1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_vblank.h>
45
46 #include <nvif/push507c.h>
47
48 #include <nvif/class.h>
49 #include <nvif/cl0002.h>
50 #include <nvif/cl5070.h>
51 #include <nvif/cl507d.h>
52 #include <nvif/event.h>
53 #include <nvif/timer.h>
54
55 #include <nvhw/class/cl507c.h>
56 #include <nvhw/class/cl507d.h>
57 #include <nvhw/class/cl837d.h>
58 #include <nvhw/class/cl887d.h>
59 #include <nvhw/class/cl907d.h>
60 #include <nvhw/class/cl917d.h>
61
62 #include "nouveau_drv.h"
63 #include "nouveau_dma.h"
64 #include "nouveau_gem.h"
65 #include "nouveau_connector.h"
66 #include "nouveau_encoder.h"
67 #include "nouveau_fence.h"
68 #include "nouveau_fbcon.h"
69
70 #include <subdev/bios/dp.h>
71
72 /******************************************************************************
73 * EVO channel
74 *****************************************************************************/
75
76 static int
nv50_chan_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,struct nv50_chan * chan)77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
78 const s32 *oclass, u8 head, void *data, u32 size,
79 struct nv50_chan *chan)
80 {
81 struct nvif_sclass *sclass;
82 int ret, i, n;
83
84 chan->device = device;
85
86 ret = n = nvif_object_sclass_get(disp, &sclass);
87 if (ret < 0)
88 return ret;
89
90 while (oclass[0]) {
91 for (i = 0; i < n; i++) {
92 if (sclass[i].oclass == oclass[0]) {
93 ret = nvif_object_ctor(disp, "kmsChan", 0,
94 oclass[0], data, size,
95 &chan->user);
96 if (ret == 0)
97 nvif_object_map(&chan->user, NULL, 0);
98 nvif_object_sclass_put(&sclass);
99 return ret;
100 }
101 }
102 oclass++;
103 }
104
105 nvif_object_sclass_put(&sclass);
106 return -ENOSYS;
107 }
108
109 static void
nv50_chan_destroy(struct nv50_chan * chan)110 nv50_chan_destroy(struct nv50_chan *chan)
111 {
112 nvif_object_dtor(&chan->user);
113 }
114
115 /******************************************************************************
116 * DMA EVO channel
117 *****************************************************************************/
118
119 void
nv50_dmac_destroy(struct nv50_dmac * dmac)120 nv50_dmac_destroy(struct nv50_dmac *dmac)
121 {
122 nvif_object_dtor(&dmac->vram);
123 nvif_object_dtor(&dmac->sync);
124
125 nv50_chan_destroy(&dmac->base);
126
127 nvif_mem_dtor(&dmac->_push.mem);
128 }
129
130 static void
nv50_dmac_kick(struct nvif_push * push)131 nv50_dmac_kick(struct nvif_push *push)
132 {
133 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
134
135 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
136 if (dmac->put != dmac->cur) {
137 /* Push buffer fetches are not coherent with BAR1, we need to ensure
138 * writes have been flushed right through to VRAM before writing PUT.
139 */
140 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
141 struct nvif_device *device = dmac->base.device;
142 nvif_wr32(&device->object, 0x070000, 0x00000001);
143 nvif_msec(device, 2000,
144 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
145 break;
146 );
147 }
148
149 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
150 dmac->put = dmac->cur;
151 }
152
153 push->bgn = push->cur;
154 }
155
156 static int
nv50_dmac_free(struct nv50_dmac * dmac)157 nv50_dmac_free(struct nv50_dmac *dmac)
158 {
159 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
160 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
161 return get - dmac->cur - 5;
162 return dmac->max - dmac->cur;
163 }
164
165 static int
nv50_dmac_wind(struct nv50_dmac * dmac)166 nv50_dmac_wind(struct nv50_dmac *dmac)
167 {
168 /* Wait for GET to depart from the beginning of the push buffer to
169 * prevent writing PUT == GET, which would be ignored by HW.
170 */
171 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
172 if (get == 0) {
173 /* Corner-case, HW idle, but non-committed work pending. */
174 if (dmac->put == 0)
175 nv50_dmac_kick(dmac->push);
176
177 if (nvif_msec(dmac->base.device, 2000,
178 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
179 break;
180 ) < 0)
181 return -ETIMEDOUT;
182 }
183
184 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
185 dmac->cur = 0;
186 return 0;
187 }
188
189 static int
nv50_dmac_wait(struct nvif_push * push,u32 size)190 nv50_dmac_wait(struct nvif_push *push, u32 size)
191 {
192 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
193 int free;
194
195 if (WARN_ON(size > dmac->max))
196 return -EINVAL;
197
198 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
199 if (dmac->cur + size >= dmac->max) {
200 int ret = nv50_dmac_wind(dmac);
201 if (ret)
202 return ret;
203
204 push->cur = dmac->_push.mem.object.map.ptr;
205 push->cur = push->cur + dmac->cur;
206 nv50_dmac_kick(push);
207 }
208
209 if (nvif_msec(dmac->base.device, 2000,
210 if ((free = nv50_dmac_free(dmac)) >= size)
211 break;
212 ) < 0) {
213 WARN_ON(1);
214 return -ETIMEDOUT;
215 }
216
217 push->bgn = dmac->_push.mem.object.map.ptr;
218 push->bgn = push->bgn + dmac->cur;
219 push->cur = push->bgn;
220 push->end = push->cur + free;
221 return 0;
222 }
223
224 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
225 static int nv50_dmac_vram_pushbuf = -1;
226 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
227
228 int
nv50_dmac_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,s64 syncbuf,struct nv50_dmac * dmac)229 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
230 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
231 struct nv50_dmac *dmac)
232 {
233 struct nouveau_cli *cli = (void *)device->object.client;
234 struct nv50_disp_core_channel_dma_v0 *args = data;
235 u8 type = NVIF_MEM_COHERENT;
236 int ret;
237
238 mutex_init(&dmac->lock);
239
240 /* Pascal added support for 47-bit physical addresses, but some
241 * parts of EVO still only accept 40-bit PAs.
242 *
243 * To avoid issues on systems with large amounts of RAM, and on
244 * systems where an IOMMU maps pages at a high address, we need
245 * to allocate push buffers in VRAM instead.
246 *
247 * This appears to match NVIDIA's behaviour on Pascal.
248 */
249 if ((nv50_dmac_vram_pushbuf > 0) ||
250 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
251 type |= NVIF_MEM_VRAM;
252
253 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
254 &dmac->_push.mem);
255 if (ret)
256 return ret;
257
258 dmac->ptr = dmac->_push.mem.object.map.ptr;
259 dmac->_push.wait = nv50_dmac_wait;
260 dmac->_push.kick = nv50_dmac_kick;
261 dmac->push = &dmac->_push;
262 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
263 dmac->push->cur = dmac->push->bgn;
264 dmac->push->end = dmac->push->bgn;
265 dmac->max = 0x1000/4 - 1;
266
267 /* EVO channels are affected by a HW bug where the last 12 DWORDs
268 * of the push buffer aren't able to be used safely.
269 */
270 if (disp->oclass < GV100_DISP)
271 dmac->max -= 12;
272
273 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
274
275 ret = nv50_chan_create(device, disp, oclass, head, data, size,
276 &dmac->base);
277 if (ret)
278 return ret;
279
280 if (syncbuf < 0)
281 return 0;
282
283 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
284 NV_DMA_IN_MEMORY,
285 &(struct nv_dma_v0) {
286 .target = NV_DMA_V0_TARGET_VRAM,
287 .access = NV_DMA_V0_ACCESS_RDWR,
288 .start = syncbuf + 0x0000,
289 .limit = syncbuf + 0x0fff,
290 }, sizeof(struct nv_dma_v0),
291 &dmac->sync);
292 if (ret)
293 return ret;
294
295 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
296 NV_DMA_IN_MEMORY,
297 &(struct nv_dma_v0) {
298 .target = NV_DMA_V0_TARGET_VRAM,
299 .access = NV_DMA_V0_ACCESS_RDWR,
300 .start = 0,
301 .limit = device->info.ram_user - 1,
302 }, sizeof(struct nv_dma_v0),
303 &dmac->vram);
304 if (ret)
305 return ret;
306
307 return ret;
308 }
309
310 /******************************************************************************
311 * Output path helpers
312 *****************************************************************************/
313 static void
nv50_outp_dump_caps(struct nouveau_drm * drm,struct nouveau_encoder * outp)314 nv50_outp_dump_caps(struct nouveau_drm *drm,
315 struct nouveau_encoder *outp)
316 {
317 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
318 outp->base.base.name, outp->caps.dp_interlace);
319 }
320
321 static void
nv50_outp_release(struct nouveau_encoder * nv_encoder)322 nv50_outp_release(struct nouveau_encoder *nv_encoder)
323 {
324 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
325 struct {
326 struct nv50_disp_mthd_v1 base;
327 } args = {
328 .base.version = 1,
329 .base.method = NV50_DISP_MTHD_V1_RELEASE,
330 .base.hasht = nv_encoder->dcb->hasht,
331 .base.hashm = nv_encoder->dcb->hashm,
332 };
333
334 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
335 nv_encoder->or = -1;
336 nv_encoder->link = 0;
337 }
338
339 static int
nv50_outp_acquire(struct nouveau_encoder * nv_encoder,bool hda)340 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
341 {
342 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
343 struct nv50_disp *disp = nv50_disp(drm->dev);
344 struct {
345 struct nv50_disp_mthd_v1 base;
346 struct nv50_disp_acquire_v0 info;
347 } args = {
348 .base.version = 1,
349 .base.method = NV50_DISP_MTHD_V1_ACQUIRE,
350 .base.hasht = nv_encoder->dcb->hasht,
351 .base.hashm = nv_encoder->dcb->hashm,
352 .info.hda = hda,
353 };
354 int ret;
355
356 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
357 if (ret) {
358 NV_ERROR(drm, "error acquiring output path: %d\n", ret);
359 return ret;
360 }
361
362 nv_encoder->or = args.info.or;
363 nv_encoder->link = args.info.link;
364 return 0;
365 }
366
367 static int
nv50_outp_atomic_check_view(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,struct drm_display_mode * native_mode)368 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
369 struct drm_crtc_state *crtc_state,
370 struct drm_connector_state *conn_state,
371 struct drm_display_mode *native_mode)
372 {
373 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
374 struct drm_display_mode *mode = &crtc_state->mode;
375 struct drm_connector *connector = conn_state->connector;
376 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
377 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
378
379 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
380 asyc->scaler.full = false;
381 if (!native_mode)
382 return 0;
383
384 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
385 switch (connector->connector_type) {
386 case DRM_MODE_CONNECTOR_LVDS:
387 case DRM_MODE_CONNECTOR_eDP:
388 /* Don't force scaler for EDID modes with
389 * same size as the native one (e.g. different
390 * refresh rate)
391 */
392 if (mode->hdisplay == native_mode->hdisplay &&
393 mode->vdisplay == native_mode->vdisplay &&
394 mode->type & DRM_MODE_TYPE_DRIVER)
395 break;
396 mode = native_mode;
397 asyc->scaler.full = true;
398 break;
399 default:
400 break;
401 }
402 } else {
403 mode = native_mode;
404 }
405
406 if (!drm_mode_equal(adjusted_mode, mode)) {
407 drm_mode_copy(adjusted_mode, mode);
408 crtc_state->mode_changed = true;
409 }
410
411 return 0;
412 }
413
414 static int
nv50_outp_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)415 nv50_outp_atomic_check(struct drm_encoder *encoder,
416 struct drm_crtc_state *crtc_state,
417 struct drm_connector_state *conn_state)
418 {
419 struct drm_connector *connector = conn_state->connector;
420 struct nouveau_connector *nv_connector = nouveau_connector(connector);
421 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
422 int ret;
423
424 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
425 nv_connector->native_mode);
426 if (ret)
427 return ret;
428
429 if (crtc_state->mode_changed || crtc_state->connectors_changed)
430 asyh->or.bpc = connector->display_info.bpc;
431
432 return 0;
433 }
434
435 struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)436 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
437 {
438 struct drm_connector *connector;
439 struct drm_connector_state *connector_state;
440 struct drm_encoder *encoder = to_drm_encoder(outp);
441 int i;
442
443 for_each_new_connector_in_state(state, connector, connector_state, i) {
444 if (connector_state->best_encoder == encoder)
445 return nouveau_connector(connector);
446 }
447
448 return NULL;
449 }
450
451 struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)452 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
453 {
454 struct drm_connector *connector;
455 struct drm_connector_state *connector_state;
456 struct drm_encoder *encoder = to_drm_encoder(outp);
457 int i;
458
459 for_each_old_connector_in_state(state, connector, connector_state, i) {
460 if (connector_state->best_encoder == encoder)
461 return nouveau_connector(connector);
462 }
463
464 return NULL;
465 }
466
467 static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state * state,const struct nouveau_encoder * outp)468 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
469 {
470 struct drm_crtc *crtc;
471 struct drm_crtc_state *crtc_state;
472 const u32 mask = drm_encoder_mask(&outp->base.base);
473 int i;
474
475 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
476 if (crtc_state->encoder_mask & mask)
477 return nouveau_crtc(crtc);
478 }
479
480 return NULL;
481 }
482
483 /******************************************************************************
484 * DAC
485 *****************************************************************************/
486 static void
nv50_dac_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)487 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
488 {
489 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
490 struct nv50_core *core = nv50_disp(encoder->dev)->core;
491 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
492
493 core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
494 nv_encoder->crtc = NULL;
495 nv50_outp_release(nv_encoder);
496 }
497
498 static void
nv50_dac_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)499 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
500 {
501 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
502 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
503 struct nv50_head_atom *asyh =
504 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
505 struct nv50_core *core = nv50_disp(encoder->dev)->core;
506 u32 ctrl = 0;
507
508 switch (nv_crtc->index) {
509 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
510 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
511 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
512 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
513 default:
514 WARN_ON(1);
515 break;
516 }
517
518 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
519
520 nv50_outp_acquire(nv_encoder, false);
521
522 core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
523 asyh->or.depth = 0;
524
525 nv_encoder->crtc = &nv_crtc->base;
526 }
527
528 static enum drm_connector_status
nv50_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)529 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
530 {
531 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
532 struct nv50_disp *disp = nv50_disp(encoder->dev);
533 struct {
534 struct nv50_disp_mthd_v1 base;
535 struct nv50_disp_dac_load_v0 load;
536 } args = {
537 .base.version = 1,
538 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
539 .base.hasht = nv_encoder->dcb->hasht,
540 .base.hashm = nv_encoder->dcb->hashm,
541 };
542 int ret;
543
544 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
545 if (args.load.data == 0)
546 args.load.data = 340;
547
548 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
549 if (ret || !args.load.load)
550 return connector_status_disconnected;
551
552 return connector_status_connected;
553 }
554
555 static const struct drm_encoder_helper_funcs
556 nv50_dac_help = {
557 .atomic_check = nv50_outp_atomic_check,
558 .atomic_enable = nv50_dac_atomic_enable,
559 .atomic_disable = nv50_dac_atomic_disable,
560 .detect = nv50_dac_detect
561 };
562
563 static void
nv50_dac_destroy(struct drm_encoder * encoder)564 nv50_dac_destroy(struct drm_encoder *encoder)
565 {
566 drm_encoder_cleanup(encoder);
567 kfree(encoder);
568 }
569
570 static const struct drm_encoder_funcs
571 nv50_dac_func = {
572 .destroy = nv50_dac_destroy,
573 };
574
575 static int
nv50_dac_create(struct drm_connector * connector,struct dcb_output * dcbe)576 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
577 {
578 struct nouveau_drm *drm = nouveau_drm(connector->dev);
579 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
580 struct nvkm_i2c_bus *bus;
581 struct nouveau_encoder *nv_encoder;
582 struct drm_encoder *encoder;
583 int type = DRM_MODE_ENCODER_DAC;
584
585 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
586 if (!nv_encoder)
587 return -ENOMEM;
588 nv_encoder->dcb = dcbe;
589
590 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
591 if (bus)
592 nv_encoder->i2c = &bus->i2c;
593
594 encoder = to_drm_encoder(nv_encoder);
595 encoder->possible_crtcs = dcbe->heads;
596 encoder->possible_clones = 0;
597 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
598 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
599 drm_encoder_helper_add(encoder, &nv50_dac_help);
600
601 drm_connector_attach_encoder(connector, encoder);
602 return 0;
603 }
604
605 /*
606 * audio component binding for ELD notification
607 */
608 static void
nv50_audio_component_eld_notify(struct drm_audio_component * acomp,int port,int dev_id)609 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
610 int dev_id)
611 {
612 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
613 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
614 port, dev_id);
615 }
616
617 static int
nv50_audio_component_get_eld(struct device * kdev,int port,int dev_id,bool * enabled,unsigned char * buf,int max_bytes)618 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
619 bool *enabled, unsigned char *buf, int max_bytes)
620 {
621 struct drm_device *drm_dev = dev_get_drvdata(kdev);
622 struct nouveau_drm *drm = nouveau_drm(drm_dev);
623 struct drm_encoder *encoder;
624 struct nouveau_encoder *nv_encoder;
625 struct nouveau_crtc *nv_crtc;
626 int ret = 0;
627
628 *enabled = false;
629
630 mutex_lock(&drm->audio.lock);
631
632 drm_for_each_encoder(encoder, drm->dev) {
633 struct nouveau_connector *nv_connector = NULL;
634
635 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
636 continue; /* TODO */
637
638 nv_encoder = nouveau_encoder(encoder);
639 nv_connector = nouveau_connector(nv_encoder->audio.connector);
640 nv_crtc = nouveau_crtc(nv_encoder->crtc);
641
642 if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
643 continue;
644
645 *enabled = nv_encoder->audio.enabled;
646 if (*enabled) {
647 ret = drm_eld_size(nv_connector->base.eld);
648 memcpy(buf, nv_connector->base.eld,
649 min(max_bytes, ret));
650 }
651 break;
652 }
653
654 mutex_unlock(&drm->audio.lock);
655
656 return ret;
657 }
658
659 static const struct drm_audio_component_ops nv50_audio_component_ops = {
660 .get_eld = nv50_audio_component_get_eld,
661 };
662
663 static int
nv50_audio_component_bind(struct device * kdev,struct device * hda_kdev,void * data)664 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
665 void *data)
666 {
667 struct drm_device *drm_dev = dev_get_drvdata(kdev);
668 struct nouveau_drm *drm = nouveau_drm(drm_dev);
669 struct drm_audio_component *acomp = data;
670
671 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
672 return -ENOMEM;
673
674 drm_modeset_lock_all(drm_dev);
675 acomp->ops = &nv50_audio_component_ops;
676 acomp->dev = kdev;
677 drm->audio.component = acomp;
678 drm_modeset_unlock_all(drm_dev);
679 return 0;
680 }
681
682 static void
nv50_audio_component_unbind(struct device * kdev,struct device * hda_kdev,void * data)683 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
684 void *data)
685 {
686 struct drm_device *drm_dev = dev_get_drvdata(kdev);
687 struct nouveau_drm *drm = nouveau_drm(drm_dev);
688 struct drm_audio_component *acomp = data;
689
690 drm_modeset_lock_all(drm_dev);
691 drm->audio.component = NULL;
692 acomp->ops = NULL;
693 acomp->dev = NULL;
694 drm_modeset_unlock_all(drm_dev);
695 }
696
697 static const struct component_ops nv50_audio_component_bind_ops = {
698 .bind = nv50_audio_component_bind,
699 .unbind = nv50_audio_component_unbind,
700 };
701
702 static void
nv50_audio_component_init(struct nouveau_drm * drm)703 nv50_audio_component_init(struct nouveau_drm *drm)
704 {
705 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
706 return;
707
708 drm->audio.component_registered = true;
709 mutex_init(&drm->audio.lock);
710 }
711
712 static void
nv50_audio_component_fini(struct nouveau_drm * drm)713 nv50_audio_component_fini(struct nouveau_drm *drm)
714 {
715 if (!drm->audio.component_registered)
716 return;
717
718 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
719 drm->audio.component_registered = false;
720 mutex_destroy(&drm->audio.lock);
721 }
722
723 /******************************************************************************
724 * Audio
725 *****************************************************************************/
726 static void
nv50_audio_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)727 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
728 {
729 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
730 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
731 struct nv50_disp *disp = nv50_disp(encoder->dev);
732 struct {
733 struct nv50_disp_mthd_v1 base;
734 struct nv50_disp_sor_hda_eld_v0 eld;
735 } args = {
736 .base.version = 1,
737 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
738 .base.hasht = nv_encoder->dcb->hasht,
739 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
740 (0x0100 << nv_crtc->index),
741 };
742
743 mutex_lock(&drm->audio.lock);
744 if (nv_encoder->audio.enabled) {
745 nv_encoder->audio.enabled = false;
746 nv_encoder->audio.connector = NULL;
747 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
748 }
749 mutex_unlock(&drm->audio.lock);
750
751 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
752 nv_crtc->index);
753 }
754
755 static void
nv50_audio_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)756 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
757 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
758 struct drm_display_mode *mode)
759 {
760 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
761 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
762 struct nv50_disp *disp = nv50_disp(encoder->dev);
763 struct __packed {
764 struct {
765 struct nv50_disp_mthd_v1 mthd;
766 struct nv50_disp_sor_hda_eld_v0 eld;
767 } base;
768 u8 data[sizeof(nv_connector->base.eld)];
769 } args = {
770 .base.mthd.version = 1,
771 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
772 .base.mthd.hasht = nv_encoder->dcb->hasht,
773 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
774 (0x0100 << nv_crtc->index),
775 };
776
777 if (!drm_detect_monitor_audio(nv_connector->edid))
778 return;
779
780 mutex_lock(&drm->audio.lock);
781
782 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
783
784 nvif_mthd(&disp->disp->object, 0, &args,
785 sizeof(args.base) + drm_eld_size(args.data));
786 nv_encoder->audio.enabled = true;
787 nv_encoder->audio.connector = &nv_connector->base;
788
789 mutex_unlock(&drm->audio.lock);
790
791 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
792 nv_crtc->index);
793 }
794
795 /******************************************************************************
796 * HDMI
797 *****************************************************************************/
798 static void
nv50_hdmi_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)799 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
800 {
801 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
802 struct nv50_disp *disp = nv50_disp(encoder->dev);
803 struct {
804 struct nv50_disp_mthd_v1 base;
805 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
806 } args = {
807 .base.version = 1,
808 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
809 .base.hasht = nv_encoder->dcb->hasht,
810 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
811 (0x0100 << nv_crtc->index),
812 };
813
814 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
815 }
816
817 static void
nv50_hdmi_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)818 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
819 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
820 struct drm_display_mode *mode)
821 {
822 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
823 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
824 struct nv50_disp *disp = nv50_disp(encoder->dev);
825 struct {
826 struct nv50_disp_mthd_v1 base;
827 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
828 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
829 } args = {
830 .base.version = 1,
831 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
832 .base.hasht = nv_encoder->dcb->hasht,
833 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
834 (0x0100 << nv_crtc->index),
835 .pwr.state = 1,
836 .pwr.rekey = 56, /* binary driver, and tegra, constant */
837 };
838 struct drm_hdmi_info *hdmi;
839 u32 max_ac_packet;
840 union hdmi_infoframe avi_frame;
841 union hdmi_infoframe vendor_frame;
842 bool high_tmds_clock_ratio = false, scrambling = false;
843 u8 config;
844 int ret;
845 int size;
846
847 if (!drm_detect_hdmi_monitor(nv_connector->edid))
848 return;
849
850 hdmi = &nv_connector->base.display_info.hdmi;
851
852 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
853 &nv_connector->base, mode);
854 if (!ret) {
855 drm_hdmi_avi_infoframe_quant_range(&avi_frame.avi,
856 &nv_connector->base, mode,
857 HDMI_QUANTIZATION_RANGE_FULL);
858 /* We have an AVI InfoFrame, populate it to the display */
859 args.pwr.avi_infoframe_length
860 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
861 }
862
863 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
864 &nv_connector->base, mode);
865 if (!ret) {
866 /* We have a Vendor InfoFrame, populate it to the display */
867 args.pwr.vendor_infoframe_length
868 = hdmi_infoframe_pack(&vendor_frame,
869 args.infoframes
870 + args.pwr.avi_infoframe_length,
871 17);
872 }
873
874 max_ac_packet = mode->htotal - mode->hdisplay;
875 max_ac_packet -= args.pwr.rekey;
876 max_ac_packet -= 18; /* constant from tegra */
877 args.pwr.max_ac_packet = max_ac_packet / 32;
878
879 if (hdmi->scdc.scrambling.supported) {
880 high_tmds_clock_ratio = mode->clock > 340000;
881 scrambling = high_tmds_clock_ratio ||
882 hdmi->scdc.scrambling.low_rates;
883 }
884
885 args.pwr.scdc =
886 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
887 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
888
889 size = sizeof(args.base)
890 + sizeof(args.pwr)
891 + args.pwr.avi_infoframe_length
892 + args.pwr.vendor_infoframe_length;
893 nvif_mthd(&disp->disp->object, 0, &args, size);
894
895 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
896
897 /* If SCDC is supported by the downstream monitor, update
898 * divider / scrambling settings to what we programmed above.
899 */
900 if (!hdmi->scdc.scrambling.supported)
901 return;
902
903 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
904 if (ret < 0) {
905 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
906 return;
907 }
908 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
909 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
910 config |= SCDC_SCRAMBLING_ENABLE * scrambling;
911 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
912 if (ret < 0)
913 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
914 config, ret);
915 }
916
917 /******************************************************************************
918 * MST
919 *****************************************************************************/
920 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
921 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
922 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
923
924 struct nv50_mstc {
925 struct nv50_mstm *mstm;
926 struct drm_dp_mst_port *port;
927 struct drm_connector connector;
928
929 struct drm_display_mode *native;
930 struct edid *edid;
931 };
932
933 struct nv50_msto {
934 struct drm_encoder encoder;
935
936 /* head is statically assigned on msto creation */
937 struct nv50_head *head;
938 struct nv50_mstc *mstc;
939 bool disabled;
940 };
941
nv50_real_outp(struct drm_encoder * encoder)942 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
943 {
944 struct nv50_msto *msto;
945
946 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
947 return nouveau_encoder(encoder);
948
949 msto = nv50_msto(encoder);
950 if (!msto->mstc)
951 return NULL;
952 return msto->mstc->mstm->outp;
953 }
954
955 static struct drm_dp_payload *
nv50_msto_payload(struct nv50_msto * msto)956 nv50_msto_payload(struct nv50_msto *msto)
957 {
958 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
959 struct nv50_mstc *mstc = msto->mstc;
960 struct nv50_mstm *mstm = mstc->mstm;
961 int vcpi = mstc->port->vcpi.vcpi, i;
962
963 WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
964
965 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
966 for (i = 0; i < mstm->mgr.max_payloads; i++) {
967 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
968 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
969 mstm->outp->base.base.name, i, payload->vcpi,
970 payload->start_slot, payload->num_slots);
971 }
972
973 for (i = 0; i < mstm->mgr.max_payloads; i++) {
974 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
975 if (payload->vcpi == vcpi)
976 return payload;
977 }
978
979 return NULL;
980 }
981
982 static void
nv50_msto_cleanup(struct nv50_msto * msto)983 nv50_msto_cleanup(struct nv50_msto *msto)
984 {
985 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
986 struct nv50_mstc *mstc = msto->mstc;
987 struct nv50_mstm *mstm = mstc->mstm;
988
989 if (!msto->disabled)
990 return;
991
992 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
993
994 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
995
996 msto->mstc = NULL;
997 msto->disabled = false;
998 }
999
1000 static void
nv50_msto_prepare(struct nv50_msto * msto)1001 nv50_msto_prepare(struct nv50_msto *msto)
1002 {
1003 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
1004 struct nv50_mstc *mstc = msto->mstc;
1005 struct nv50_mstm *mstm = mstc->mstm;
1006 struct {
1007 struct nv50_disp_mthd_v1 base;
1008 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
1009 } args = {
1010 .base.version = 1,
1011 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
1012 .base.hasht = mstm->outp->dcb->hasht,
1013 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
1014 (0x0100 << msto->head->base.index),
1015 };
1016
1017 mutex_lock(&mstm->mgr.payload_lock);
1018
1019 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
1020 if (mstc->port->vcpi.vcpi > 0) {
1021 struct drm_dp_payload *payload = nv50_msto_payload(msto);
1022 if (payload) {
1023 args.vcpi.start_slot = payload->start_slot;
1024 args.vcpi.num_slots = payload->num_slots;
1025 args.vcpi.pbn = mstc->port->vcpi.pbn;
1026 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
1027 }
1028 }
1029
1030 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1031 msto->encoder.name, msto->head->base.base.name,
1032 args.vcpi.start_slot, args.vcpi.num_slots,
1033 args.vcpi.pbn, args.vcpi.aligned_pbn);
1034
1035 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1036 mutex_unlock(&mstm->mgr.payload_lock);
1037 }
1038
1039 static int
nv50_msto_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1040 nv50_msto_atomic_check(struct drm_encoder *encoder,
1041 struct drm_crtc_state *crtc_state,
1042 struct drm_connector_state *conn_state)
1043 {
1044 struct drm_atomic_state *state = crtc_state->state;
1045 struct drm_connector *connector = conn_state->connector;
1046 struct nv50_mstc *mstc = nv50_mstc(connector);
1047 struct nv50_mstm *mstm = mstc->mstm;
1048 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1049 int slots;
1050 int ret;
1051
1052 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1053 mstc->native);
1054 if (ret)
1055 return ret;
1056
1057 if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
1058 return 0;
1059
1060 /*
1061 * When restoring duplicated states, we need to make sure that the bw
1062 * remains the same and avoid recalculating it, as the connector's bpc
1063 * may have changed after the state was duplicated
1064 */
1065 if (!state->duplicated) {
1066 const int clock = crtc_state->adjusted_mode.clock;
1067
1068 asyh->or.bpc = connector->display_info.bpc;
1069 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1070 false);
1071 }
1072
1073 slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
1074 asyh->dp.pbn, 0);
1075 if (slots < 0)
1076 return slots;
1077
1078 asyh->dp.tu = slots;
1079
1080 return 0;
1081 }
1082
1083 static u8
nv50_dp_bpc_to_depth(unsigned int bpc)1084 nv50_dp_bpc_to_depth(unsigned int bpc)
1085 {
1086 switch (bpc) {
1087 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1088 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1089 case 10:
1090 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1091 }
1092 }
1093
1094 static void
nv50_msto_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1095 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1096 {
1097 struct nv50_msto *msto = nv50_msto(encoder);
1098 struct nv50_head *head = msto->head;
1099 struct nv50_head_atom *asyh =
1100 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1101 struct nv50_mstc *mstc = NULL;
1102 struct nv50_mstm *mstm = NULL;
1103 struct drm_connector *connector;
1104 struct drm_connector_list_iter conn_iter;
1105 u8 proto;
1106 bool r;
1107
1108 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1109 drm_for_each_connector_iter(connector, &conn_iter) {
1110 if (connector->state->best_encoder == &msto->encoder) {
1111 mstc = nv50_mstc(connector);
1112 mstm = mstc->mstm;
1113 break;
1114 }
1115 }
1116 drm_connector_list_iter_end(&conn_iter);
1117
1118 if (WARN_ON(!mstc))
1119 return;
1120
1121 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, asyh->dp.pbn, asyh->dp.tu);
1122 if (!r)
1123 DRM_DEBUG_KMS("Failed to allocate VCPI\n");
1124
1125 if (!mstm->links++)
1126 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1127
1128 if (mstm->outp->link & 1)
1129 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1130 else
1131 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1132
1133 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1134 nv50_dp_bpc_to_depth(asyh->or.bpc));
1135
1136 msto->mstc = mstc;
1137 mstm->modified = true;
1138 }
1139
1140 static void
nv50_msto_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1141 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1142 {
1143 struct nv50_msto *msto = nv50_msto(encoder);
1144 struct nv50_mstc *mstc = msto->mstc;
1145 struct nv50_mstm *mstm = mstc->mstm;
1146
1147 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
1148
1149 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1150 mstm->modified = true;
1151 if (!--mstm->links)
1152 mstm->disabled = true;
1153 msto->disabled = true;
1154 }
1155
1156 static const struct drm_encoder_helper_funcs
1157 nv50_msto_help = {
1158 .atomic_disable = nv50_msto_atomic_disable,
1159 .atomic_enable = nv50_msto_atomic_enable,
1160 .atomic_check = nv50_msto_atomic_check,
1161 };
1162
1163 static void
nv50_msto_destroy(struct drm_encoder * encoder)1164 nv50_msto_destroy(struct drm_encoder *encoder)
1165 {
1166 struct nv50_msto *msto = nv50_msto(encoder);
1167 drm_encoder_cleanup(&msto->encoder);
1168 kfree(msto);
1169 }
1170
1171 static const struct drm_encoder_funcs
1172 nv50_msto = {
1173 .destroy = nv50_msto_destroy,
1174 };
1175
1176 static struct nv50_msto *
nv50_msto_new(struct drm_device * dev,struct nv50_head * head,int id)1177 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1178 {
1179 struct nv50_msto *msto;
1180 int ret;
1181
1182 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1183 if (!msto)
1184 return ERR_PTR(-ENOMEM);
1185
1186 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1187 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1188 if (ret) {
1189 kfree(msto);
1190 return ERR_PTR(ret);
1191 }
1192
1193 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1194 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1195 msto->head = head;
1196 return msto;
1197 }
1198
1199 static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector * connector,struct drm_atomic_state * state)1200 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1201 struct drm_atomic_state *state)
1202 {
1203 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1204 connector);
1205 struct nv50_mstc *mstc = nv50_mstc(connector);
1206 struct drm_crtc *crtc = connector_state->crtc;
1207
1208 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1209 return NULL;
1210
1211 return &nv50_head(crtc)->msto->encoder;
1212 }
1213
1214 static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1215 nv50_mstc_mode_valid(struct drm_connector *connector,
1216 struct drm_display_mode *mode)
1217 {
1218 struct nv50_mstc *mstc = nv50_mstc(connector);
1219 struct nouveau_encoder *outp = mstc->mstm->outp;
1220
1221 /* TODO: calculate the PBN from the dotclock and validate against the
1222 * MSTB's max possible PBN
1223 */
1224
1225 return nv50_dp_mode_valid(connector, outp, mode, NULL);
1226 }
1227
1228 static int
nv50_mstc_get_modes(struct drm_connector * connector)1229 nv50_mstc_get_modes(struct drm_connector *connector)
1230 {
1231 struct nv50_mstc *mstc = nv50_mstc(connector);
1232 int ret = 0;
1233
1234 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1235 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1236 if (mstc->edid)
1237 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1238
1239 /*
1240 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1241 * to 8 to save bandwidth on the topology. In the future, we'll want
1242 * to properly fix this by dynamically selecting the highest possible
1243 * bpc that would fit in the topology
1244 */
1245 if (connector->display_info.bpc)
1246 connector->display_info.bpc =
1247 clamp(connector->display_info.bpc, 6U, 8U);
1248 else
1249 connector->display_info.bpc = 8;
1250
1251 if (mstc->native)
1252 drm_mode_destroy(mstc->connector.dev, mstc->native);
1253 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1254 return ret;
1255 }
1256
1257 static int
nv50_mstc_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1258 nv50_mstc_atomic_check(struct drm_connector *connector,
1259 struct drm_atomic_state *state)
1260 {
1261 struct nv50_mstc *mstc = nv50_mstc(connector);
1262 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1263 struct drm_connector_state *new_conn_state =
1264 drm_atomic_get_new_connector_state(state, connector);
1265 struct drm_connector_state *old_conn_state =
1266 drm_atomic_get_old_connector_state(state, connector);
1267 struct drm_crtc_state *crtc_state;
1268 struct drm_crtc *new_crtc = new_conn_state->crtc;
1269
1270 if (!old_conn_state->crtc)
1271 return 0;
1272
1273 /* We only want to free VCPI if this state disables the CRTC on this
1274 * connector
1275 */
1276 if (new_crtc) {
1277 crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1278
1279 if (!crtc_state ||
1280 !drm_atomic_crtc_needs_modeset(crtc_state) ||
1281 crtc_state->enable)
1282 return 0;
1283 }
1284
1285 return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1286 }
1287
1288 static int
nv50_mstc_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1289 nv50_mstc_detect(struct drm_connector *connector,
1290 struct drm_modeset_acquire_ctx *ctx, bool force)
1291 {
1292 struct nv50_mstc *mstc = nv50_mstc(connector);
1293 int ret;
1294
1295 if (drm_connector_is_unregistered(connector))
1296 return connector_status_disconnected;
1297
1298 ret = pm_runtime_get_sync(connector->dev->dev);
1299 if (ret < 0 && ret != -EACCES) {
1300 pm_runtime_put_autosuspend(connector->dev->dev);
1301 return connector_status_disconnected;
1302 }
1303
1304 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1305 mstc->port);
1306 if (ret != connector_status_connected)
1307 goto out;
1308
1309 out:
1310 pm_runtime_mark_last_busy(connector->dev->dev);
1311 pm_runtime_put_autosuspend(connector->dev->dev);
1312 return ret;
1313 }
1314
1315 static const struct drm_connector_helper_funcs
1316 nv50_mstc_help = {
1317 .get_modes = nv50_mstc_get_modes,
1318 .mode_valid = nv50_mstc_mode_valid,
1319 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1320 .atomic_check = nv50_mstc_atomic_check,
1321 .detect_ctx = nv50_mstc_detect,
1322 };
1323
1324 static void
nv50_mstc_destroy(struct drm_connector * connector)1325 nv50_mstc_destroy(struct drm_connector *connector)
1326 {
1327 struct nv50_mstc *mstc = nv50_mstc(connector);
1328
1329 drm_connector_cleanup(&mstc->connector);
1330 drm_dp_mst_put_port_malloc(mstc->port);
1331
1332 kfree(mstc);
1333 }
1334
1335 static const struct drm_connector_funcs
1336 nv50_mstc = {
1337 .reset = nouveau_conn_reset,
1338 .fill_modes = drm_helper_probe_single_connector_modes,
1339 .destroy = nv50_mstc_destroy,
1340 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1341 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1342 .atomic_set_property = nouveau_conn_atomic_set_property,
1343 .atomic_get_property = nouveau_conn_atomic_get_property,
1344 };
1345
1346 static int
nv50_mstc_new(struct nv50_mstm * mstm,struct drm_dp_mst_port * port,const char * path,struct nv50_mstc ** pmstc)1347 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1348 const char *path, struct nv50_mstc **pmstc)
1349 {
1350 struct drm_device *dev = mstm->outp->base.base.dev;
1351 struct drm_crtc *crtc;
1352 struct nv50_mstc *mstc;
1353 int ret;
1354
1355 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1356 return -ENOMEM;
1357 mstc->mstm = mstm;
1358 mstc->port = port;
1359
1360 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1361 DRM_MODE_CONNECTOR_DisplayPort);
1362 if (ret) {
1363 kfree(*pmstc);
1364 *pmstc = NULL;
1365 return ret;
1366 }
1367
1368 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1369
1370 mstc->connector.funcs->reset(&mstc->connector);
1371 nouveau_conn_attach_properties(&mstc->connector);
1372
1373 drm_for_each_crtc(crtc, dev) {
1374 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1375 continue;
1376
1377 drm_connector_attach_encoder(&mstc->connector,
1378 &nv50_head(crtc)->msto->encoder);
1379 }
1380
1381 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1382 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1383 drm_connector_set_path_property(&mstc->connector, path);
1384 drm_dp_mst_get_port_malloc(port);
1385 return 0;
1386 }
1387
1388 static void
nv50_mstm_cleanup(struct nv50_mstm * mstm)1389 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1390 {
1391 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1392 struct drm_encoder *encoder;
1393
1394 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1395 drm_dp_check_act_status(&mstm->mgr);
1396
1397 drm_dp_update_payload_part2(&mstm->mgr);
1398
1399 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1400 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1401 struct nv50_msto *msto = nv50_msto(encoder);
1402 struct nv50_mstc *mstc = msto->mstc;
1403 if (mstc && mstc->mstm == mstm)
1404 nv50_msto_cleanup(msto);
1405 }
1406 }
1407
1408 mstm->modified = false;
1409 }
1410
1411 static void
nv50_mstm_prepare(struct nv50_mstm * mstm)1412 nv50_mstm_prepare(struct nv50_mstm *mstm)
1413 {
1414 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1415 struct drm_encoder *encoder;
1416
1417 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1418 drm_dp_update_payload_part1(&mstm->mgr, 1);
1419
1420 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1421 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1422 struct nv50_msto *msto = nv50_msto(encoder);
1423 struct nv50_mstc *mstc = msto->mstc;
1424 if (mstc && mstc->mstm == mstm)
1425 nv50_msto_prepare(msto);
1426 }
1427 }
1428
1429 if (mstm->disabled) {
1430 if (!mstm->links)
1431 nv50_outp_release(mstm->outp);
1432 mstm->disabled = false;
1433 }
1434 }
1435
1436 static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr * mgr,struct drm_dp_mst_port * port,const char * path)1437 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1438 struct drm_dp_mst_port *port, const char *path)
1439 {
1440 struct nv50_mstm *mstm = nv50_mstm(mgr);
1441 struct nv50_mstc *mstc;
1442 int ret;
1443
1444 ret = nv50_mstc_new(mstm, port, path, &mstc);
1445 if (ret)
1446 return NULL;
1447
1448 return &mstc->connector;
1449 }
1450
1451 static const struct drm_dp_mst_topology_cbs
1452 nv50_mstm = {
1453 .add_connector = nv50_mstm_add_connector,
1454 };
1455
1456 bool
nv50_mstm_service(struct nouveau_drm * drm,struct nouveau_connector * nv_connector,struct nv50_mstm * mstm)1457 nv50_mstm_service(struct nouveau_drm *drm,
1458 struct nouveau_connector *nv_connector,
1459 struct nv50_mstm *mstm)
1460 {
1461 struct drm_dp_aux *aux = &nv_connector->aux;
1462 bool handled = true, ret = true;
1463 int rc;
1464 u8 esi[8] = {};
1465
1466 while (handled) {
1467 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1468 if (rc != 8) {
1469 ret = false;
1470 break;
1471 }
1472
1473 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1474 if (!handled)
1475 break;
1476
1477 rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1478 3);
1479 if (rc != 3) {
1480 ret = false;
1481 break;
1482 }
1483 }
1484
1485 if (!ret)
1486 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1487 nv_connector->base.name, rc);
1488
1489 return ret;
1490 }
1491
1492 void
nv50_mstm_remove(struct nv50_mstm * mstm)1493 nv50_mstm_remove(struct nv50_mstm *mstm)
1494 {
1495 mstm->is_mst = false;
1496 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1497 }
1498
1499 static int
nv50_mstm_enable(struct nv50_mstm * mstm,int state)1500 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1501 {
1502 struct nouveau_encoder *outp = mstm->outp;
1503 struct {
1504 struct nv50_disp_mthd_v1 base;
1505 struct nv50_disp_sor_dp_mst_link_v0 mst;
1506 } args = {
1507 .base.version = 1,
1508 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1509 .base.hasht = outp->dcb->hasht,
1510 .base.hashm = outp->dcb->hashm,
1511 .mst.state = state,
1512 };
1513 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1514 struct nvif_object *disp = &drm->display->disp.object;
1515
1516 return nvif_mthd(disp, 0, &args, sizeof(args));
1517 }
1518
1519 int
nv50_mstm_detect(struct nouveau_encoder * outp)1520 nv50_mstm_detect(struct nouveau_encoder *outp)
1521 {
1522 struct nv50_mstm *mstm = outp->dp.mstm;
1523 struct drm_dp_aux *aux;
1524 int ret;
1525
1526 if (!mstm || !mstm->can_mst)
1527 return 0;
1528
1529 aux = mstm->mgr.aux;
1530
1531 /* Clear any leftover MST state we didn't set ourselves by first
1532 * disabling MST if it was already enabled
1533 */
1534 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1535 if (ret < 0)
1536 return ret;
1537
1538 /* And start enabling */
1539 ret = nv50_mstm_enable(mstm, true);
1540 if (ret)
1541 return ret;
1542
1543 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1544 if (ret) {
1545 nv50_mstm_enable(mstm, false);
1546 return ret;
1547 }
1548
1549 mstm->is_mst = true;
1550 return 1;
1551 }
1552
1553 static void
nv50_mstm_fini(struct nouveau_encoder * outp)1554 nv50_mstm_fini(struct nouveau_encoder *outp)
1555 {
1556 struct nv50_mstm *mstm = outp->dp.mstm;
1557
1558 if (!mstm)
1559 return;
1560
1561 /* Don't change the MST state of this connector until we've finished
1562 * resuming, since we can't safely grab hpd_irq_lock in our resume
1563 * path to protect mstm->is_mst without potentially deadlocking
1564 */
1565 mutex_lock(&outp->dp.hpd_irq_lock);
1566 mstm->suspended = true;
1567 mutex_unlock(&outp->dp.hpd_irq_lock);
1568
1569 if (mstm->is_mst)
1570 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1571 }
1572
1573 static void
nv50_mstm_init(struct nouveau_encoder * outp,bool runtime)1574 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1575 {
1576 struct nv50_mstm *mstm = outp->dp.mstm;
1577 int ret = 0;
1578
1579 if (!mstm)
1580 return;
1581
1582 if (mstm->is_mst) {
1583 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1584 if (ret == -1)
1585 nv50_mstm_remove(mstm);
1586 }
1587
1588 mutex_lock(&outp->dp.hpd_irq_lock);
1589 mstm->suspended = false;
1590 mutex_unlock(&outp->dp.hpd_irq_lock);
1591
1592 if (ret == -1)
1593 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1594 }
1595
1596 static void
nv50_mstm_del(struct nv50_mstm ** pmstm)1597 nv50_mstm_del(struct nv50_mstm **pmstm)
1598 {
1599 struct nv50_mstm *mstm = *pmstm;
1600 if (mstm) {
1601 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1602 kfree(*pmstm);
1603 *pmstm = NULL;
1604 }
1605 }
1606
1607 static int
nv50_mstm_new(struct nouveau_encoder * outp,struct drm_dp_aux * aux,int aux_max,int conn_base_id,struct nv50_mstm ** pmstm)1608 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1609 int conn_base_id, struct nv50_mstm **pmstm)
1610 {
1611 const int max_payloads = hweight8(outp->dcb->heads);
1612 struct drm_device *dev = outp->base.base.dev;
1613 struct nv50_mstm *mstm;
1614 int ret;
1615
1616 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1617 return -ENOMEM;
1618 mstm->outp = outp;
1619 mstm->mgr.cbs = &nv50_mstm;
1620
1621 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1622 max_payloads, outp->dcb->dpconf.link_nr,
1623 drm_dp_bw_code_to_link_rate(outp->dcb->dpconf.link_bw),
1624 conn_base_id);
1625 if (ret)
1626 return ret;
1627
1628 return 0;
1629 }
1630
1631 /******************************************************************************
1632 * SOR
1633 *****************************************************************************/
1634 static void
nv50_sor_update(struct nouveau_encoder * nv_encoder,u8 head,struct nv50_head_atom * asyh,u8 proto,u8 depth)1635 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1636 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1637 {
1638 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1639 struct nv50_core *core = disp->core;
1640
1641 if (!asyh) {
1642 nv_encoder->ctrl &= ~BIT(head);
1643 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1644 nv_encoder->ctrl = 0;
1645 } else {
1646 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1647 nv_encoder->ctrl |= BIT(head);
1648 asyh->or.depth = depth;
1649 }
1650
1651 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1652 }
1653
1654 /* TODO: Should we extend this to PWM-only backlights?
1655 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1656 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1657 * fixed time delay from the vbios…
1658 */
1659 static void
nv50_sor_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1660 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1661 {
1662 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1663 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1664 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1665 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1666 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1667 struct nouveau_backlight *backlight = nv_connector->backlight;
1668 #endif
1669 struct drm_dp_aux *aux = &nv_connector->aux;
1670 int ret;
1671 u8 pwr;
1672
1673 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1674 if (backlight && backlight->uses_dpcd) {
1675 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1676 if (ret < 0)
1677 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1678 nv_connector->base.base.id, nv_connector->base.name, ret);
1679 }
1680 #endif
1681
1682 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1683 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1684
1685 if (ret == 0) {
1686 pwr &= ~DP_SET_POWER_MASK;
1687 pwr |= DP_SET_POWER_D3;
1688 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1689 }
1690 }
1691
1692 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1693 nv50_audio_disable(encoder, nv_crtc);
1694 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1695 nv50_outp_release(nv_encoder);
1696 nv_encoder->crtc = NULL;
1697 }
1698
1699 static void
nv50_sor_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1700 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1701 {
1702 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1703 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1704 struct nv50_head_atom *asyh =
1705 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1706 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1707 struct {
1708 struct nv50_disp_mthd_v1 base;
1709 struct nv50_disp_sor_lvds_script_v0 lvds;
1710 } lvds = {
1711 .base.version = 1,
1712 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1713 .base.hasht = nv_encoder->dcb->hasht,
1714 .base.hashm = nv_encoder->dcb->hashm,
1715 };
1716 struct nv50_disp *disp = nv50_disp(encoder->dev);
1717 struct drm_device *dev = encoder->dev;
1718 struct nouveau_drm *drm = nouveau_drm(dev);
1719 struct nouveau_connector *nv_connector;
1720 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1721 struct nouveau_backlight *backlight;
1722 #endif
1723 struct nvbios *bios = &drm->vbios;
1724 bool hda = false;
1725 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1726 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1727
1728 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1729 nv_encoder->crtc = &nv_crtc->base;
1730
1731 if ((disp->disp->object.oclass == GT214_DISP ||
1732 disp->disp->object.oclass >= GF110_DISP) &&
1733 drm_detect_monitor_audio(nv_connector->edid))
1734 hda = true;
1735 nv50_outp_acquire(nv_encoder, hda);
1736
1737 switch (nv_encoder->dcb->type) {
1738 case DCB_OUTPUT_TMDS:
1739 if (nv_encoder->link & 1) {
1740 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1741 /* Only enable dual-link if:
1742 * - Need to (i.e. rate > 165MHz)
1743 * - DCB says we can
1744 * - Not an HDMI monitor, since there's no dual-link
1745 * on HDMI.
1746 */
1747 if (mode->clock >= 165000 &&
1748 nv_encoder->dcb->duallink_possible &&
1749 !drm_detect_hdmi_monitor(nv_connector->edid))
1750 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1751 } else {
1752 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1753 }
1754
1755 nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1756 break;
1757 case DCB_OUTPUT_LVDS:
1758 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1759
1760 if (bios->fp_no_ddc) {
1761 if (bios->fp.dual_link)
1762 lvds.lvds.script |= 0x0100;
1763 if (bios->fp.if_is_24bit)
1764 lvds.lvds.script |= 0x0200;
1765 } else {
1766 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1767 if (((u8 *)nv_connector->edid)[121] == 2)
1768 lvds.lvds.script |= 0x0100;
1769 } else
1770 if (mode->clock >= bios->fp.duallink_transition_clk) {
1771 lvds.lvds.script |= 0x0100;
1772 }
1773
1774 if (lvds.lvds.script & 0x0100) {
1775 if (bios->fp.strapless_is_24bit & 2)
1776 lvds.lvds.script |= 0x0200;
1777 } else {
1778 if (bios->fp.strapless_is_24bit & 1)
1779 lvds.lvds.script |= 0x0200;
1780 }
1781
1782 if (asyh->or.bpc == 8)
1783 lvds.lvds.script |= 0x0200;
1784 }
1785
1786 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1787 break;
1788 case DCB_OUTPUT_DP:
1789 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1790
1791 if (nv_encoder->link & 1)
1792 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1793 else
1794 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1795
1796 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1797
1798 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1799 backlight = nv_connector->backlight;
1800 if (backlight && backlight->uses_dpcd)
1801 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1802 (u16)backlight->dev->props.brightness);
1803 #endif
1804
1805 break;
1806 default:
1807 BUG();
1808 break;
1809 }
1810
1811 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1812 }
1813
1814 static const struct drm_encoder_helper_funcs
1815 nv50_sor_help = {
1816 .atomic_check = nv50_outp_atomic_check,
1817 .atomic_enable = nv50_sor_atomic_enable,
1818 .atomic_disable = nv50_sor_atomic_disable,
1819 };
1820
1821 static void
nv50_sor_destroy(struct drm_encoder * encoder)1822 nv50_sor_destroy(struct drm_encoder *encoder)
1823 {
1824 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1825 nv50_mstm_del(&nv_encoder->dp.mstm);
1826 drm_encoder_cleanup(encoder);
1827
1828 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1829 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1830
1831 kfree(encoder);
1832 }
1833
1834 static const struct drm_encoder_funcs
1835 nv50_sor_func = {
1836 .destroy = nv50_sor_destroy,
1837 };
1838
nv50_has_mst(struct nouveau_drm * drm)1839 static bool nv50_has_mst(struct nouveau_drm *drm)
1840 {
1841 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1842 u32 data;
1843 u8 ver, hdr, cnt, len;
1844
1845 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1846 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1847 }
1848
1849 static int
nv50_sor_create(struct drm_connector * connector,struct dcb_output * dcbe)1850 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1851 {
1852 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1853 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1854 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1855 struct nouveau_encoder *nv_encoder;
1856 struct drm_encoder *encoder;
1857 struct nv50_disp *disp = nv50_disp(connector->dev);
1858 int type, ret;
1859
1860 switch (dcbe->type) {
1861 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1862 case DCB_OUTPUT_TMDS:
1863 case DCB_OUTPUT_DP:
1864 default:
1865 type = DRM_MODE_ENCODER_TMDS;
1866 break;
1867 }
1868
1869 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1870 if (!nv_encoder)
1871 return -ENOMEM;
1872 nv_encoder->dcb = dcbe;
1873 nv_encoder->update = nv50_sor_update;
1874
1875 encoder = to_drm_encoder(nv_encoder);
1876 encoder->possible_crtcs = dcbe->heads;
1877 encoder->possible_clones = 0;
1878 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1879 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1880 drm_encoder_helper_add(encoder, &nv50_sor_help);
1881
1882 drm_connector_attach_encoder(connector, encoder);
1883
1884 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1885 nv50_outp_dump_caps(drm, nv_encoder);
1886
1887 if (dcbe->type == DCB_OUTPUT_DP) {
1888 struct nvkm_i2c_aux *aux =
1889 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1890
1891 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1892
1893 if (aux) {
1894 if (disp->disp->object.oclass < GF110_DISP) {
1895 /* HW has no support for address-only
1896 * transactions, so we're required to
1897 * use custom I2C-over-AUX code.
1898 */
1899 nv_encoder->i2c = &aux->i2c;
1900 } else {
1901 nv_encoder->i2c = &nv_connector->aux.ddc;
1902 }
1903 nv_encoder->aux = aux;
1904 }
1905
1906 if (nv_connector->type != DCB_CONNECTOR_eDP &&
1907 nv50_has_mst(drm)) {
1908 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1909 16, nv_connector->base.base.id,
1910 &nv_encoder->dp.mstm);
1911 if (ret)
1912 return ret;
1913 }
1914 } else {
1915 struct nvkm_i2c_bus *bus =
1916 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1917 if (bus)
1918 nv_encoder->i2c = &bus->i2c;
1919 }
1920
1921 return 0;
1922 }
1923
1924 /******************************************************************************
1925 * PIOR
1926 *****************************************************************************/
1927 static int
nv50_pior_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1928 nv50_pior_atomic_check(struct drm_encoder *encoder,
1929 struct drm_crtc_state *crtc_state,
1930 struct drm_connector_state *conn_state)
1931 {
1932 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1933 if (ret)
1934 return ret;
1935 crtc_state->adjusted_mode.clock *= 2;
1936 return 0;
1937 }
1938
1939 static void
nv50_pior_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1940 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1941 {
1942 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1943 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1944 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1945
1946 core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1947 nv_encoder->crtc = NULL;
1948 nv50_outp_release(nv_encoder);
1949 }
1950
1951 static void
nv50_pior_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1952 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1953 {
1954 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1955 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1956 struct nv50_head_atom *asyh =
1957 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1958 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1959 u32 ctrl = 0;
1960
1961 switch (nv_crtc->index) {
1962 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1963 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1964 default:
1965 WARN_ON(1);
1966 break;
1967 }
1968
1969 nv50_outp_acquire(nv_encoder, false);
1970
1971 switch (asyh->or.bpc) {
1972 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1973 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1974 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1975 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1976 }
1977
1978 switch (nv_encoder->dcb->type) {
1979 case DCB_OUTPUT_TMDS:
1980 case DCB_OUTPUT_DP:
1981 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1982 break;
1983 default:
1984 BUG();
1985 break;
1986 }
1987
1988 core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1989 nv_encoder->crtc = &nv_crtc->base;
1990 }
1991
1992 static const struct drm_encoder_helper_funcs
1993 nv50_pior_help = {
1994 .atomic_check = nv50_pior_atomic_check,
1995 .atomic_enable = nv50_pior_atomic_enable,
1996 .atomic_disable = nv50_pior_atomic_disable,
1997 };
1998
1999 static void
nv50_pior_destroy(struct drm_encoder * encoder)2000 nv50_pior_destroy(struct drm_encoder *encoder)
2001 {
2002 drm_encoder_cleanup(encoder);
2003 kfree(encoder);
2004 }
2005
2006 static const struct drm_encoder_funcs
2007 nv50_pior_func = {
2008 .destroy = nv50_pior_destroy,
2009 };
2010
2011 static int
nv50_pior_create(struct drm_connector * connector,struct dcb_output * dcbe)2012 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2013 {
2014 struct drm_device *dev = connector->dev;
2015 struct nouveau_drm *drm = nouveau_drm(dev);
2016 struct nv50_disp *disp = nv50_disp(dev);
2017 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2018 struct nvkm_i2c_bus *bus = NULL;
2019 struct nvkm_i2c_aux *aux = NULL;
2020 struct i2c_adapter *ddc;
2021 struct nouveau_encoder *nv_encoder;
2022 struct drm_encoder *encoder;
2023 int type;
2024
2025 switch (dcbe->type) {
2026 case DCB_OUTPUT_TMDS:
2027 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2028 ddc = bus ? &bus->i2c : NULL;
2029 type = DRM_MODE_ENCODER_TMDS;
2030 break;
2031 case DCB_OUTPUT_DP:
2032 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2033 ddc = aux ? &aux->i2c : NULL;
2034 type = DRM_MODE_ENCODER_TMDS;
2035 break;
2036 default:
2037 return -ENODEV;
2038 }
2039
2040 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2041 if (!nv_encoder)
2042 return -ENOMEM;
2043 nv_encoder->dcb = dcbe;
2044 nv_encoder->i2c = ddc;
2045 nv_encoder->aux = aux;
2046
2047 encoder = to_drm_encoder(nv_encoder);
2048 encoder->possible_crtcs = dcbe->heads;
2049 encoder->possible_clones = 0;
2050 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2051 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2052 drm_encoder_helper_add(encoder, &nv50_pior_help);
2053
2054 drm_connector_attach_encoder(connector, encoder);
2055
2056 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2057 nv50_outp_dump_caps(drm, nv_encoder);
2058
2059 return 0;
2060 }
2061
2062 /******************************************************************************
2063 * Atomic
2064 *****************************************************************************/
2065
2066 static void
nv50_disp_atomic_commit_core(struct drm_atomic_state * state,u32 * interlock)2067 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2068 {
2069 struct nouveau_drm *drm = nouveau_drm(state->dev);
2070 struct nv50_disp *disp = nv50_disp(drm->dev);
2071 struct nv50_core *core = disp->core;
2072 struct nv50_mstm *mstm;
2073 struct drm_encoder *encoder;
2074
2075 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2076
2077 drm_for_each_encoder(encoder, drm->dev) {
2078 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2079 mstm = nouveau_encoder(encoder)->dp.mstm;
2080 if (mstm && mstm->modified)
2081 nv50_mstm_prepare(mstm);
2082 }
2083 }
2084
2085 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2086 core->func->update(core, interlock, true);
2087 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2088 disp->core->chan.base.device))
2089 NV_ERROR(drm, "core notifier timeout\n");
2090
2091 drm_for_each_encoder(encoder, drm->dev) {
2092 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2093 mstm = nouveau_encoder(encoder)->dp.mstm;
2094 if (mstm && mstm->modified)
2095 nv50_mstm_cleanup(mstm);
2096 }
2097 }
2098 }
2099
2100 static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state * state,u32 * interlock)2101 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2102 {
2103 struct drm_plane_state *new_plane_state;
2104 struct drm_plane *plane;
2105 int i;
2106
2107 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2108 struct nv50_wndw *wndw = nv50_wndw(plane);
2109 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2110 if (wndw->func->update)
2111 wndw->func->update(wndw, interlock);
2112 }
2113 }
2114 }
2115
2116 static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state * state)2117 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2118 {
2119 struct drm_device *dev = state->dev;
2120 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2121 struct drm_crtc *crtc;
2122 struct drm_plane_state *new_plane_state;
2123 struct drm_plane *plane;
2124 struct nouveau_drm *drm = nouveau_drm(dev);
2125 struct nv50_disp *disp = nv50_disp(dev);
2126 struct nv50_atom *atom = nv50_atom(state);
2127 struct nv50_core *core = disp->core;
2128 struct nv50_outp_atom *outp, *outt;
2129 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2130 int i;
2131 bool flushed = false;
2132
2133 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2134 nv50_crc_atomic_stop_reporting(state);
2135 drm_atomic_helper_wait_for_fences(dev, state, false);
2136 drm_atomic_helper_wait_for_dependencies(state);
2137 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2138 drm_atomic_helper_calc_timestamping_constants(state);
2139
2140 if (atom->lock_core)
2141 mutex_lock(&disp->mutex);
2142
2143 /* Disable head(s). */
2144 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2145 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2146 struct nv50_head *head = nv50_head(crtc);
2147
2148 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2149 asyh->clr.mask, asyh->set.mask);
2150
2151 if (old_crtc_state->active && !new_crtc_state->active) {
2152 pm_runtime_put_noidle(dev->dev);
2153 drm_crtc_vblank_off(crtc);
2154 }
2155
2156 if (asyh->clr.mask) {
2157 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2158 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2159 }
2160 }
2161
2162 /* Disable plane(s). */
2163 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2164 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2165 struct nv50_wndw *wndw = nv50_wndw(plane);
2166
2167 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2168 asyw->clr.mask, asyw->set.mask);
2169 if (!asyw->clr.mask)
2170 continue;
2171
2172 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2173 }
2174
2175 /* Disable output path(s). */
2176 list_for_each_entry(outp, &atom->outp, head) {
2177 const struct drm_encoder_helper_funcs *help;
2178 struct drm_encoder *encoder;
2179
2180 encoder = outp->encoder;
2181 help = encoder->helper_private;
2182
2183 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2184 outp->clr.mask, outp->set.mask);
2185
2186 if (outp->clr.mask) {
2187 help->atomic_disable(encoder, state);
2188 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2189 if (outp->flush_disable) {
2190 nv50_disp_atomic_commit_wndw(state, interlock);
2191 nv50_disp_atomic_commit_core(state, interlock);
2192 memset(interlock, 0x00, sizeof(interlock));
2193
2194 flushed = true;
2195 }
2196 }
2197 }
2198
2199 /* Flush disable. */
2200 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2201 if (atom->flush_disable) {
2202 nv50_disp_atomic_commit_wndw(state, interlock);
2203 nv50_disp_atomic_commit_core(state, interlock);
2204 memset(interlock, 0x00, sizeof(interlock));
2205
2206 flushed = true;
2207 }
2208 }
2209
2210 if (flushed)
2211 nv50_crc_atomic_release_notifier_contexts(state);
2212 nv50_crc_atomic_init_notifier_contexts(state);
2213
2214 /* Update output path(s). */
2215 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2216 const struct drm_encoder_helper_funcs *help;
2217 struct drm_encoder *encoder;
2218
2219 encoder = outp->encoder;
2220 help = encoder->helper_private;
2221
2222 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2223 outp->set.mask, outp->clr.mask);
2224
2225 if (outp->set.mask) {
2226 help->atomic_enable(encoder, state);
2227 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2228 }
2229
2230 list_del(&outp->head);
2231 kfree(outp);
2232 }
2233
2234 /* Update head(s). */
2235 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2236 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2237 struct nv50_head *head = nv50_head(crtc);
2238
2239 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2240 asyh->set.mask, asyh->clr.mask);
2241
2242 if (asyh->set.mask) {
2243 nv50_head_flush_set(head, asyh);
2244 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2245 }
2246
2247 if (new_crtc_state->active) {
2248 if (!old_crtc_state->active) {
2249 drm_crtc_vblank_on(crtc);
2250 pm_runtime_get_noresume(dev->dev);
2251 }
2252 if (new_crtc_state->event)
2253 drm_crtc_vblank_get(crtc);
2254 }
2255 }
2256
2257 /* Update window->head assignment.
2258 *
2259 * This has to happen in an update that's not interlocked with
2260 * any window channels to avoid hitting HW error checks.
2261 *
2262 *TODO: Proper handling of window ownership (Turing apparently
2263 * supports non-fixed mappings).
2264 */
2265 if (core->assign_windows) {
2266 core->func->wndw.owner(core);
2267 nv50_disp_atomic_commit_core(state, interlock);
2268 core->assign_windows = false;
2269 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2270 }
2271
2272 /* Finish updating head(s)...
2273 *
2274 * NVD is rather picky about both where window assignments can change,
2275 * *and* about certain core and window channel states matching.
2276 *
2277 * The EFI GOP driver on newer GPUs configures window channels with a
2278 * different output format to what we do, and the core channel update
2279 * in the assign_windows case above would result in a state mismatch.
2280 *
2281 * Delay some of the head update until after that point to workaround
2282 * the issue. This only affects the initial modeset.
2283 *
2284 * TODO: handle this better when adding flexible window mapping
2285 */
2286 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2287 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2288 struct nv50_head *head = nv50_head(crtc);
2289
2290 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2291 asyh->set.mask, asyh->clr.mask);
2292
2293 if (asyh->set.mask) {
2294 nv50_head_flush_set_wndw(head, asyh);
2295 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2296 }
2297 }
2298
2299 /* Update plane(s). */
2300 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2301 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2302 struct nv50_wndw *wndw = nv50_wndw(plane);
2303
2304 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2305 asyw->set.mask, asyw->clr.mask);
2306 if ( !asyw->set.mask &&
2307 (!asyw->clr.mask || atom->flush_disable))
2308 continue;
2309
2310 nv50_wndw_flush_set(wndw, interlock, asyw);
2311 }
2312
2313 /* Flush update. */
2314 nv50_disp_atomic_commit_wndw(state, interlock);
2315
2316 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2317 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2318 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2319 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2320 !atom->state.legacy_cursor_update)
2321 nv50_disp_atomic_commit_core(state, interlock);
2322 else
2323 disp->core->func->update(disp->core, interlock, false);
2324 }
2325
2326 if (atom->lock_core)
2327 mutex_unlock(&disp->mutex);
2328
2329 /* Wait for HW to signal completion. */
2330 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2331 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2332 struct nv50_wndw *wndw = nv50_wndw(plane);
2333 int ret = nv50_wndw_wait_armed(wndw, asyw);
2334 if (ret)
2335 NV_ERROR(drm, "%s: timeout\n", plane->name);
2336 }
2337
2338 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2339 if (new_crtc_state->event) {
2340 unsigned long flags;
2341 /* Get correct count/ts if racing with vblank irq */
2342 if (new_crtc_state->active)
2343 drm_crtc_accurate_vblank_count(crtc);
2344 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2345 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2346 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2347
2348 new_crtc_state->event = NULL;
2349 if (new_crtc_state->active)
2350 drm_crtc_vblank_put(crtc);
2351 }
2352 }
2353
2354 nv50_crc_atomic_start_reporting(state);
2355 if (!flushed)
2356 nv50_crc_atomic_release_notifier_contexts(state);
2357
2358 drm_atomic_helper_commit_hw_done(state);
2359 drm_atomic_helper_cleanup_planes(dev, state);
2360 drm_atomic_helper_commit_cleanup_done(state);
2361 drm_atomic_state_put(state);
2362
2363 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2364 pm_runtime_mark_last_busy(dev->dev);
2365 pm_runtime_put_autosuspend(dev->dev);
2366 }
2367
2368 static void
nv50_disp_atomic_commit_work(struct work_struct * work)2369 nv50_disp_atomic_commit_work(struct work_struct *work)
2370 {
2371 struct drm_atomic_state *state =
2372 container_of(work, typeof(*state), commit_work);
2373 nv50_disp_atomic_commit_tail(state);
2374 }
2375
2376 static int
nv50_disp_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)2377 nv50_disp_atomic_commit(struct drm_device *dev,
2378 struct drm_atomic_state *state, bool nonblock)
2379 {
2380 struct drm_plane_state *new_plane_state;
2381 struct drm_plane *plane;
2382 int ret, i;
2383
2384 ret = pm_runtime_get_sync(dev->dev);
2385 if (ret < 0 && ret != -EACCES) {
2386 pm_runtime_put_autosuspend(dev->dev);
2387 return ret;
2388 }
2389
2390 ret = drm_atomic_helper_setup_commit(state, nonblock);
2391 if (ret)
2392 goto done;
2393
2394 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2395
2396 ret = drm_atomic_helper_prepare_planes(dev, state);
2397 if (ret)
2398 goto done;
2399
2400 if (!nonblock) {
2401 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2402 if (ret)
2403 goto err_cleanup;
2404 }
2405
2406 ret = drm_atomic_helper_swap_state(state, true);
2407 if (ret)
2408 goto err_cleanup;
2409
2410 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2411 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2412 struct nv50_wndw *wndw = nv50_wndw(plane);
2413
2414 if (asyw->set.image)
2415 nv50_wndw_ntfy_enable(wndw, asyw);
2416 }
2417
2418 drm_atomic_state_get(state);
2419
2420 /*
2421 * Grab another RPM ref for the commit tail, which will release the
2422 * ref when it's finished
2423 */
2424 pm_runtime_get_noresume(dev->dev);
2425
2426 if (nonblock)
2427 queue_work(system_unbound_wq, &state->commit_work);
2428 else
2429 nv50_disp_atomic_commit_tail(state);
2430
2431 err_cleanup:
2432 if (ret)
2433 drm_atomic_helper_cleanup_planes(dev, state);
2434 done:
2435 pm_runtime_put_autosuspend(dev->dev);
2436 return ret;
2437 }
2438
2439 static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom * atom,struct drm_encoder * encoder)2440 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2441 {
2442 struct nv50_outp_atom *outp;
2443
2444 list_for_each_entry(outp, &atom->outp, head) {
2445 if (outp->encoder == encoder)
2446 return outp;
2447 }
2448
2449 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2450 if (!outp)
2451 return ERR_PTR(-ENOMEM);
2452
2453 list_add(&outp->head, &atom->outp);
2454 outp->encoder = encoder;
2455 return outp;
2456 }
2457
2458 static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom * atom,struct drm_connector_state * old_connector_state)2459 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2460 struct drm_connector_state *old_connector_state)
2461 {
2462 struct drm_encoder *encoder = old_connector_state->best_encoder;
2463 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2464 struct drm_crtc *crtc;
2465 struct nv50_outp_atom *outp;
2466
2467 if (!(crtc = old_connector_state->crtc))
2468 return 0;
2469
2470 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2471 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2472 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2473 outp = nv50_disp_outp_atomic_add(atom, encoder);
2474 if (IS_ERR(outp))
2475 return PTR_ERR(outp);
2476
2477 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2478 outp->flush_disable = true;
2479 atom->flush_disable = true;
2480 }
2481 outp->clr.ctrl = true;
2482 atom->lock_core = true;
2483 }
2484
2485 return 0;
2486 }
2487
2488 static int
nv50_disp_outp_atomic_check_set(struct nv50_atom * atom,struct drm_connector_state * connector_state)2489 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2490 struct drm_connector_state *connector_state)
2491 {
2492 struct drm_encoder *encoder = connector_state->best_encoder;
2493 struct drm_crtc_state *new_crtc_state;
2494 struct drm_crtc *crtc;
2495 struct nv50_outp_atom *outp;
2496
2497 if (!(crtc = connector_state->crtc))
2498 return 0;
2499
2500 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2501 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2502 outp = nv50_disp_outp_atomic_add(atom, encoder);
2503 if (IS_ERR(outp))
2504 return PTR_ERR(outp);
2505
2506 outp->set.ctrl = true;
2507 atom->lock_core = true;
2508 }
2509
2510 return 0;
2511 }
2512
2513 static int
nv50_disp_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)2514 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2515 {
2516 struct nv50_atom *atom = nv50_atom(state);
2517 struct nv50_core *core = nv50_disp(dev)->core;
2518 struct drm_connector_state *old_connector_state, *new_connector_state;
2519 struct drm_connector *connector;
2520 struct drm_crtc_state *new_crtc_state;
2521 struct drm_crtc *crtc;
2522 struct nv50_head *head;
2523 struct nv50_head_atom *asyh;
2524 int ret, i;
2525
2526 if (core->assign_windows && core->func->head->static_wndw_map) {
2527 drm_for_each_crtc(crtc, dev) {
2528 new_crtc_state = drm_atomic_get_crtc_state(state,
2529 crtc);
2530 if (IS_ERR(new_crtc_state))
2531 return PTR_ERR(new_crtc_state);
2532
2533 head = nv50_head(crtc);
2534 asyh = nv50_head_atom(new_crtc_state);
2535 core->func->head->static_wndw_map(head, asyh);
2536 }
2537 }
2538
2539 /* We need to handle colour management on a per-plane basis. */
2540 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2541 if (new_crtc_state->color_mgmt_changed) {
2542 ret = drm_atomic_add_affected_planes(state, crtc);
2543 if (ret)
2544 return ret;
2545 }
2546 }
2547
2548 ret = drm_atomic_helper_check(dev, state);
2549 if (ret)
2550 return ret;
2551
2552 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2553 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2554 if (ret)
2555 return ret;
2556
2557 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2558 if (ret)
2559 return ret;
2560 }
2561
2562 ret = drm_dp_mst_atomic_check(state);
2563 if (ret)
2564 return ret;
2565
2566 nv50_crc_atomic_check_outp(atom);
2567
2568 return 0;
2569 }
2570
2571 static void
nv50_disp_atomic_state_clear(struct drm_atomic_state * state)2572 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2573 {
2574 struct nv50_atom *atom = nv50_atom(state);
2575 struct nv50_outp_atom *outp, *outt;
2576
2577 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2578 list_del(&outp->head);
2579 kfree(outp);
2580 }
2581
2582 drm_atomic_state_default_clear(state);
2583 }
2584
2585 static void
nv50_disp_atomic_state_free(struct drm_atomic_state * state)2586 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2587 {
2588 struct nv50_atom *atom = nv50_atom(state);
2589 drm_atomic_state_default_release(&atom->state);
2590 kfree(atom);
2591 }
2592
2593 static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device * dev)2594 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2595 {
2596 struct nv50_atom *atom;
2597 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2598 drm_atomic_state_init(dev, &atom->state) < 0) {
2599 kfree(atom);
2600 return NULL;
2601 }
2602 INIT_LIST_HEAD(&atom->outp);
2603 return &atom->state;
2604 }
2605
2606 static const struct drm_mode_config_funcs
2607 nv50_disp_func = {
2608 .fb_create = nouveau_user_framebuffer_create,
2609 .output_poll_changed = nouveau_fbcon_output_poll_changed,
2610 .atomic_check = nv50_disp_atomic_check,
2611 .atomic_commit = nv50_disp_atomic_commit,
2612 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2613 .atomic_state_clear = nv50_disp_atomic_state_clear,
2614 .atomic_state_free = nv50_disp_atomic_state_free,
2615 };
2616
2617 /******************************************************************************
2618 * Init
2619 *****************************************************************************/
2620
2621 static void
nv50_display_fini(struct drm_device * dev,bool runtime,bool suspend)2622 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2623 {
2624 struct nouveau_drm *drm = nouveau_drm(dev);
2625 struct drm_encoder *encoder;
2626 struct drm_plane *plane;
2627
2628 drm_for_each_plane(plane, dev) {
2629 struct nv50_wndw *wndw = nv50_wndw(plane);
2630 if (plane->funcs != &nv50_wndw)
2631 continue;
2632 nv50_wndw_fini(wndw);
2633 }
2634
2635 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2636 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2637 nv50_mstm_fini(nouveau_encoder(encoder));
2638 }
2639
2640 if (!runtime)
2641 cancel_work_sync(&drm->hpd_work);
2642 }
2643
2644 static int
nv50_display_init(struct drm_device * dev,bool resume,bool runtime)2645 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2646 {
2647 struct nv50_core *core = nv50_disp(dev)->core;
2648 struct drm_encoder *encoder;
2649 struct drm_plane *plane;
2650
2651 if (resume || runtime)
2652 core->func->init(core);
2653
2654 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2655 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2656 struct nouveau_encoder *nv_encoder =
2657 nouveau_encoder(encoder);
2658 nv50_mstm_init(nv_encoder, runtime);
2659 }
2660 }
2661
2662 drm_for_each_plane(plane, dev) {
2663 struct nv50_wndw *wndw = nv50_wndw(plane);
2664 if (plane->funcs != &nv50_wndw)
2665 continue;
2666 nv50_wndw_init(wndw);
2667 }
2668
2669 return 0;
2670 }
2671
2672 static void
nv50_display_destroy(struct drm_device * dev)2673 nv50_display_destroy(struct drm_device *dev)
2674 {
2675 struct nv50_disp *disp = nv50_disp(dev);
2676
2677 nv50_audio_component_fini(nouveau_drm(dev));
2678
2679 nvif_object_unmap(&disp->caps);
2680 nvif_object_dtor(&disp->caps);
2681 nv50_core_del(&disp->core);
2682
2683 nouveau_bo_unmap(disp->sync);
2684 if (disp->sync)
2685 nouveau_bo_unpin(disp->sync);
2686 nouveau_bo_ref(NULL, &disp->sync);
2687
2688 nouveau_display(dev)->priv = NULL;
2689 kfree(disp);
2690 }
2691
2692 int
nv50_display_create(struct drm_device * dev)2693 nv50_display_create(struct drm_device *dev)
2694 {
2695 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2696 struct nouveau_drm *drm = nouveau_drm(dev);
2697 struct dcb_table *dcb = &drm->vbios.dcb;
2698 struct drm_connector *connector, *tmp;
2699 struct nv50_disp *disp;
2700 struct dcb_output *dcbe;
2701 int crtcs, ret, i;
2702 bool has_mst = nv50_has_mst(drm);
2703
2704 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2705 if (!disp)
2706 return -ENOMEM;
2707
2708 mutex_init(&disp->mutex);
2709
2710 nouveau_display(dev)->priv = disp;
2711 nouveau_display(dev)->dtor = nv50_display_destroy;
2712 nouveau_display(dev)->init = nv50_display_init;
2713 nouveau_display(dev)->fini = nv50_display_fini;
2714 disp->disp = &nouveau_display(dev)->disp;
2715 dev->mode_config.funcs = &nv50_disp_func;
2716 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2717 dev->mode_config.normalize_zpos = true;
2718
2719 /* small shared memory area we use for notifiers and semaphores */
2720 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2721 NOUVEAU_GEM_DOMAIN_VRAM,
2722 0, 0x0000, NULL, NULL, &disp->sync);
2723 if (!ret) {
2724 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2725 if (!ret) {
2726 ret = nouveau_bo_map(disp->sync);
2727 if (ret)
2728 nouveau_bo_unpin(disp->sync);
2729 }
2730 if (ret)
2731 nouveau_bo_ref(NULL, &disp->sync);
2732 }
2733
2734 if (ret)
2735 goto out;
2736
2737 /* allocate master evo channel */
2738 ret = nv50_core_new(drm, &disp->core);
2739 if (ret)
2740 goto out;
2741
2742 disp->core->func->init(disp->core);
2743 if (disp->core->func->caps_init) {
2744 ret = disp->core->func->caps_init(drm, disp);
2745 if (ret)
2746 goto out;
2747 }
2748
2749 /* Assign the correct format modifiers */
2750 if (disp->disp->object.oclass >= TU102_DISP)
2751 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2752 else
2753 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2754 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2755 else
2756 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2757
2758 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2759 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2760 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2761 * small page allocations in prepare_fb(). When this is implemented, we should also force
2762 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2763 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2764 * large pages.
2765 */
2766 if (disp->disp->object.oclass >= GM107_DISP) {
2767 dev->mode_config.cursor_width = 256;
2768 dev->mode_config.cursor_height = 256;
2769 } else if (disp->disp->object.oclass >= GK104_DISP) {
2770 dev->mode_config.cursor_width = 128;
2771 dev->mode_config.cursor_height = 128;
2772 } else {
2773 dev->mode_config.cursor_width = 64;
2774 dev->mode_config.cursor_height = 64;
2775 }
2776
2777 /* create crtc objects to represent the hw heads */
2778 if (disp->disp->object.oclass >= GV100_DISP)
2779 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2780 else
2781 if (disp->disp->object.oclass >= GF110_DISP)
2782 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2783 else
2784 crtcs = 0x3;
2785
2786 for (i = 0; i < fls(crtcs); i++) {
2787 struct nv50_head *head;
2788
2789 if (!(crtcs & (1 << i)))
2790 continue;
2791
2792 head = nv50_head_create(dev, i);
2793 if (IS_ERR(head)) {
2794 ret = PTR_ERR(head);
2795 goto out;
2796 }
2797
2798 if (has_mst) {
2799 head->msto = nv50_msto_new(dev, head, i);
2800 if (IS_ERR(head->msto)) {
2801 ret = PTR_ERR(head->msto);
2802 head->msto = NULL;
2803 goto out;
2804 }
2805
2806 /*
2807 * FIXME: This is a hack to workaround the following
2808 * issues:
2809 *
2810 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2811 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2812 *
2813 * Once these issues are closed, this should be
2814 * removed
2815 */
2816 head->msto->encoder.possible_crtcs = crtcs;
2817 }
2818 }
2819
2820 /* create encoder/connector objects based on VBIOS DCB table */
2821 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2822 connector = nouveau_connector_create(dev, dcbe);
2823 if (IS_ERR(connector))
2824 continue;
2825
2826 if (dcbe->location == DCB_LOC_ON_CHIP) {
2827 switch (dcbe->type) {
2828 case DCB_OUTPUT_TMDS:
2829 case DCB_OUTPUT_LVDS:
2830 case DCB_OUTPUT_DP:
2831 ret = nv50_sor_create(connector, dcbe);
2832 break;
2833 case DCB_OUTPUT_ANALOG:
2834 ret = nv50_dac_create(connector, dcbe);
2835 break;
2836 default:
2837 ret = -ENODEV;
2838 break;
2839 }
2840 } else {
2841 ret = nv50_pior_create(connector, dcbe);
2842 }
2843
2844 if (ret) {
2845 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2846 dcbe->location, dcbe->type,
2847 ffs(dcbe->or) - 1, ret);
2848 ret = 0;
2849 }
2850 }
2851
2852 /* cull any connectors we created that don't have an encoder */
2853 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2854 if (connector->possible_encoders)
2855 continue;
2856
2857 NV_WARN(drm, "%s has no encoders, removing\n",
2858 connector->name);
2859 connector->funcs->destroy(connector);
2860 }
2861
2862 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2863 dev->vblank_disable_immediate = true;
2864
2865 nv50_audio_component_init(drm);
2866
2867 out:
2868 if (ret)
2869 nv50_display_destroy(dev);
2870 return ret;
2871 }
2872
2873 /******************************************************************************
2874 * Format modifiers
2875 *****************************************************************************/
2876
2877 /****************************************************************
2878 * Log2(block height) ----------------------------+ *
2879 * Page Kind ----------------------------------+ | *
2880 * Gob Height/Page Kind Generation ------+ | | *
2881 * Sector layout -------+ | | | *
2882 * Compression ------+ | | | | */
2883 const u64 disp50xx_modifiers[] = { /* | | | | | */
2884 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2885 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2886 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2887 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2888 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2889 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2890 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2891 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2892 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2893 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2894 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2895 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2896 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2897 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2898 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2899 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2900 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2901 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2902 DRM_FORMAT_MOD_LINEAR,
2903 DRM_FORMAT_MOD_INVALID
2904 };
2905
2906 /****************************************************************
2907 * Log2(block height) ----------------------------+ *
2908 * Page Kind ----------------------------------+ | *
2909 * Gob Height/Page Kind Generation ------+ | | *
2910 * Sector layout -------+ | | | *
2911 * Compression ------+ | | | | */
2912 const u64 disp90xx_modifiers[] = { /* | | | | | */
2913 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2914 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2915 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2916 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2917 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2918 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2919 DRM_FORMAT_MOD_LINEAR,
2920 DRM_FORMAT_MOD_INVALID
2921 };
2922