1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include <linux/dma-mapping.h>
26 
27 #include "drmP.h"
28 #include "drm_crtc_helper.h"
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nv50_display.h"
37 
38 #define EVO_DMA_NR 9
39 
40 #define EVO_MASTER  (0x00)
41 #define EVO_FLIP(c) (0x01 + (c))
42 #define EVO_OVLY(c) (0x05 + (c))
43 #define EVO_OIMM(c) (0x09 + (c))
44 #define EVO_CURS(c) (0x0d + (c))
45 
46 /* offsets in shared sync bo of various structures */
47 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
48 #define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
49 #define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
50 #define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)
51 
52 struct evo {
53 	int idx;
54 	dma_addr_t handle;
55 	u32 *ptr;
56 	struct {
57 		u32 offset;
58 		u16 value;
59 	} sem;
60 };
61 
62 struct nvd0_display {
63 	struct nouveau_gpuobj *mem;
64 	struct nouveau_bo *sync;
65 	struct evo evo[9];
66 
67 	struct tasklet_struct tasklet;
68 	u32 modeset;
69 };
70 
71 static struct nvd0_display *
nvd0_display(struct drm_device * dev)72 nvd0_display(struct drm_device *dev)
73 {
74 	struct drm_nouveau_private *dev_priv = dev->dev_private;
75 	return dev_priv->engine.display.priv;
76 }
77 
78 static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder * encoder)79 nvd0_display_crtc_get(struct drm_encoder *encoder)
80 {
81 	return nouveau_encoder(encoder)->crtc;
82 }
83 
84 /******************************************************************************
85  * EVO channel helpers
86  *****************************************************************************/
87 static inline int
evo_icmd(struct drm_device * dev,int id,u32 mthd,u32 data)88 evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
89 {
90 	int ret = 0;
91 	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
92 	nv_wr32(dev, 0x610704 + (id * 0x10), data);
93 	nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
94 	if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
95 		ret = -EBUSY;
96 	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
97 	return ret;
98 }
99 
100 static u32 *
evo_wait(struct drm_device * dev,int id,int nr)101 evo_wait(struct drm_device *dev, int id, int nr)
102 {
103 	struct nvd0_display *disp = nvd0_display(dev);
104 	u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;
105 
106 	if (put + nr >= (PAGE_SIZE / 4)) {
107 		disp->evo[id].ptr[put] = 0x20000000;
108 
109 		nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
110 		if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
111 			NV_ERROR(dev, "evo %d dma stalled\n", id);
112 			return NULL;
113 		}
114 
115 		put = 0;
116 	}
117 
118 	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
119 		NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);
120 
121 	return disp->evo[id].ptr + put;
122 }
123 
124 static void
evo_kick(u32 * push,struct drm_device * dev,int id)125 evo_kick(u32 *push, struct drm_device *dev, int id)
126 {
127 	struct nvd0_display *disp = nvd0_display(dev);
128 
129 	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
130 		u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
131 		u32 *cur = disp->evo[id].ptr + curp;
132 
133 		while (cur < push)
134 			NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
135 		NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
136 	}
137 
138 	nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
139 }
140 
141 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
142 #define evo_data(p,d)   *((p)++) = (d)
143 
144 static int
evo_init_dma(struct drm_device * dev,int ch)145 evo_init_dma(struct drm_device *dev, int ch)
146 {
147 	struct nvd0_display *disp = nvd0_display(dev);
148 	u32 flags;
149 
150 	flags = 0x00000000;
151 	if (ch == EVO_MASTER)
152 		flags |= 0x01000000;
153 
154 	nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
155 	nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
156 	nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
157 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
158 	nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
159 	nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
160 	if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
161 		NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
162 			      nv_rd32(dev, 0x610490 + (ch * 0x0010)));
163 		return -EBUSY;
164 	}
165 
166 	nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
167 	nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
168 	return 0;
169 }
170 
171 static void
evo_fini_dma(struct drm_device * dev,int ch)172 evo_fini_dma(struct drm_device *dev, int ch)
173 {
174 	if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
175 		return;
176 
177 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
178 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
179 	nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
180 	nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
181 	nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
182 }
183 
184 static inline void
evo_piow(struct drm_device * dev,int ch,u16 mthd,u32 data)185 evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
186 {
187 	nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
188 }
189 
190 static int
evo_init_pio(struct drm_device * dev,int ch)191 evo_init_pio(struct drm_device *dev, int ch)
192 {
193 	nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
194 	if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
195 		NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
196 			      nv_rd32(dev, 0x610490 + (ch * 0x0010)));
197 		return -EBUSY;
198 	}
199 
200 	nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
201 	nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
202 	return 0;
203 }
204 
205 static void
evo_fini_pio(struct drm_device * dev,int ch)206 evo_fini_pio(struct drm_device *dev, int ch)
207 {
208 	if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
209 		return;
210 
211 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
212 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
213 	nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
214 	nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
215 	nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
216 }
217 
218 static bool
evo_sync_wait(void * data)219 evo_sync_wait(void *data)
220 {
221 	return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
222 }
223 
224 static int
evo_sync(struct drm_device * dev,int ch)225 evo_sync(struct drm_device *dev, int ch)
226 {
227 	struct nvd0_display *disp = nvd0_display(dev);
228 	u32 *push = evo_wait(dev, ch, 8);
229 	if (push) {
230 		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
231 		evo_mthd(push, 0x0084, 1);
232 		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
233 		evo_mthd(push, 0x0080, 2);
234 		evo_data(push, 0x00000000);
235 		evo_data(push, 0x00000000);
236 		evo_kick(push, dev, ch);
237 		if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
238 			return 0;
239 	}
240 
241 	return -EBUSY;
242 }
243 
244 /******************************************************************************
245  * Page flipping channel
246  *****************************************************************************/
247 struct nouveau_bo *
nvd0_display_crtc_sema(struct drm_device * dev,int crtc)248 nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
249 {
250 	return nvd0_display(dev)->sync;
251 }
252 
253 void
nvd0_display_flip_stop(struct drm_crtc * crtc)254 nvd0_display_flip_stop(struct drm_crtc *crtc)
255 {
256 	struct nvd0_display *disp = nvd0_display(crtc->dev);
257 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
258 	struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
259 	u32 *push;
260 
261 	push = evo_wait(crtc->dev, evo->idx, 8);
262 	if (push) {
263 		evo_mthd(push, 0x0084, 1);
264 		evo_data(push, 0x00000000);
265 		evo_mthd(push, 0x0094, 1);
266 		evo_data(push, 0x00000000);
267 		evo_mthd(push, 0x00c0, 1);
268 		evo_data(push, 0x00000000);
269 		evo_mthd(push, 0x0080, 1);
270 		evo_data(push, 0x00000000);
271 		evo_kick(push, crtc->dev, evo->idx);
272 	}
273 }
274 
275 int
nvd0_display_flip_next(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct nouveau_channel * chan,u32 swap_interval)276 nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
277 		       struct nouveau_channel *chan, u32 swap_interval)
278 {
279 	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
280 	struct nvd0_display *disp = nvd0_display(crtc->dev);
281 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
282 	struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
283 	u64 offset;
284 	u32 *push;
285 	int ret;
286 
287 	evo_sync(crtc->dev, EVO_MASTER);
288 
289 	swap_interval <<= 4;
290 	if (swap_interval == 0)
291 		swap_interval |= 0x100;
292 
293 	push = evo_wait(crtc->dev, evo->idx, 128);
294 	if (unlikely(push == NULL))
295 		return -EBUSY;
296 
297 	/* synchronise with the rendering channel, if necessary */
298 	if (likely(chan)) {
299 		ret = RING_SPACE(chan, 10);
300 		if (ret)
301 			return ret;
302 
303 		offset  = chan->dispc_vma[nv_crtc->index].offset;
304 		offset += evo->sem.offset;
305 
306 		BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
307 		OUT_RING  (chan, upper_32_bits(offset));
308 		OUT_RING  (chan, lower_32_bits(offset));
309 		OUT_RING  (chan, 0xf00d0000 | evo->sem.value);
310 		OUT_RING  (chan, 0x1002);
311 		BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
312 		OUT_RING  (chan, upper_32_bits(offset));
313 		OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
314 		OUT_RING  (chan, 0x74b1e000);
315 		OUT_RING  (chan, 0x1001);
316 		FIRE_RING (chan);
317 	} else {
318 		nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
319 				0xf00d0000 | evo->sem.value);
320 		evo_sync(crtc->dev, EVO_MASTER);
321 	}
322 
323 	/* queue the flip */
324 	evo_mthd(push, 0x0100, 1);
325 	evo_data(push, 0xfffe0000);
326 	evo_mthd(push, 0x0084, 1);
327 	evo_data(push, swap_interval);
328 	if (!(swap_interval & 0x00000100)) {
329 		evo_mthd(push, 0x00e0, 1);
330 		evo_data(push, 0x40000000);
331 	}
332 	evo_mthd(push, 0x0088, 4);
333 	evo_data(push, evo->sem.offset);
334 	evo_data(push, 0xf00d0000 | evo->sem.value);
335 	evo_data(push, 0x74b1e000);
336 	evo_data(push, NvEvoSync);
337 	evo_mthd(push, 0x00a0, 2);
338 	evo_data(push, 0x00000000);
339 	evo_data(push, 0x00000000);
340 	evo_mthd(push, 0x00c0, 1);
341 	evo_data(push, nv_fb->r_dma);
342 	evo_mthd(push, 0x0110, 2);
343 	evo_data(push, 0x00000000);
344 	evo_data(push, 0x00000000);
345 	evo_mthd(push, 0x0400, 5);
346 	evo_data(push, nv_fb->nvbo->bo.offset >> 8);
347 	evo_data(push, 0);
348 	evo_data(push, (fb->height << 16) | fb->width);
349 	evo_data(push, nv_fb->r_pitch);
350 	evo_data(push, nv_fb->r_format);
351 	evo_mthd(push, 0x0080, 1);
352 	evo_data(push, 0x00000000);
353 	evo_kick(push, crtc->dev, evo->idx);
354 
355 	evo->sem.offset ^= 0x10;
356 	evo->sem.value++;
357 	return 0;
358 }
359 
360 /******************************************************************************
361  * CRTC
362  *****************************************************************************/
363 static int
nvd0_crtc_set_dither(struct nouveau_crtc * nv_crtc,bool update)364 nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
365 {
366 	struct drm_nouveau_private *dev_priv = nv_crtc->base.dev->dev_private;
367 	struct drm_device *dev = nv_crtc->base.dev;
368 	struct nouveau_connector *nv_connector;
369 	struct drm_connector *connector;
370 	u32 *push, mode = 0x00;
371 	u32 mthd;
372 
373 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
374 	connector = &nv_connector->base;
375 	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
376 		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
377 			mode = DITHERING_MODE_DYNAMIC2X2;
378 	} else {
379 		mode = nv_connector->dithering_mode;
380 	}
381 
382 	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
383 		if (connector->display_info.bpc >= 8)
384 			mode |= DITHERING_DEPTH_8BPC;
385 	} else {
386 		mode |= nv_connector->dithering_depth;
387 	}
388 
389 	if (dev_priv->card_type < NV_E0)
390 		mthd = 0x0490 + (nv_crtc->index * 0x0300);
391 	else
392 		mthd = 0x04a0 + (nv_crtc->index * 0x0300);
393 
394 	push = evo_wait(dev, EVO_MASTER, 4);
395 	if (push) {
396 		evo_mthd(push, mthd, 1);
397 		evo_data(push, mode);
398 		if (update) {
399 			evo_mthd(push, 0x0080, 1);
400 			evo_data(push, 0x00000000);
401 		}
402 		evo_kick(push, dev, EVO_MASTER);
403 	}
404 
405 	return 0;
406 }
407 
408 static int
nvd0_crtc_set_scale(struct nouveau_crtc * nv_crtc,bool update)409 nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
410 {
411 	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
412 	struct drm_device *dev = nv_crtc->base.dev;
413 	struct drm_crtc *crtc = &nv_crtc->base;
414 	struct nouveau_connector *nv_connector;
415 	int mode = DRM_MODE_SCALE_NONE;
416 	u32 oX, oY, *push;
417 
418 	/* start off at the resolution we programmed the crtc for, this
419 	 * effectively handles NONE/FULL scaling
420 	 */
421 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
422 	if (nv_connector && nv_connector->native_mode)
423 		mode = nv_connector->scaling_mode;
424 
425 	if (mode != DRM_MODE_SCALE_NONE)
426 		omode = nv_connector->native_mode;
427 	else
428 		omode = umode;
429 
430 	oX = omode->hdisplay;
431 	oY = omode->vdisplay;
432 	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
433 		oY *= 2;
434 
435 	/* add overscan compensation if necessary, will keep the aspect
436 	 * ratio the same as the backend mode unless overridden by the
437 	 * user setting both hborder and vborder properties.
438 	 */
439 	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
440 			     (nv_connector->underscan == UNDERSCAN_AUTO &&
441 			      nv_connector->edid &&
442 			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
443 		u32 bX = nv_connector->underscan_hborder;
444 		u32 bY = nv_connector->underscan_vborder;
445 		u32 aspect = (oY << 19) / oX;
446 
447 		if (bX) {
448 			oX -= (bX * 2);
449 			if (bY) oY -= (bY * 2);
450 			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
451 		} else {
452 			oX -= (oX >> 4) + 32;
453 			if (bY) oY -= (bY * 2);
454 			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
455 		}
456 	}
457 
458 	/* handle CENTER/ASPECT scaling, taking into account the areas
459 	 * removed already for overscan compensation
460 	 */
461 	switch (mode) {
462 	case DRM_MODE_SCALE_CENTER:
463 		oX = min((u32)umode->hdisplay, oX);
464 		oY = min((u32)umode->vdisplay, oY);
465 		/* fall-through */
466 	case DRM_MODE_SCALE_ASPECT:
467 		if (oY < oX) {
468 			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
469 			oX = ((oY * aspect) + (aspect / 2)) >> 19;
470 		} else {
471 			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
472 			oY = ((oX * aspect) + (aspect / 2)) >> 19;
473 		}
474 		break;
475 	default:
476 		break;
477 	}
478 
479 	push = evo_wait(dev, EVO_MASTER, 8);
480 	if (push) {
481 		evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
482 		evo_data(push, (oY << 16) | oX);
483 		evo_data(push, (oY << 16) | oX);
484 		evo_data(push, (oY << 16) | oX);
485 		evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
486 		evo_data(push, 0x00000000);
487 		evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
488 		evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
489 		evo_kick(push, dev, EVO_MASTER);
490 		if (update) {
491 			nvd0_display_flip_stop(crtc);
492 			nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
493 		}
494 	}
495 
496 	return 0;
497 }
498 
499 static int
nvd0_crtc_set_image(struct nouveau_crtc * nv_crtc,struct drm_framebuffer * fb,int x,int y,bool update)500 nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
501 		    int x, int y, bool update)
502 {
503 	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
504 	u32 *push;
505 
506 	push = evo_wait(fb->dev, EVO_MASTER, 16);
507 	if (push) {
508 		evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
509 		evo_data(push, nvfb->nvbo->bo.offset >> 8);
510 		evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
511 		evo_data(push, (fb->height << 16) | fb->width);
512 		evo_data(push, nvfb->r_pitch);
513 		evo_data(push, nvfb->r_format);
514 		evo_data(push, nvfb->r_dma);
515 		evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
516 		evo_data(push, (y << 16) | x);
517 		if (update) {
518 			evo_mthd(push, 0x0080, 1);
519 			evo_data(push, 0x00000000);
520 		}
521 		evo_kick(push, fb->dev, EVO_MASTER);
522 	}
523 
524 	nv_crtc->fb.tile_flags = nvfb->r_dma;
525 	return 0;
526 }
527 
528 static void
nvd0_crtc_cursor_show(struct nouveau_crtc * nv_crtc,bool show,bool update)529 nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
530 {
531 	struct drm_device *dev = nv_crtc->base.dev;
532 	u32 *push = evo_wait(dev, EVO_MASTER, 16);
533 	if (push) {
534 		if (show) {
535 			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
536 			evo_data(push, 0x85000000);
537 			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
538 			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
539 			evo_data(push, NvEvoVRAM);
540 		} else {
541 			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
542 			evo_data(push, 0x05000000);
543 			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
544 			evo_data(push, 0x00000000);
545 		}
546 
547 		if (update) {
548 			evo_mthd(push, 0x0080, 1);
549 			evo_data(push, 0x00000000);
550 		}
551 
552 		evo_kick(push, dev, EVO_MASTER);
553 	}
554 }
555 
556 static void
nvd0_crtc_dpms(struct drm_crtc * crtc,int mode)557 nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
558 {
559 }
560 
561 static void
nvd0_crtc_prepare(struct drm_crtc * crtc)562 nvd0_crtc_prepare(struct drm_crtc *crtc)
563 {
564 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
565 	u32 *push;
566 
567 	nvd0_display_flip_stop(crtc);
568 
569 	push = evo_wait(crtc->dev, EVO_MASTER, 2);
570 	if (push) {
571 		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
572 		evo_data(push, 0x00000000);
573 		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
574 		evo_data(push, 0x03000000);
575 		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
576 		evo_data(push, 0x00000000);
577 		evo_kick(push, crtc->dev, EVO_MASTER);
578 	}
579 
580 	nvd0_crtc_cursor_show(nv_crtc, false, false);
581 }
582 
583 static void
nvd0_crtc_commit(struct drm_crtc * crtc)584 nvd0_crtc_commit(struct drm_crtc *crtc)
585 {
586 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
587 	u32 *push;
588 
589 	push = evo_wait(crtc->dev, EVO_MASTER, 32);
590 	if (push) {
591 		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
592 		evo_data(push, nv_crtc->fb.tile_flags);
593 		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
594 		evo_data(push, 0x83000000);
595 		evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
596 		evo_data(push, 0x00000000);
597 		evo_data(push, 0x00000000);
598 		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
599 		evo_data(push, NvEvoVRAM);
600 		evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
601 		evo_data(push, 0xffffff00);
602 		evo_kick(push, crtc->dev, EVO_MASTER);
603 	}
604 
605 	nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
606 	nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
607 }
608 
609 static bool
nvd0_crtc_mode_fixup(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)610 nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
611 		     struct drm_display_mode *adjusted_mode)
612 {
613 	return true;
614 }
615 
616 static int
nvd0_crtc_swap_fbs(struct drm_crtc * crtc,struct drm_framebuffer * old_fb)617 nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
618 {
619 	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
620 	int ret;
621 
622 	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
623 	if (ret)
624 		return ret;
625 
626 	if (old_fb) {
627 		nvfb = nouveau_framebuffer(old_fb);
628 		nouveau_bo_unpin(nvfb->nvbo);
629 	}
630 
631 	return 0;
632 }
633 
634 static int
nvd0_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * umode,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * old_fb)635 nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
636 		   struct drm_display_mode *mode, int x, int y,
637 		   struct drm_framebuffer *old_fb)
638 {
639 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
640 	struct nouveau_connector *nv_connector;
641 	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
642 	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
643 	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
644 	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
645 	u32 vblan2e = 0, vblan2s = 1;
646 	u32 *push;
647 	int ret;
648 
649 	hactive = mode->htotal;
650 	hsynce  = mode->hsync_end - mode->hsync_start - 1;
651 	hbackp  = mode->htotal - mode->hsync_end;
652 	hblanke = hsynce + hbackp;
653 	hfrontp = mode->hsync_start - mode->hdisplay;
654 	hblanks = mode->htotal - hfrontp - 1;
655 
656 	vactive = mode->vtotal * vscan / ilace;
657 	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
658 	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
659 	vblanke = vsynce + vbackp;
660 	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
661 	vblanks = vactive - vfrontp - 1;
662 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
663 		vblan2e = vactive + vsynce + vbackp;
664 		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
665 		vactive = (vactive * 2) + 1;
666 	}
667 
668 	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
669 	if (ret)
670 		return ret;
671 
672 	push = evo_wait(crtc->dev, EVO_MASTER, 64);
673 	if (push) {
674 		evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
675 		evo_data(push, 0x00000000);
676 		evo_data(push, (vactive << 16) | hactive);
677 		evo_data(push, ( vsynce << 16) | hsynce);
678 		evo_data(push, (vblanke << 16) | hblanke);
679 		evo_data(push, (vblanks << 16) | hblanks);
680 		evo_data(push, (vblan2e << 16) | vblan2s);
681 		evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
682 		evo_data(push, 0x00000000); /* ??? */
683 		evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
684 		evo_data(push, mode->clock * 1000);
685 		evo_data(push, 0x00200000); /* ??? */
686 		evo_data(push, mode->clock * 1000);
687 		evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
688 		evo_data(push, 0x00000311);
689 		evo_data(push, 0x00000100);
690 		evo_kick(push, crtc->dev, EVO_MASTER);
691 	}
692 
693 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
694 	nvd0_crtc_set_dither(nv_crtc, false);
695 	nvd0_crtc_set_scale(nv_crtc, false);
696 	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
697 	return 0;
698 }
699 
700 static int
nvd0_crtc_mode_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)701 nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
702 			struct drm_framebuffer *old_fb)
703 {
704 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
705 	int ret;
706 
707 	if (!crtc->fb) {
708 		NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
709 		return 0;
710 	}
711 
712 	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
713 	if (ret)
714 		return ret;
715 
716 	nvd0_display_flip_stop(crtc);
717 	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
718 	nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
719 	return 0;
720 }
721 
722 static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)723 nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
724 			       struct drm_framebuffer *fb, int x, int y,
725 			       enum mode_set_atomic state)
726 {
727 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
728 	nvd0_display_flip_stop(crtc);
729 	nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
730 	return 0;
731 }
732 
733 static void
nvd0_crtc_lut_load(struct drm_crtc * crtc)734 nvd0_crtc_lut_load(struct drm_crtc *crtc)
735 {
736 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
737 	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
738 	int i;
739 
740 	for (i = 0; i < 256; i++) {
741 		writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
742 		writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
743 		writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
744 	}
745 }
746 
747 static int
nvd0_crtc_cursor_set(struct drm_crtc * crtc,struct drm_file * file_priv,uint32_t handle,uint32_t width,uint32_t height)748 nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
749 		     uint32_t handle, uint32_t width, uint32_t height)
750 {
751 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
752 	struct drm_device *dev = crtc->dev;
753 	struct drm_gem_object *gem;
754 	struct nouveau_bo *nvbo;
755 	bool visible = (handle != 0);
756 	int i, ret = 0;
757 
758 	if (visible) {
759 		if (width != 64 || height != 64)
760 			return -EINVAL;
761 
762 		gem = drm_gem_object_lookup(dev, file_priv, handle);
763 		if (unlikely(!gem))
764 			return -ENOENT;
765 		nvbo = nouveau_gem_object(gem);
766 
767 		ret = nouveau_bo_map(nvbo);
768 		if (ret == 0) {
769 			for (i = 0; i < 64 * 64; i++) {
770 				u32 v = nouveau_bo_rd32(nvbo, i);
771 				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
772 			}
773 			nouveau_bo_unmap(nvbo);
774 		}
775 
776 		drm_gem_object_unreference_unlocked(gem);
777 	}
778 
779 	if (visible != nv_crtc->cursor.visible) {
780 		nvd0_crtc_cursor_show(nv_crtc, visible, true);
781 		nv_crtc->cursor.visible = visible;
782 	}
783 
784 	return ret;
785 }
786 
787 static int
nvd0_crtc_cursor_move(struct drm_crtc * crtc,int x,int y)788 nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
789 {
790 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
791 	int ch = EVO_CURS(nv_crtc->index);
792 
793 	evo_piow(crtc->dev, ch, 0x0084, (y << 16) | (x & 0xffff));
794 	evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
795 	return 0;
796 }
797 
798 static void
nvd0_crtc_gamma_set(struct drm_crtc * crtc,u16 * r,u16 * g,u16 * b,uint32_t start,uint32_t size)799 nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
800 		    uint32_t start, uint32_t size)
801 {
802 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
803 	u32 end = max(start + size, (u32)256);
804 	u32 i;
805 
806 	for (i = start; i < end; i++) {
807 		nv_crtc->lut.r[i] = r[i];
808 		nv_crtc->lut.g[i] = g[i];
809 		nv_crtc->lut.b[i] = b[i];
810 	}
811 
812 	nvd0_crtc_lut_load(crtc);
813 }
814 
815 static void
nvd0_crtc_destroy(struct drm_crtc * crtc)816 nvd0_crtc_destroy(struct drm_crtc *crtc)
817 {
818 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
819 	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
820 	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
821 	nouveau_bo_unmap(nv_crtc->lut.nvbo);
822 	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
823 	drm_crtc_cleanup(crtc);
824 	kfree(crtc);
825 }
826 
827 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
828 	.dpms = nvd0_crtc_dpms,
829 	.prepare = nvd0_crtc_prepare,
830 	.commit = nvd0_crtc_commit,
831 	.mode_fixup = nvd0_crtc_mode_fixup,
832 	.mode_set = nvd0_crtc_mode_set,
833 	.mode_set_base = nvd0_crtc_mode_set_base,
834 	.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
835 	.load_lut = nvd0_crtc_lut_load,
836 };
837 
838 static const struct drm_crtc_funcs nvd0_crtc_func = {
839 	.cursor_set = nvd0_crtc_cursor_set,
840 	.cursor_move = nvd0_crtc_cursor_move,
841 	.gamma_set = nvd0_crtc_gamma_set,
842 	.set_config = drm_crtc_helper_set_config,
843 	.destroy = nvd0_crtc_destroy,
844 	.page_flip = nouveau_crtc_page_flip,
845 };
846 
847 static void
nvd0_cursor_set_pos(struct nouveau_crtc * nv_crtc,int x,int y)848 nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
849 {
850 }
851 
852 static void
nvd0_cursor_set_offset(struct nouveau_crtc * nv_crtc,uint32_t offset)853 nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
854 {
855 }
856 
857 static int
nvd0_crtc_create(struct drm_device * dev,int index)858 nvd0_crtc_create(struct drm_device *dev, int index)
859 {
860 	struct nouveau_crtc *nv_crtc;
861 	struct drm_crtc *crtc;
862 	int ret, i;
863 
864 	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
865 	if (!nv_crtc)
866 		return -ENOMEM;
867 
868 	nv_crtc->index = index;
869 	nv_crtc->set_dither = nvd0_crtc_set_dither;
870 	nv_crtc->set_scale = nvd0_crtc_set_scale;
871 	nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
872 	nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
873 	for (i = 0; i < 256; i++) {
874 		nv_crtc->lut.r[i] = i << 8;
875 		nv_crtc->lut.g[i] = i << 8;
876 		nv_crtc->lut.b[i] = i << 8;
877 	}
878 
879 	crtc = &nv_crtc->base;
880 	drm_crtc_init(dev, crtc, &nvd0_crtc_func);
881 	drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
882 	drm_mode_crtc_set_gamma_size(crtc, 256);
883 
884 	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
885 			     0, 0x0000, &nv_crtc->cursor.nvbo);
886 	if (!ret) {
887 		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
888 		if (!ret)
889 			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
890 		if (ret)
891 			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
892 	}
893 
894 	if (ret)
895 		goto out;
896 
897 	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
898 			     0, 0x0000, &nv_crtc->lut.nvbo);
899 	if (!ret) {
900 		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
901 		if (!ret)
902 			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
903 		if (ret)
904 			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
905 	}
906 
907 	if (ret)
908 		goto out;
909 
910 	nvd0_crtc_lut_load(crtc);
911 
912 out:
913 	if (ret)
914 		nvd0_crtc_destroy(crtc);
915 	return ret;
916 }
917 
918 /******************************************************************************
919  * DAC
920  *****************************************************************************/
921 static void
nvd0_dac_dpms(struct drm_encoder * encoder,int mode)922 nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
923 {
924 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
925 	struct drm_device *dev = encoder->dev;
926 	int or = nv_encoder->or;
927 	u32 dpms_ctrl;
928 
929 	dpms_ctrl = 0x80000000;
930 	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
931 		dpms_ctrl |= 0x00000001;
932 	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
933 		dpms_ctrl |= 0x00000004;
934 
935 	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
936 	nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
937 	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
938 }
939 
940 static bool
nvd0_dac_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)941 nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
942 		    struct drm_display_mode *adjusted_mode)
943 {
944 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
945 	struct nouveau_connector *nv_connector;
946 
947 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
948 	if (nv_connector && nv_connector->native_mode) {
949 		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
950 			int id = adjusted_mode->base.id;
951 			*adjusted_mode = *nv_connector->native_mode;
952 			adjusted_mode->base.id = id;
953 		}
954 	}
955 
956 	return true;
957 }
958 
959 static void
nvd0_dac_commit(struct drm_encoder * encoder)960 nvd0_dac_commit(struct drm_encoder *encoder)
961 {
962 }
963 
964 static void
nvd0_dac_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)965 nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
966 		  struct drm_display_mode *adjusted_mode)
967 {
968 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
969 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
970 	u32 syncs, magic, *push;
971 
972 	syncs = 0x00000001;
973 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
974 		syncs |= 0x00000008;
975 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
976 		syncs |= 0x00000010;
977 
978 	magic = 0x31ec6000 | (nv_crtc->index << 25);
979 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
980 		magic |= 0x00000001;
981 
982 	nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
983 
984 	push = evo_wait(encoder->dev, EVO_MASTER, 8);
985 	if (push) {
986 		evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
987 		evo_data(push, syncs);
988 		evo_data(push, magic);
989 		evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2);
990 		evo_data(push, 1 << nv_crtc->index);
991 		evo_data(push, 0x00ff);
992 		evo_kick(push, encoder->dev, EVO_MASTER);
993 	}
994 
995 	nv_encoder->crtc = encoder->crtc;
996 }
997 
998 static void
nvd0_dac_disconnect(struct drm_encoder * encoder)999 nvd0_dac_disconnect(struct drm_encoder *encoder)
1000 {
1001 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1002 	struct drm_device *dev = encoder->dev;
1003 	u32 *push;
1004 
1005 	if (nv_encoder->crtc) {
1006 		nvd0_crtc_prepare(nv_encoder->crtc);
1007 
1008 		push = evo_wait(dev, EVO_MASTER, 4);
1009 		if (push) {
1010 			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
1011 			evo_data(push, 0x00000000);
1012 			evo_mthd(push, 0x0080, 1);
1013 			evo_data(push, 0x00000000);
1014 			evo_kick(push, dev, EVO_MASTER);
1015 		}
1016 
1017 		nv_encoder->crtc = NULL;
1018 	}
1019 }
1020 
1021 static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)1022 nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1023 {
1024 	enum drm_connector_status status = connector_status_disconnected;
1025 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1026 	struct drm_device *dev = encoder->dev;
1027 	int or = nv_encoder->or;
1028 	u32 load;
1029 
1030 	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
1031 	udelay(9500);
1032 	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);
1033 
1034 	load = nv_rd32(dev, 0x61a00c + (or * 0x800));
1035 	if ((load & 0x38000000) == 0x38000000)
1036 		status = connector_status_connected;
1037 
1038 	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
1039 	return status;
1040 }
1041 
1042 static void
nvd0_dac_destroy(struct drm_encoder * encoder)1043 nvd0_dac_destroy(struct drm_encoder *encoder)
1044 {
1045 	drm_encoder_cleanup(encoder);
1046 	kfree(encoder);
1047 }
1048 
1049 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
1050 	.dpms = nvd0_dac_dpms,
1051 	.mode_fixup = nvd0_dac_mode_fixup,
1052 	.prepare = nvd0_dac_disconnect,
1053 	.commit = nvd0_dac_commit,
1054 	.mode_set = nvd0_dac_mode_set,
1055 	.disable = nvd0_dac_disconnect,
1056 	.get_crtc = nvd0_display_crtc_get,
1057 	.detect = nvd0_dac_detect
1058 };
1059 
1060 static const struct drm_encoder_funcs nvd0_dac_func = {
1061 	.destroy = nvd0_dac_destroy,
1062 };
1063 
1064 static int
nvd0_dac_create(struct drm_connector * connector,struct dcb_entry * dcbe)1065 nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1066 {
1067 	struct drm_device *dev = connector->dev;
1068 	struct nouveau_encoder *nv_encoder;
1069 	struct drm_encoder *encoder;
1070 
1071 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1072 	if (!nv_encoder)
1073 		return -ENOMEM;
1074 	nv_encoder->dcb = dcbe;
1075 	nv_encoder->or = ffs(dcbe->or) - 1;
1076 
1077 	encoder = to_drm_encoder(nv_encoder);
1078 	encoder->possible_crtcs = dcbe->heads;
1079 	encoder->possible_clones = 0;
1080 	drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
1081 	drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
1082 
1083 	drm_mode_connector_attach_encoder(connector, encoder);
1084 	return 0;
1085 }
1086 
1087 /******************************************************************************
1088  * Audio
1089  *****************************************************************************/
1090 static void
nvd0_audio_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode)1091 nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1092 {
1093 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1094 	struct nouveau_connector *nv_connector;
1095 	struct drm_device *dev = encoder->dev;
1096 	int i, or = nv_encoder->or * 0x30;
1097 
1098 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1099 	if (!drm_detect_monitor_audio(nv_connector->edid))
1100 		return;
1101 
1102 	nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);
1103 
1104 	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1105 	if (nv_connector->base.eld[0]) {
1106 		u8 *eld = nv_connector->base.eld;
1107 
1108 		for (i = 0; i < eld[2] * 4; i++)
1109 			nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
1110 		for (i = eld[2] * 4; i < 0x60; i++)
1111 			nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);
1112 
1113 		nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
1114 	}
1115 }
1116 
1117 static void
nvd0_audio_disconnect(struct drm_encoder * encoder)1118 nvd0_audio_disconnect(struct drm_encoder *encoder)
1119 {
1120 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1121 	struct drm_device *dev = encoder->dev;
1122 	int or = nv_encoder->or * 0x30;
1123 
1124 	nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
1125 }
1126 
1127 /******************************************************************************
1128  * HDMI
1129  *****************************************************************************/
1130 static void
nvd0_hdmi_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode)1131 nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1132 {
1133 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1134 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1135 	struct nouveau_connector *nv_connector;
1136 	struct drm_device *dev = encoder->dev;
1137 	int head = nv_crtc->index * 0x800;
1138 	u32 rekey = 56; /* binary driver, and tegra constant */
1139 	u32 max_ac_packet;
1140 
1141 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1142 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
1143 		return;
1144 
1145 	max_ac_packet  = mode->htotal - mode->hdisplay;
1146 	max_ac_packet -= rekey;
1147 	max_ac_packet -= 18; /* constant from tegra */
1148 	max_ac_packet /= 32;
1149 
1150 	/* AVI InfoFrame */
1151 	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1152 	nv_wr32(dev, 0x61671c + head, 0x000d0282);
1153 	nv_wr32(dev, 0x616720 + head, 0x0000006f);
1154 	nv_wr32(dev, 0x616724 + head, 0x00000000);
1155 	nv_wr32(dev, 0x616728 + head, 0x00000000);
1156 	nv_wr32(dev, 0x61672c + head, 0x00000000);
1157 	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);
1158 
1159 	/* ??? InfoFrame? */
1160 	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1161 	nv_wr32(dev, 0x6167ac + head, 0x00000010);
1162 	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);
1163 
1164 	/* HDMI_CTRL */
1165 	nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
1166 						  max_ac_packet << 16);
1167 
1168 	/* NFI, audio doesn't work without it though.. */
1169 	nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);
1170 
1171 	nvd0_audio_mode_set(encoder, mode);
1172 }
1173 
1174 static void
nvd0_hdmi_disconnect(struct drm_encoder * encoder)1175 nvd0_hdmi_disconnect(struct drm_encoder *encoder)
1176 {
1177 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1178 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1179 	struct drm_device *dev = encoder->dev;
1180 	int head = nv_crtc->index * 0x800;
1181 
1182 	nvd0_audio_disconnect(encoder);
1183 
1184 	nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
1185 	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1186 	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1187 }
1188 
1189 /******************************************************************************
1190  * SOR
1191  *****************************************************************************/
1192 static inline u32
nvd0_sor_dp_lane_map(struct drm_device * dev,struct dcb_entry * dcb,u8 lane)1193 nvd0_sor_dp_lane_map(struct drm_device *dev, struct dcb_entry *dcb, u8 lane)
1194 {
1195 	static const u8 nvd0[] = { 16, 8, 0, 24 };
1196 	return nvd0[lane];
1197 }
1198 
1199 static void
nvd0_sor_dp_train_set(struct drm_device * dev,struct dcb_entry * dcb,u8 pattern)1200 nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_entry *dcb, u8 pattern)
1201 {
1202 	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1203 	const u32 loff = (or * 0x800) + (link * 0x80);
1204 	nv_mask(dev, 0x61c110 + loff, 0x0f0f0f0f, 0x01010101 * pattern);
1205 }
1206 
1207 static void
nvd0_sor_dp_train_adj(struct drm_device * dev,struct dcb_entry * dcb,u8 lane,u8 swing,u8 preem)1208 nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_entry *dcb,
1209 		      u8 lane, u8 swing, u8 preem)
1210 {
1211 	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1212 	const u32 loff = (or * 0x800) + (link * 0x80);
1213 	u32 shift = nvd0_sor_dp_lane_map(dev, dcb, lane);
1214 	u32 mask = 0x000000ff << shift;
1215 	u8 *table, *entry, *config = NULL;
1216 
1217 	switch (swing) {
1218 	case 0: preem += 0; break;
1219 	case 1: preem += 4; break;
1220 	case 2: preem += 7; break;
1221 	case 3: preem += 9; break;
1222 	}
1223 
1224 	table = nouveau_dp_bios_data(dev, dcb, &entry);
1225 	if (table) {
1226 		if (table[0] == 0x30) {
1227 			config  = entry + table[4];
1228 			config += table[5] * preem;
1229 		} else
1230 		if (table[0] == 0x40) {
1231 			config  = table + table[1];
1232 			config += table[2] * table[3];
1233 			config += table[6] * preem;
1234 		}
1235 	}
1236 
1237 	if (!config) {
1238 		NV_ERROR(dev, "PDISP: unsupported DP table for chipset\n");
1239 		return;
1240 	}
1241 
1242 	nv_mask(dev, 0x61c118 + loff, mask, config[1] << shift);
1243 	nv_mask(dev, 0x61c120 + loff, mask, config[2] << shift);
1244 	nv_mask(dev, 0x61c130 + loff, 0x0000ff00, config[3] << 8);
1245 	nv_mask(dev, 0x61c13c + loff, 0x00000000, 0x00000000);
1246 }
1247 
1248 static void
nvd0_sor_dp_link_set(struct drm_device * dev,struct dcb_entry * dcb,int crtc,int link_nr,u32 link_bw,bool enhframe)1249 nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_entry *dcb, int crtc,
1250 		     int link_nr, u32 link_bw, bool enhframe)
1251 {
1252 	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1253 	const u32 loff = (or * 0x800) + (link * 0x80);
1254 	const u32 soff = (or * 0x800);
1255 	u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & ~0x001f4000;
1256 	u32 clksor = nv_rd32(dev, 0x612300 + soff) & ~0x007c0000;
1257 	u32 script = 0x0000, lane_mask = 0;
1258 	u8 *table, *entry;
1259 	int i;
1260 
1261 	link_bw /= 27000;
1262 
1263 	table = nouveau_dp_bios_data(dev, dcb, &entry);
1264 	if (table) {
1265 		if      (table[0] == 0x30) entry = ROMPTR(dev, entry[10]);
1266 		else if (table[0] == 0x40) entry = ROMPTR(dev, entry[9]);
1267 		else                       entry = NULL;
1268 
1269 		while (entry) {
1270 			if (entry[0] >= link_bw)
1271 				break;
1272 			entry += 3;
1273 		}
1274 
1275 		nouveau_bios_run_init_table(dev, script, dcb, crtc);
1276 	}
1277 
1278 	clksor |= link_bw << 18;
1279 	dpctrl |= ((1 << link_nr) - 1) << 16;
1280 	if (enhframe)
1281 		dpctrl |= 0x00004000;
1282 
1283 	for (i = 0; i < link_nr; i++)
1284 		lane_mask |= 1 << (nvd0_sor_dp_lane_map(dev, dcb, i) >> 3);
1285 
1286 	nv_wr32(dev, 0x612300 + soff, clksor);
1287 	nv_wr32(dev, 0x61c10c + loff, dpctrl);
1288 	nv_mask(dev, 0x61c130 + loff, 0x0000000f, lane_mask);
1289 }
1290 
1291 static void
nvd0_sor_dp_link_get(struct drm_device * dev,struct dcb_entry * dcb,u32 * link_nr,u32 * link_bw)1292 nvd0_sor_dp_link_get(struct drm_device *dev, struct dcb_entry *dcb,
1293 		     u32 *link_nr, u32 *link_bw)
1294 {
1295 	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1296 	const u32 loff = (or * 0x800) + (link * 0x80);
1297 	const u32 soff = (or * 0x800);
1298 	u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & 0x000f0000;
1299 	u32 clksor = nv_rd32(dev, 0x612300 + soff);
1300 
1301 	if      (dpctrl > 0x00030000) *link_nr = 4;
1302 	else if (dpctrl > 0x00010000) *link_nr = 2;
1303 	else			      *link_nr = 1;
1304 
1305 	*link_bw  = (clksor & 0x007c0000) >> 18;
1306 	*link_bw *= 27000;
1307 }
1308 
1309 static void
nvd0_sor_dp_calc_tu(struct drm_device * dev,struct dcb_entry * dcb,u32 crtc,u32 datarate)1310 nvd0_sor_dp_calc_tu(struct drm_device *dev, struct dcb_entry *dcb,
1311 		    u32 crtc, u32 datarate)
1312 {
1313 	const u32 symbol = 100000;
1314 	const u32 TU = 64;
1315 	u32 link_nr, link_bw;
1316 	u64 ratio, value;
1317 
1318 	nvd0_sor_dp_link_get(dev, dcb, &link_nr, &link_bw);
1319 
1320 	ratio  = datarate;
1321 	ratio *= symbol;
1322 	do_div(ratio, link_nr * link_bw);
1323 
1324 	value  = (symbol - ratio) * TU;
1325 	value *= ratio;
1326 	do_div(value, symbol);
1327 	do_div(value, symbol);
1328 
1329 	value += 5;
1330 	value |= 0x08000000;
1331 
1332 	nv_wr32(dev, 0x616610 + (crtc * 0x800), value);
1333 }
1334 
1335 static void
nvd0_sor_dpms(struct drm_encoder * encoder,int mode)1336 nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
1337 {
1338 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1339 	struct drm_device *dev = encoder->dev;
1340 	struct drm_encoder *partner;
1341 	int or = nv_encoder->or;
1342 	u32 dpms_ctrl;
1343 
1344 	nv_encoder->last_dpms = mode;
1345 
1346 	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1347 		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1348 
1349 		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1350 			continue;
1351 
1352 		if (nv_partner != nv_encoder &&
1353 		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1354 			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1355 				return;
1356 			break;
1357 		}
1358 	}
1359 
1360 	dpms_ctrl  = (mode == DRM_MODE_DPMS_ON);
1361 	dpms_ctrl |= 0x80000000;
1362 
1363 	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1364 	nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
1365 	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1366 	nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1367 
1368 	if (nv_encoder->dcb->type == OUTPUT_DP) {
1369 		struct dp_train_func func = {
1370 			.link_set = nvd0_sor_dp_link_set,
1371 			.train_set = nvd0_sor_dp_train_set,
1372 			.train_adj = nvd0_sor_dp_train_adj
1373 		};
1374 
1375 		nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
1376 	}
1377 }
1378 
1379 static bool
nvd0_sor_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1380 nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
1381 		    struct drm_display_mode *adjusted_mode)
1382 {
1383 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1384 	struct nouveau_connector *nv_connector;
1385 
1386 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1387 	if (nv_connector && nv_connector->native_mode) {
1388 		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1389 			int id = adjusted_mode->base.id;
1390 			*adjusted_mode = *nv_connector->native_mode;
1391 			adjusted_mode->base.id = id;
1392 		}
1393 	}
1394 
1395 	return true;
1396 }
1397 
1398 static void
nvd0_sor_disconnect(struct drm_encoder * encoder)1399 nvd0_sor_disconnect(struct drm_encoder *encoder)
1400 {
1401 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1402 	struct drm_device *dev = encoder->dev;
1403 	u32 *push;
1404 
1405 	if (nv_encoder->crtc) {
1406 		nvd0_crtc_prepare(nv_encoder->crtc);
1407 
1408 		push = evo_wait(dev, EVO_MASTER, 4);
1409 		if (push) {
1410 			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
1411 			evo_data(push, 0x00000000);
1412 			evo_mthd(push, 0x0080, 1);
1413 			evo_data(push, 0x00000000);
1414 			evo_kick(push, dev, EVO_MASTER);
1415 		}
1416 
1417 		nvd0_hdmi_disconnect(encoder);
1418 
1419 		nv_encoder->crtc = NULL;
1420 		nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1421 	}
1422 }
1423 
1424 static void
nvd0_sor_prepare(struct drm_encoder * encoder)1425 nvd0_sor_prepare(struct drm_encoder *encoder)
1426 {
1427 	nvd0_sor_disconnect(encoder);
1428 	if (nouveau_encoder(encoder)->dcb->type == OUTPUT_DP)
1429 		evo_sync(encoder->dev, EVO_MASTER);
1430 }
1431 
1432 static void
nvd0_sor_commit(struct drm_encoder * encoder)1433 nvd0_sor_commit(struct drm_encoder *encoder)
1434 {
1435 }
1436 
1437 static void
nvd0_sor_mode_set(struct drm_encoder * encoder,struct drm_display_mode * umode,struct drm_display_mode * mode)1438 nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1439 		  struct drm_display_mode *mode)
1440 {
1441 	struct drm_device *dev = encoder->dev;
1442 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1443 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1444 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1445 	struct nouveau_connector *nv_connector;
1446 	struct nvbios *bios = &dev_priv->vbios;
1447 	u32 mode_ctrl = (1 << nv_crtc->index);
1448 	u32 syncs, magic, *push;
1449 	u32 or_config;
1450 
1451 	syncs = 0x00000001;
1452 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1453 		syncs |= 0x00000008;
1454 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1455 		syncs |= 0x00000010;
1456 
1457 	magic = 0x31ec6000 | (nv_crtc->index << 25);
1458 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1459 		magic |= 0x00000001;
1460 
1461 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1462 	switch (nv_encoder->dcb->type) {
1463 	case OUTPUT_TMDS:
1464 		if (nv_encoder->dcb->sorconf.link & 1) {
1465 			if (mode->clock < 165000)
1466 				mode_ctrl |= 0x00000100;
1467 			else
1468 				mode_ctrl |= 0x00000500;
1469 		} else {
1470 			mode_ctrl |= 0x00000200;
1471 		}
1472 
1473 		or_config = (mode_ctrl & 0x00000f00) >> 8;
1474 		if (mode->clock >= 165000)
1475 			or_config |= 0x0100;
1476 
1477 		nvd0_hdmi_mode_set(encoder, mode);
1478 		break;
1479 	case OUTPUT_LVDS:
1480 		or_config = (mode_ctrl & 0x00000f00) >> 8;
1481 		if (bios->fp_no_ddc) {
1482 			if (bios->fp.dual_link)
1483 				or_config |= 0x0100;
1484 			if (bios->fp.if_is_24bit)
1485 				or_config |= 0x0200;
1486 		} else {
1487 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1488 				if (((u8 *)nv_connector->edid)[121] == 2)
1489 					or_config |= 0x0100;
1490 			} else
1491 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1492 				or_config |= 0x0100;
1493 			}
1494 
1495 			if (or_config & 0x0100) {
1496 				if (bios->fp.strapless_is_24bit & 2)
1497 					or_config |= 0x0200;
1498 			} else {
1499 				if (bios->fp.strapless_is_24bit & 1)
1500 					or_config |= 0x0200;
1501 			}
1502 
1503 			if (nv_connector->base.display_info.bpc == 8)
1504 				or_config |= 0x0200;
1505 
1506 		}
1507 		break;
1508 	case OUTPUT_DP:
1509 		if (nv_connector->base.display_info.bpc == 6) {
1510 			nv_encoder->dp.datarate = mode->clock * 18 / 8;
1511 			syncs |= 0x00000140;
1512 		} else {
1513 			nv_encoder->dp.datarate = mode->clock * 24 / 8;
1514 			syncs |= 0x00000180;
1515 		}
1516 
1517 		if (nv_encoder->dcb->sorconf.link & 1)
1518 			mode_ctrl |= 0x00000800;
1519 		else
1520 			mode_ctrl |= 0x00000900;
1521 
1522 		or_config = (mode_ctrl & 0x00000f00) >> 8;
1523 		break;
1524 	default:
1525 		BUG_ON(1);
1526 		break;
1527 	}
1528 
1529 	nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1530 
1531 	if (nv_encoder->dcb->type == OUTPUT_DP) {
1532 		nvd0_sor_dp_calc_tu(dev, nv_encoder->dcb, nv_crtc->index,
1533 					 nv_encoder->dp.datarate);
1534 	}
1535 
1536 	push = evo_wait(dev, EVO_MASTER, 8);
1537 	if (push) {
1538 		evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1539 		evo_data(push, syncs);
1540 		evo_data(push, magic);
1541 		evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2);
1542 		evo_data(push, mode_ctrl);
1543 		evo_data(push, or_config);
1544 		evo_kick(push, dev, EVO_MASTER);
1545 	}
1546 
1547 	nv_encoder->crtc = encoder->crtc;
1548 }
1549 
1550 static void
nvd0_sor_destroy(struct drm_encoder * encoder)1551 nvd0_sor_destroy(struct drm_encoder *encoder)
1552 {
1553 	drm_encoder_cleanup(encoder);
1554 	kfree(encoder);
1555 }
1556 
1557 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
1558 	.dpms = nvd0_sor_dpms,
1559 	.mode_fixup = nvd0_sor_mode_fixup,
1560 	.prepare = nvd0_sor_prepare,
1561 	.commit = nvd0_sor_commit,
1562 	.mode_set = nvd0_sor_mode_set,
1563 	.disable = nvd0_sor_disconnect,
1564 	.get_crtc = nvd0_display_crtc_get,
1565 };
1566 
1567 static const struct drm_encoder_funcs nvd0_sor_func = {
1568 	.destroy = nvd0_sor_destroy,
1569 };
1570 
1571 static int
nvd0_sor_create(struct drm_connector * connector,struct dcb_entry * dcbe)1572 nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1573 {
1574 	struct drm_device *dev = connector->dev;
1575 	struct nouveau_encoder *nv_encoder;
1576 	struct drm_encoder *encoder;
1577 
1578 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1579 	if (!nv_encoder)
1580 		return -ENOMEM;
1581 	nv_encoder->dcb = dcbe;
1582 	nv_encoder->or = ffs(dcbe->or) - 1;
1583 	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1584 
1585 	encoder = to_drm_encoder(nv_encoder);
1586 	encoder->possible_crtcs = dcbe->heads;
1587 	encoder->possible_clones = 0;
1588 	drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
1589 	drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
1590 
1591 	drm_mode_connector_attach_encoder(connector, encoder);
1592 	return 0;
1593 }
1594 
1595 /******************************************************************************
1596  * IRQ
1597  *****************************************************************************/
1598 static struct dcb_entry *
lookup_dcb(struct drm_device * dev,int id,u32 mc)1599 lookup_dcb(struct drm_device *dev, int id, u32 mc)
1600 {
1601 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1602 	int type, or, i, link = -1;
1603 
1604 	if (id < 4) {
1605 		type = OUTPUT_ANALOG;
1606 		or   = id;
1607 	} else {
1608 		switch (mc & 0x00000f00) {
1609 		case 0x00000000: link = 0; type = OUTPUT_LVDS; break;
1610 		case 0x00000100: link = 0; type = OUTPUT_TMDS; break;
1611 		case 0x00000200: link = 1; type = OUTPUT_TMDS; break;
1612 		case 0x00000500: link = 0; type = OUTPUT_TMDS; break;
1613 		case 0x00000800: link = 0; type = OUTPUT_DP; break;
1614 		case 0x00000900: link = 1; type = OUTPUT_DP; break;
1615 		default:
1616 			NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
1617 			return NULL;
1618 		}
1619 
1620 		or = id - 4;
1621 	}
1622 
1623 	for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
1624 		struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
1625 		if (dcb->type == type && (dcb->or & (1 << or)) &&
1626 		    (link < 0 || link == !(dcb->sorconf.link & 1)))
1627 			return dcb;
1628 	}
1629 
1630 	NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1631 	return NULL;
1632 }
1633 
1634 static void
nvd0_display_unk1_handler(struct drm_device * dev,u32 crtc,u32 mask)1635 nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1636 {
1637 	struct dcb_entry *dcb;
1638 	int i;
1639 
1640 	for (i = 0; mask && i < 8; i++) {
1641 		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1642 		if (!(mcc & (1 << crtc)))
1643 			continue;
1644 
1645 		dcb = lookup_dcb(dev, i, mcc);
1646 		if (!dcb)
1647 			continue;
1648 
1649 		nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1650 	}
1651 
1652 	nv_wr32(dev, 0x6101d4, 0x00000000);
1653 	nv_wr32(dev, 0x6109d4, 0x00000000);
1654 	nv_wr32(dev, 0x6101d0, 0x80000000);
1655 }
1656 
1657 static void
nvd0_display_unk2_handler(struct drm_device * dev,u32 crtc,u32 mask)1658 nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1659 {
1660 	struct dcb_entry *dcb;
1661 	u32 or, tmp, pclk;
1662 	int i;
1663 
1664 	for (i = 0; mask && i < 8; i++) {
1665 		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1666 		if (!(mcc & (1 << crtc)))
1667 			continue;
1668 
1669 		dcb = lookup_dcb(dev, i, mcc);
1670 		if (!dcb)
1671 			continue;
1672 
1673 		nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1674 	}
1675 
1676 	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1677 	NV_DEBUG_KMS(dev, "PDISP: crtc %d pclk %d mask 0x%08x\n",
1678 			  crtc, pclk, mask);
1679 	if (pclk && (mask & 0x00010000)) {
1680 		nv50_crtc_set_clock(dev, crtc, pclk);
1681 	}
1682 
1683 	for (i = 0; mask && i < 8; i++) {
1684 		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1685 		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1686 		if (!(mcp & (1 << crtc)))
1687 			continue;
1688 
1689 		dcb = lookup_dcb(dev, i, mcp);
1690 		if (!dcb)
1691 			continue;
1692 		or = ffs(dcb->or) - 1;
1693 
1694 		nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);
1695 
1696 		nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
1697 		switch (dcb->type) {
1698 		case OUTPUT_ANALOG:
1699 			nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
1700 			break;
1701 		case OUTPUT_TMDS:
1702 		case OUTPUT_LVDS:
1703 		case OUTPUT_DP:
1704 			if (cfg & 0x00000100)
1705 				tmp = 0x00000101;
1706 			else
1707 				tmp = 0x00000000;
1708 
1709 			nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
1710 			break;
1711 		default:
1712 			break;
1713 		}
1714 
1715 		break;
1716 	}
1717 
1718 	nv_wr32(dev, 0x6101d4, 0x00000000);
1719 	nv_wr32(dev, 0x6109d4, 0x00000000);
1720 	nv_wr32(dev, 0x6101d0, 0x80000000);
1721 }
1722 
1723 static void
nvd0_display_unk4_handler(struct drm_device * dev,u32 crtc,u32 mask)1724 nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1725 {
1726 	struct dcb_entry *dcb;
1727 	int pclk, i;
1728 
1729 	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1730 
1731 	for (i = 0; mask && i < 8; i++) {
1732 		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1733 		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1734 		if (!(mcp & (1 << crtc)))
1735 			continue;
1736 
1737 		dcb = lookup_dcb(dev, i, mcp);
1738 		if (!dcb)
1739 			continue;
1740 
1741 		nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
1742 	}
1743 
1744 	nv_wr32(dev, 0x6101d4, 0x00000000);
1745 	nv_wr32(dev, 0x6109d4, 0x00000000);
1746 	nv_wr32(dev, 0x6101d0, 0x80000000);
1747 }
1748 
1749 static void
nvd0_display_bh(unsigned long data)1750 nvd0_display_bh(unsigned long data)
1751 {
1752 	struct drm_device *dev = (struct drm_device *)data;
1753 	struct nvd0_display *disp = nvd0_display(dev);
1754 	u32 mask = 0, crtc = ~0;
1755 	int i;
1756 
1757 	if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
1758 		NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
1759 		NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
1760 			 nv_rd32(dev, 0x6101d0),
1761 			 nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
1762 		for (i = 0; i < 8; i++) {
1763 			NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
1764 				i < 4 ? "DAC" : "SOR", i,
1765 				nv_rd32(dev, 0x640180 + (i * 0x20)),
1766 				nv_rd32(dev, 0x660180 + (i * 0x20)));
1767 		}
1768 	}
1769 
1770 	while (!mask && ++crtc < dev->mode_config.num_crtc)
1771 		mask = nv_rd32(dev, 0x6101d4 + (crtc * 0x800));
1772 
1773 	if (disp->modeset & 0x00000001)
1774 		nvd0_display_unk1_handler(dev, crtc, mask);
1775 	if (disp->modeset & 0x00000002)
1776 		nvd0_display_unk2_handler(dev, crtc, mask);
1777 	if (disp->modeset & 0x00000004)
1778 		nvd0_display_unk4_handler(dev, crtc, mask);
1779 }
1780 
1781 static void
nvd0_display_intr(struct drm_device * dev)1782 nvd0_display_intr(struct drm_device *dev)
1783 {
1784 	struct nvd0_display *disp = nvd0_display(dev);
1785 	u32 intr = nv_rd32(dev, 0x610088);
1786 	int i;
1787 
1788 	if (intr & 0x00000001) {
1789 		u32 stat = nv_rd32(dev, 0x61008c);
1790 		nv_wr32(dev, 0x61008c, stat);
1791 		intr &= ~0x00000001;
1792 	}
1793 
1794 	if (intr & 0x00000002) {
1795 		u32 stat = nv_rd32(dev, 0x61009c);
1796 		int chid = ffs(stat) - 1;
1797 		if (chid >= 0) {
1798 			u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
1799 			u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
1800 			u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));
1801 
1802 			NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1803 				     "0x%08x 0x%08x\n",
1804 				chid, (mthd & 0x0000ffc), data, mthd, unkn);
1805 			nv_wr32(dev, 0x61009c, (1 << chid));
1806 			nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
1807 		}
1808 
1809 		intr &= ~0x00000002;
1810 	}
1811 
1812 	if (intr & 0x00100000) {
1813 		u32 stat = nv_rd32(dev, 0x6100ac);
1814 
1815 		if (stat & 0x00000007) {
1816 			disp->modeset = stat;
1817 			tasklet_schedule(&disp->tasklet);
1818 
1819 			nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1820 			stat &= ~0x00000007;
1821 		}
1822 
1823 		if (stat) {
1824 			NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
1825 			nv_wr32(dev, 0x6100ac, stat);
1826 		}
1827 
1828 		intr &= ~0x00100000;
1829 	}
1830 
1831 	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1832 		u32 mask = 0x01000000 << i;
1833 		if (intr & mask) {
1834 			u32 stat = nv_rd32(dev, 0x6100bc + (i * 0x800));
1835 			nv_wr32(dev, 0x6100bc + (i * 0x800), stat);
1836 			intr &= ~mask;
1837 		}
1838 	}
1839 
1840 	if (intr)
1841 		NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
1842 }
1843 
1844 /******************************************************************************
1845  * Init
1846  *****************************************************************************/
1847 void
nvd0_display_fini(struct drm_device * dev)1848 nvd0_display_fini(struct drm_device *dev)
1849 {
1850 	int i;
1851 
1852 	/* fini cursors + overlays + flips */
1853 	for (i = 1; i >= 0; i--) {
1854 		evo_fini_pio(dev, EVO_CURS(i));
1855 		evo_fini_pio(dev, EVO_OIMM(i));
1856 		evo_fini_dma(dev, EVO_OVLY(i));
1857 		evo_fini_dma(dev, EVO_FLIP(i));
1858 	}
1859 
1860 	/* fini master */
1861 	evo_fini_dma(dev, EVO_MASTER);
1862 }
1863 
1864 int
nvd0_display_init(struct drm_device * dev)1865 nvd0_display_init(struct drm_device *dev)
1866 {
1867 	struct nvd0_display *disp = nvd0_display(dev);
1868 	int ret, i;
1869 	u32 *push;
1870 
1871 	if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
1872 		nv_wr32(dev, 0x6100ac, 0x00000100);
1873 		nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
1874 		if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
1875 			NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
1876 				 nv_rd32(dev, 0x6194e8));
1877 			return -EBUSY;
1878 		}
1879 	}
1880 
1881 	/* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1882 	 * work at all unless you do the SOR part below.
1883 	 */
1884 	for (i = 0; i < 3; i++) {
1885 		u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
1886 		nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
1887 	}
1888 
1889 	for (i = 0; i < 4; i++) {
1890 		u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
1891 		nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
1892 	}
1893 
1894 	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1895 		u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
1896 		u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
1897 		u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
1898 		nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
1899 		nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
1900 		nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1901 	}
1902 
1903 	/* point at our hash table / objects, enable interrupts */
1904 	nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1905 	nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1906 
1907 	/* init master */
1908 	ret = evo_init_dma(dev, EVO_MASTER);
1909 	if (ret)
1910 		goto error;
1911 
1912 	/* init flips + overlays + cursors */
1913 	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1914 		if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
1915 		    (ret = evo_init_dma(dev, EVO_OVLY(i))) ||
1916 		    (ret = evo_init_pio(dev, EVO_OIMM(i))) ||
1917 		    (ret = evo_init_pio(dev, EVO_CURS(i))))
1918 			goto error;
1919 	}
1920 
1921 	push = evo_wait(dev, EVO_MASTER, 32);
1922 	if (!push) {
1923 		ret = -EBUSY;
1924 		goto error;
1925 	}
1926 	evo_mthd(push, 0x0088, 1);
1927 	evo_data(push, NvEvoSync);
1928 	evo_mthd(push, 0x0084, 1);
1929 	evo_data(push, 0x00000000);
1930 	evo_mthd(push, 0x0084, 1);
1931 	evo_data(push, 0x80000000);
1932 	evo_mthd(push, 0x008c, 1);
1933 	evo_data(push, 0x00000000);
1934 	evo_kick(push, dev, EVO_MASTER);
1935 
1936 error:
1937 	if (ret)
1938 		nvd0_display_fini(dev);
1939 	return ret;
1940 }
1941 
1942 void
nvd0_display_destroy(struct drm_device * dev)1943 nvd0_display_destroy(struct drm_device *dev)
1944 {
1945 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1946 	struct nvd0_display *disp = nvd0_display(dev);
1947 	struct pci_dev *pdev = dev->pdev;
1948 	int i;
1949 
1950 	for (i = 0; i < EVO_DMA_NR; i++) {
1951 		struct evo *evo = &disp->evo[i];
1952 		pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
1953 	}
1954 
1955 	nouveau_gpuobj_ref(NULL, &disp->mem);
1956 	nouveau_bo_unmap(disp->sync);
1957 	nouveau_bo_ref(NULL, &disp->sync);
1958 	nouveau_irq_unregister(dev, 26);
1959 
1960 	dev_priv->engine.display.priv = NULL;
1961 	kfree(disp);
1962 }
1963 
1964 int
nvd0_display_create(struct drm_device * dev)1965 nvd0_display_create(struct drm_device *dev)
1966 {
1967 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1968 	struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1969 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
1970 	struct drm_connector *connector, *tmp;
1971 	struct pci_dev *pdev = dev->pdev;
1972 	struct nvd0_display *disp;
1973 	struct dcb_entry *dcbe;
1974 	int crtcs, ret, i;
1975 
1976 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
1977 	if (!disp)
1978 		return -ENOMEM;
1979 	dev_priv->engine.display.priv = disp;
1980 
1981 	/* create crtc objects to represent the hw heads */
1982 	crtcs = nv_rd32(dev, 0x022448);
1983 	for (i = 0; i < crtcs; i++) {
1984 		ret = nvd0_crtc_create(dev, i);
1985 		if (ret)
1986 			goto out;
1987 	}
1988 
1989 	/* create encoder/connector objects based on VBIOS DCB table */
1990 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
1991 		connector = nouveau_connector_create(dev, dcbe->connector);
1992 		if (IS_ERR(connector))
1993 			continue;
1994 
1995 		if (dcbe->location != DCB_LOC_ON_CHIP) {
1996 			NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
1997 				dcbe->type, ffs(dcbe->or) - 1);
1998 			continue;
1999 		}
2000 
2001 		switch (dcbe->type) {
2002 		case OUTPUT_TMDS:
2003 		case OUTPUT_LVDS:
2004 		case OUTPUT_DP:
2005 			nvd0_sor_create(connector, dcbe);
2006 			break;
2007 		case OUTPUT_ANALOG:
2008 			nvd0_dac_create(connector, dcbe);
2009 			break;
2010 		default:
2011 			NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
2012 				dcbe->type, ffs(dcbe->or) - 1);
2013 			continue;
2014 		}
2015 	}
2016 
2017 	/* cull any connectors we created that don't have an encoder */
2018 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2019 		if (connector->encoder_ids[0])
2020 			continue;
2021 
2022 		NV_WARN(dev, "%s has no encoders, removing\n",
2023 			drm_get_connector_name(connector));
2024 		connector->funcs->destroy(connector);
2025 	}
2026 
2027 	/* setup interrupt handling */
2028 	tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
2029 	nouveau_irq_register(dev, 26, nvd0_display_intr);
2030 
2031 	/* small shared memory area we use for notifiers and semaphores */
2032 	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2033 			     0, 0x0000, &disp->sync);
2034 	if (!ret) {
2035 		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2036 		if (!ret)
2037 			ret = nouveau_bo_map(disp->sync);
2038 		if (ret)
2039 			nouveau_bo_ref(NULL, &disp->sync);
2040 	}
2041 
2042 	if (ret)
2043 		goto out;
2044 
2045 	/* hash table and dma objects for the memory areas we care about */
2046 	ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
2047 				 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
2048 	if (ret)
2049 		goto out;
2050 
2051 	/* create evo dma channels */
2052 	for (i = 0; i < EVO_DMA_NR; i++) {
2053 		struct evo *evo = &disp->evo[i];
2054 		u64 offset = disp->sync->bo.offset;
2055 		u32 dmao = 0x1000 + (i * 0x100);
2056 		u32 hash = 0x0000 + (i * 0x040);
2057 
2058 		evo->idx = i;
2059 		evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
2060 		evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
2061 		if (!evo->ptr) {
2062 			ret = -ENOMEM;
2063 			goto out;
2064 		}
2065 
2066 		nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
2067 		nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
2068 		nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
2069 		nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
2070 		nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
2071 		nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
2072 		nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
2073 		nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
2074 						((dmao + 0x00) << 9));
2075 
2076 		nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
2077 		nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
2078 		nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
2079 		nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
2080 		nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
2081 		nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
2082 		nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
2083 		nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
2084 						((dmao + 0x20) << 9));
2085 
2086 		nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
2087 		nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
2088 		nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
2089 		nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
2090 		nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
2091 		nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
2092 		nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
2093 		nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
2094 						((dmao + 0x40) << 9));
2095 
2096 		nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
2097 		nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
2098 		nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
2099 		nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
2100 		nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
2101 		nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
2102 		nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
2103 		nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
2104 						((dmao + 0x60) << 9));
2105 	}
2106 
2107 	pinstmem->flush(dev);
2108 
2109 out:
2110 	if (ret)
2111 		nvd0_display_destroy(dev);
2112 	return ret;
2113 }
2114