1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 #include <linux/dma-mapping.h>
26
27 #include "drmP.h"
28 #include "drm_crtc_helper.h"
29
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nv50_display.h"
37
38 #define EVO_DMA_NR 9
39
40 #define EVO_MASTER (0x00)
41 #define EVO_FLIP(c) (0x01 + (c))
42 #define EVO_OVLY(c) (0x05 + (c))
43 #define EVO_OIMM(c) (0x09 + (c))
44 #define EVO_CURS(c) (0x0d + (c))
45
46 /* offsets in shared sync bo of various structures */
47 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
48 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
49 #define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00)
50 #define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10)
51
52 struct evo {
53 int idx;
54 dma_addr_t handle;
55 u32 *ptr;
56 struct {
57 u32 offset;
58 u16 value;
59 } sem;
60 };
61
62 struct nvd0_display {
63 struct nouveau_gpuobj *mem;
64 struct nouveau_bo *sync;
65 struct evo evo[9];
66
67 struct tasklet_struct tasklet;
68 u32 modeset;
69 };
70
71 static struct nvd0_display *
nvd0_display(struct drm_device * dev)72 nvd0_display(struct drm_device *dev)
73 {
74 struct drm_nouveau_private *dev_priv = dev->dev_private;
75 return dev_priv->engine.display.priv;
76 }
77
78 static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder * encoder)79 nvd0_display_crtc_get(struct drm_encoder *encoder)
80 {
81 return nouveau_encoder(encoder)->crtc;
82 }
83
84 /******************************************************************************
85 * EVO channel helpers
86 *****************************************************************************/
87 static inline int
evo_icmd(struct drm_device * dev,int id,u32 mthd,u32 data)88 evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
89 {
90 int ret = 0;
91 nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
92 nv_wr32(dev, 0x610704 + (id * 0x10), data);
93 nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
94 if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
95 ret = -EBUSY;
96 nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
97 return ret;
98 }
99
100 static u32 *
evo_wait(struct drm_device * dev,int id,int nr)101 evo_wait(struct drm_device *dev, int id, int nr)
102 {
103 struct nvd0_display *disp = nvd0_display(dev);
104 u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;
105
106 if (put + nr >= (PAGE_SIZE / 4)) {
107 disp->evo[id].ptr[put] = 0x20000000;
108
109 nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
110 if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
111 NV_ERROR(dev, "evo %d dma stalled\n", id);
112 return NULL;
113 }
114
115 put = 0;
116 }
117
118 if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
119 NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);
120
121 return disp->evo[id].ptr + put;
122 }
123
124 static void
evo_kick(u32 * push,struct drm_device * dev,int id)125 evo_kick(u32 *push, struct drm_device *dev, int id)
126 {
127 struct nvd0_display *disp = nvd0_display(dev);
128
129 if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
130 u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
131 u32 *cur = disp->evo[id].ptr + curp;
132
133 while (cur < push)
134 NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
135 NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
136 }
137
138 nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
139 }
140
141 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
142 #define evo_data(p,d) *((p)++) = (d)
143
144 static int
evo_init_dma(struct drm_device * dev,int ch)145 evo_init_dma(struct drm_device *dev, int ch)
146 {
147 struct nvd0_display *disp = nvd0_display(dev);
148 u32 flags;
149
150 flags = 0x00000000;
151 if (ch == EVO_MASTER)
152 flags |= 0x01000000;
153
154 nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
155 nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
156 nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
157 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
158 nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
159 nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
160 if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
161 NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
162 nv_rd32(dev, 0x610490 + (ch * 0x0010)));
163 return -EBUSY;
164 }
165
166 nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
167 nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
168 return 0;
169 }
170
171 static void
evo_fini_dma(struct drm_device * dev,int ch)172 evo_fini_dma(struct drm_device *dev, int ch)
173 {
174 if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
175 return;
176
177 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
178 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
179 nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
180 nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
181 nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
182 }
183
184 static inline void
evo_piow(struct drm_device * dev,int ch,u16 mthd,u32 data)185 evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
186 {
187 nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
188 }
189
190 static int
evo_init_pio(struct drm_device * dev,int ch)191 evo_init_pio(struct drm_device *dev, int ch)
192 {
193 nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
194 if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
195 NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
196 nv_rd32(dev, 0x610490 + (ch * 0x0010)));
197 return -EBUSY;
198 }
199
200 nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
201 nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
202 return 0;
203 }
204
205 static void
evo_fini_pio(struct drm_device * dev,int ch)206 evo_fini_pio(struct drm_device *dev, int ch)
207 {
208 if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
209 return;
210
211 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
212 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
213 nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
214 nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
215 nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
216 }
217
218 static bool
evo_sync_wait(void * data)219 evo_sync_wait(void *data)
220 {
221 return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
222 }
223
224 static int
evo_sync(struct drm_device * dev,int ch)225 evo_sync(struct drm_device *dev, int ch)
226 {
227 struct nvd0_display *disp = nvd0_display(dev);
228 u32 *push = evo_wait(dev, ch, 8);
229 if (push) {
230 nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
231 evo_mthd(push, 0x0084, 1);
232 evo_data(push, 0x80000000 | EVO_MAST_NTFY);
233 evo_mthd(push, 0x0080, 2);
234 evo_data(push, 0x00000000);
235 evo_data(push, 0x00000000);
236 evo_kick(push, dev, ch);
237 if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
238 return 0;
239 }
240
241 return -EBUSY;
242 }
243
244 /******************************************************************************
245 * Page flipping channel
246 *****************************************************************************/
247 struct nouveau_bo *
nvd0_display_crtc_sema(struct drm_device * dev,int crtc)248 nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
249 {
250 return nvd0_display(dev)->sync;
251 }
252
253 void
nvd0_display_flip_stop(struct drm_crtc * crtc)254 nvd0_display_flip_stop(struct drm_crtc *crtc)
255 {
256 struct nvd0_display *disp = nvd0_display(crtc->dev);
257 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
258 struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
259 u32 *push;
260
261 push = evo_wait(crtc->dev, evo->idx, 8);
262 if (push) {
263 evo_mthd(push, 0x0084, 1);
264 evo_data(push, 0x00000000);
265 evo_mthd(push, 0x0094, 1);
266 evo_data(push, 0x00000000);
267 evo_mthd(push, 0x00c0, 1);
268 evo_data(push, 0x00000000);
269 evo_mthd(push, 0x0080, 1);
270 evo_data(push, 0x00000000);
271 evo_kick(push, crtc->dev, evo->idx);
272 }
273 }
274
275 int
nvd0_display_flip_next(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct nouveau_channel * chan,u32 swap_interval)276 nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
277 struct nouveau_channel *chan, u32 swap_interval)
278 {
279 struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
280 struct nvd0_display *disp = nvd0_display(crtc->dev);
281 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
282 struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
283 u64 offset;
284 u32 *push;
285 int ret;
286
287 evo_sync(crtc->dev, EVO_MASTER);
288
289 swap_interval <<= 4;
290 if (swap_interval == 0)
291 swap_interval |= 0x100;
292
293 push = evo_wait(crtc->dev, evo->idx, 128);
294 if (unlikely(push == NULL))
295 return -EBUSY;
296
297 /* synchronise with the rendering channel, if necessary */
298 if (likely(chan)) {
299 ret = RING_SPACE(chan, 10);
300 if (ret)
301 return ret;
302
303 offset = chan->dispc_vma[nv_crtc->index].offset;
304 offset += evo->sem.offset;
305
306 BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
307 OUT_RING (chan, upper_32_bits(offset));
308 OUT_RING (chan, lower_32_bits(offset));
309 OUT_RING (chan, 0xf00d0000 | evo->sem.value);
310 OUT_RING (chan, 0x1002);
311 BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
312 OUT_RING (chan, upper_32_bits(offset));
313 OUT_RING (chan, lower_32_bits(offset ^ 0x10));
314 OUT_RING (chan, 0x74b1e000);
315 OUT_RING (chan, 0x1001);
316 FIRE_RING (chan);
317 } else {
318 nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
319 0xf00d0000 | evo->sem.value);
320 evo_sync(crtc->dev, EVO_MASTER);
321 }
322
323 /* queue the flip */
324 evo_mthd(push, 0x0100, 1);
325 evo_data(push, 0xfffe0000);
326 evo_mthd(push, 0x0084, 1);
327 evo_data(push, swap_interval);
328 if (!(swap_interval & 0x00000100)) {
329 evo_mthd(push, 0x00e0, 1);
330 evo_data(push, 0x40000000);
331 }
332 evo_mthd(push, 0x0088, 4);
333 evo_data(push, evo->sem.offset);
334 evo_data(push, 0xf00d0000 | evo->sem.value);
335 evo_data(push, 0x74b1e000);
336 evo_data(push, NvEvoSync);
337 evo_mthd(push, 0x00a0, 2);
338 evo_data(push, 0x00000000);
339 evo_data(push, 0x00000000);
340 evo_mthd(push, 0x00c0, 1);
341 evo_data(push, nv_fb->r_dma);
342 evo_mthd(push, 0x0110, 2);
343 evo_data(push, 0x00000000);
344 evo_data(push, 0x00000000);
345 evo_mthd(push, 0x0400, 5);
346 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
347 evo_data(push, 0);
348 evo_data(push, (fb->height << 16) | fb->width);
349 evo_data(push, nv_fb->r_pitch);
350 evo_data(push, nv_fb->r_format);
351 evo_mthd(push, 0x0080, 1);
352 evo_data(push, 0x00000000);
353 evo_kick(push, crtc->dev, evo->idx);
354
355 evo->sem.offset ^= 0x10;
356 evo->sem.value++;
357 return 0;
358 }
359
360 /******************************************************************************
361 * CRTC
362 *****************************************************************************/
363 static int
nvd0_crtc_set_dither(struct nouveau_crtc * nv_crtc,bool update)364 nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
365 {
366 struct drm_nouveau_private *dev_priv = nv_crtc->base.dev->dev_private;
367 struct drm_device *dev = nv_crtc->base.dev;
368 struct nouveau_connector *nv_connector;
369 struct drm_connector *connector;
370 u32 *push, mode = 0x00;
371 u32 mthd;
372
373 nv_connector = nouveau_crtc_connector_get(nv_crtc);
374 connector = &nv_connector->base;
375 if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
376 if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
377 mode = DITHERING_MODE_DYNAMIC2X2;
378 } else {
379 mode = nv_connector->dithering_mode;
380 }
381
382 if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
383 if (connector->display_info.bpc >= 8)
384 mode |= DITHERING_DEPTH_8BPC;
385 } else {
386 mode |= nv_connector->dithering_depth;
387 }
388
389 if (dev_priv->card_type < NV_E0)
390 mthd = 0x0490 + (nv_crtc->index * 0x0300);
391 else
392 mthd = 0x04a0 + (nv_crtc->index * 0x0300);
393
394 push = evo_wait(dev, EVO_MASTER, 4);
395 if (push) {
396 evo_mthd(push, mthd, 1);
397 evo_data(push, mode);
398 if (update) {
399 evo_mthd(push, 0x0080, 1);
400 evo_data(push, 0x00000000);
401 }
402 evo_kick(push, dev, EVO_MASTER);
403 }
404
405 return 0;
406 }
407
408 static int
nvd0_crtc_set_scale(struct nouveau_crtc * nv_crtc,bool update)409 nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
410 {
411 struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
412 struct drm_device *dev = nv_crtc->base.dev;
413 struct drm_crtc *crtc = &nv_crtc->base;
414 struct nouveau_connector *nv_connector;
415 int mode = DRM_MODE_SCALE_NONE;
416 u32 oX, oY, *push;
417
418 /* start off at the resolution we programmed the crtc for, this
419 * effectively handles NONE/FULL scaling
420 */
421 nv_connector = nouveau_crtc_connector_get(nv_crtc);
422 if (nv_connector && nv_connector->native_mode)
423 mode = nv_connector->scaling_mode;
424
425 if (mode != DRM_MODE_SCALE_NONE)
426 omode = nv_connector->native_mode;
427 else
428 omode = umode;
429
430 oX = omode->hdisplay;
431 oY = omode->vdisplay;
432 if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
433 oY *= 2;
434
435 /* add overscan compensation if necessary, will keep the aspect
436 * ratio the same as the backend mode unless overridden by the
437 * user setting both hborder and vborder properties.
438 */
439 if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
440 (nv_connector->underscan == UNDERSCAN_AUTO &&
441 nv_connector->edid &&
442 drm_detect_hdmi_monitor(nv_connector->edid)))) {
443 u32 bX = nv_connector->underscan_hborder;
444 u32 bY = nv_connector->underscan_vborder;
445 u32 aspect = (oY << 19) / oX;
446
447 if (bX) {
448 oX -= (bX * 2);
449 if (bY) oY -= (bY * 2);
450 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
451 } else {
452 oX -= (oX >> 4) + 32;
453 if (bY) oY -= (bY * 2);
454 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
455 }
456 }
457
458 /* handle CENTER/ASPECT scaling, taking into account the areas
459 * removed already for overscan compensation
460 */
461 switch (mode) {
462 case DRM_MODE_SCALE_CENTER:
463 oX = min((u32)umode->hdisplay, oX);
464 oY = min((u32)umode->vdisplay, oY);
465 /* fall-through */
466 case DRM_MODE_SCALE_ASPECT:
467 if (oY < oX) {
468 u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
469 oX = ((oY * aspect) + (aspect / 2)) >> 19;
470 } else {
471 u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
472 oY = ((oX * aspect) + (aspect / 2)) >> 19;
473 }
474 break;
475 default:
476 break;
477 }
478
479 push = evo_wait(dev, EVO_MASTER, 8);
480 if (push) {
481 evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
482 evo_data(push, (oY << 16) | oX);
483 evo_data(push, (oY << 16) | oX);
484 evo_data(push, (oY << 16) | oX);
485 evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
486 evo_data(push, 0x00000000);
487 evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
488 evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
489 evo_kick(push, dev, EVO_MASTER);
490 if (update) {
491 nvd0_display_flip_stop(crtc);
492 nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
493 }
494 }
495
496 return 0;
497 }
498
499 static int
nvd0_crtc_set_image(struct nouveau_crtc * nv_crtc,struct drm_framebuffer * fb,int x,int y,bool update)500 nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
501 int x, int y, bool update)
502 {
503 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
504 u32 *push;
505
506 push = evo_wait(fb->dev, EVO_MASTER, 16);
507 if (push) {
508 evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
509 evo_data(push, nvfb->nvbo->bo.offset >> 8);
510 evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
511 evo_data(push, (fb->height << 16) | fb->width);
512 evo_data(push, nvfb->r_pitch);
513 evo_data(push, nvfb->r_format);
514 evo_data(push, nvfb->r_dma);
515 evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
516 evo_data(push, (y << 16) | x);
517 if (update) {
518 evo_mthd(push, 0x0080, 1);
519 evo_data(push, 0x00000000);
520 }
521 evo_kick(push, fb->dev, EVO_MASTER);
522 }
523
524 nv_crtc->fb.tile_flags = nvfb->r_dma;
525 return 0;
526 }
527
528 static void
nvd0_crtc_cursor_show(struct nouveau_crtc * nv_crtc,bool show,bool update)529 nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
530 {
531 struct drm_device *dev = nv_crtc->base.dev;
532 u32 *push = evo_wait(dev, EVO_MASTER, 16);
533 if (push) {
534 if (show) {
535 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
536 evo_data(push, 0x85000000);
537 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
538 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
539 evo_data(push, NvEvoVRAM);
540 } else {
541 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
542 evo_data(push, 0x05000000);
543 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
544 evo_data(push, 0x00000000);
545 }
546
547 if (update) {
548 evo_mthd(push, 0x0080, 1);
549 evo_data(push, 0x00000000);
550 }
551
552 evo_kick(push, dev, EVO_MASTER);
553 }
554 }
555
556 static void
nvd0_crtc_dpms(struct drm_crtc * crtc,int mode)557 nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
558 {
559 }
560
561 static void
nvd0_crtc_prepare(struct drm_crtc * crtc)562 nvd0_crtc_prepare(struct drm_crtc *crtc)
563 {
564 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
565 u32 *push;
566
567 nvd0_display_flip_stop(crtc);
568
569 push = evo_wait(crtc->dev, EVO_MASTER, 2);
570 if (push) {
571 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
572 evo_data(push, 0x00000000);
573 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
574 evo_data(push, 0x03000000);
575 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
576 evo_data(push, 0x00000000);
577 evo_kick(push, crtc->dev, EVO_MASTER);
578 }
579
580 nvd0_crtc_cursor_show(nv_crtc, false, false);
581 }
582
583 static void
nvd0_crtc_commit(struct drm_crtc * crtc)584 nvd0_crtc_commit(struct drm_crtc *crtc)
585 {
586 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
587 u32 *push;
588
589 push = evo_wait(crtc->dev, EVO_MASTER, 32);
590 if (push) {
591 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
592 evo_data(push, nv_crtc->fb.tile_flags);
593 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
594 evo_data(push, 0x83000000);
595 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
596 evo_data(push, 0x00000000);
597 evo_data(push, 0x00000000);
598 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
599 evo_data(push, NvEvoVRAM);
600 evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
601 evo_data(push, 0xffffff00);
602 evo_kick(push, crtc->dev, EVO_MASTER);
603 }
604
605 nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
606 nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
607 }
608
609 static bool
nvd0_crtc_mode_fixup(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)610 nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
611 struct drm_display_mode *adjusted_mode)
612 {
613 return true;
614 }
615
616 static int
nvd0_crtc_swap_fbs(struct drm_crtc * crtc,struct drm_framebuffer * old_fb)617 nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
618 {
619 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
620 int ret;
621
622 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
623 if (ret)
624 return ret;
625
626 if (old_fb) {
627 nvfb = nouveau_framebuffer(old_fb);
628 nouveau_bo_unpin(nvfb->nvbo);
629 }
630
631 return 0;
632 }
633
634 static int
nvd0_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * umode,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * old_fb)635 nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
636 struct drm_display_mode *mode, int x, int y,
637 struct drm_framebuffer *old_fb)
638 {
639 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
640 struct nouveau_connector *nv_connector;
641 u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
642 u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
643 u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
644 u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
645 u32 vblan2e = 0, vblan2s = 1;
646 u32 *push;
647 int ret;
648
649 hactive = mode->htotal;
650 hsynce = mode->hsync_end - mode->hsync_start - 1;
651 hbackp = mode->htotal - mode->hsync_end;
652 hblanke = hsynce + hbackp;
653 hfrontp = mode->hsync_start - mode->hdisplay;
654 hblanks = mode->htotal - hfrontp - 1;
655
656 vactive = mode->vtotal * vscan / ilace;
657 vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
658 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
659 vblanke = vsynce + vbackp;
660 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
661 vblanks = vactive - vfrontp - 1;
662 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
663 vblan2e = vactive + vsynce + vbackp;
664 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
665 vactive = (vactive * 2) + 1;
666 }
667
668 ret = nvd0_crtc_swap_fbs(crtc, old_fb);
669 if (ret)
670 return ret;
671
672 push = evo_wait(crtc->dev, EVO_MASTER, 64);
673 if (push) {
674 evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
675 evo_data(push, 0x00000000);
676 evo_data(push, (vactive << 16) | hactive);
677 evo_data(push, ( vsynce << 16) | hsynce);
678 evo_data(push, (vblanke << 16) | hblanke);
679 evo_data(push, (vblanks << 16) | hblanks);
680 evo_data(push, (vblan2e << 16) | vblan2s);
681 evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
682 evo_data(push, 0x00000000); /* ??? */
683 evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
684 evo_data(push, mode->clock * 1000);
685 evo_data(push, 0x00200000); /* ??? */
686 evo_data(push, mode->clock * 1000);
687 evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
688 evo_data(push, 0x00000311);
689 evo_data(push, 0x00000100);
690 evo_kick(push, crtc->dev, EVO_MASTER);
691 }
692
693 nv_connector = nouveau_crtc_connector_get(nv_crtc);
694 nvd0_crtc_set_dither(nv_crtc, false);
695 nvd0_crtc_set_scale(nv_crtc, false);
696 nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
697 return 0;
698 }
699
700 static int
nvd0_crtc_mode_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)701 nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
702 struct drm_framebuffer *old_fb)
703 {
704 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
705 int ret;
706
707 if (!crtc->fb) {
708 NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
709 return 0;
710 }
711
712 ret = nvd0_crtc_swap_fbs(crtc, old_fb);
713 if (ret)
714 return ret;
715
716 nvd0_display_flip_stop(crtc);
717 nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
718 nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
719 return 0;
720 }
721
722 static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)723 nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
724 struct drm_framebuffer *fb, int x, int y,
725 enum mode_set_atomic state)
726 {
727 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
728 nvd0_display_flip_stop(crtc);
729 nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
730 return 0;
731 }
732
733 static void
nvd0_crtc_lut_load(struct drm_crtc * crtc)734 nvd0_crtc_lut_load(struct drm_crtc *crtc)
735 {
736 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
737 void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
738 int i;
739
740 for (i = 0; i < 256; i++) {
741 writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
742 writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
743 writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
744 }
745 }
746
747 static int
nvd0_crtc_cursor_set(struct drm_crtc * crtc,struct drm_file * file_priv,uint32_t handle,uint32_t width,uint32_t height)748 nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
749 uint32_t handle, uint32_t width, uint32_t height)
750 {
751 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
752 struct drm_device *dev = crtc->dev;
753 struct drm_gem_object *gem;
754 struct nouveau_bo *nvbo;
755 bool visible = (handle != 0);
756 int i, ret = 0;
757
758 if (visible) {
759 if (width != 64 || height != 64)
760 return -EINVAL;
761
762 gem = drm_gem_object_lookup(dev, file_priv, handle);
763 if (unlikely(!gem))
764 return -ENOENT;
765 nvbo = nouveau_gem_object(gem);
766
767 ret = nouveau_bo_map(nvbo);
768 if (ret == 0) {
769 for (i = 0; i < 64 * 64; i++) {
770 u32 v = nouveau_bo_rd32(nvbo, i);
771 nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
772 }
773 nouveau_bo_unmap(nvbo);
774 }
775
776 drm_gem_object_unreference_unlocked(gem);
777 }
778
779 if (visible != nv_crtc->cursor.visible) {
780 nvd0_crtc_cursor_show(nv_crtc, visible, true);
781 nv_crtc->cursor.visible = visible;
782 }
783
784 return ret;
785 }
786
787 static int
nvd0_crtc_cursor_move(struct drm_crtc * crtc,int x,int y)788 nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
789 {
790 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
791 int ch = EVO_CURS(nv_crtc->index);
792
793 evo_piow(crtc->dev, ch, 0x0084, (y << 16) | (x & 0xffff));
794 evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
795 return 0;
796 }
797
798 static void
nvd0_crtc_gamma_set(struct drm_crtc * crtc,u16 * r,u16 * g,u16 * b,uint32_t start,uint32_t size)799 nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
800 uint32_t start, uint32_t size)
801 {
802 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
803 u32 end = max(start + size, (u32)256);
804 u32 i;
805
806 for (i = start; i < end; i++) {
807 nv_crtc->lut.r[i] = r[i];
808 nv_crtc->lut.g[i] = g[i];
809 nv_crtc->lut.b[i] = b[i];
810 }
811
812 nvd0_crtc_lut_load(crtc);
813 }
814
815 static void
nvd0_crtc_destroy(struct drm_crtc * crtc)816 nvd0_crtc_destroy(struct drm_crtc *crtc)
817 {
818 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
819 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
820 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
821 nouveau_bo_unmap(nv_crtc->lut.nvbo);
822 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
823 drm_crtc_cleanup(crtc);
824 kfree(crtc);
825 }
826
827 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
828 .dpms = nvd0_crtc_dpms,
829 .prepare = nvd0_crtc_prepare,
830 .commit = nvd0_crtc_commit,
831 .mode_fixup = nvd0_crtc_mode_fixup,
832 .mode_set = nvd0_crtc_mode_set,
833 .mode_set_base = nvd0_crtc_mode_set_base,
834 .mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
835 .load_lut = nvd0_crtc_lut_load,
836 };
837
838 static const struct drm_crtc_funcs nvd0_crtc_func = {
839 .cursor_set = nvd0_crtc_cursor_set,
840 .cursor_move = nvd0_crtc_cursor_move,
841 .gamma_set = nvd0_crtc_gamma_set,
842 .set_config = drm_crtc_helper_set_config,
843 .destroy = nvd0_crtc_destroy,
844 .page_flip = nouveau_crtc_page_flip,
845 };
846
847 static void
nvd0_cursor_set_pos(struct nouveau_crtc * nv_crtc,int x,int y)848 nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
849 {
850 }
851
852 static void
nvd0_cursor_set_offset(struct nouveau_crtc * nv_crtc,uint32_t offset)853 nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
854 {
855 }
856
857 static int
nvd0_crtc_create(struct drm_device * dev,int index)858 nvd0_crtc_create(struct drm_device *dev, int index)
859 {
860 struct nouveau_crtc *nv_crtc;
861 struct drm_crtc *crtc;
862 int ret, i;
863
864 nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
865 if (!nv_crtc)
866 return -ENOMEM;
867
868 nv_crtc->index = index;
869 nv_crtc->set_dither = nvd0_crtc_set_dither;
870 nv_crtc->set_scale = nvd0_crtc_set_scale;
871 nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
872 nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
873 for (i = 0; i < 256; i++) {
874 nv_crtc->lut.r[i] = i << 8;
875 nv_crtc->lut.g[i] = i << 8;
876 nv_crtc->lut.b[i] = i << 8;
877 }
878
879 crtc = &nv_crtc->base;
880 drm_crtc_init(dev, crtc, &nvd0_crtc_func);
881 drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
882 drm_mode_crtc_set_gamma_size(crtc, 256);
883
884 ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
885 0, 0x0000, &nv_crtc->cursor.nvbo);
886 if (!ret) {
887 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
888 if (!ret)
889 ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
890 if (ret)
891 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
892 }
893
894 if (ret)
895 goto out;
896
897 ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
898 0, 0x0000, &nv_crtc->lut.nvbo);
899 if (!ret) {
900 ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
901 if (!ret)
902 ret = nouveau_bo_map(nv_crtc->lut.nvbo);
903 if (ret)
904 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
905 }
906
907 if (ret)
908 goto out;
909
910 nvd0_crtc_lut_load(crtc);
911
912 out:
913 if (ret)
914 nvd0_crtc_destroy(crtc);
915 return ret;
916 }
917
918 /******************************************************************************
919 * DAC
920 *****************************************************************************/
921 static void
nvd0_dac_dpms(struct drm_encoder * encoder,int mode)922 nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
923 {
924 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
925 struct drm_device *dev = encoder->dev;
926 int or = nv_encoder->or;
927 u32 dpms_ctrl;
928
929 dpms_ctrl = 0x80000000;
930 if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
931 dpms_ctrl |= 0x00000001;
932 if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
933 dpms_ctrl |= 0x00000004;
934
935 nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
936 nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
937 nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
938 }
939
940 static bool
nvd0_dac_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)941 nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
942 struct drm_display_mode *adjusted_mode)
943 {
944 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
945 struct nouveau_connector *nv_connector;
946
947 nv_connector = nouveau_encoder_connector_get(nv_encoder);
948 if (nv_connector && nv_connector->native_mode) {
949 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
950 int id = adjusted_mode->base.id;
951 *adjusted_mode = *nv_connector->native_mode;
952 adjusted_mode->base.id = id;
953 }
954 }
955
956 return true;
957 }
958
959 static void
nvd0_dac_commit(struct drm_encoder * encoder)960 nvd0_dac_commit(struct drm_encoder *encoder)
961 {
962 }
963
964 static void
nvd0_dac_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)965 nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
966 struct drm_display_mode *adjusted_mode)
967 {
968 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
969 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
970 u32 syncs, magic, *push;
971
972 syncs = 0x00000001;
973 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
974 syncs |= 0x00000008;
975 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
976 syncs |= 0x00000010;
977
978 magic = 0x31ec6000 | (nv_crtc->index << 25);
979 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
980 magic |= 0x00000001;
981
982 nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
983
984 push = evo_wait(encoder->dev, EVO_MASTER, 8);
985 if (push) {
986 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
987 evo_data(push, syncs);
988 evo_data(push, magic);
989 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2);
990 evo_data(push, 1 << nv_crtc->index);
991 evo_data(push, 0x00ff);
992 evo_kick(push, encoder->dev, EVO_MASTER);
993 }
994
995 nv_encoder->crtc = encoder->crtc;
996 }
997
998 static void
nvd0_dac_disconnect(struct drm_encoder * encoder)999 nvd0_dac_disconnect(struct drm_encoder *encoder)
1000 {
1001 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1002 struct drm_device *dev = encoder->dev;
1003 u32 *push;
1004
1005 if (nv_encoder->crtc) {
1006 nvd0_crtc_prepare(nv_encoder->crtc);
1007
1008 push = evo_wait(dev, EVO_MASTER, 4);
1009 if (push) {
1010 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
1011 evo_data(push, 0x00000000);
1012 evo_mthd(push, 0x0080, 1);
1013 evo_data(push, 0x00000000);
1014 evo_kick(push, dev, EVO_MASTER);
1015 }
1016
1017 nv_encoder->crtc = NULL;
1018 }
1019 }
1020
1021 static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)1022 nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1023 {
1024 enum drm_connector_status status = connector_status_disconnected;
1025 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1026 struct drm_device *dev = encoder->dev;
1027 int or = nv_encoder->or;
1028 u32 load;
1029
1030 nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
1031 udelay(9500);
1032 nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);
1033
1034 load = nv_rd32(dev, 0x61a00c + (or * 0x800));
1035 if ((load & 0x38000000) == 0x38000000)
1036 status = connector_status_connected;
1037
1038 nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
1039 return status;
1040 }
1041
1042 static void
nvd0_dac_destroy(struct drm_encoder * encoder)1043 nvd0_dac_destroy(struct drm_encoder *encoder)
1044 {
1045 drm_encoder_cleanup(encoder);
1046 kfree(encoder);
1047 }
1048
1049 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
1050 .dpms = nvd0_dac_dpms,
1051 .mode_fixup = nvd0_dac_mode_fixup,
1052 .prepare = nvd0_dac_disconnect,
1053 .commit = nvd0_dac_commit,
1054 .mode_set = nvd0_dac_mode_set,
1055 .disable = nvd0_dac_disconnect,
1056 .get_crtc = nvd0_display_crtc_get,
1057 .detect = nvd0_dac_detect
1058 };
1059
1060 static const struct drm_encoder_funcs nvd0_dac_func = {
1061 .destroy = nvd0_dac_destroy,
1062 };
1063
1064 static int
nvd0_dac_create(struct drm_connector * connector,struct dcb_entry * dcbe)1065 nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1066 {
1067 struct drm_device *dev = connector->dev;
1068 struct nouveau_encoder *nv_encoder;
1069 struct drm_encoder *encoder;
1070
1071 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1072 if (!nv_encoder)
1073 return -ENOMEM;
1074 nv_encoder->dcb = dcbe;
1075 nv_encoder->or = ffs(dcbe->or) - 1;
1076
1077 encoder = to_drm_encoder(nv_encoder);
1078 encoder->possible_crtcs = dcbe->heads;
1079 encoder->possible_clones = 0;
1080 drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
1081 drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
1082
1083 drm_mode_connector_attach_encoder(connector, encoder);
1084 return 0;
1085 }
1086
1087 /******************************************************************************
1088 * Audio
1089 *****************************************************************************/
1090 static void
nvd0_audio_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode)1091 nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1092 {
1093 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1094 struct nouveau_connector *nv_connector;
1095 struct drm_device *dev = encoder->dev;
1096 int i, or = nv_encoder->or * 0x30;
1097
1098 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1099 if (!drm_detect_monitor_audio(nv_connector->edid))
1100 return;
1101
1102 nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);
1103
1104 drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1105 if (nv_connector->base.eld[0]) {
1106 u8 *eld = nv_connector->base.eld;
1107
1108 for (i = 0; i < eld[2] * 4; i++)
1109 nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
1110 for (i = eld[2] * 4; i < 0x60; i++)
1111 nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);
1112
1113 nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
1114 }
1115 }
1116
1117 static void
nvd0_audio_disconnect(struct drm_encoder * encoder)1118 nvd0_audio_disconnect(struct drm_encoder *encoder)
1119 {
1120 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1121 struct drm_device *dev = encoder->dev;
1122 int or = nv_encoder->or * 0x30;
1123
1124 nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
1125 }
1126
1127 /******************************************************************************
1128 * HDMI
1129 *****************************************************************************/
1130 static void
nvd0_hdmi_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode)1131 nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1132 {
1133 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1134 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1135 struct nouveau_connector *nv_connector;
1136 struct drm_device *dev = encoder->dev;
1137 int head = nv_crtc->index * 0x800;
1138 u32 rekey = 56; /* binary driver, and tegra constant */
1139 u32 max_ac_packet;
1140
1141 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1142 if (!drm_detect_hdmi_monitor(nv_connector->edid))
1143 return;
1144
1145 max_ac_packet = mode->htotal - mode->hdisplay;
1146 max_ac_packet -= rekey;
1147 max_ac_packet -= 18; /* constant from tegra */
1148 max_ac_packet /= 32;
1149
1150 /* AVI InfoFrame */
1151 nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1152 nv_wr32(dev, 0x61671c + head, 0x000d0282);
1153 nv_wr32(dev, 0x616720 + head, 0x0000006f);
1154 nv_wr32(dev, 0x616724 + head, 0x00000000);
1155 nv_wr32(dev, 0x616728 + head, 0x00000000);
1156 nv_wr32(dev, 0x61672c + head, 0x00000000);
1157 nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);
1158
1159 /* ??? InfoFrame? */
1160 nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1161 nv_wr32(dev, 0x6167ac + head, 0x00000010);
1162 nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);
1163
1164 /* HDMI_CTRL */
1165 nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
1166 max_ac_packet << 16);
1167
1168 /* NFI, audio doesn't work without it though.. */
1169 nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);
1170
1171 nvd0_audio_mode_set(encoder, mode);
1172 }
1173
1174 static void
nvd0_hdmi_disconnect(struct drm_encoder * encoder)1175 nvd0_hdmi_disconnect(struct drm_encoder *encoder)
1176 {
1177 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1178 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1179 struct drm_device *dev = encoder->dev;
1180 int head = nv_crtc->index * 0x800;
1181
1182 nvd0_audio_disconnect(encoder);
1183
1184 nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
1185 nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1186 nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1187 }
1188
1189 /******************************************************************************
1190 * SOR
1191 *****************************************************************************/
1192 static inline u32
nvd0_sor_dp_lane_map(struct drm_device * dev,struct dcb_entry * dcb,u8 lane)1193 nvd0_sor_dp_lane_map(struct drm_device *dev, struct dcb_entry *dcb, u8 lane)
1194 {
1195 static const u8 nvd0[] = { 16, 8, 0, 24 };
1196 return nvd0[lane];
1197 }
1198
1199 static void
nvd0_sor_dp_train_set(struct drm_device * dev,struct dcb_entry * dcb,u8 pattern)1200 nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_entry *dcb, u8 pattern)
1201 {
1202 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1203 const u32 loff = (or * 0x800) + (link * 0x80);
1204 nv_mask(dev, 0x61c110 + loff, 0x0f0f0f0f, 0x01010101 * pattern);
1205 }
1206
1207 static void
nvd0_sor_dp_train_adj(struct drm_device * dev,struct dcb_entry * dcb,u8 lane,u8 swing,u8 preem)1208 nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_entry *dcb,
1209 u8 lane, u8 swing, u8 preem)
1210 {
1211 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1212 const u32 loff = (or * 0x800) + (link * 0x80);
1213 u32 shift = nvd0_sor_dp_lane_map(dev, dcb, lane);
1214 u32 mask = 0x000000ff << shift;
1215 u8 *table, *entry, *config = NULL;
1216
1217 switch (swing) {
1218 case 0: preem += 0; break;
1219 case 1: preem += 4; break;
1220 case 2: preem += 7; break;
1221 case 3: preem += 9; break;
1222 }
1223
1224 table = nouveau_dp_bios_data(dev, dcb, &entry);
1225 if (table) {
1226 if (table[0] == 0x30) {
1227 config = entry + table[4];
1228 config += table[5] * preem;
1229 } else
1230 if (table[0] == 0x40) {
1231 config = table + table[1];
1232 config += table[2] * table[3];
1233 config += table[6] * preem;
1234 }
1235 }
1236
1237 if (!config) {
1238 NV_ERROR(dev, "PDISP: unsupported DP table for chipset\n");
1239 return;
1240 }
1241
1242 nv_mask(dev, 0x61c118 + loff, mask, config[1] << shift);
1243 nv_mask(dev, 0x61c120 + loff, mask, config[2] << shift);
1244 nv_mask(dev, 0x61c130 + loff, 0x0000ff00, config[3] << 8);
1245 nv_mask(dev, 0x61c13c + loff, 0x00000000, 0x00000000);
1246 }
1247
1248 static void
nvd0_sor_dp_link_set(struct drm_device * dev,struct dcb_entry * dcb,int crtc,int link_nr,u32 link_bw,bool enhframe)1249 nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_entry *dcb, int crtc,
1250 int link_nr, u32 link_bw, bool enhframe)
1251 {
1252 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1253 const u32 loff = (or * 0x800) + (link * 0x80);
1254 const u32 soff = (or * 0x800);
1255 u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & ~0x001f4000;
1256 u32 clksor = nv_rd32(dev, 0x612300 + soff) & ~0x007c0000;
1257 u32 script = 0x0000, lane_mask = 0;
1258 u8 *table, *entry;
1259 int i;
1260
1261 link_bw /= 27000;
1262
1263 table = nouveau_dp_bios_data(dev, dcb, &entry);
1264 if (table) {
1265 if (table[0] == 0x30) entry = ROMPTR(dev, entry[10]);
1266 else if (table[0] == 0x40) entry = ROMPTR(dev, entry[9]);
1267 else entry = NULL;
1268
1269 while (entry) {
1270 if (entry[0] >= link_bw)
1271 break;
1272 entry += 3;
1273 }
1274
1275 nouveau_bios_run_init_table(dev, script, dcb, crtc);
1276 }
1277
1278 clksor |= link_bw << 18;
1279 dpctrl |= ((1 << link_nr) - 1) << 16;
1280 if (enhframe)
1281 dpctrl |= 0x00004000;
1282
1283 for (i = 0; i < link_nr; i++)
1284 lane_mask |= 1 << (nvd0_sor_dp_lane_map(dev, dcb, i) >> 3);
1285
1286 nv_wr32(dev, 0x612300 + soff, clksor);
1287 nv_wr32(dev, 0x61c10c + loff, dpctrl);
1288 nv_mask(dev, 0x61c130 + loff, 0x0000000f, lane_mask);
1289 }
1290
1291 static void
nvd0_sor_dp_link_get(struct drm_device * dev,struct dcb_entry * dcb,u32 * link_nr,u32 * link_bw)1292 nvd0_sor_dp_link_get(struct drm_device *dev, struct dcb_entry *dcb,
1293 u32 *link_nr, u32 *link_bw)
1294 {
1295 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1296 const u32 loff = (or * 0x800) + (link * 0x80);
1297 const u32 soff = (or * 0x800);
1298 u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & 0x000f0000;
1299 u32 clksor = nv_rd32(dev, 0x612300 + soff);
1300
1301 if (dpctrl > 0x00030000) *link_nr = 4;
1302 else if (dpctrl > 0x00010000) *link_nr = 2;
1303 else *link_nr = 1;
1304
1305 *link_bw = (clksor & 0x007c0000) >> 18;
1306 *link_bw *= 27000;
1307 }
1308
1309 static void
nvd0_sor_dp_calc_tu(struct drm_device * dev,struct dcb_entry * dcb,u32 crtc,u32 datarate)1310 nvd0_sor_dp_calc_tu(struct drm_device *dev, struct dcb_entry *dcb,
1311 u32 crtc, u32 datarate)
1312 {
1313 const u32 symbol = 100000;
1314 const u32 TU = 64;
1315 u32 link_nr, link_bw;
1316 u64 ratio, value;
1317
1318 nvd0_sor_dp_link_get(dev, dcb, &link_nr, &link_bw);
1319
1320 ratio = datarate;
1321 ratio *= symbol;
1322 do_div(ratio, link_nr * link_bw);
1323
1324 value = (symbol - ratio) * TU;
1325 value *= ratio;
1326 do_div(value, symbol);
1327 do_div(value, symbol);
1328
1329 value += 5;
1330 value |= 0x08000000;
1331
1332 nv_wr32(dev, 0x616610 + (crtc * 0x800), value);
1333 }
1334
1335 static void
nvd0_sor_dpms(struct drm_encoder * encoder,int mode)1336 nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
1337 {
1338 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1339 struct drm_device *dev = encoder->dev;
1340 struct drm_encoder *partner;
1341 int or = nv_encoder->or;
1342 u32 dpms_ctrl;
1343
1344 nv_encoder->last_dpms = mode;
1345
1346 list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1347 struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1348
1349 if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1350 continue;
1351
1352 if (nv_partner != nv_encoder &&
1353 nv_partner->dcb->or == nv_encoder->dcb->or) {
1354 if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1355 return;
1356 break;
1357 }
1358 }
1359
1360 dpms_ctrl = (mode == DRM_MODE_DPMS_ON);
1361 dpms_ctrl |= 0x80000000;
1362
1363 nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1364 nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
1365 nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1366 nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1367
1368 if (nv_encoder->dcb->type == OUTPUT_DP) {
1369 struct dp_train_func func = {
1370 .link_set = nvd0_sor_dp_link_set,
1371 .train_set = nvd0_sor_dp_train_set,
1372 .train_adj = nvd0_sor_dp_train_adj
1373 };
1374
1375 nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
1376 }
1377 }
1378
1379 static bool
nvd0_sor_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1380 nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
1381 struct drm_display_mode *adjusted_mode)
1382 {
1383 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1384 struct nouveau_connector *nv_connector;
1385
1386 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1387 if (nv_connector && nv_connector->native_mode) {
1388 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1389 int id = adjusted_mode->base.id;
1390 *adjusted_mode = *nv_connector->native_mode;
1391 adjusted_mode->base.id = id;
1392 }
1393 }
1394
1395 return true;
1396 }
1397
1398 static void
nvd0_sor_disconnect(struct drm_encoder * encoder)1399 nvd0_sor_disconnect(struct drm_encoder *encoder)
1400 {
1401 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1402 struct drm_device *dev = encoder->dev;
1403 u32 *push;
1404
1405 if (nv_encoder->crtc) {
1406 nvd0_crtc_prepare(nv_encoder->crtc);
1407
1408 push = evo_wait(dev, EVO_MASTER, 4);
1409 if (push) {
1410 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
1411 evo_data(push, 0x00000000);
1412 evo_mthd(push, 0x0080, 1);
1413 evo_data(push, 0x00000000);
1414 evo_kick(push, dev, EVO_MASTER);
1415 }
1416
1417 nvd0_hdmi_disconnect(encoder);
1418
1419 nv_encoder->crtc = NULL;
1420 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1421 }
1422 }
1423
1424 static void
nvd0_sor_prepare(struct drm_encoder * encoder)1425 nvd0_sor_prepare(struct drm_encoder *encoder)
1426 {
1427 nvd0_sor_disconnect(encoder);
1428 if (nouveau_encoder(encoder)->dcb->type == OUTPUT_DP)
1429 evo_sync(encoder->dev, EVO_MASTER);
1430 }
1431
1432 static void
nvd0_sor_commit(struct drm_encoder * encoder)1433 nvd0_sor_commit(struct drm_encoder *encoder)
1434 {
1435 }
1436
1437 static void
nvd0_sor_mode_set(struct drm_encoder * encoder,struct drm_display_mode * umode,struct drm_display_mode * mode)1438 nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1439 struct drm_display_mode *mode)
1440 {
1441 struct drm_device *dev = encoder->dev;
1442 struct drm_nouveau_private *dev_priv = dev->dev_private;
1443 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1444 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1445 struct nouveau_connector *nv_connector;
1446 struct nvbios *bios = &dev_priv->vbios;
1447 u32 mode_ctrl = (1 << nv_crtc->index);
1448 u32 syncs, magic, *push;
1449 u32 or_config;
1450
1451 syncs = 0x00000001;
1452 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1453 syncs |= 0x00000008;
1454 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1455 syncs |= 0x00000010;
1456
1457 magic = 0x31ec6000 | (nv_crtc->index << 25);
1458 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1459 magic |= 0x00000001;
1460
1461 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1462 switch (nv_encoder->dcb->type) {
1463 case OUTPUT_TMDS:
1464 if (nv_encoder->dcb->sorconf.link & 1) {
1465 if (mode->clock < 165000)
1466 mode_ctrl |= 0x00000100;
1467 else
1468 mode_ctrl |= 0x00000500;
1469 } else {
1470 mode_ctrl |= 0x00000200;
1471 }
1472
1473 or_config = (mode_ctrl & 0x00000f00) >> 8;
1474 if (mode->clock >= 165000)
1475 or_config |= 0x0100;
1476
1477 nvd0_hdmi_mode_set(encoder, mode);
1478 break;
1479 case OUTPUT_LVDS:
1480 or_config = (mode_ctrl & 0x00000f00) >> 8;
1481 if (bios->fp_no_ddc) {
1482 if (bios->fp.dual_link)
1483 or_config |= 0x0100;
1484 if (bios->fp.if_is_24bit)
1485 or_config |= 0x0200;
1486 } else {
1487 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1488 if (((u8 *)nv_connector->edid)[121] == 2)
1489 or_config |= 0x0100;
1490 } else
1491 if (mode->clock >= bios->fp.duallink_transition_clk) {
1492 or_config |= 0x0100;
1493 }
1494
1495 if (or_config & 0x0100) {
1496 if (bios->fp.strapless_is_24bit & 2)
1497 or_config |= 0x0200;
1498 } else {
1499 if (bios->fp.strapless_is_24bit & 1)
1500 or_config |= 0x0200;
1501 }
1502
1503 if (nv_connector->base.display_info.bpc == 8)
1504 or_config |= 0x0200;
1505
1506 }
1507 break;
1508 case OUTPUT_DP:
1509 if (nv_connector->base.display_info.bpc == 6) {
1510 nv_encoder->dp.datarate = mode->clock * 18 / 8;
1511 syncs |= 0x00000140;
1512 } else {
1513 nv_encoder->dp.datarate = mode->clock * 24 / 8;
1514 syncs |= 0x00000180;
1515 }
1516
1517 if (nv_encoder->dcb->sorconf.link & 1)
1518 mode_ctrl |= 0x00000800;
1519 else
1520 mode_ctrl |= 0x00000900;
1521
1522 or_config = (mode_ctrl & 0x00000f00) >> 8;
1523 break;
1524 default:
1525 BUG_ON(1);
1526 break;
1527 }
1528
1529 nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1530
1531 if (nv_encoder->dcb->type == OUTPUT_DP) {
1532 nvd0_sor_dp_calc_tu(dev, nv_encoder->dcb, nv_crtc->index,
1533 nv_encoder->dp.datarate);
1534 }
1535
1536 push = evo_wait(dev, EVO_MASTER, 8);
1537 if (push) {
1538 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1539 evo_data(push, syncs);
1540 evo_data(push, magic);
1541 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2);
1542 evo_data(push, mode_ctrl);
1543 evo_data(push, or_config);
1544 evo_kick(push, dev, EVO_MASTER);
1545 }
1546
1547 nv_encoder->crtc = encoder->crtc;
1548 }
1549
1550 static void
nvd0_sor_destroy(struct drm_encoder * encoder)1551 nvd0_sor_destroy(struct drm_encoder *encoder)
1552 {
1553 drm_encoder_cleanup(encoder);
1554 kfree(encoder);
1555 }
1556
1557 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
1558 .dpms = nvd0_sor_dpms,
1559 .mode_fixup = nvd0_sor_mode_fixup,
1560 .prepare = nvd0_sor_prepare,
1561 .commit = nvd0_sor_commit,
1562 .mode_set = nvd0_sor_mode_set,
1563 .disable = nvd0_sor_disconnect,
1564 .get_crtc = nvd0_display_crtc_get,
1565 };
1566
1567 static const struct drm_encoder_funcs nvd0_sor_func = {
1568 .destroy = nvd0_sor_destroy,
1569 };
1570
1571 static int
nvd0_sor_create(struct drm_connector * connector,struct dcb_entry * dcbe)1572 nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1573 {
1574 struct drm_device *dev = connector->dev;
1575 struct nouveau_encoder *nv_encoder;
1576 struct drm_encoder *encoder;
1577
1578 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1579 if (!nv_encoder)
1580 return -ENOMEM;
1581 nv_encoder->dcb = dcbe;
1582 nv_encoder->or = ffs(dcbe->or) - 1;
1583 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1584
1585 encoder = to_drm_encoder(nv_encoder);
1586 encoder->possible_crtcs = dcbe->heads;
1587 encoder->possible_clones = 0;
1588 drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
1589 drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
1590
1591 drm_mode_connector_attach_encoder(connector, encoder);
1592 return 0;
1593 }
1594
1595 /******************************************************************************
1596 * IRQ
1597 *****************************************************************************/
1598 static struct dcb_entry *
lookup_dcb(struct drm_device * dev,int id,u32 mc)1599 lookup_dcb(struct drm_device *dev, int id, u32 mc)
1600 {
1601 struct drm_nouveau_private *dev_priv = dev->dev_private;
1602 int type, or, i, link = -1;
1603
1604 if (id < 4) {
1605 type = OUTPUT_ANALOG;
1606 or = id;
1607 } else {
1608 switch (mc & 0x00000f00) {
1609 case 0x00000000: link = 0; type = OUTPUT_LVDS; break;
1610 case 0x00000100: link = 0; type = OUTPUT_TMDS; break;
1611 case 0x00000200: link = 1; type = OUTPUT_TMDS; break;
1612 case 0x00000500: link = 0; type = OUTPUT_TMDS; break;
1613 case 0x00000800: link = 0; type = OUTPUT_DP; break;
1614 case 0x00000900: link = 1; type = OUTPUT_DP; break;
1615 default:
1616 NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
1617 return NULL;
1618 }
1619
1620 or = id - 4;
1621 }
1622
1623 for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
1624 struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
1625 if (dcb->type == type && (dcb->or & (1 << or)) &&
1626 (link < 0 || link == !(dcb->sorconf.link & 1)))
1627 return dcb;
1628 }
1629
1630 NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1631 return NULL;
1632 }
1633
1634 static void
nvd0_display_unk1_handler(struct drm_device * dev,u32 crtc,u32 mask)1635 nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1636 {
1637 struct dcb_entry *dcb;
1638 int i;
1639
1640 for (i = 0; mask && i < 8; i++) {
1641 u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1642 if (!(mcc & (1 << crtc)))
1643 continue;
1644
1645 dcb = lookup_dcb(dev, i, mcc);
1646 if (!dcb)
1647 continue;
1648
1649 nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1650 }
1651
1652 nv_wr32(dev, 0x6101d4, 0x00000000);
1653 nv_wr32(dev, 0x6109d4, 0x00000000);
1654 nv_wr32(dev, 0x6101d0, 0x80000000);
1655 }
1656
1657 static void
nvd0_display_unk2_handler(struct drm_device * dev,u32 crtc,u32 mask)1658 nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1659 {
1660 struct dcb_entry *dcb;
1661 u32 or, tmp, pclk;
1662 int i;
1663
1664 for (i = 0; mask && i < 8; i++) {
1665 u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1666 if (!(mcc & (1 << crtc)))
1667 continue;
1668
1669 dcb = lookup_dcb(dev, i, mcc);
1670 if (!dcb)
1671 continue;
1672
1673 nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1674 }
1675
1676 pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1677 NV_DEBUG_KMS(dev, "PDISP: crtc %d pclk %d mask 0x%08x\n",
1678 crtc, pclk, mask);
1679 if (pclk && (mask & 0x00010000)) {
1680 nv50_crtc_set_clock(dev, crtc, pclk);
1681 }
1682
1683 for (i = 0; mask && i < 8; i++) {
1684 u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1685 u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1686 if (!(mcp & (1 << crtc)))
1687 continue;
1688
1689 dcb = lookup_dcb(dev, i, mcp);
1690 if (!dcb)
1691 continue;
1692 or = ffs(dcb->or) - 1;
1693
1694 nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);
1695
1696 nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
1697 switch (dcb->type) {
1698 case OUTPUT_ANALOG:
1699 nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
1700 break;
1701 case OUTPUT_TMDS:
1702 case OUTPUT_LVDS:
1703 case OUTPUT_DP:
1704 if (cfg & 0x00000100)
1705 tmp = 0x00000101;
1706 else
1707 tmp = 0x00000000;
1708
1709 nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
1710 break;
1711 default:
1712 break;
1713 }
1714
1715 break;
1716 }
1717
1718 nv_wr32(dev, 0x6101d4, 0x00000000);
1719 nv_wr32(dev, 0x6109d4, 0x00000000);
1720 nv_wr32(dev, 0x6101d0, 0x80000000);
1721 }
1722
1723 static void
nvd0_display_unk4_handler(struct drm_device * dev,u32 crtc,u32 mask)1724 nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1725 {
1726 struct dcb_entry *dcb;
1727 int pclk, i;
1728
1729 pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1730
1731 for (i = 0; mask && i < 8; i++) {
1732 u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1733 u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1734 if (!(mcp & (1 << crtc)))
1735 continue;
1736
1737 dcb = lookup_dcb(dev, i, mcp);
1738 if (!dcb)
1739 continue;
1740
1741 nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
1742 }
1743
1744 nv_wr32(dev, 0x6101d4, 0x00000000);
1745 nv_wr32(dev, 0x6109d4, 0x00000000);
1746 nv_wr32(dev, 0x6101d0, 0x80000000);
1747 }
1748
1749 static void
nvd0_display_bh(unsigned long data)1750 nvd0_display_bh(unsigned long data)
1751 {
1752 struct drm_device *dev = (struct drm_device *)data;
1753 struct nvd0_display *disp = nvd0_display(dev);
1754 u32 mask = 0, crtc = ~0;
1755 int i;
1756
1757 if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
1758 NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
1759 NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
1760 nv_rd32(dev, 0x6101d0),
1761 nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
1762 for (i = 0; i < 8; i++) {
1763 NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
1764 i < 4 ? "DAC" : "SOR", i,
1765 nv_rd32(dev, 0x640180 + (i * 0x20)),
1766 nv_rd32(dev, 0x660180 + (i * 0x20)));
1767 }
1768 }
1769
1770 while (!mask && ++crtc < dev->mode_config.num_crtc)
1771 mask = nv_rd32(dev, 0x6101d4 + (crtc * 0x800));
1772
1773 if (disp->modeset & 0x00000001)
1774 nvd0_display_unk1_handler(dev, crtc, mask);
1775 if (disp->modeset & 0x00000002)
1776 nvd0_display_unk2_handler(dev, crtc, mask);
1777 if (disp->modeset & 0x00000004)
1778 nvd0_display_unk4_handler(dev, crtc, mask);
1779 }
1780
1781 static void
nvd0_display_intr(struct drm_device * dev)1782 nvd0_display_intr(struct drm_device *dev)
1783 {
1784 struct nvd0_display *disp = nvd0_display(dev);
1785 u32 intr = nv_rd32(dev, 0x610088);
1786 int i;
1787
1788 if (intr & 0x00000001) {
1789 u32 stat = nv_rd32(dev, 0x61008c);
1790 nv_wr32(dev, 0x61008c, stat);
1791 intr &= ~0x00000001;
1792 }
1793
1794 if (intr & 0x00000002) {
1795 u32 stat = nv_rd32(dev, 0x61009c);
1796 int chid = ffs(stat) - 1;
1797 if (chid >= 0) {
1798 u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
1799 u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
1800 u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));
1801
1802 NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1803 "0x%08x 0x%08x\n",
1804 chid, (mthd & 0x0000ffc), data, mthd, unkn);
1805 nv_wr32(dev, 0x61009c, (1 << chid));
1806 nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
1807 }
1808
1809 intr &= ~0x00000002;
1810 }
1811
1812 if (intr & 0x00100000) {
1813 u32 stat = nv_rd32(dev, 0x6100ac);
1814
1815 if (stat & 0x00000007) {
1816 disp->modeset = stat;
1817 tasklet_schedule(&disp->tasklet);
1818
1819 nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1820 stat &= ~0x00000007;
1821 }
1822
1823 if (stat) {
1824 NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
1825 nv_wr32(dev, 0x6100ac, stat);
1826 }
1827
1828 intr &= ~0x00100000;
1829 }
1830
1831 for (i = 0; i < dev->mode_config.num_crtc; i++) {
1832 u32 mask = 0x01000000 << i;
1833 if (intr & mask) {
1834 u32 stat = nv_rd32(dev, 0x6100bc + (i * 0x800));
1835 nv_wr32(dev, 0x6100bc + (i * 0x800), stat);
1836 intr &= ~mask;
1837 }
1838 }
1839
1840 if (intr)
1841 NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
1842 }
1843
1844 /******************************************************************************
1845 * Init
1846 *****************************************************************************/
1847 void
nvd0_display_fini(struct drm_device * dev)1848 nvd0_display_fini(struct drm_device *dev)
1849 {
1850 int i;
1851
1852 /* fini cursors + overlays + flips */
1853 for (i = 1; i >= 0; i--) {
1854 evo_fini_pio(dev, EVO_CURS(i));
1855 evo_fini_pio(dev, EVO_OIMM(i));
1856 evo_fini_dma(dev, EVO_OVLY(i));
1857 evo_fini_dma(dev, EVO_FLIP(i));
1858 }
1859
1860 /* fini master */
1861 evo_fini_dma(dev, EVO_MASTER);
1862 }
1863
1864 int
nvd0_display_init(struct drm_device * dev)1865 nvd0_display_init(struct drm_device *dev)
1866 {
1867 struct nvd0_display *disp = nvd0_display(dev);
1868 int ret, i;
1869 u32 *push;
1870
1871 if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
1872 nv_wr32(dev, 0x6100ac, 0x00000100);
1873 nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
1874 if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
1875 NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
1876 nv_rd32(dev, 0x6194e8));
1877 return -EBUSY;
1878 }
1879 }
1880
1881 /* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1882 * work at all unless you do the SOR part below.
1883 */
1884 for (i = 0; i < 3; i++) {
1885 u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
1886 nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
1887 }
1888
1889 for (i = 0; i < 4; i++) {
1890 u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
1891 nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
1892 }
1893
1894 for (i = 0; i < dev->mode_config.num_crtc; i++) {
1895 u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
1896 u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
1897 u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
1898 nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
1899 nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
1900 nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1901 }
1902
1903 /* point at our hash table / objects, enable interrupts */
1904 nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1905 nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1906
1907 /* init master */
1908 ret = evo_init_dma(dev, EVO_MASTER);
1909 if (ret)
1910 goto error;
1911
1912 /* init flips + overlays + cursors */
1913 for (i = 0; i < dev->mode_config.num_crtc; i++) {
1914 if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
1915 (ret = evo_init_dma(dev, EVO_OVLY(i))) ||
1916 (ret = evo_init_pio(dev, EVO_OIMM(i))) ||
1917 (ret = evo_init_pio(dev, EVO_CURS(i))))
1918 goto error;
1919 }
1920
1921 push = evo_wait(dev, EVO_MASTER, 32);
1922 if (!push) {
1923 ret = -EBUSY;
1924 goto error;
1925 }
1926 evo_mthd(push, 0x0088, 1);
1927 evo_data(push, NvEvoSync);
1928 evo_mthd(push, 0x0084, 1);
1929 evo_data(push, 0x00000000);
1930 evo_mthd(push, 0x0084, 1);
1931 evo_data(push, 0x80000000);
1932 evo_mthd(push, 0x008c, 1);
1933 evo_data(push, 0x00000000);
1934 evo_kick(push, dev, EVO_MASTER);
1935
1936 error:
1937 if (ret)
1938 nvd0_display_fini(dev);
1939 return ret;
1940 }
1941
1942 void
nvd0_display_destroy(struct drm_device * dev)1943 nvd0_display_destroy(struct drm_device *dev)
1944 {
1945 struct drm_nouveau_private *dev_priv = dev->dev_private;
1946 struct nvd0_display *disp = nvd0_display(dev);
1947 struct pci_dev *pdev = dev->pdev;
1948 int i;
1949
1950 for (i = 0; i < EVO_DMA_NR; i++) {
1951 struct evo *evo = &disp->evo[i];
1952 pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
1953 }
1954
1955 nouveau_gpuobj_ref(NULL, &disp->mem);
1956 nouveau_bo_unmap(disp->sync);
1957 nouveau_bo_ref(NULL, &disp->sync);
1958 nouveau_irq_unregister(dev, 26);
1959
1960 dev_priv->engine.display.priv = NULL;
1961 kfree(disp);
1962 }
1963
1964 int
nvd0_display_create(struct drm_device * dev)1965 nvd0_display_create(struct drm_device *dev)
1966 {
1967 struct drm_nouveau_private *dev_priv = dev->dev_private;
1968 struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1969 struct dcb_table *dcb = &dev_priv->vbios.dcb;
1970 struct drm_connector *connector, *tmp;
1971 struct pci_dev *pdev = dev->pdev;
1972 struct nvd0_display *disp;
1973 struct dcb_entry *dcbe;
1974 int crtcs, ret, i;
1975
1976 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
1977 if (!disp)
1978 return -ENOMEM;
1979 dev_priv->engine.display.priv = disp;
1980
1981 /* create crtc objects to represent the hw heads */
1982 crtcs = nv_rd32(dev, 0x022448);
1983 for (i = 0; i < crtcs; i++) {
1984 ret = nvd0_crtc_create(dev, i);
1985 if (ret)
1986 goto out;
1987 }
1988
1989 /* create encoder/connector objects based on VBIOS DCB table */
1990 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
1991 connector = nouveau_connector_create(dev, dcbe->connector);
1992 if (IS_ERR(connector))
1993 continue;
1994
1995 if (dcbe->location != DCB_LOC_ON_CHIP) {
1996 NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
1997 dcbe->type, ffs(dcbe->or) - 1);
1998 continue;
1999 }
2000
2001 switch (dcbe->type) {
2002 case OUTPUT_TMDS:
2003 case OUTPUT_LVDS:
2004 case OUTPUT_DP:
2005 nvd0_sor_create(connector, dcbe);
2006 break;
2007 case OUTPUT_ANALOG:
2008 nvd0_dac_create(connector, dcbe);
2009 break;
2010 default:
2011 NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
2012 dcbe->type, ffs(dcbe->or) - 1);
2013 continue;
2014 }
2015 }
2016
2017 /* cull any connectors we created that don't have an encoder */
2018 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2019 if (connector->encoder_ids[0])
2020 continue;
2021
2022 NV_WARN(dev, "%s has no encoders, removing\n",
2023 drm_get_connector_name(connector));
2024 connector->funcs->destroy(connector);
2025 }
2026
2027 /* setup interrupt handling */
2028 tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
2029 nouveau_irq_register(dev, 26, nvd0_display_intr);
2030
2031 /* small shared memory area we use for notifiers and semaphores */
2032 ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2033 0, 0x0000, &disp->sync);
2034 if (!ret) {
2035 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2036 if (!ret)
2037 ret = nouveau_bo_map(disp->sync);
2038 if (ret)
2039 nouveau_bo_ref(NULL, &disp->sync);
2040 }
2041
2042 if (ret)
2043 goto out;
2044
2045 /* hash table and dma objects for the memory areas we care about */
2046 ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
2047 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
2048 if (ret)
2049 goto out;
2050
2051 /* create evo dma channels */
2052 for (i = 0; i < EVO_DMA_NR; i++) {
2053 struct evo *evo = &disp->evo[i];
2054 u64 offset = disp->sync->bo.offset;
2055 u32 dmao = 0x1000 + (i * 0x100);
2056 u32 hash = 0x0000 + (i * 0x040);
2057
2058 evo->idx = i;
2059 evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
2060 evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
2061 if (!evo->ptr) {
2062 ret = -ENOMEM;
2063 goto out;
2064 }
2065
2066 nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
2067 nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
2068 nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
2069 nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
2070 nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
2071 nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
2072 nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
2073 nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
2074 ((dmao + 0x00) << 9));
2075
2076 nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
2077 nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
2078 nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
2079 nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
2080 nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
2081 nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
2082 nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
2083 nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
2084 ((dmao + 0x20) << 9));
2085
2086 nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
2087 nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
2088 nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
2089 nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
2090 nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
2091 nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
2092 nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
2093 nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
2094 ((dmao + 0x40) << 9));
2095
2096 nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
2097 nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
2098 nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
2099 nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
2100 nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
2101 nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
2102 nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
2103 nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
2104 ((dmao + 0x60) << 9));
2105 }
2106
2107 pinstmem->flush(dev);
2108
2109 out:
2110 if (ret)
2111 nvd0_display_destroy(dev);
2112 return ret;
2113 }
2114