1 /*
2  * Copyright 2010 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include "drmP.h"
26 #include "nouveau_drv.h"
27 #include "nouveau_bios.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_pm.h"
30 #include "nouveau_hwsq.h"
31 #include "nv50_display.h"
32 
33 enum clk_src {
34 	clk_src_crystal,
35 	clk_src_href,
36 	clk_src_hclk,
37 	clk_src_hclkm3,
38 	clk_src_hclkm3d2,
39 	clk_src_host,
40 	clk_src_nvclk,
41 	clk_src_sclk,
42 	clk_src_mclk,
43 	clk_src_vdec,
44 	clk_src_dom6
45 };
46 
47 static u32 read_clk(struct drm_device *, enum clk_src);
48 
49 static u32
read_div(struct drm_device * dev)50 read_div(struct drm_device *dev)
51 {
52 	struct drm_nouveau_private *dev_priv = dev->dev_private;
53 
54 	switch (dev_priv->chipset) {
55 	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
56 	case 0x84:
57 	case 0x86:
58 	case 0x98:
59 	case 0xa0:
60 		return nv_rd32(dev, 0x004700);
61 	case 0x92:
62 	case 0x94:
63 	case 0x96:
64 		return nv_rd32(dev, 0x004800);
65 	default:
66 		return 0x00000000;
67 	}
68 }
69 
70 static u32
read_pll_src(struct drm_device * dev,u32 base)71 read_pll_src(struct drm_device *dev, u32 base)
72 {
73 	struct drm_nouveau_private *dev_priv = dev->dev_private;
74 	u32 coef, ref = read_clk(dev, clk_src_crystal);
75 	u32 rsel = nv_rd32(dev, 0x00e18c);
76 	int P, N, M, id;
77 
78 	switch (dev_priv->chipset) {
79 	case 0x50:
80 	case 0xa0:
81 		switch (base) {
82 		case 0x4020:
83 		case 0x4028: id = !!(rsel & 0x00000004); break;
84 		case 0x4008: id = !!(rsel & 0x00000008); break;
85 		case 0x4030: id = 0; break;
86 		default:
87 			NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
88 			return 0;
89 		}
90 
91 		coef = nv_rd32(dev, 0x00e81c + (id * 0x0c));
92 		ref *=  (coef & 0x01000000) ? 2 : 4;
93 		P    =  (coef & 0x00070000) >> 16;
94 		N    = ((coef & 0x0000ff00) >> 8) + 1;
95 		M    = ((coef & 0x000000ff) >> 0) + 1;
96 		break;
97 	case 0x84:
98 	case 0x86:
99 	case 0x92:
100 		coef = nv_rd32(dev, 0x00e81c);
101 		P    = (coef & 0x00070000) >> 16;
102 		N    = (coef & 0x0000ff00) >> 8;
103 		M    = (coef & 0x000000ff) >> 0;
104 		break;
105 	case 0x94:
106 	case 0x96:
107 	case 0x98:
108 		rsel = nv_rd32(dev, 0x00c050);
109 		switch (base) {
110 		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
111 		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
112 		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
113 		case 0x4030: rsel = 3; break;
114 		default:
115 			NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
116 			return 0;
117 		}
118 
119 		switch (rsel) {
120 		case 0: id = 1; break;
121 		case 1: return read_clk(dev, clk_src_crystal);
122 		case 2: return read_clk(dev, clk_src_href);
123 		case 3: id = 0; break;
124 		}
125 
126 		coef =  nv_rd32(dev, 0x00e81c + (id * 0x28));
127 		P    = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7;
128 		P   += (coef & 0x00070000) >> 16;
129 		N    = (coef & 0x0000ff00) >> 8;
130 		M    = (coef & 0x000000ff) >> 0;
131 		break;
132 	default:
133 		BUG_ON(1);
134 	}
135 
136 	if (M)
137 		return (ref * N / M) >> P;
138 	return 0;
139 }
140 
141 static u32
read_pll_ref(struct drm_device * dev,u32 base)142 read_pll_ref(struct drm_device *dev, u32 base)
143 {
144 	u32 src, mast = nv_rd32(dev, 0x00c040);
145 
146 	switch (base) {
147 	case 0x004028:
148 		src = !!(mast & 0x00200000);
149 		break;
150 	case 0x004020:
151 		src = !!(mast & 0x00400000);
152 		break;
153 	case 0x004008:
154 		src = !!(mast & 0x00010000);
155 		break;
156 	case 0x004030:
157 		src = !!(mast & 0x02000000);
158 		break;
159 	case 0x00e810:
160 		return read_clk(dev, clk_src_crystal);
161 	default:
162 		NV_ERROR(dev, "bad pll 0x%06x\n", base);
163 		return 0;
164 	}
165 
166 	if (src)
167 		return read_clk(dev, clk_src_href);
168 	return read_pll_src(dev, base);
169 }
170 
171 static u32
read_pll(struct drm_device * dev,u32 base)172 read_pll(struct drm_device *dev, u32 base)
173 {
174 	struct drm_nouveau_private *dev_priv = dev->dev_private;
175 	u32 mast = nv_rd32(dev, 0x00c040);
176 	u32 ctrl = nv_rd32(dev, base + 0);
177 	u32 coef = nv_rd32(dev, base + 4);
178 	u32 ref = read_pll_ref(dev, base);
179 	u32 clk = 0;
180 	int N1, N2, M1, M2;
181 
182 	if (base == 0x004028 && (mast & 0x00100000)) {
183 		/* wtf, appears to only disable post-divider on nva0 */
184 		if (dev_priv->chipset != 0xa0)
185 			return read_clk(dev, clk_src_dom6);
186 	}
187 
188 	N2 = (coef & 0xff000000) >> 24;
189 	M2 = (coef & 0x00ff0000) >> 16;
190 	N1 = (coef & 0x0000ff00) >> 8;
191 	M1 = (coef & 0x000000ff);
192 	if ((ctrl & 0x80000000) && M1) {
193 		clk = ref * N1 / M1;
194 		if ((ctrl & 0x40000100) == 0x40000000) {
195 			if (M2)
196 				clk = clk * N2 / M2;
197 			else
198 				clk = 0;
199 		}
200 	}
201 
202 	return clk;
203 }
204 
205 static u32
read_clk(struct drm_device * dev,enum clk_src src)206 read_clk(struct drm_device *dev, enum clk_src src)
207 {
208 	struct drm_nouveau_private *dev_priv = dev->dev_private;
209 	u32 mast = nv_rd32(dev, 0x00c040);
210 	u32 P = 0;
211 
212 	switch (src) {
213 	case clk_src_crystal:
214 		return dev_priv->crystal;
215 	case clk_src_href:
216 		return 100000; /* PCIE reference clock */
217 	case clk_src_hclk:
218 		return read_clk(dev, clk_src_href) * 27778 / 10000;
219 	case clk_src_hclkm3:
220 		return read_clk(dev, clk_src_hclk) * 3;
221 	case clk_src_hclkm3d2:
222 		return read_clk(dev, clk_src_hclk) * 3 / 2;
223 	case clk_src_host:
224 		switch (mast & 0x30000000) {
225 		case 0x00000000: return read_clk(dev, clk_src_href);
226 		case 0x10000000: break;
227 		case 0x20000000: /* !0x50 */
228 		case 0x30000000: return read_clk(dev, clk_src_hclk);
229 		}
230 		break;
231 	case clk_src_nvclk:
232 		if (!(mast & 0x00100000))
233 			P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16;
234 		switch (mast & 0x00000003) {
235 		case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
236 		case 0x00000001: return read_clk(dev, clk_src_dom6);
237 		case 0x00000002: return read_pll(dev, 0x004020) >> P;
238 		case 0x00000003: return read_pll(dev, 0x004028) >> P;
239 		}
240 		break;
241 	case clk_src_sclk:
242 		P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16;
243 		switch (mast & 0x00000030) {
244 		case 0x00000000:
245 			if (mast & 0x00000080)
246 				return read_clk(dev, clk_src_host) >> P;
247 			return read_clk(dev, clk_src_crystal) >> P;
248 		case 0x00000010: break;
249 		case 0x00000020: return read_pll(dev, 0x004028) >> P;
250 		case 0x00000030: return read_pll(dev, 0x004020) >> P;
251 		}
252 		break;
253 	case clk_src_mclk:
254 		P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16;
255 		if (nv_rd32(dev, 0x004008) & 0x00000200) {
256 			switch (mast & 0x0000c000) {
257 			case 0x00000000:
258 				return read_clk(dev, clk_src_crystal) >> P;
259 			case 0x00008000:
260 			case 0x0000c000:
261 				return read_clk(dev, clk_src_href) >> P;
262 			}
263 		} else {
264 			return read_pll(dev, 0x004008) >> P;
265 		}
266 		break;
267 	case clk_src_vdec:
268 		P = (read_div(dev) & 0x00000700) >> 8;
269 		switch (dev_priv->chipset) {
270 		case 0x84:
271 		case 0x86:
272 		case 0x92:
273 		case 0x94:
274 		case 0x96:
275 		case 0xa0:
276 			switch (mast & 0x00000c00) {
277 			case 0x00000000:
278 				if (dev_priv->chipset == 0xa0) /* wtf?? */
279 					return read_clk(dev, clk_src_nvclk) >> P;
280 				return read_clk(dev, clk_src_crystal) >> P;
281 			case 0x00000400:
282 				return 0;
283 			case 0x00000800:
284 				if (mast & 0x01000000)
285 					return read_pll(dev, 0x004028) >> P;
286 				return read_pll(dev, 0x004030) >> P;
287 			case 0x00000c00:
288 				return read_clk(dev, clk_src_nvclk) >> P;
289 			}
290 			break;
291 		case 0x98:
292 			switch (mast & 0x00000c00) {
293 			case 0x00000000:
294 				return read_clk(dev, clk_src_nvclk) >> P;
295 			case 0x00000400:
296 				return 0;
297 			case 0x00000800:
298 				return read_clk(dev, clk_src_hclkm3d2) >> P;
299 			case 0x00000c00:
300 				return read_clk(dev, clk_src_mclk) >> P;
301 			}
302 			break;
303 		}
304 		break;
305 	case clk_src_dom6:
306 		switch (dev_priv->chipset) {
307 		case 0x50:
308 		case 0xa0:
309 			return read_pll(dev, 0x00e810) >> 2;
310 		case 0x84:
311 		case 0x86:
312 		case 0x92:
313 		case 0x94:
314 		case 0x96:
315 		case 0x98:
316 			P = (read_div(dev) & 0x00000007) >> 0;
317 			switch (mast & 0x0c000000) {
318 			case 0x00000000: return read_clk(dev, clk_src_href);
319 			case 0x04000000: break;
320 			case 0x08000000: return read_clk(dev, clk_src_hclk);
321 			case 0x0c000000:
322 				return read_clk(dev, clk_src_hclkm3) >> P;
323 			}
324 			break;
325 		default:
326 			break;
327 		}
328 	default:
329 		break;
330 	}
331 
332 	NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast);
333 	return 0;
334 }
335 
336 int
nv50_pm_clocks_get(struct drm_device * dev,struct nouveau_pm_level * perflvl)337 nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
338 {
339 	struct drm_nouveau_private *dev_priv = dev->dev_private;
340 	if (dev_priv->chipset == 0xaa ||
341 	    dev_priv->chipset == 0xac)
342 		return 0;
343 
344 	perflvl->core   = read_clk(dev, clk_src_nvclk);
345 	perflvl->shader = read_clk(dev, clk_src_sclk);
346 	perflvl->memory = read_clk(dev, clk_src_mclk);
347 	if (dev_priv->chipset != 0x50) {
348 		perflvl->vdec = read_clk(dev, clk_src_vdec);
349 		perflvl->dom6 = read_clk(dev, clk_src_dom6);
350 	}
351 
352 	return 0;
353 }
354 
355 struct nv50_pm_state {
356 	struct nouveau_pm_level *perflvl;
357 	struct hwsq_ucode eclk_hwsq;
358 	struct hwsq_ucode mclk_hwsq;
359 	u32 mscript;
360 	u32 mmast;
361 	u32 mctrl;
362 	u32 mcoef;
363 };
364 
365 static u32
calc_pll(struct drm_device * dev,u32 reg,struct pll_lims * pll,u32 clk,int * N1,int * M1,int * log2P)366 calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
367 	 u32 clk, int *N1, int *M1, int *log2P)
368 {
369 	struct nouveau_pll_vals coef;
370 	int ret;
371 
372 	ret = get_pll_limits(dev, reg, pll);
373 	if (ret)
374 		return 0;
375 
376 	pll->vco2.maxfreq = 0;
377 	pll->refclk = read_pll_ref(dev, reg);
378 	if (!pll->refclk)
379 		return 0;
380 
381 	ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
382 	if (ret == 0)
383 		return 0;
384 
385 	*N1 = coef.N1;
386 	*M1 = coef.M1;
387 	*log2P = coef.log2P;
388 	return ret;
389 }
390 
391 static inline u32
calc_div(u32 src,u32 target,int * div)392 calc_div(u32 src, u32 target, int *div)
393 {
394 	u32 clk0 = src, clk1 = src;
395 	for (*div = 0; *div <= 7; (*div)++) {
396 		if (clk0 <= target) {
397 			clk1 = clk0 << (*div ? 1 : 0);
398 			break;
399 		}
400 		clk0 >>= 1;
401 	}
402 
403 	if (target - clk0 <= clk1 - target)
404 		return clk0;
405 	(*div)--;
406 	return clk1;
407 }
408 
409 static inline u32
clk_same(u32 a,u32 b)410 clk_same(u32 a, u32 b)
411 {
412 	return ((a / 1000) == (b / 1000));
413 }
414 
415 static void
mclk_precharge(struct nouveau_mem_exec_func * exec)416 mclk_precharge(struct nouveau_mem_exec_func *exec)
417 {
418 	struct nv50_pm_state *info = exec->priv;
419 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
420 
421 	hwsq_wr32(hwsq, 0x1002d4, 0x00000001);
422 }
423 
424 static void
mclk_refresh(struct nouveau_mem_exec_func * exec)425 mclk_refresh(struct nouveau_mem_exec_func *exec)
426 {
427 	struct nv50_pm_state *info = exec->priv;
428 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
429 
430 	hwsq_wr32(hwsq, 0x1002d0, 0x00000001);
431 }
432 
433 static void
mclk_refresh_auto(struct nouveau_mem_exec_func * exec,bool enable)434 mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
435 {
436 	struct nv50_pm_state *info = exec->priv;
437 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
438 
439 	hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000);
440 }
441 
442 static void
mclk_refresh_self(struct nouveau_mem_exec_func * exec,bool enable)443 mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
444 {
445 	struct nv50_pm_state *info = exec->priv;
446 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
447 
448 	hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000);
449 }
450 
451 static void
mclk_wait(struct nouveau_mem_exec_func * exec,u32 nsec)452 mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
453 {
454 	struct nv50_pm_state *info = exec->priv;
455 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
456 
457 	if (nsec > 1000)
458 		hwsq_usec(hwsq, (nsec + 500) / 1000);
459 }
460 
461 static u32
mclk_mrg(struct nouveau_mem_exec_func * exec,int mr)462 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
463 {
464 	if (mr <= 1)
465 		return nv_rd32(exec->dev, 0x1002c0 + ((mr - 0) * 4));
466 	if (mr <= 3)
467 		return nv_rd32(exec->dev, 0x1002e0 + ((mr - 2) * 4));
468 	return 0;
469 }
470 
471 static void
mclk_mrs(struct nouveau_mem_exec_func * exec,int mr,u32 data)472 mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
473 {
474 	struct drm_nouveau_private *dev_priv = exec->dev->dev_private;
475 	struct nv50_pm_state *info = exec->priv;
476 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
477 
478 	if (mr <= 1) {
479 		if (dev_priv->vram_rank_B)
480 			hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data);
481 		hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data);
482 	} else
483 	if (mr <= 3) {
484 		if (dev_priv->vram_rank_B)
485 			hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data);
486 		hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data);
487 	}
488 }
489 
490 static void
mclk_clock_set(struct nouveau_mem_exec_func * exec)491 mclk_clock_set(struct nouveau_mem_exec_func *exec)
492 {
493 	struct nv50_pm_state *info = exec->priv;
494 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
495 	u32 ctrl = nv_rd32(exec->dev, 0x004008);
496 
497 	info->mmast = nv_rd32(exec->dev, 0x00c040);
498 	info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */
499 	info->mmast |=  0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
500 
501 	hwsq_wr32(hwsq, 0xc040, info->mmast);
502 	hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */
503 	if (info->mctrl & 0x80000000)
504 		hwsq_wr32(hwsq, 0x400c, info->mcoef);
505 	hwsq_wr32(hwsq, 0x4008, info->mctrl);
506 }
507 
508 static void
mclk_timing_set(struct nouveau_mem_exec_func * exec)509 mclk_timing_set(struct nouveau_mem_exec_func *exec)
510 {
511 	struct drm_device *dev = exec->dev;
512 	struct nv50_pm_state *info = exec->priv;
513 	struct nouveau_pm_level *perflvl = info->perflvl;
514 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
515 	int i;
516 
517 	for (i = 0; i < 9; i++) {
518 		u32 reg = 0x100220 + (i * 4);
519 		u32 val = nv_rd32(dev, reg);
520 		if (val != perflvl->timing.reg[i])
521 			hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]);
522 	}
523 }
524 
525 static int
calc_mclk(struct drm_device * dev,struct nouveau_pm_level * perflvl,struct nv50_pm_state * info)526 calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl,
527 	  struct nv50_pm_state *info)
528 {
529 	struct drm_nouveau_private *dev_priv = dev->dev_private;
530 	u32 crtc_mask = nv50_display_active_crtcs(dev);
531 	struct nouveau_mem_exec_func exec = {
532 		.dev = dev,
533 		.precharge = mclk_precharge,
534 		.refresh = mclk_refresh,
535 		.refresh_auto = mclk_refresh_auto,
536 		.refresh_self = mclk_refresh_self,
537 		.wait = mclk_wait,
538 		.mrg = mclk_mrg,
539 		.mrs = mclk_mrs,
540 		.clock_set = mclk_clock_set,
541 		.timing_set = mclk_timing_set,
542 		.priv = info
543 	};
544 	struct hwsq_ucode *hwsq = &info->mclk_hwsq;
545 	struct pll_lims pll;
546 	int N, M, P;
547 	int ret;
548 
549 	/* use pcie refclock if possible, otherwise use mpll */
550 	info->mctrl  = nv_rd32(dev, 0x004008);
551 	info->mctrl &= ~0x81ff0200;
552 	if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
553 		info->mctrl |= 0x00000200 | (pll.log2p_bias << 19);
554 	} else {
555 		ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P);
556 		if (ret == 0)
557 			return -EINVAL;
558 
559 		info->mctrl |= 0x80000000 | (P << 22) | (P << 16);
560 		info->mctrl |= pll.log2p_bias << 19;
561 		info->mcoef  = (N << 8) | M;
562 	}
563 
564 	/* build the ucode which will reclock the memory for us */
565 	hwsq_init(hwsq);
566 	if (crtc_mask) {
567 		hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
568 		hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
569 	}
570 	if (dev_priv->chipset >= 0x92)
571 		hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
572 	hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
573 	hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
574 
575 	ret = nouveau_mem_exec(&exec, perflvl);
576 	if (ret)
577 		return ret;
578 
579 	hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
580 	hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
581 	if (dev_priv->chipset >= 0x92)
582 		hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
583 	hwsq_fini(hwsq);
584 	return 0;
585 }
586 
587 void *
nv50_pm_clocks_pre(struct drm_device * dev,struct nouveau_pm_level * perflvl)588 nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
589 {
590 	struct drm_nouveau_private *dev_priv = dev->dev_private;
591 	struct nv50_pm_state *info;
592 	struct hwsq_ucode *hwsq;
593 	struct pll_lims pll;
594 	u32 out, mast, divs, ctrl;
595 	int clk, ret = -EINVAL;
596 	int N, M, P1, P2;
597 
598 	if (dev_priv->chipset == 0xaa ||
599 	    dev_priv->chipset == 0xac)
600 		return ERR_PTR(-ENODEV);
601 
602 	info = kmalloc(sizeof(*info), GFP_KERNEL);
603 	if (!info)
604 		return ERR_PTR(-ENOMEM);
605 	info->perflvl = perflvl;
606 
607 	/* memory: build hwsq ucode which we'll use to reclock memory.
608 	 *         use pcie refclock if possible, otherwise use mpll */
609 	info->mclk_hwsq.len = 0;
610 	if (perflvl->memory) {
611 		ret = calc_mclk(dev, perflvl, info);
612 		if (ret)
613 			goto error;
614 		info->mscript = perflvl->memscript;
615 	}
616 
617 	divs = read_div(dev);
618 	mast = info->mmast;
619 
620 	/* start building HWSQ script for engine reclocking */
621 	hwsq = &info->eclk_hwsq;
622 	hwsq_init(hwsq);
623 	hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
624 	hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */
625 
626 	/* vdec/dom6: switch to "safe" clocks temporarily */
627 	if (perflvl->vdec) {
628 		mast &= ~0x00000c00;
629 		divs &= ~0x00000700;
630 	}
631 
632 	if (perflvl->dom6) {
633 		mast &= ~0x0c000000;
634 		divs &= ~0x00000007;
635 	}
636 
637 	hwsq_wr32(hwsq, 0x00c040, mast);
638 
639 	/* vdec: avoid modifying xpll until we know exactly how the other
640 	 * clock domains work, i suspect at least some of them can also be
641 	 * tied to xpll...
642 	 */
643 	if (perflvl->vdec) {
644 		/* see how close we can get using nvclk as a source */
645 		clk = calc_div(perflvl->core, perflvl->vdec, &P1);
646 
647 		/* see how close we can get using xpll/hclk as a source */
648 		if (dev_priv->chipset != 0x98)
649 			out = read_pll(dev, 0x004030);
650 		else
651 			out = read_clk(dev, clk_src_hclkm3d2);
652 		out = calc_div(out, perflvl->vdec, &P2);
653 
654 		/* select whichever gets us closest */
655 		if (abs((int)perflvl->vdec - clk) <=
656 		    abs((int)perflvl->vdec - out)) {
657 			if (dev_priv->chipset != 0x98)
658 				mast |= 0x00000c00;
659 			divs |= P1 << 8;
660 		} else {
661 			mast |= 0x00000800;
662 			divs |= P2 << 8;
663 		}
664 	}
665 
666 	/* dom6: nfi what this is, but we're limited to various combinations
667 	 * of the host clock frequency
668 	 */
669 	if (perflvl->dom6) {
670 		if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
671 			mast |= 0x00000000;
672 		} else
673 		if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
674 			mast |= 0x08000000;
675 		} else {
676 			clk = read_clk(dev, clk_src_hclk) * 3;
677 			clk = calc_div(clk, perflvl->dom6, &P1);
678 
679 			mast |= 0x0c000000;
680 			divs |= P1;
681 		}
682 	}
683 
684 	/* vdec/dom6: complete switch to new clocks */
685 	switch (dev_priv->chipset) {
686 	case 0x92:
687 	case 0x94:
688 	case 0x96:
689 		hwsq_wr32(hwsq, 0x004800, divs);
690 		break;
691 	default:
692 		hwsq_wr32(hwsq, 0x004700, divs);
693 		break;
694 	}
695 
696 	hwsq_wr32(hwsq, 0x00c040, mast);
697 
698 	/* core/shader: make sure sclk/nvclk are disconnected from their
699 	 * PLLs (nvclk to dom6, sclk to hclk)
700 	 */
701 	if (dev_priv->chipset < 0x92)
702 		mast = (mast & ~0x001000b0) | 0x00100080;
703 	else
704 		mast = (mast & ~0x000000b3) | 0x00000081;
705 
706 	hwsq_wr32(hwsq, 0x00c040, mast);
707 
708 	/* core: for the moment at least, always use nvpll */
709 	clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
710 	if (clk == 0)
711 		goto error;
712 
713 	ctrl  = nv_rd32(dev, 0x004028) & ~0xc03f0100;
714 	mast &= ~0x00100000;
715 	mast |= 3;
716 
717 	hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl);
718 	hwsq_wr32(hwsq, 0x00402c, (N << 8) | M);
719 
720 	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
721 	 * very careful that the shader clock is at least twice the core, or
722 	 * some chipsets will be very unhappy.  i expect most or all of these
723 	 * cases will be handled by tying to nvclk, but it's possible there's
724 	 * corners
725 	 */
726 	ctrl = nv_rd32(dev, 0x004020) & ~0xc03f0100;
727 
728 	if (P1-- && perflvl->shader == (perflvl->core << 1)) {
729 		hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
730 		hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast);
731 	} else {
732 		clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
733 		if (clk == 0)
734 			goto error;
735 		ctrl |= 0x80000000;
736 
737 		hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
738 		hwsq_wr32(hwsq, 0x004024, (N << 8) | M);
739 		hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast);
740 	}
741 
742 	hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
743 	hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */
744 	hwsq_fini(hwsq);
745 
746 	return info;
747 error:
748 	kfree(info);
749 	return ERR_PTR(ret);
750 }
751 
752 static int
prog_hwsq(struct drm_device * dev,struct hwsq_ucode * hwsq)753 prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq)
754 {
755 	struct drm_nouveau_private *dev_priv = dev->dev_private;
756 	u32 hwsq_data, hwsq_kick;
757 	int i;
758 
759 	if (dev_priv->chipset < 0x94) {
760 		hwsq_data = 0x001400;
761 		hwsq_kick = 0x00000003;
762 	} else {
763 		hwsq_data = 0x080000;
764 		hwsq_kick = 0x00000001;
765 	}
766 	/* upload hwsq ucode */
767 	nv_mask(dev, 0x001098, 0x00000008, 0x00000000);
768 	nv_wr32(dev, 0x001304, 0x00000000);
769 	if (dev_priv->chipset >= 0x92)
770 		nv_wr32(dev, 0x001318, 0x00000000);
771 	for (i = 0; i < hwsq->len / 4; i++)
772 		nv_wr32(dev, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
773 	nv_mask(dev, 0x001098, 0x00000018, 0x00000018);
774 
775 	/* launch, and wait for completion */
776 	nv_wr32(dev, 0x00130c, hwsq_kick);
777 	if (!nv_wait(dev, 0x001308, 0x00000100, 0x00000000)) {
778 		NV_ERROR(dev, "hwsq ucode exec timed out\n");
779 		NV_ERROR(dev, "0x001308: 0x%08x\n", nv_rd32(dev, 0x001308));
780 		for (i = 0; i < hwsq->len / 4; i++) {
781 			NV_ERROR(dev, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
782 				 nv_rd32(dev, 0x001400 + (i * 4)));
783 		}
784 
785 		return -EIO;
786 	}
787 
788 	return 0;
789 }
790 
791 int
nv50_pm_clocks_set(struct drm_device * dev,void * data)792 nv50_pm_clocks_set(struct drm_device *dev, void *data)
793 {
794 	struct nv50_pm_state *info = data;
795 	struct bit_entry M;
796 	int ret = -EBUSY;
797 
798 	/* halt and idle execution engines */
799 	nv_mask(dev, 0x002504, 0x00000001, 0x00000001);
800 	if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010))
801 		goto resume;
802 	if (!nv_wait(dev, 0x00251c, 0x0000003f, 0x0000003f))
803 		goto resume;
804 
805 	/* program memory clock, if necessary - must come before engine clock
806 	 * reprogramming due to how we construct the hwsq scripts in pre()
807 	 */
808 	if (info->mclk_hwsq.len) {
809 		/* execute some scripts that do ??? from the vbios.. */
810 		if (!bit_table(dev, 'M', &M) && M.version == 1) {
811 			if (M.length >= 6)
812 				nouveau_bios_init_exec(dev, ROM16(M.data[5]));
813 			if (M.length >= 8)
814 				nouveau_bios_init_exec(dev, ROM16(M.data[7]));
815 			if (M.length >= 10)
816 				nouveau_bios_init_exec(dev, ROM16(M.data[9]));
817 			nouveau_bios_init_exec(dev, info->mscript);
818 		}
819 
820 		ret = prog_hwsq(dev, &info->mclk_hwsq);
821 		if (ret)
822 			goto resume;
823 	}
824 
825 	/* program engine clocks */
826 	ret = prog_hwsq(dev, &info->eclk_hwsq);
827 
828 resume:
829 	nv_mask(dev, 0x002504, 0x00000001, 0x00000000);
830 	kfree(info);
831 	return ret;
832 }
833 
834 static int
pwm_info(struct drm_device * dev,int * line,int * ctrl,int * indx)835 pwm_info(struct drm_device *dev, int *line, int *ctrl, int *indx)
836 {
837 	if (*line == 0x04) {
838 		*ctrl = 0x00e100;
839 		*line = 4;
840 		*indx = 0;
841 	} else
842 	if (*line == 0x09) {
843 		*ctrl = 0x00e100;
844 		*line = 9;
845 		*indx = 1;
846 	} else
847 	if (*line == 0x10) {
848 		*ctrl = 0x00e28c;
849 		*line = 0;
850 		*indx = 0;
851 	} else {
852 		NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", *line);
853 		return -ENODEV;
854 	}
855 
856 	return 0;
857 }
858 
859 int
nv50_pm_pwm_get(struct drm_device * dev,int line,u32 * divs,u32 * duty)860 nv50_pm_pwm_get(struct drm_device *dev, int line, u32 *divs, u32 *duty)
861 {
862 	int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
863 	if (ret)
864 		return ret;
865 
866 	if (nv_rd32(dev, ctrl) & (1 << line)) {
867 		*divs = nv_rd32(dev, 0x00e114 + (id * 8));
868 		*duty = nv_rd32(dev, 0x00e118 + (id * 8));
869 		return 0;
870 	}
871 
872 	return -EINVAL;
873 }
874 
875 int
nv50_pm_pwm_set(struct drm_device * dev,int line,u32 divs,u32 duty)876 nv50_pm_pwm_set(struct drm_device *dev, int line, u32 divs, u32 duty)
877 {
878 	int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
879 	if (ret)
880 		return ret;
881 
882 	nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line);
883 	nv_wr32(dev, 0x00e114 + (id * 8), divs);
884 	nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000);
885 	return 0;
886 }
887