrl))
2777 continue;
2778
2779 dev_err(ctrl->device,
2780 "Subsystem does not support multiple controllers\n");
2781 return false;
2782 }
2783
2784 return true;
2785 }
2786
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2787 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2788 {
2789 struct nvme_subsystem *subsys, *found;
2790 int ret;
2791
2792 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2793 if (!subsys)
2794 return -ENOMEM;
2795
2796 subsys->instance = -1;
2797 mutex_init(&subsys->lock);
2798 kref_init(&subsys->ref);
2799 INIT_LIST_HEAD(&subsys->ctrls);
2800 INIT_LIST_HEAD(&subsys->nsheads);
2801 nvme_init_subnqn(subsys, ctrl, id);
2802 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2803 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2804 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2805 subsys->vendor_id = le16_to_cpu(id->vid);
2806 subsys->cmic = id->cmic;
2807
2808 /* Versions prior to 1.4 don't necessarily report a valid type */
2809 if (id->cntrltype == NVME_CTRL_DISC ||
2810 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2811 subsys->subtype = NVME_NQN_DISC;
2812 else
2813 subsys->subtype = NVME_NQN_NVME;
2814
2815 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2816 dev_err(ctrl->device,
2817 "Subsystem %s is not a discovery controller",
2818 subsys->subnqn);
2819 kfree(subsys);
2820 return -EINVAL;
2821 }
2822 subsys->awupf = le16_to_cpu(id->awupf);
2823 nvme_mpath_default_iopolicy(subsys);
2824
2825 subsys->dev.class = nvme_subsys_class;
2826 subsys->dev.release = nvme_release_subsystem;
2827 subsys->dev.groups = nvme_subsys_attrs_groups;
2828 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2829 device_initialize(&subsys->dev);
2830
2831 mutex_lock(&nvme_subsystems_lock);
2832 found = __nvme_find_get_subsystem(subsys->subnqn);
2833 if (found) {
2834 put_device(&subsys->dev);
2835 subsys = found;
2836
2837 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2838 ret = -EINVAL;
2839 goto out_put_subsystem;
2840 }
2841 } else {
2842 ret = device_add(&subsys->dev);
2843 if (ret) {
2844 dev_err(ctrl->device,
2845 "failed to register subsystem device.\n");
2846 put_device(&subsys->dev);
2847 goto out_unlock;
2848 }
2849 ida_init(&subsys->ns_ida);
2850 list_add_tail(&subsys->entry, &nvme_subsystems);
2851 }
2852
2853 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2854 dev_name(ctrl->device));
2855 if (ret) {
2856 dev_err(ctrl->device,
2857 "failed to create sysfs link from subsystem.\n");
2858 goto out_put_subsystem;
2859 }
2860
2861 if (!found)
2862 subsys->instance = ctrl->instance;
2863 ctrl->subsys = subsys;
2864 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2865 mutex_unlock(&nvme_subsystems_lock);
2866 return 0;
2867
2868 out_put_subsystem:
2869 nvme_put_subsystem(subsys);
2870 out_unlock:
2871 mutex_unlock(&nvme_subsystems_lock);
2872 return ret;
2873 }
2874
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2875 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2876 void *log, size_t size, u64 offset)
2877 {
2878 struct nvme_command c = { };
2879 u32 dwlen = nvme_bytes_to_numd(size);
2880
2881 c.get_log_page.opcode = nvme_admin_get_log_page;
2882 c.get_log_page.nsid = cpu_to_le32(nsid);
2883 c.get_log_page.lid = log_page;
2884 c.get_log_page.lsp = lsp;
2885 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2886 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2887 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2888 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2889 c.get_log_page.csi = csi;
2890
2891 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2892 }
2893
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2894 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2895 struct nvme_effects_log **log)
2896 {
2897 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2898 int ret;
2899
2900 if (cel)
2901 goto out;
2902
2903 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2904 if (!cel)
2905 return -ENOMEM;
2906
2907 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2908 cel, sizeof(*cel), 0);
2909 if (ret) {
2910 kfree(cel);
2911 return ret;
2912 }
2913
2914 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2915 out:
2916 *log = cel;
2917 return 0;
2918 }
2919
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)2920 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2921 {
2922 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2923
2924 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2925 return UINT_MAX;
2926 return val;
2927 }
2928
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)2929 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2930 {
2931 struct nvme_command c = { };
2932 struct nvme_id_ctrl_nvm *id;
2933 int ret;
2934
2935 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2936 ctrl->max_discard_sectors = UINT_MAX;
2937 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2938 } else {
2939 ctrl->max_discard_sectors = 0;
2940 ctrl->max_discard_segments = 0;
2941 }
2942
2943 /*
2944 * Even though NVMe spec explicitly states that MDTS is not applicable
2945 * to the write-zeroes, we are cautious and limit the size to the
2946 * controllers max_hw_sectors value, which is based on the MDTS field
2947 * and possibly other limiting factors.
2948 */
2949 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2950 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2951 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2952 else
2953 ctrl->max_zeroes_sectors = 0;
2954
2955 if (nvme_ctrl_limited_cns(ctrl))
2956 return 0;
2957
2958 id = kzalloc(sizeof(*id), GFP_KERNEL);
2959 if (!id)
2960 return 0;
2961
2962 c.identify.opcode = nvme_admin_identify;
2963 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2964 c.identify.csi = NVME_CSI_NVM;
2965
2966 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2967 if (ret)
2968 goto free_data;
2969
2970 if (id->dmrl)
2971 ctrl->max_discard_segments = id->dmrl;
2972 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2973 if (id->wzsl)
2974 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2975
2976 free_data:
2977 kfree(id);
2978 return ret;
2979 }
2980
nvme_init_identify(struct nvme_ctrl * ctrl)2981 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2982 {
2983 struct nvme_id_ctrl *id;
2984 u32 max_hw_sectors;
2985 bool prev_apst_enabled;
2986 int ret;
2987
2988 ret = nvme_identify_ctrl(ctrl, &id);
2989 if (ret) {
2990 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2991 return -EIO;
2992 }
2993
2994 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2995 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2996 if (ret < 0)
2997 goto out_free;
2998 }
2999
3000 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3001 ctrl->cntlid = le16_to_cpu(id->cntlid);
3002
3003 if (!ctrl->identified) {
3004 unsigned int i;
3005
3006 ret = nvme_init_subsystem(ctrl, id);
3007 if (ret)
3008 goto out_free;
3009
3010 /*
3011 * Check for quirks. Quirk can depend on firmware version,
3012 * so, in principle, the set of quirks present can change
3013 * across a reset. As a possible future enhancement, we
3014 * could re-scan for quirks every time we reinitialize
3015 * the device, but we'd have to make sure that the driver
3016 * behaves intelligently if the quirks change.
3017 */
3018 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3019 if (quirk_matches(id, &core_quirks[i]))
3020 ctrl->quirks |= core_quirks[i].quirks;
3021 }
3022 }
3023
3024 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3025 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3026 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3027 }
3028
3029 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3030 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3031 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3032
3033 ctrl->oacs = le16_to_cpu(id->oacs);
3034 ctrl->oncs = le16_to_cpu(id->oncs);
3035 ctrl->mtfa = le16_to_cpu(id->mtfa);
3036 ctrl->oaes = le32_to_cpu(id->oaes);
3037 ctrl->wctemp = le16_to_cpu(id->wctemp);
3038 ctrl->cctemp = le16_to_cpu(id->cctemp);
3039
3040 atomic_set(&ctrl->abort_limit, id->acl + 1);
3041 ctrl->vwc = id->vwc;
3042 if (id->mdts)
3043 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3044 else
3045 max_hw_sectors = UINT_MAX;
3046 ctrl->max_hw_sectors =
3047 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3048
3049 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3050 ctrl->sgls = le32_to_cpu(id->sgls);
3051 ctrl->kas = le16_to_cpu(id->kas);
3052 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3053 ctrl->ctratt = le32_to_cpu(id->ctratt);
3054
3055 ctrl->cntrltype = id->cntrltype;
3056 ctrl->dctype = id->dctype;
3057
3058 if (id->rtd3e) {
3059 /* us -> s */
3060 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3061
3062 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3063 shutdown_timeout, 60);
3064
3065 if (ctrl->shutdown_timeout != shutdown_timeout)
3066 dev_info(ctrl->device,
3067 "Shutdown timeout set to %u seconds\n",
3068 ctrl->shutdown_timeout);
3069 } else
3070 ctrl->shutdown_timeout = shutdown_timeout;
3071
3072 ctrl->npss = id->npss;
3073 ctrl->apsta = id->apsta;
3074 prev_apst_enabled = ctrl->apst_enabled;
3075 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3076 if (force_apst && id->apsta) {
3077 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3078 ctrl->apst_enabled = true;
3079 } else {
3080 ctrl->apst_enabled = false;
3081 }
3082 } else {
3083 ctrl->apst_enabled = id->apsta;
3084 }
3085 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3086
3087 if (ctrl->ops->flags & NVME_F_FABRICS) {
3088 ctrl->icdoff = le16_to_cpu(id->icdoff);
3089 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3090 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3091 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3092
3093 /*
3094 * In fabrics we need to verify the cntlid matches the
3095 * admin connect
3096 */
3097 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3098 dev_err(ctrl->device,
3099 "Mismatching cntlid: Connect %u vs Identify "
3100 "%u, rejecting\n",
3101 ctrl->cntlid, le16_to_cpu(id->cntlid));
3102 ret = -EINVAL;
3103 goto out_free;
3104 }
3105
3106 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3107 dev_err(ctrl->device,
3108 "keep-alive support is mandatory for fabrics\n");
3109 ret = -EINVAL;
3110 goto out_free;
3111 }
3112 } else {
3113 ctrl->hmpre = le32_to_cpu(id->hmpre);
3114 ctrl->hmmin = le32_to_cpu(id->hmmin);
3115 ctrl->hmminds = le32_to_cpu(id->hmminds);
3116 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3117 }
3118
3119 ret = nvme_mpath_init_identify(ctrl, id);
3120 if (ret < 0)
3121 goto out_free;
3122
3123 if (ctrl->apst_enabled && !prev_apst_enabled)
3124 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3125 else if (!ctrl->apst_enabled && prev_apst_enabled)
3126 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3127
3128 out_free:
3129 kfree(id);
3130 return ret;
3131 }
3132
3133 /*
3134 * Initialize the cached copies of the Identify data and various controller
3135 * register in our nvme_ctrl structure. This should be called as soon as
3136 * the admin queue is fully up and running.
3137 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl)3138 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3139 {
3140 int ret;
3141
3142 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3143 if (ret) {
3144 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3145 return ret;
3146 }
3147
3148 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3149
3150 if (ctrl->vs >= NVME_VS(1, 1, 0))
3151 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3152
3153 ret = nvme_init_identify(ctrl);
3154 if (ret)
3155 return ret;
3156
3157 ret = nvme_configure_apst(ctrl);
3158 if (ret < 0)
3159 return ret;
3160
3161 ret = nvme_configure_timestamp(ctrl);
3162 if (ret < 0)
3163 return ret;
3164
3165 ret = nvme_configure_host_options(ctrl);
3166 if (ret < 0)
3167 return ret;
3168
3169 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3170 ret = nvme_hwmon_init(ctrl);
3171 if (ret < 0)
3172 return ret;
3173 }
3174
3175 ctrl->identified = true;
3176
3177 return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3180
nvme_dev_open(struct inode * inode,struct file * file)3181 static int nvme_dev_open(struct inode *inode, struct file *file)
3182 {
3183 struct nvme_ctrl *ctrl =
3184 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3185
3186 switch (ctrl->state) {
3187 case NVME_CTRL_LIVE:
3188 break;
3189 default:
3190 return -EWOULDBLOCK;
3191 }
3192
3193 nvme_get_ctrl(ctrl);
3194 if (!try_module_get(ctrl->ops->module)) {
3195 nvme_put_ctrl(ctrl);
3196 return -EINVAL;
3197 }
3198
3199 file->private_data = ctrl;
3200 return 0;
3201 }
3202
nvme_dev_release(struct inode * inode,struct file * file)3203 static int nvme_dev_release(struct inode *inode, struct file *file)
3204 {
3205 struct nvme_ctrl *ctrl =
3206 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3207
3208 module_put(ctrl->ops->module);
3209 nvme_put_ctrl(ctrl);
3210 return 0;
3211 }
3212
3213 static const struct file_operations nvme_dev_fops = {
3214 .owner = THIS_MODULE,
3215 .open = nvme_dev_open,
3216 .release = nvme_dev_release,
3217 .unlocked_ioctl = nvme_dev_ioctl,
3218 .compat_ioctl = compat_ptr_ioctl,
3219 .uring_cmd = nvme_dev_uring_cmd,
3220 };
3221
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3222 static ssize_t nvme_sysfs_reset(struct device *dev,
3223 struct device_attribute *attr, const char *buf,
3224 size_t count)
3225 {
3226 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3227 int ret;
3228
3229 ret = nvme_reset_ctrl_sync(ctrl);
3230 if (ret < 0)
3231 return ret;
3232 return count;
3233 }
3234 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3235
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3236 static ssize_t nvme_sysfs_rescan(struct device *dev,
3237 struct device_attribute *attr, const char *buf,
3238 size_t count)
3239 {
3240 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3241
3242 nvme_queue_scan(ctrl);
3243 return count;
3244 }
3245 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3246
dev_to_ns_head(struct device * dev)3247 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3248 {
3249 struct gendisk *disk = dev_to_disk(dev);
3250
3251 if (disk->fops == &nvme_bdev_ops)
3252 return nvme_get_ns_from_dev(dev)->head;
3253 else
3254 return disk->private_data;
3255 }
3256
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3257 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3258 char *buf)
3259 {
3260 struct nvme_ns_head *head = dev_to_ns_head(dev);
3261 struct nvme_ns_ids *ids = &head->ids;
3262 struct nvme_subsystem *subsys = head->subsys;
3263 int serial_len = sizeof(subsys->serial);
3264 int model_len = sizeof(subsys->model);
3265
3266 if (!uuid_is_null(&ids->uuid))
3267 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3268
3269 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3270 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3271
3272 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3273 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3274
3275 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3276 subsys->serial[serial_len - 1] == '\0'))
3277 serial_len--;
3278 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3279 subsys->model[model_len - 1] == '\0'))
3280 model_len--;
3281
3282 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3283 serial_len, subsys->serial, model_len, subsys->model,
3284 head->ns_id);
3285 }
3286 static DEVICE_ATTR_RO(wwid);
3287
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3288 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3289 char *buf)
3290 {
3291 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3292 }
3293 static DEVICE_ATTR_RO(nguid);
3294
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3295 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3296 char *buf)
3297 {
3298 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3299
3300 /* For backward compatibility expose the NGUID to userspace if
3301 * we have no UUID set
3302 */
3303 if (uuid_is_null(&ids->uuid)) {
3304 dev_warn_ratelimited(dev,
3305 "No UUID available providing old NGUID\n");
3306 return sysfs_emit(buf, "%pU\n", ids->nguid);
3307 }
3308 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3309 }
3310 static DEVICE_ATTR_RO(uuid);
3311
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3312 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3313 char *buf)
3314 {
3315 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3316 }
3317 static DEVICE_ATTR_RO(eui);
3318
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3319 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3320 char *buf)
3321 {
3322 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3323 }
3324 static DEVICE_ATTR_RO(nsid);
3325
3326 static struct attribute *nvme_ns_id_attrs[] = {
3327 &dev_attr_wwid.attr,
3328 &dev_attr_uuid.attr,
3329 &dev_attr_nguid.attr,
3330 &dev_attr_eui.attr,
3331 &dev_attr_nsid.attr,
3332 #ifdef CONFIG_NVME_MULTIPATH
3333 &dev_attr_ana_grpid.attr,
3334 &dev_attr_ana_state.attr,
3335 #endif
3336 NULL,
3337 };
3338
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3339 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3340 struct attribute *a, int n)
3341 {
3342 struct device *dev = container_of(kobj, struct device, kobj);
3343 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3344
3345 if (a == &dev_attr_uuid.attr) {
3346 if (uuid_is_null(&ids->uuid) &&
3347 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3348 return 0;
3349 }
3350 if (a == &dev_attr_nguid.attr) {
3351 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3352 return 0;
3353 }
3354 if (a == &dev_attr_eui.attr) {
3355 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3356 return 0;
3357 }
3358 #ifdef CONFIG_NVME_MULTIPATH
3359 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3360 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3361 return 0;
3362 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3363 return 0;
3364 }
3365 #endif
3366 return a->mode;
3367 }
3368
3369 static const struct attribute_group nvme_ns_id_attr_group = {
3370 .attrs = nvme_ns_id_attrs,
3371 .is_visible = nvme_ns_id_attrs_are_visible,
3372 };
3373
3374 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3375 &nvme_ns_id_attr_group,
3376 NULL,
3377 };
3378
3379 #define nvme_show_str_function(field) \
3380 static ssize_t field##_show(struct device *dev, \
3381 struct device_attribute *attr, char *buf) \
3382 { \
3383 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3384 return sysfs_emit(buf, "%.*s\n", \
3385 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3386 } \
3387 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3388
3389 nvme_show_str_function(model);
3390 nvme_show_str_function(serial);
3391 nvme_show_str_function(firmware_rev);
3392
3393 #define nvme_show_int_function(field) \
3394 static ssize_t field##_show(struct device *dev, \
3395 struct device_attribute *attr, char *buf) \
3396 { \
3397 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3398 return sysfs_emit(buf, "%d\n", ctrl->field); \
3399 } \
3400 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3401
3402 nvme_show_int_function(cntlid);
3403 nvme_show_int_function(numa_node);
3404 nvme_show_int_function(queue_count);
3405 nvme_show_int_function(sqsize);
3406 nvme_show_int_function(kato);
3407
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3408 static ssize_t nvme_sysfs_delete(struct device *dev,
3409 struct device_attribute *attr, const char *buf,
3410 size_t count)
3411 {
3412 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3413
3414 if (device_remove_file_self(dev, attr))
3415 nvme_delete_ctrl_sync(ctrl);
3416 return count;
3417 }
3418 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3419
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3420 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3421 struct device_attribute *attr,
3422 char *buf)
3423 {
3424 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3425
3426 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3427 }
3428 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3429
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3430 static ssize_t nvme_sysfs_show_state(struct device *dev,
3431 struct device_attribute *attr,
3432 char *buf)
3433 {
3434 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3435 static const char *const state_name[] = {
3436 [NVME_CTRL_NEW] = "new",
3437 [NVME_CTRL_LIVE] = "live",
3438 [NVME_CTRL_RESETTING] = "resetting",
3439 [NVME_CTRL_CONNECTING] = "connecting",
3440 [NVME_CTRL_DELETING] = "deleting",
3441 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3442 [NVME_CTRL_DEAD] = "dead",
3443 };
3444
3445 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3446 state_name[ctrl->state])
3447 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3448
3449 return sysfs_emit(buf, "unknown state\n");
3450 }
3451
3452 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3453
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3454 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3455 struct device_attribute *attr,
3456 char *buf)
3457 {
3458 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3459
3460 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3461 }
3462 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3463
nvme_sysfs_show_hostnqn(struct device * dev,struct device_attribute * attr,char * buf)3464 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3465 struct device_attribute *attr,
3466 char *buf)
3467 {
3468 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3469
3470 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3471 }
3472 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3473
nvme_sysfs_show_hostid(struct device * dev,struct device_attribute * attr,char * buf)3474 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3475 struct device_attribute *attr,
3476 char *buf)
3477 {
3478 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3479
3480 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3481 }
3482 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3483
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3484 static ssize_t nvme_sysfs_show_address(struct device *dev,
3485 struct device_attribute *attr,
3486 char *buf)
3487 {
3488 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3489
3490 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3491 }
3492 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3493
nvme_ctrl_loss_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3494 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3495 struct device_attribute *attr, char *buf)
3496 {
3497 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3498 struct nvmf_ctrl_options *opts = ctrl->opts;
3499
3500 if (ctrl->opts->max_reconnects == -1)
3501 return sysfs_emit(buf, "off\n");
3502 return sysfs_emit(buf, "%d\n",
3503 opts->max_reconnects * opts->reconnect_delay);
3504 }
3505
nvme_ctrl_loss_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3506 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3507 struct device_attribute *attr, const char *buf, size_t count)
3508 {
3509 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3510 struct nvmf_ctrl_options *opts = ctrl->opts;
3511 int ctrl_loss_tmo, err;
3512
3513 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3514 if (err)
3515 return -EINVAL;
3516
3517 if (ctrl_loss_tmo < 0)
3518 opts->max_reconnects = -1;
3519 else
3520 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3521 opts->reconnect_delay);
3522 return count;
3523 }
3524 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3525 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3526
nvme_ctrl_reconnect_delay_show(struct device * dev,struct device_attribute * attr,char * buf)3527 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3528 struct device_attribute *attr, char *buf)
3529 {
3530 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3531
3532 if (ctrl->opts->reconnect_delay == -1)
3533 return sysfs_emit(buf, "off\n");
3534 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3535 }
3536
nvme_ctrl_reconnect_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3537 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3538 struct device_attribute *attr, const char *buf, size_t count)
3539 {
3540 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3541 unsigned int v;
3542 int err;
3543
3544 err = kstrtou32(buf, 10, &v);
3545 if (err)
3546 return err;
3547
3548 ctrl->opts->reconnect_delay = v;
3549 return count;
3550 }
3551 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3552 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3553
nvme_ctrl_fast_io_fail_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3554 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3555 struct device_attribute *attr, char *buf)
3556 {
3557 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3558
3559 if (ctrl->opts->fast_io_fail_tmo == -1)
3560 return sysfs_emit(buf, "off\n");
3561 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3562 }
3563
nvme_ctrl_fast_io_fail_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3564 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3565 struct device_attribute *attr, const char *buf, size_t count)
3566 {
3567 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3568 struct nvmf_ctrl_options *opts = ctrl->opts;
3569 int fast_io_fail_tmo, err;
3570
3571 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3572 if (err)
3573 return -EINVAL;
3574
3575 if (fast_io_fail_tmo < 0)
3576 opts->fast_io_fail_tmo = -1;
3577 else
3578 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3579 return count;
3580 }
3581 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3582 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3583
cntrltype_show(struct device * dev,struct device_attribute * attr,char * buf)3584 static ssize_t cntrltype_show(struct device *dev,
3585 struct device_attribute *attr, char *buf)
3586 {
3587 static const char * const type[] = {
3588 [NVME_CTRL_IO] = "io\n",
3589 [NVME_CTRL_DISC] = "discovery\n",
3590 [NVME_CTRL_ADMIN] = "admin\n",
3591 };
3592 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3593
3594 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3595 return sysfs_emit(buf, "reserved\n");
3596
3597 return sysfs_emit(buf, type[ctrl->cntrltype]);
3598 }
3599 static DEVICE_ATTR_RO(cntrltype);
3600
dctype_show(struct device * dev,struct device_attribute * attr,char * buf)3601 static ssize_t dctype_show(struct device *dev,
3602 struct device_attribute *attr, char *buf)
3603 {
3604 static const char * const type[] = {
3605 [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3606 [NVME_DCTYPE_DDC] = "ddc\n",
3607 [NVME_DCTYPE_CDC] = "cdc\n",
3608 };
3609 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3610
3611 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3612 return sysfs_emit(buf, "reserved\n");
3613
3614 return sysfs_emit(buf, type[ctrl->dctype]);
3615 }
3616 static DEVICE_ATTR_RO(dctype);
3617
3618 static struct attribute *nvme_dev_attrs[] = {
3619 &dev_attr_reset_controller.attr,
3620 &dev_attr_rescan_controller.attr,
3621 &dev_attr_model.attr,
3622 &dev_attr_serial.attr,
3623 &dev_attr_firmware_rev.attr,
3624 &dev_attr_cntlid.attr,
3625 &dev_attr_delete_controller.attr,
3626 &dev_attr_transport.attr,
3627 &dev_attr_subsysnqn.attr,
3628 &dev_attr_address.attr,
3629 &dev_attr_state.attr,
3630 &dev_attr_numa_node.attr,
3631 &dev_attr_queue_count.attr,
3632 &dev_attr_sqsize.attr,
3633 &dev_attr_hostnqn.attr,
3634 &dev_attr_hostid.attr,
3635 &dev_attr_ctrl_loss_tmo.attr,
3636 &dev_attr_reconnect_delay.attr,
3637 &dev_attr_fast_io_fail_tmo.attr,
3638 &dev_attr_kato.attr,
3639 &dev_attr_cntrltype.attr,
3640 &dev_attr_dctype.attr,
3641 NULL
3642 };
3643
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3644 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3645 struct attribute *a, int n)
3646 {
3647 struct device *dev = container_of(kobj, struct device, kobj);
3648 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3649
3650 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3651 return 0;
3652 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3653 return 0;
3654 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3655 return 0;
3656 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3657 return 0;
3658 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3659 return 0;
3660 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3661 return 0;
3662 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3663 return 0;
3664
3665 return a->mode;
3666 }
3667
3668 static const struct attribute_group nvme_dev_attrs_group = {
3669 .attrs = nvme_dev_attrs,
3670 .is_visible = nvme_dev_attrs_are_visible,
3671 };
3672
3673 static const struct attribute_group *nvme_dev_attr_groups[] = {
3674 &nvme_dev_attrs_group,
3675 NULL,
3676 };
3677
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3678 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3679 unsigned nsid)
3680 {
3681 struct nvme_ns_head *h;
3682
3683 lockdep_assert_held(&ctrl->subsys->lock);
3684
3685 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3686 /*
3687 * Private namespaces can share NSIDs under some conditions.
3688 * In that case we can't use the same ns_head for namespaces
3689 * with the same NSID.
3690 */
3691 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3692 continue;
3693 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3694 return h;
3695 }
3696
3697 return NULL;
3698 }
3699
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3700 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3701 struct nvme_ns_ids *ids)
3702 {
3703 bool has_uuid = !uuid_is_null(&ids->uuid);
3704 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3705 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3706 struct nvme_ns_head *h;
3707
3708 lockdep_assert_held(&subsys->lock);
3709
3710 list_for_each_entry(h, &subsys->nsheads, entry) {
3711 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3712 return -EINVAL;
3713 if (has_nguid &&
3714 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3715 return -EINVAL;
3716 if (has_eui64 &&
3717 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3718 return -EINVAL;
3719 }
3720
3721 return 0;
3722 }
3723
nvme_cdev_rel(struct device * dev)3724 static void nvme_cdev_rel(struct device *dev)
3725 {
3726 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3727 }
3728
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3729 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3730 {
3731 cdev_device_del(cdev, cdev_device);
3732 put_device(cdev_device);
3733 }
3734
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3735 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3736 const struct file_operations *fops, struct module *owner)
3737 {
3738 int minor, ret;
3739
3740 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3741 if (minor < 0)
3742 return minor;
3743 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3744 cdev_device->class = nvme_ns_chr_class;
3745 cdev_device->release = nvme_cdev_rel;
3746 device_initialize(cdev_device);
3747 cdev_init(cdev, fops);
3748 cdev->owner = owner;
3749 ret = cdev_device_add(cdev, cdev_device);
3750 if (ret)
3751 put_device(cdev_device);
3752
3753 return ret;
3754 }
3755
nvme_ns_chr_open(struct inode * inode,struct file * file)3756 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3757 {
3758 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3759 }
3760
nvme_ns_chr_release(struct inode * inode,struct file * file)3761 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3762 {
3763 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3764 return 0;
3765 }
3766
3767 static const struct file_operations nvme_ns_chr_fops = {
3768 .owner = THIS_MODULE,
3769 .open = nvme_ns_chr_open,
3770 .release = nvme_ns_chr_release,
3771 .unlocked_ioctl = nvme_ns_chr_ioctl,
3772 .compat_ioctl = compat_ptr_ioctl,
3773 .uring_cmd = nvme_ns_chr_uring_cmd,
3774 };
3775
nvme_add_ns_cdev(struct nvme_ns * ns)3776 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3777 {
3778 int ret;
3779
3780 ns->cdev_device.parent = ns->ctrl->device;
3781 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3782 ns->ctrl->instance, ns->head->instance);
3783 if (ret)
3784 return ret;
3785
3786 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3787 ns->ctrl->ops->module);
3788 }
3789
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids,bool is_shared)3790 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3791 unsigned nsid, struct nvme_ns_ids *ids, bool is_shared)
3792 {
3793 struct nvme_ns_head *head;
3794 size_t size = sizeof(*head);
3795 int ret = -ENOMEM;
3796
3797 #ifdef CONFIG_NVME_MULTIPATH
3798 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3799 #endif
3800
3801 head = kzalloc(size, GFP_KERNEL);
3802 if (!head)
3803 goto out;
3804 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3805 if (ret < 0)
3806 goto out_free_head;
3807 head->instance = ret;
3808 INIT_LIST_HEAD(&head->list);
3809 ret = init_srcu_struct(&head->srcu);
3810 if (ret)
3811 goto out_ida_remove;
3812 head->subsys = ctrl->subsys;
3813 head->ns_id = nsid;
3814 head->ids = *ids;
3815 head->shared = is_shared;
3816 kref_init(&head->ref);
3817
3818 if (head->ids.csi) {
3819 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3820 if (ret)
3821 goto out_cleanup_srcu;
3822 } else
3823 head->effects = ctrl->effects;
3824
3825 ret = nvme_mpath_alloc_disk(ctrl, head);
3826 if (ret)
3827 goto out_cleanup_srcu;
3828
3829 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3830
3831 kref_get(&ctrl->subsys->ref);
3832
3833 return head;
3834 out_cleanup_srcu:
3835 cleanup_srcu_struct(&head->srcu);
3836 out_ida_remove:
3837 ida_free(&ctrl->subsys->ns_ida, head->instance);
3838 out_free_head:
3839 kfree(head);
3840 out:
3841 if (ret > 0)
3842 ret = blk_status_to_errno(nvme_error_status(ret));
3843 return ERR_PTR(ret);
3844 }
3845
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3846 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3847 struct nvme_ns_ids *ids)
3848 {
3849 struct nvme_subsystem *s;
3850 int ret = 0;
3851
3852 /*
3853 * Note that this check is racy as we try to avoid holding the global
3854 * lock over the whole ns_head creation. But it is only intended as
3855 * a sanity check anyway.
3856 */
3857 mutex_lock(&nvme_subsystems_lock);
3858 list_for_each_entry(s, &nvme_subsystems, entry) {
3859 if (s == this)
3860 continue;
3861 mutex_lock(&s->lock);
3862 ret = nvme_subsys_check_duplicate_ids(s, ids);
3863 mutex_unlock(&s->lock);
3864 if (ret)
3865 break;
3866 }
3867 mutex_unlock(&nvme_subsystems_lock);
3868
3869 return ret;
3870 }
3871
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_ns_ids * ids,bool is_shared)3872 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3873 struct nvme_ns_ids *ids, bool is_shared)
3874 {
3875 struct nvme_ctrl *ctrl = ns->ctrl;
3876 struct nvme_ns_head *head = NULL;
3877 int ret;
3878
3879 ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids);
3880 if (ret) {
3881 dev_err(ctrl->device,
3882 "globally duplicate IDs for nsid %d\n", nsid);
3883 nvme_print_device_info(ctrl);
3884 return ret;
3885 }
3886
3887 mutex_lock(&ctrl->subsys->lock);
3888 head = nvme_find_ns_head(ctrl, nsid);
3889 if (!head) {
3890 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids);
3891 if (ret) {
3892 dev_err(ctrl->device,
3893 "duplicate IDs in subsystem for nsid %d\n",
3894 nsid);
3895 goto out_unlock;
3896 }
3897 head = nvme_alloc_ns_head(ctrl, nsid, ids, is_shared);
3898 if (IS_ERR(head)) {
3899 ret = PTR_ERR(head);
3900 goto out_unlock;
3901 }
3902 } else {
3903 ret = -EINVAL;
3904 if (!is_shared || !head->shared) {
3905 dev_err(ctrl->device,
3906 "Duplicate unshared namespace %d\n", nsid);
3907 goto out_put_ns_head;
3908 }
3909 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3910 dev_err(ctrl->device,
3911 "IDs don't match for shared namespace %d\n",
3912 nsid);
3913 goto out_put_ns_head;
3914 }
3915
3916 if (!multipath && !list_empty(&head->list)) {
3917 dev_warn(ctrl->device,
3918 "Found shared namespace %d, but multipathing not supported.\n",
3919 nsid);
3920 dev_warn_once(ctrl->device,
3921 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3922 }
3923 }
3924
3925 list_add_tail_rcu(&ns->siblings, &head->list);
3926 ns->head = head;
3927 mutex_unlock(&ctrl->subsys->lock);
3928 return 0;
3929
3930 out_put_ns_head:
3931 nvme_put_ns_head(head);
3932 out_unlock:
3933 mutex_unlock(&ctrl->subsys->lock);
3934 return ret;
3935 }
3936
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3937 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3938 {
3939 struct nvme_ns *ns, *ret = NULL;
3940
3941 down_read(&ctrl->namespaces_rwsem);
3942 list_for_each_entry(ns, &ctrl->namespaces, list) {
3943 if (ns->head->ns_id == nsid) {
3944 if (!nvme_get_ns(ns))
3945 continue;
3946 ret = ns;
3947 break;
3948 }
3949 if (ns->head->ns_id > nsid)
3950 break;
3951 }
3952 up_read(&ctrl->namespaces_rwsem);
3953 return ret;
3954 }
3955 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3956
3957 /*
3958 * Add the namespace to the controller list while keeping the list ordered.
3959 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3960 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3961 {
3962 struct nvme_ns *tmp;
3963
3964 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3965 if (tmp->head->ns_id < ns->head->ns_id) {
3966 list_add(&ns->list, &tmp->list);
3967 return;
3968 }
3969 }
3970 list_add(&ns->list, &ns->ctrl->namespaces);
3971 }
3972
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3973 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3974 struct nvme_ns_ids *ids)
3975 {
3976 struct nvme_ns *ns;
3977 struct gendisk *disk;
3978 struct nvme_id_ns *id;
3979 int node = ctrl->numa_node;
3980
3981 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3982 return;
3983
3984 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3985 if (!ns)
3986 goto out_free_id;
3987
3988 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3989 if (IS_ERR(disk))
3990 goto out_free_ns;
3991 disk->fops = &nvme_bdev_ops;
3992 disk->private_data = ns;
3993
3994 ns->disk = disk;
3995 ns->queue = disk->queue;
3996
3997 if (ctrl->opts && ctrl->opts->data_digest)
3998 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3999
4000 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4001 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
4002 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4003
4004 ns->ctrl = ctrl;
4005 kref_init(&ns->kref);
4006
4007 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
4008 goto out_cleanup_disk;
4009
4010 /*
4011 * If multipathing is enabled, the device name for all disks and not
4012 * just those that represent shared namespaces needs to be based on the
4013 * subsystem instance. Using the controller instance for private
4014 * namespaces could lead to naming collisions between shared and private
4015 * namespaces if they don't use a common numbering scheme.
4016 *
4017 * If multipathing is not enabled, disk names must use the controller
4018 * instance as shared namespaces will show up as multiple block
4019 * devices.
4020 */
4021 if (ns->head->disk) {
4022 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4023 ctrl->instance, ns->head->instance);
4024 disk->flags |= GENHD_FL_HIDDEN;
4025 } else if (multipath) {
4026 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4027 ns->head->instance);
4028 } else {
4029 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4030 ns->head->instance);
4031 }
4032
4033 if (nvme_update_ns_info(ns, id))
4034 goto out_unlink_ns;
4035
4036 down_write(&ctrl->namespaces_rwsem);
4037 nvme_ns_add_to_ctrl_list(ns);
4038 up_write(&ctrl->namespaces_rwsem);
4039 nvme_get_ctrl(ctrl);
4040
4041 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4042 goto out_cleanup_ns_from_list;
4043
4044 if (!nvme_ns_head_multipath(ns->head))
4045 nvme_add_ns_cdev(ns);
4046
4047 nvme_mpath_add_disk(ns, id);
4048 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4049 kfree(id);
4050
4051 return;
4052
4053 out_cleanup_ns_from_list:
4054 nvme_put_ctrl(ctrl);
4055 down_write(&ctrl->namespaces_rwsem);
4056 list_del_init(&ns->list);
4057 up_write(&ctrl->namespaces_rwsem);
4058 out_unlink_ns:
4059 mutex_lock(&ctrl->subsys->lock);
4060 list_del_rcu(&ns->siblings);
4061 if (list_empty(&ns->head->list))
4062 list_del_init(&ns->head->entry);
4063 mutex_unlock(&ctrl->subsys->lock);
4064 nvme_put_ns_head(ns->head);
4065 out_cleanup_disk:
4066 blk_cleanup_disk(disk);
4067 out_free_ns:
4068 kfree(ns);
4069 out_free_id:
4070 kfree(id);
4071 }
4072
nvme_ns_remove(struct nvme_ns * ns)4073 static void nvme_ns_remove(struct nvme_ns *ns)
4074 {
4075 bool last_path = false;
4076
4077 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4078 return;
4079
4080 clear_bit(NVME_NS_READY, &ns->flags);
4081 set_capacity(ns->disk, 0);
4082 nvme_fault_inject_fini(&ns->fault_inject);
4083
4084 /*
4085 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4086 * this ns going back into current_path.
4087 */
4088 synchronize_srcu(&ns->head->srcu);
4089
4090 /* wait for concurrent submissions */
4091 if (nvme_mpath_clear_current_path(ns))
4092 synchronize_srcu(&ns->head->srcu);
4093
4094 mutex_lock(&ns->ctrl->subsys->lock);
4095 list_del_rcu(&ns->siblings);
4096 if (list_empty(&ns->head->list)) {
4097 list_del_init(&ns->head->entry);
4098 last_path = true;
4099 }
4100 mutex_unlock(&ns->ctrl->subsys->lock);
4101
4102 /* guarantee not available in head->list */
4103 synchronize_rcu();
4104
4105 if (!nvme_ns_head_multipath(ns->head))
4106 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4107 del_gendisk(ns->disk);
4108 blk_cleanup_queue(ns->queue);
4109
4110 down_write(&ns->ctrl->namespaces_rwsem);
4111 list_del_init(&ns->list);
4112 up_write(&ns->ctrl->namespaces_rwsem);
4113
4114 if (last_path)
4115 nvme_mpath_shutdown_disk(ns->head);
4116 nvme_put_ns(ns);
4117 }
4118
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4119 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4120 {
4121 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4122
4123 if (ns) {
4124 nvme_ns_remove(ns);
4125 nvme_put_ns(ns);
4126 }
4127 }
4128
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_ids * ids)4129 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4130 {
4131 struct nvme_id_ns *id;
4132 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4133
4134 if (test_bit(NVME_NS_DEAD, &ns->flags))
4135 goto out;
4136
4137 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4138 if (ret)
4139 goto out;
4140
4141 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4142 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4143 dev_err(ns->ctrl->device,
4144 "identifiers changed for nsid %d\n", ns->head->ns_id);
4145 goto out_free_id;
4146 }
4147
4148 ret = nvme_update_ns_info(ns, id);
4149
4150 out_free_id:
4151 kfree(id);
4152 out:
4153 /*
4154 * Only remove the namespace if we got a fatal error back from the
4155 * device, otherwise ignore the error and just move on.
4156 *
4157 * TODO: we should probably schedule a delayed retry here.
4158 */
4159 if (ret > 0 && (ret & NVME_SC_DNR))
4160 nvme_ns_remove(ns);
4161 }
4162
nvme_validate_or_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)4163 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4164 {
4165 struct nvme_ns_ids ids = { };
4166 struct nvme_id_ns_cs_indep *id;
4167 struct nvme_ns *ns;
4168 bool ready = true;
4169
4170 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4171 return;
4172
4173 /*
4174 * Check if the namespace is ready. If not ignore it, we will get an
4175 * AEN once it becomes ready and restart the scan.
4176 */
4177 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) &&
4178 !nvme_identify_ns_cs_indep(ctrl, nsid, &id)) {
4179 ready = id->nstat & NVME_NSTAT_NRDY;
4180 kfree(id);
4181 }
4182
4183 if (!ready)
4184 return;
4185
4186 ns = nvme_find_get_ns(ctrl, nsid);
4187 if (ns) {
4188 nvme_validate_ns(ns, &ids);
4189 nvme_put_ns(ns);
4190 return;
4191 }
4192
4193 switch (ids.csi) {
4194 case NVME_CSI_NVM:
4195 nvme_alloc_ns(ctrl, nsid, &ids);
4196 break;
4197 case NVME_CSI_ZNS:
4198 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4199 dev_warn(ctrl->device,
4200 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4201 nsid);
4202 break;
4203 }
4204 if (!nvme_multi_css(ctrl)) {
4205 dev_warn(ctrl->device,
4206 "command set not reported for nsid: %d\n",
4207 nsid);
4208 break;
4209 }
4210 nvme_alloc_ns(ctrl, nsid, &ids);
4211 break;
4212 default:
4213 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4214 ids.csi, nsid);
4215 break;
4216 }
4217 }
4218
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4219 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4220 unsigned nsid)
4221 {
4222 struct nvme_ns *ns, *next;
4223 LIST_HEAD(rm_list);
4224
4225 down_write(&ctrl->namespaces_rwsem);
4226 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4227 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4228 list_move_tail(&ns->list, &rm_list);
4229 }
4230 up_write(&ctrl->namespaces_rwsem);
4231
4232 list_for_each_entry_safe(ns, next, &rm_list, list)
4233 nvme_ns_remove(ns);
4234
4235 }
4236
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4237 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4238 {
4239 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4240 __le32 *ns_list;
4241 u32 prev = 0;
4242 int ret = 0, i;
4243
4244 if (nvme_ctrl_limited_cns(ctrl))
4245 return -EOPNOTSUPP;
4246
4247 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4248 if (!ns_list)
4249 return -ENOMEM;
4250
4251 for (;;) {
4252 struct nvme_command cmd = {
4253 .identify.opcode = nvme_admin_identify,
4254 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4255 .identify.nsid = cpu_to_le32(prev),
4256 };
4257
4258 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4259 NVME_IDENTIFY_DATA_SIZE);
4260 if (ret) {
4261 dev_warn(ctrl->device,
4262 "Identify NS List failed (status=0x%x)\n", ret);
4263 goto free;
4264 }
4265
4266 for (i = 0; i < nr_entries; i++) {
4267 u32 nsid = le32_to_cpu(ns_list[i]);
4268
4269 if (!nsid) /* end of the list? */
4270 goto out;
4271 nvme_validate_or_alloc_ns(ctrl, nsid);
4272 while (++prev < nsid)
4273 nvme_ns_remove_by_nsid(ctrl, prev);
4274 }
4275 }
4276 out:
4277 nvme_remove_invalid_namespaces(ctrl, prev);
4278 free:
4279 kfree(ns_list);
4280 return ret;
4281 }
4282
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4283 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4284 {
4285 struct nvme_id_ctrl *id;
4286 u32 nn, i;
4287
4288 if (nvme_identify_ctrl(ctrl, &id))
4289 return;
4290 nn = le32_to_cpu(id->nn);
4291 kfree(id);
4292
4293 for (i = 1; i <= nn; i++)
4294 nvme_validate_or_alloc_ns(ctrl, i);
4295
4296 nvme_remove_invalid_namespaces(ctrl, nn);
4297 }
4298
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4299 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4300 {
4301 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4302 __le32 *log;
4303 int error;
4304
4305 log = kzalloc(log_size, GFP_KERNEL);
4306 if (!log)
4307 return;
4308
4309 /*
4310 * We need to read the log to clear the AEN, but we don't want to rely
4311 * on it for the changed namespace information as userspace could have
4312 * raced with us in reading the log page, which could cause us to miss
4313 * updates.
4314 */
4315 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4316 NVME_CSI_NVM, log, log_size, 0);
4317 if (error)
4318 dev_warn(ctrl->device,
4319 "reading changed ns log failed: %d\n", error);
4320
4321 kfree(log);
4322 }
4323
nvme_scan_work(struct work_struct * work)4324 static void nvme_scan_work(struct work_struct *work)
4325 {
4326 struct nvme_ctrl *ctrl =
4327 container_of(work, struct nvme_ctrl, scan_work);
4328 int ret;
4329
4330 /* No tagset on a live ctrl means IO queues could not created */
4331 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4332 return;
4333
4334 /*
4335 * Identify controller limits can change at controller reset due to
4336 * new firmware download, even though it is not common we cannot ignore
4337 * such scenario. Controller's non-mdts limits are reported in the unit
4338 * of logical blocks that is dependent on the format of attached
4339 * namespace. Hence re-read the limits at the time of ns allocation.
4340 */
4341 ret = nvme_init_non_mdts_limits(ctrl);
4342 if (ret < 0) {
4343 dev_warn(ctrl->device,
4344 "reading non-mdts-limits failed: %d\n", ret);
4345 return;
4346 }
4347
4348 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4349 dev_info(ctrl->device, "rescanning namespaces.\n");
4350 nvme_clear_changed_ns_log(ctrl);
4351 }
4352
4353 mutex_lock(&ctrl->scan_lock);
4354 if (nvme_scan_ns_list(ctrl) != 0)
4355 nvme_scan_ns_sequential(ctrl);
4356 mutex_unlock(&ctrl->scan_lock);
4357 }
4358
4359 /*
4360 * This function iterates the namespace list unlocked to allow recovery from
4361 * controller failure. It is up to the caller to ensure the namespace list is
4362 * not modified by scan work while this function is executing.
4363 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4364 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4365 {
4366 struct nvme_ns *ns, *next;
4367 LIST_HEAD(ns_list);
4368
4369 /*
4370 * make sure to requeue I/O to all namespaces as these
4371 * might result from the scan itself and must complete
4372 * for the scan_work to make progress
4373 */
4374 nvme_mpath_clear_ctrl_paths(ctrl);
4375
4376 /* prevent racing with ns scanning */
4377 flush_work(&ctrl->scan_work);
4378
4379 /*
4380 * The dead states indicates the controller was not gracefully
4381 * disconnected. In that case, we won't be able to flush any data while
4382 * removing the namespaces' disks; fail all the queues now to avoid
4383 * potentially having to clean up the failed sync later.
4384 */
4385 if (ctrl->state == NVME_CTRL_DEAD)
4386 nvme_kill_queues(ctrl);
4387
4388 /* this is a no-op when called from the controller reset handler */
4389 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4390
4391 down_write(&ctrl->namespaces_rwsem);
4392 list_splice_init(&ctrl->namespaces, &ns_list);
4393 up_write(&ctrl->namespaces_rwsem);
4394
4395 list_for_each_entry_safe(ns, next, &ns_list, list)
4396 nvme_ns_remove(ns);
4397 }
4398 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4399
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)4400 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4401 {
4402 struct nvme_ctrl *ctrl =
4403 container_of(dev, struct nvme_ctrl, ctrl_device);
4404 struct nvmf_ctrl_options *opts = ctrl->opts;
4405 int ret;
4406
4407 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4408 if (ret)
4409 return ret;
4410
4411 if (opts) {
4412 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4413 if (ret)
4414 return ret;
4415
4416 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4417 opts->trsvcid ?: "none");
4418 if (ret)
4419 return ret;
4420
4421 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4422 opts->host_traddr ?: "none");
4423 if (ret)
4424 return ret;
4425
4426 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4427 opts->host_iface ?: "none");
4428 }
4429 return ret;
4430 }
4431
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4432 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4433 {
4434 char *envp[2] = { envdata, NULL };
4435
4436 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4437 }
4438
nvme_aen_uevent(struct nvme_ctrl * ctrl)4439 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4440 {
4441 char *envp[2] = { NULL, NULL };
4442 u32 aen_result = ctrl->aen_result;
4443
4444 ctrl->aen_result = 0;
4445 if (!aen_result)
4446 return;
4447
4448 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4449 if (!envp[0])
4450 return;
4451 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4452 kfree(envp[0]);
4453 }
4454
nvme_async_event_work(struct work_struct * work)4455 static void nvme_async_event_work(struct work_struct *work)
4456 {
4457 struct nvme_ctrl *ctrl =
4458 container_of(work, struct nvme_ctrl, async_event_work);
4459
4460 nvme_aen_uevent(ctrl);
4461
4462 /*
4463 * The transport drivers must guarantee AER submission here is safe by
4464 * flushing ctrl async_event_work after changing the controller state
4465 * from LIVE and before freeing the admin queue.
4466 */
4467 if (ctrl->state == NVME_CTRL_LIVE)
4468 ctrl->ops->submit_async_event(ctrl);
4469 }
4470
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4471 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4472 {
4473
4474 u32 csts;
4475
4476 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4477 return false;
4478
4479 if (csts == ~0)
4480 return false;
4481
4482 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4483 }
4484
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4485 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4486 {
4487 struct nvme_fw_slot_info_log *log;
4488
4489 log = kmalloc(sizeof(*log), GFP_KERNEL);
4490 if (!log)
4491 return;
4492
4493 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4494 log, sizeof(*log), 0))
4495 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4496 kfree(log);
4497 }
4498
nvme_fw_act_work(struct work_struct * work)4499 static void nvme_fw_act_work(struct work_struct *work)
4500 {
4501 struct nvme_ctrl *ctrl = container_of(work,
4502 struct nvme_ctrl, fw_act_work);
4503 unsigned long fw_act_timeout;
4504
4505 if (ctrl->mtfa)
4506 fw_act_timeout = jiffies +
4507 msecs_to_jiffies(ctrl->mtfa * 100);
4508 else
4509 fw_act_timeout = jiffies +
4510 msecs_to_jiffies(admin_timeout * 1000);
4511
4512 nvme_stop_queues(ctrl);
4513 while (nvme_ctrl_pp_status(ctrl)) {
4514 if (time_after(jiffies, fw_act_timeout)) {
4515 dev_warn(ctrl->device,
4516 "Fw activation timeout, reset controller\n");
4517 nvme_try_sched_reset(ctrl);
4518 return;
4519 }
4520 msleep(100);
4521 }
4522
4523 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4524 return;
4525
4526 nvme_start_queues(ctrl);
4527 /* read FW slot information to clear the AER */
4528 nvme_get_fw_slot_info(ctrl);
4529 }
4530
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4531 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4532 {
4533 u32 aer_notice_type = (result & 0xff00) >> 8;
4534
4535 trace_nvme_async_event(ctrl, aer_notice_type);
4536
4537 switch (aer_notice_type) {
4538 case NVME_AER_NOTICE_NS_CHANGED:
4539 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4540 nvme_queue_scan(ctrl);
4541 break;
4542 case NVME_AER_NOTICE_FW_ACT_STARTING:
4543 /*
4544 * We are (ab)using the RESETTING state to prevent subsequent
4545 * recovery actions from interfering with the controller's
4546 * firmware activation.
4547 */
4548 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4549 queue_work(nvme_wq, &ctrl->fw_act_work);
4550 break;
4551 #ifdef CONFIG_NVME_MULTIPATH
4552 case NVME_AER_NOTICE_ANA:
4553 if (!ctrl->ana_log_buf)
4554 break;
4555 queue_work(nvme_wq, &ctrl->ana_work);
4556 break;
4557 #endif
4558 case NVME_AER_NOTICE_DISC_CHANGED:
4559 ctrl->aen_result = result;
4560 break;
4561 default:
4562 dev_warn(ctrl->device, "async event result %08x\n", result);
4563 }
4564 }
4565
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4566 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4567 volatile union nvme_result *res)
4568 {
4569 u32 result = le32_to_cpu(res->u32);
4570 u32 aer_type = result & 0x07;
4571
4572 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4573 return;
4574
4575 switch (aer_type) {
4576 case NVME_AER_NOTICE:
4577 nvme_handle_aen_notice(ctrl, result);
4578 break;
4579 case NVME_AER_ERROR:
4580 case NVME_AER_SMART:
4581 case NVME_AER_CSS:
4582 case NVME_AER_VS:
4583 trace_nvme_async_event(ctrl, aer_type);
4584 ctrl->aen_result = result;
4585 break;
4586 default:
4587 break;
4588 }
4589 queue_work(nvme_wq, &ctrl->async_event_work);
4590 }
4591 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4592
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4593 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4594 {
4595 nvme_mpath_stop(ctrl);
4596 nvme_stop_keep_alive(ctrl);
4597 nvme_stop_failfast_work(ctrl);
4598 flush_work(&ctrl->async_event_work);
4599 cancel_work_sync(&ctrl->fw_act_work);
4600 if (ctrl->ops->stop_ctrl)
4601 ctrl->ops->stop_ctrl(ctrl);
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4604
nvme_start_ctrl(struct nvme_ctrl * ctrl)4605 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4606 {
4607 nvme_start_keep_alive(ctrl);
4608
4609 nvme_enable_aen(ctrl);
4610
4611 if (ctrl->queue_count > 1) {
4612 nvme_queue_scan(ctrl);
4613 nvme_start_queues(ctrl);
4614 nvme_mpath_update(ctrl);
4615 }
4616
4617 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4618 }
4619 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4620
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4621 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4622 {
4623 nvme_hwmon_exit(ctrl);
4624 nvme_fault_inject_fini(&ctrl->fault_inject);
4625 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4626 cdev_device_del(&ctrl->cdev, ctrl->device);
4627 nvme_put_ctrl(ctrl);
4628 }
4629 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4630
nvme_free_cels(struct nvme_ctrl * ctrl)4631 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4632 {
4633 struct nvme_effects_log *cel;
4634 unsigned long i;
4635
4636 xa_for_each(&ctrl->cels, i, cel) {
4637 xa_erase(&ctrl->cels, i);
4638 kfree(cel);
4639 }
4640
4641 xa_destroy(&ctrl->cels);
4642 }
4643
nvme_free_ctrl(struct device * dev)4644 static void nvme_free_ctrl(struct device *dev)
4645 {
4646 struct nvme_ctrl *ctrl =
4647 container_of(dev, struct nvme_ctrl, ctrl_device);
4648 struct nvme_subsystem *subsys = ctrl->subsys;
4649
4650 if (!subsys || ctrl->instance != subsys->instance)
4651 ida_free(&nvme_instance_ida, ctrl->instance);
4652
4653 nvme_free_cels(ctrl);
4654 nvme_mpath_uninit(ctrl);
4655 __free_page(ctrl->discard_page);
4656
4657 if (subsys) {
4658 mutex_lock(&nvme_subsystems_lock);
4659 list_del(&ctrl->subsys_entry);
4660 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4661 mutex_unlock(&nvme_subsystems_lock);
4662 }
4663
4664 ctrl->ops->free_ctrl(ctrl);
4665
4666 if (subsys)
4667 nvme_put_subsystem(subsys);
4668 }
4669
4670 /*
4671 * Initialize a NVMe controller structures. This needs to be called during
4672 * earliest initialization so that we have the initialized structured around
4673 * during probing.
4674 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4675 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4676 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4677 {
4678 int ret;
4679
4680 ctrl->state = NVME_CTRL_NEW;
4681 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4682 spin_lock_init(&ctrl->lock);
4683 mutex_init(&ctrl->scan_lock);
4684 INIT_LIST_HEAD(&ctrl->namespaces);
4685 xa_init(&ctrl->cels);
4686 init_rwsem(&ctrl->namespaces_rwsem);
4687 ctrl->dev = dev;
4688 ctrl->ops = ops;
4689 ctrl->quirks = quirks;
4690 ctrl->numa_node = NUMA_NO_NODE;
4691 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4692 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4693 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4694 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4695 init_waitqueue_head(&ctrl->state_wq);
4696
4697 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4698 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4699 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4700 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4701
4702 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4703 PAGE_SIZE);
4704 ctrl->discard_page = alloc_page(GFP_KERNEL);
4705 if (!ctrl->discard_page) {
4706 ret = -ENOMEM;
4707 goto out;
4708 }
4709
4710 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4711 if (ret < 0)
4712 goto out;
4713 ctrl->instance = ret;
4714
4715 device_initialize(&ctrl->ctrl_device);
4716 ctrl->device = &ctrl->ctrl_device;
4717 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4718 ctrl->instance);
4719 ctrl->device->class = nvme_class;
4720 ctrl->device->parent = ctrl->dev;
4721 ctrl->device->groups = nvme_dev_attr_groups;
4722 ctrl->device->release = nvme_free_ctrl;
4723 dev_set_drvdata(ctrl->device, ctrl);
4724 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4725 if (ret)
4726 goto out_release_instance;
4727
4728 nvme_get_ctrl(ctrl);
4729 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4730 ctrl->cdev.owner = ops->module;
4731 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4732 if (ret)
4733 goto out_free_name;
4734
4735 /*
4736 * Initialize latency tolerance controls. The sysfs files won't
4737 * be visible to userspace unless the device actually supports APST.
4738 */
4739 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4740 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4741 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4742
4743 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4744 nvme_mpath_init_ctrl(ctrl);
4745
4746 return 0;
4747 out_free_name:
4748 nvme_put_ctrl(ctrl);
4749 kfree_const(ctrl->device->kobj.name);
4750 out_release_instance:
4751 ida_free(&nvme_instance_ida, ctrl->instance);
4752 out:
4753 if (ctrl->discard_page)
4754 __free_page(ctrl->discard_page);
4755 return ret;
4756 }
4757 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4758
nvme_start_ns_queue(struct nvme_ns * ns)4759 static void nvme_start_ns_queue(struct nvme_ns *ns)
4760 {
4761 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4762 blk_mq_unquiesce_queue(ns->queue);
4763 }
4764
nvme_stop_ns_queue(struct nvme_ns * ns)4765 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4766 {
4767 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4768 blk_mq_quiesce_queue(ns->queue);
4769 else
4770 blk_mq_wait_quiesce_done(ns->queue);
4771 }
4772
4773 /*
4774 * Prepare a queue for teardown.
4775 *
4776 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4777 * the capacity to 0 after that to avoid blocking dispatchers that may be
4778 * holding bd_butex. This will end buffered writers dirtying pages that can't
4779 * be synced.
4780 */
nvme_set_queue_dying(struct nvme_ns * ns)4781 static void nvme_set_queue_dying(struct nvme_ns *ns)
4782 {
4783 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4784 return;
4785
4786 blk_mark_disk_dead(ns->disk);
4787 nvme_start_ns_queue(ns);
4788
4789 set_capacity_and_notify(ns->disk, 0);
4790 }
4791
4792 /**
4793 * nvme_kill_queues(): Ends all namespace queues
4794 * @ctrl: the dead controller that needs to end
4795 *
4796 * Call this function when the driver determines it is unable to get the
4797 * controller in a state capable of servicing IO.
4798 */
nvme_kill_queues(struct nvme_ctrl * ctrl)4799 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4800 {
4801 struct nvme_ns *ns;
4802
4803 down_read(&ctrl->namespaces_rwsem);
4804
4805 /* Forcibly unquiesce queues to avoid blocking dispatch */
4806 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4807 nvme_start_admin_queue(ctrl);
4808
4809 list_for_each_entry(ns, &ctrl->namespaces, list)
4810 nvme_set_queue_dying(ns);
4811
4812 up_read(&ctrl->namespaces_rwsem);
4813 }
4814 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4815
nvme_unfreeze(struct nvme_ctrl * ctrl)4816 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4817 {
4818 struct nvme_ns *ns;
4819
4820 down_read(&ctrl->namespaces_rwsem);
4821 list_for_each_entry(ns, &ctrl->namespaces, list)
4822 blk_mq_unfreeze_queue(ns->queue);
4823 up_read(&ctrl->namespaces_rwsem);
4824 }
4825 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4826
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4827 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4828 {
4829 struct nvme_ns *ns;
4830
4831 down_read(&ctrl->namespaces_rwsem);
4832 list_for_each_entry(ns, &ctrl->namespaces, list) {
4833 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4834 if (timeout <= 0)
4835 break;
4836 }
4837 up_read(&ctrl->namespaces_rwsem);
4838 return timeout;
4839 }
4840 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4841
nvme_wait_freeze(struct nvme_ctrl * ctrl)4842 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4843 {
4844 struct nvme_ns *ns;
4845
4846 down_read(&ctrl->namespaces_rwsem);
4847 list_for_each_entry(ns, &ctrl->namespaces, list)
4848 blk_mq_freeze_queue_wait(ns->queue);
4849 up_read(&ctrl->namespaces_rwsem);
4850 }
4851 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4852
nvme_start_freeze(struct nvme_ctrl * ctrl)4853 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4854 {
4855 struct nvme_ns *ns;
4856
4857 down_read(&ctrl->namespaces_rwsem);
4858 list_for_each_entry(ns, &ctrl->namespaces, list)
4859 blk_freeze_queue_start(ns->queue);
4860 up_read(&ctrl->namespaces_rwsem);
4861 }
4862 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4863
nvme_stop_queues(struct nvme_ctrl * ctrl)4864 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4865 {
4866 struct nvme_ns *ns;
4867
4868 down_read(&ctrl->namespaces_rwsem);
4869 list_for_each_entry(ns, &ctrl->namespaces, list)
4870 nvme_stop_ns_queue(ns);
4871 up_read(&ctrl->namespaces_rwsem);
4872 }
4873 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4874
nvme_start_queues(struct nvme_ctrl * ctrl)4875 void nvme_start_queues(struct nvme_ctrl *ctrl)
4876 {
4877 struct nvme_ns *ns;
4878
4879 down_read(&ctrl->namespaces_rwsem);
4880 list_for_each_entry(ns, &ctrl->namespaces, list)
4881 nvme_start_ns_queue(ns);
4882 up_read(&ctrl->namespaces_rwsem);
4883 }
4884 EXPORT_SYMBOL_GPL(nvme_start_queues);
4885
nvme_stop_admin_queue(struct nvme_ctrl * ctrl)4886 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4887 {
4888 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4889 blk_mq_quiesce_queue(ctrl->admin_q);
4890 else
4891 blk_mq_wait_quiesce_done(ctrl->admin_q);
4892 }
4893 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4894
nvme_start_admin_queue(struct nvme_ctrl * ctrl)4895 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4896 {
4897 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4898 blk_mq_unquiesce_queue(ctrl->admin_q);
4899 }
4900 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4901
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4902 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4903 {
4904 struct nvme_ns *ns;
4905
4906 down_read(&ctrl->namespaces_rwsem);
4907 list_for_each_entry(ns, &ctrl->namespaces, list)
4908 blk_sync_queue(ns->queue);
4909 up_read(&ctrl->namespaces_rwsem);
4910 }
4911 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4912
nvme_sync_queues(struct nvme_ctrl * ctrl)4913 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4914 {
4915 nvme_sync_io_queues(ctrl);
4916 if (ctrl->admin_q)
4917 blk_sync_queue(ctrl->admin_q);
4918 }
4919 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4920
nvme_ctrl_from_file(struct file * file)4921 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4922 {
4923 if (file->f_op != &nvme_dev_fops)
4924 return NULL;
4925 return file->private_data;
4926 }
4927 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4928
4929 /*
4930 * Check we didn't inadvertently grow the command structure sizes:
4931 */
_nvme_check_size(void)4932 static inline void _nvme_check_size(void)
4933 {
4934 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4935 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4936 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4937 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4938 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4939 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4940 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4941 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4942 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4943 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4944 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4945 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4946 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4947 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4948 NVME_IDENTIFY_DATA_SIZE);
4949 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4950 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4951 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4952 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4953 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4954 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4955 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4956 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4957 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4958 }
4959
4960
nvme_core_init(void)4961 static int __init nvme_core_init(void)
4962 {
4963 int result = -ENOMEM;
4964
4965 _nvme_check_size();
4966
4967 nvme_wq = alloc_workqueue("nvme-wq",
4968 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4969 if (!nvme_wq)
4970 goto out;
4971
4972 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4973 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4974 if (!nvme_reset_wq)
4975 goto destroy_wq;
4976
4977 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4978 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4979 if (!nvme_delete_wq)
4980 goto destroy_reset_wq;
4981
4982 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4983 NVME_MINORS, "nvme");
4984 if (result < 0)
4985 goto destroy_delete_wq;
4986
4987 nvme_class = class_create(THIS_MODULE, "nvme");
4988 if (IS_ERR(nvme_class)) {
4989 result = PTR_ERR(nvme_class);
4990 goto unregister_chrdev;
4991 }
4992 nvme_class->dev_uevent = nvme_class_uevent;
4993
4994 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4995 if (IS_ERR(nvme_subsys_class)) {
4996 result = PTR_ERR(nvme_subsys_class);
4997 goto destroy_class;
4998 }
4999
5000 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5001 "nvme-generic");
5002 if (result < 0)
5003 goto destroy_subsys_class;
5004
5005 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5006 if (IS_ERR(nvme_ns_chr_class)) {
5007 result = PTR_ERR(nvme_ns_chr_class);
5008 goto unregister_generic_ns;
5009 }
5010
5011 return 0;
5012
5013 unregister_generic_ns:
5014 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5015 destroy_subsys_class:
5016 class_destroy(nvme_subsys_class);
5017 destroy_class:
5018 class_destroy(nvme_class);
5019 unregister_chrdev:
5020 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5021 destroy_delete_wq:
5022 destroy_workqueue(nvme_delete_wq);
5023 destroy_reset_wq:
5024 destroy_workqueue(nvme_reset_wq);
5025 destroy_wq:
5026 destroy_workqueue(nvme_wq);
5027 out:
5028 return result;
5029 }
5030
nvme_core_exit(void)5031 static void __exit nvme_core_exit(void)
5032 {
5033 class_destroy(nvme_ns_chr_class);
5034 class_destroy(nvme_subsys_class);
5035 class_destroy(nvme_class);
5036 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5037 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5038 destroy_workqueue(nvme_delete_wq);
5039 destroy_workqueue(nvme_reset_wq);
5040 destroy_workqueue(nvme_wq);
5041 ida_destroy(&nvme_ns_chr_minor_ida);
5042 ida_destroy(&nvme_instance_ida);
5043 }
5044
5045 MODULE_LICENSE("GPL");
5046 MODULE_VERSION("1.0");
5047 module_init(nvme_core_init);
5048 module_exit(nvme_core_exit);
5049