1 /*
2  * Copyright (C) 2008 Maarten Maathuis.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining
6  * a copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sublicense, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial
15  * portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20  * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
21  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
22  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
23  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #include "drmP.h"
28 #include "drm_mode.h"
29 #include "drm_crtc_helper.h"
30 
31 #define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
32 #include "nouveau_reg.h"
33 #include "nouveau_drv.h"
34 #include "nouveau_hw.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_crtc.h"
37 #include "nouveau_fb.h"
38 #include "nouveau_connector.h"
39 #include "nv50_display.h"
40 
41 static void
nv50_crtc_lut_load(struct drm_crtc * crtc)42 nv50_crtc_lut_load(struct drm_crtc *crtc)
43 {
44 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
45 	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
46 	int i;
47 
48 	NV_DEBUG_KMS(crtc->dev, "\n");
49 
50 	for (i = 0; i < 256; i++) {
51 		writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
52 		writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
53 		writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
54 	}
55 
56 	if (nv_crtc->lut.depth == 30) {
57 		writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
58 		writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
59 		writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
60 	}
61 }
62 
63 int
nv50_crtc_blank(struct nouveau_crtc * nv_crtc,bool blanked)64 nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
65 {
66 	struct drm_device *dev = nv_crtc->base.dev;
67 	struct drm_nouveau_private *dev_priv = dev->dev_private;
68 	struct nouveau_channel *evo = nv50_display(dev)->master;
69 	int index = nv_crtc->index, ret;
70 
71 	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
72 	NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked");
73 
74 	if (blanked) {
75 		nv_crtc->cursor.hide(nv_crtc, false);
76 
77 		ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5);
78 		if (ret) {
79 			NV_ERROR(dev, "no space while blanking crtc\n");
80 			return ret;
81 		}
82 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
83 		OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK);
84 		OUT_RING(evo, 0);
85 		if (dev_priv->chipset != 0x50) {
86 			BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
87 			OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE);
88 		}
89 
90 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
91 		OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE);
92 	} else {
93 		if (nv_crtc->cursor.visible)
94 			nv_crtc->cursor.show(nv_crtc, false);
95 		else
96 			nv_crtc->cursor.hide(nv_crtc, false);
97 
98 		ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8);
99 		if (ret) {
100 			NV_ERROR(dev, "no space while unblanking crtc\n");
101 			return ret;
102 		}
103 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
104 		OUT_RING(evo, nv_crtc->lut.depth == 8 ?
105 				NV50_EVO_CRTC_CLUT_MODE_OFF :
106 				NV50_EVO_CRTC_CLUT_MODE_ON);
107 		OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8);
108 		if (dev_priv->chipset != 0x50) {
109 			BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
110 			OUT_RING(evo, NvEvoVRAM);
111 		}
112 
113 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
114 		OUT_RING(evo, nv_crtc->fb.offset >> 8);
115 		OUT_RING(evo, 0);
116 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
117 		if (dev_priv->chipset != 0x50)
118 			if (nv_crtc->fb.tile_flags == 0x7a00 ||
119 			    nv_crtc->fb.tile_flags == 0xfe00)
120 				OUT_RING(evo, NvEvoFB32);
121 			else
122 			if (nv_crtc->fb.tile_flags == 0x7000)
123 				OUT_RING(evo, NvEvoFB16);
124 			else
125 				OUT_RING(evo, NvEvoVRAM_LP);
126 		else
127 			OUT_RING(evo, NvEvoVRAM_LP);
128 	}
129 
130 	nv_crtc->fb.blanked = blanked;
131 	return 0;
132 }
133 
134 static int
nv50_crtc_set_dither(struct nouveau_crtc * nv_crtc,bool update)135 nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
136 {
137 	struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master;
138 	struct nouveau_connector *nv_connector;
139 	struct drm_connector *connector;
140 	int head = nv_crtc->index, ret;
141 	u32 mode = 0x00;
142 
143 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
144 	connector = &nv_connector->base;
145 	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
146 		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
147 			mode = DITHERING_MODE_DYNAMIC2X2;
148 	} else {
149 		mode = nv_connector->dithering_mode;
150 	}
151 
152 	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
153 		if (connector->display_info.bpc >= 8)
154 			mode |= DITHERING_DEPTH_8BPC;
155 	} else {
156 		mode |= nv_connector->dithering_depth;
157 	}
158 
159 	ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
160 	if (ret == 0) {
161 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1);
162 		OUT_RING  (evo, mode);
163 		if (update) {
164 			BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
165 			OUT_RING  (evo, 0);
166 			FIRE_RING (evo);
167 		}
168 	}
169 
170 	return ret;
171 }
172 
173 static int
nv50_crtc_set_color_vibrance(struct nouveau_crtc * nv_crtc,bool update)174 nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
175 {
176 	struct drm_device *dev = nv_crtc->base.dev;
177 	struct nouveau_channel *evo = nv50_display(dev)->master;
178 	int ret;
179 	int adj;
180 	u32 hue, vib;
181 
182 	NV_DEBUG_KMS(dev, "vibrance = %i, hue = %i\n",
183 		     nv_crtc->color_vibrance, nv_crtc->vibrant_hue);
184 
185 	ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
186 	if (ret) {
187 		NV_ERROR(dev, "no space while setting color vibrance\n");
188 		return ret;
189 	}
190 
191 	adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
192 	vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
193 
194 	hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
195 
196 	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
197 	OUT_RING  (evo, (hue << 20) | (vib << 8));
198 
199 	if (update) {
200 		BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
201 		OUT_RING  (evo, 0);
202 		FIRE_RING (evo);
203 	}
204 
205 	return 0;
206 }
207 
208 struct nouveau_connector *
nouveau_crtc_connector_get(struct nouveau_crtc * nv_crtc)209 nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc)
210 {
211 	struct drm_device *dev = nv_crtc->base.dev;
212 	struct drm_connector *connector;
213 	struct drm_crtc *crtc = to_drm_crtc(nv_crtc);
214 
215 	/* The safest approach is to find an encoder with the right crtc, that
216 	 * is also linked to a connector. */
217 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
218 		if (connector->encoder)
219 			if (connector->encoder->crtc == crtc)
220 				return nouveau_connector(connector);
221 	}
222 
223 	return NULL;
224 }
225 
226 static int
nv50_crtc_set_scale(struct nouveau_crtc * nv_crtc,bool update)227 nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
228 {
229 	struct nouveau_connector *nv_connector;
230 	struct drm_crtc *crtc = &nv_crtc->base;
231 	struct drm_device *dev = crtc->dev;
232 	struct nouveau_channel *evo = nv50_display(dev)->master;
233 	struct drm_display_mode *umode = &crtc->mode;
234 	struct drm_display_mode *omode;
235 	int scaling_mode, ret;
236 	u32 ctrl = 0, oX, oY;
237 
238 	NV_DEBUG_KMS(dev, "\n");
239 
240 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
241 	if (!nv_connector || !nv_connector->native_mode) {
242 		NV_ERROR(dev, "no native mode, forcing panel scaling\n");
243 		scaling_mode = DRM_MODE_SCALE_NONE;
244 	} else {
245 		scaling_mode = nv_connector->scaling_mode;
246 	}
247 
248 	/* start off at the resolution we programmed the crtc for, this
249 	 * effectively handles NONE/FULL scaling
250 	 */
251 	if (scaling_mode != DRM_MODE_SCALE_NONE)
252 		omode = nv_connector->native_mode;
253 	else
254 		omode = umode;
255 
256 	oX = omode->hdisplay;
257 	oY = omode->vdisplay;
258 	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
259 		oY *= 2;
260 
261 	/* add overscan compensation if necessary, will keep the aspect
262 	 * ratio the same as the backend mode unless overridden by the
263 	 * user setting both hborder and vborder properties.
264 	 */
265 	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
266 			     (nv_connector->underscan == UNDERSCAN_AUTO &&
267 			      nv_connector->edid &&
268 			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
269 		u32 bX = nv_connector->underscan_hborder;
270 		u32 bY = nv_connector->underscan_vborder;
271 		u32 aspect = (oY << 19) / oX;
272 
273 		if (bX) {
274 			oX -= (bX * 2);
275 			if (bY) oY -= (bY * 2);
276 			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
277 		} else {
278 			oX -= (oX >> 4) + 32;
279 			if (bY) oY -= (bY * 2);
280 			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
281 		}
282 	}
283 
284 	/* handle CENTER/ASPECT scaling, taking into account the areas
285 	 * removed already for overscan compensation
286 	 */
287 	switch (scaling_mode) {
288 	case DRM_MODE_SCALE_CENTER:
289 		oX = min((u32)umode->hdisplay, oX);
290 		oY = min((u32)umode->vdisplay, oY);
291 		/* fall-through */
292 	case DRM_MODE_SCALE_ASPECT:
293 		if (oY < oX) {
294 			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
295 			oX = ((oY * aspect) + (aspect / 2)) >> 19;
296 		} else {
297 			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
298 			oY = ((oX * aspect) + (aspect / 2)) >> 19;
299 		}
300 		break;
301 	default:
302 		break;
303 	}
304 
305 	if (umode->hdisplay != oX || umode->vdisplay != oY ||
306 	    umode->flags & DRM_MODE_FLAG_INTERLACE ||
307 	    umode->flags & DRM_MODE_FLAG_DBLSCAN)
308 		ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE;
309 
310 	ret = RING_SPACE(evo, 5);
311 	if (ret)
312 		return ret;
313 
314 	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
315 	OUT_RING  (evo, ctrl);
316 	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
317 	OUT_RING  (evo, oY << 16 | oX);
318 	OUT_RING  (evo, oY << 16 | oX);
319 
320 	if (update) {
321 		nv50_display_flip_stop(crtc);
322 		nv50_display_sync(dev);
323 		nv50_display_flip_next(crtc, crtc->fb, NULL);
324 	}
325 
326 	return 0;
327 }
328 
329 int
nv50_crtc_set_clock(struct drm_device * dev,int head,int pclk)330 nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
331 {
332 	struct drm_nouveau_private *dev_priv = dev->dev_private;
333 	struct pll_lims pll;
334 	uint32_t reg1, reg2;
335 	int ret, N1, M1, N2, M2, P;
336 
337 	ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll);
338 	if (ret)
339 		return ret;
340 
341 	if (pll.vco2.maxfreq) {
342 		ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P);
343 		if (ret <= 0)
344 			return 0;
345 
346 		NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n",
347 			 pclk, ret, N1, M1, N2, M2, P);
348 
349 		reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00;
350 		reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00;
351 		nv_wr32(dev, pll.reg + 0, 0x10000611);
352 		nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1);
353 		nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2);
354 	} else
355 	if (dev_priv->chipset < NV_C0) {
356 		ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
357 		if (ret <= 0)
358 			return 0;
359 
360 		NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
361 			 pclk, ret, N1, N2, M1, P);
362 
363 		reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000;
364 		nv_wr32(dev, pll.reg + 0, 0x50000610);
365 		nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1);
366 		nv_wr32(dev, pll.reg + 8, N2);
367 	} else {
368 		ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
369 		if (ret <= 0)
370 			return 0;
371 
372 		NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
373 			 pclk, ret, N1, N2, M1, P);
374 
375 		nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100);
376 		nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1);
377 		nv_wr32(dev, pll.reg + 0x10, N2 << 16);
378 	}
379 
380 	return 0;
381 }
382 
383 static void
nv50_crtc_destroy(struct drm_crtc * crtc)384 nv50_crtc_destroy(struct drm_crtc *crtc)
385 {
386 	struct drm_device *dev;
387 	struct nouveau_crtc *nv_crtc;
388 
389 	if (!crtc)
390 		return;
391 
392 	dev = crtc->dev;
393 	nv_crtc = nouveau_crtc(crtc);
394 
395 	NV_DEBUG_KMS(dev, "\n");
396 
397 	drm_crtc_cleanup(&nv_crtc->base);
398 
399 	nouveau_bo_unmap(nv_crtc->lut.nvbo);
400 	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
401 	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
402 	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
403 	kfree(nv_crtc);
404 }
405 
406 int
nv50_crtc_cursor_set(struct drm_crtc * crtc,struct drm_file * file_priv,uint32_t buffer_handle,uint32_t width,uint32_t height)407 nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
408 		     uint32_t buffer_handle, uint32_t width, uint32_t height)
409 {
410 	struct drm_device *dev = crtc->dev;
411 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
412 	struct nouveau_bo *cursor = NULL;
413 	struct drm_gem_object *gem;
414 	int ret = 0, i;
415 
416 	if (!buffer_handle) {
417 		nv_crtc->cursor.hide(nv_crtc, true);
418 		return 0;
419 	}
420 
421 	if (width != 64 || height != 64)
422 		return -EINVAL;
423 
424 	gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
425 	if (!gem)
426 		return -ENOENT;
427 	cursor = nouveau_gem_object(gem);
428 
429 	ret = nouveau_bo_map(cursor);
430 	if (ret)
431 		goto out;
432 
433 	/* The simple will do for now. */
434 	for (i = 0; i < 64 * 64; i++)
435 		nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));
436 
437 	nouveau_bo_unmap(cursor);
438 
439 	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset);
440 	nv_crtc->cursor.show(nv_crtc, true);
441 
442 out:
443 	drm_gem_object_unreference_unlocked(gem);
444 	return ret;
445 }
446 
447 int
nv50_crtc_cursor_move(struct drm_crtc * crtc,int x,int y)448 nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
449 {
450 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
451 
452 	nv_crtc->cursor.set_pos(nv_crtc, x, y);
453 	return 0;
454 }
455 
456 static void
nv50_crtc_gamma_set(struct drm_crtc * crtc,u16 * r,u16 * g,u16 * b,uint32_t start,uint32_t size)457 nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
458 		    uint32_t start, uint32_t size)
459 {
460 	int end = (start + size > 256) ? 256 : start + size, i;
461 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
462 
463 	for (i = start; i < end; i++) {
464 		nv_crtc->lut.r[i] = r[i];
465 		nv_crtc->lut.g[i] = g[i];
466 		nv_crtc->lut.b[i] = b[i];
467 	}
468 
469 	/* We need to know the depth before we upload, but it's possible to
470 	 * get called before a framebuffer is bound.  If this is the case,
471 	 * mark the lut values as dirty by setting depth==0, and it'll be
472 	 * uploaded on the first mode_set_base()
473 	 */
474 	if (!nv_crtc->base.fb) {
475 		nv_crtc->lut.depth = 0;
476 		return;
477 	}
478 
479 	nv50_crtc_lut_load(crtc);
480 }
481 
482 static void
nv50_crtc_save(struct drm_crtc * crtc)483 nv50_crtc_save(struct drm_crtc *crtc)
484 {
485 	NV_ERROR(crtc->dev, "!!\n");
486 }
487 
488 static void
nv50_crtc_restore(struct drm_crtc * crtc)489 nv50_crtc_restore(struct drm_crtc *crtc)
490 {
491 	NV_ERROR(crtc->dev, "!!\n");
492 }
493 
494 static const struct drm_crtc_funcs nv50_crtc_funcs = {
495 	.save = nv50_crtc_save,
496 	.restore = nv50_crtc_restore,
497 	.cursor_set = nv50_crtc_cursor_set,
498 	.cursor_move = nv50_crtc_cursor_move,
499 	.gamma_set = nv50_crtc_gamma_set,
500 	.set_config = drm_crtc_helper_set_config,
501 	.page_flip = nouveau_crtc_page_flip,
502 	.destroy = nv50_crtc_destroy,
503 };
504 
505 static void
nv50_crtc_dpms(struct drm_crtc * crtc,int mode)506 nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
507 {
508 }
509 
510 static void
nv50_crtc_prepare(struct drm_crtc * crtc)511 nv50_crtc_prepare(struct drm_crtc *crtc)
512 {
513 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
514 	struct drm_device *dev = crtc->dev;
515 
516 	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
517 
518 	nv50_display_flip_stop(crtc);
519 	drm_vblank_pre_modeset(dev, nv_crtc->index);
520 	nv50_crtc_blank(nv_crtc, true);
521 }
522 
523 static void
nv50_crtc_commit(struct drm_crtc * crtc)524 nv50_crtc_commit(struct drm_crtc *crtc)
525 {
526 	struct drm_device *dev = crtc->dev;
527 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
528 
529 	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
530 
531 	nv50_crtc_blank(nv_crtc, false);
532 	drm_vblank_post_modeset(dev, nv_crtc->index);
533 	nv50_display_sync(dev);
534 	nv50_display_flip_next(crtc, crtc->fb, NULL);
535 }
536 
537 static bool
nv50_crtc_mode_fixup(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)538 nv50_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
539 		     struct drm_display_mode *adjusted_mode)
540 {
541 	return true;
542 }
543 
544 static int
nv50_crtc_do_mode_set_base(struct drm_crtc * crtc,struct drm_framebuffer * passed_fb,int x,int y,bool atomic)545 nv50_crtc_do_mode_set_base(struct drm_crtc *crtc,
546 			   struct drm_framebuffer *passed_fb,
547 			   int x, int y, bool atomic)
548 {
549 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
550 	struct drm_device *dev = nv_crtc->base.dev;
551 	struct drm_nouveau_private *dev_priv = dev->dev_private;
552 	struct nouveau_channel *evo = nv50_display(dev)->master;
553 	struct drm_framebuffer *drm_fb;
554 	struct nouveau_framebuffer *fb;
555 	int ret;
556 
557 	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
558 
559 	/* no fb bound */
560 	if (!atomic && !crtc->fb) {
561 		NV_DEBUG_KMS(dev, "No FB bound\n");
562 		return 0;
563 	}
564 
565 	/* If atomic, we want to switch to the fb we were passed, so
566 	 * now we update pointers to do that.  (We don't pin; just
567 	 * assume we're already pinned and update the base address.)
568 	 */
569 	if (atomic) {
570 		drm_fb = passed_fb;
571 		fb = nouveau_framebuffer(passed_fb);
572 	} else {
573 		drm_fb = crtc->fb;
574 		fb = nouveau_framebuffer(crtc->fb);
575 		/* If not atomic, we can go ahead and pin, and unpin the
576 		 * old fb we were passed.
577 		 */
578 		ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
579 		if (ret)
580 			return ret;
581 
582 		if (passed_fb) {
583 			struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
584 			nouveau_bo_unpin(ofb->nvbo);
585 		}
586 	}
587 
588 	nv_crtc->fb.offset = fb->nvbo->bo.offset;
589 	nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo);
590 	nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
591 	if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) {
592 		ret = RING_SPACE(evo, 2);
593 		if (ret)
594 			return ret;
595 
596 		BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
597 		OUT_RING  (evo, fb->r_dma);
598 	}
599 
600 	ret = RING_SPACE(evo, 12);
601 	if (ret)
602 		return ret;
603 
604 	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
605 	OUT_RING  (evo, nv_crtc->fb.offset >> 8);
606 	OUT_RING  (evo, 0);
607 	OUT_RING  (evo, (drm_fb->height << 16) | drm_fb->width);
608 	OUT_RING  (evo, fb->r_pitch);
609 	OUT_RING  (evo, fb->r_format);
610 
611 	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
612 	OUT_RING  (evo, fb->base.depth == 8 ?
613 		   NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON);
614 
615 	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
616 	OUT_RING  (evo, (y << 16) | x);
617 
618 	if (nv_crtc->lut.depth != fb->base.depth) {
619 		nv_crtc->lut.depth = fb->base.depth;
620 		nv50_crtc_lut_load(crtc);
621 	}
622 
623 	return 0;
624 }
625 
626 static int
nv50_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * umode,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * old_fb)627 nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
628 		   struct drm_display_mode *mode, int x, int y,
629 		   struct drm_framebuffer *old_fb)
630 {
631 	struct drm_device *dev = crtc->dev;
632 	struct nouveau_channel *evo = nv50_display(dev)->master;
633 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
634 	u32 head = nv_crtc->index * 0x400;
635 	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
636 	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
637 	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
638 	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
639 	u32 vblan2e = 0, vblan2s = 1;
640 	int ret;
641 
642 	/* hw timing description looks like this:
643 	 *
644 	 * <sync> <back porch> <---------display---------> <front porch>
645 	 * ______
646 	 *       |____________|---------------------------|____________|
647 	 *
648 	 *       ^ synce      ^ blanke                    ^ blanks     ^ active
649 	 *
650 	 * interlaced modes also have 2 additional values pointing at the end
651 	 * and start of the next field's blanking period.
652 	 */
653 
654 	hactive = mode->htotal;
655 	hsynce  = mode->hsync_end - mode->hsync_start - 1;
656 	hbackp  = mode->htotal - mode->hsync_end;
657 	hblanke = hsynce + hbackp;
658 	hfrontp = mode->hsync_start - mode->hdisplay;
659 	hblanks = mode->htotal - hfrontp - 1;
660 
661 	vactive = mode->vtotal * vscan / ilace;
662 	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
663 	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
664 	vblanke = vsynce + vbackp;
665 	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
666 	vblanks = vactive - vfrontp - 1;
667 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
668 		vblan2e = vactive + vsynce + vbackp;
669 		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
670 		vactive = (vactive * 2) + 1;
671 	}
672 
673 	ret = RING_SPACE(evo, 18);
674 	if (ret == 0) {
675 		BEGIN_RING(evo, 0, 0x0804 + head, 2);
676 		OUT_RING  (evo, 0x00800000 | mode->clock);
677 		OUT_RING  (evo, (ilace == 2) ? 2 : 0);
678 		BEGIN_RING(evo, 0, 0x0810 + head, 6);
679 		OUT_RING  (evo, 0x00000000); /* border colour */
680 		OUT_RING  (evo, (vactive << 16) | hactive);
681 		OUT_RING  (evo, ( vsynce << 16) | hsynce);
682 		OUT_RING  (evo, (vblanke << 16) | hblanke);
683 		OUT_RING  (evo, (vblanks << 16) | hblanks);
684 		OUT_RING  (evo, (vblan2e << 16) | vblan2s);
685 		BEGIN_RING(evo, 0, 0x082c + head, 1);
686 		OUT_RING  (evo, 0x00000000);
687 		BEGIN_RING(evo, 0, 0x0900 + head, 1);
688 		OUT_RING  (evo, 0x00000311); /* makes sync channel work */
689 		BEGIN_RING(evo, 0, 0x08c8 + head, 1);
690 		OUT_RING  (evo, (umode->vdisplay << 16) | umode->hdisplay);
691 		BEGIN_RING(evo, 0, 0x08d4 + head, 1);
692 		OUT_RING  (evo, 0x00000000); /* screen position */
693 	}
694 
695 	nv_crtc->set_dither(nv_crtc, false);
696 	nv_crtc->set_scale(nv_crtc, false);
697 	nv_crtc->set_color_vibrance(nv_crtc, false);
698 
699 	return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
700 }
701 
702 static int
nv50_crtc_mode_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)703 nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
704 			struct drm_framebuffer *old_fb)
705 {
706 	int ret;
707 
708 	nv50_display_flip_stop(crtc);
709 	ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
710 	if (ret)
711 		return ret;
712 
713 	ret = nv50_display_sync(crtc->dev);
714 	if (ret)
715 		return ret;
716 
717 	return nv50_display_flip_next(crtc, crtc->fb, NULL);
718 }
719 
720 static int
nv50_crtc_mode_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)721 nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
722 			       struct drm_framebuffer *fb,
723 			       int x, int y, enum mode_set_atomic state)
724 {
725 	int ret;
726 
727 	nv50_display_flip_stop(crtc);
728 	ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true);
729 	if (ret)
730 		return ret;
731 
732 	return nv50_display_sync(crtc->dev);
733 }
734 
735 static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
736 	.dpms = nv50_crtc_dpms,
737 	.prepare = nv50_crtc_prepare,
738 	.commit = nv50_crtc_commit,
739 	.mode_fixup = nv50_crtc_mode_fixup,
740 	.mode_set = nv50_crtc_mode_set,
741 	.mode_set_base = nv50_crtc_mode_set_base,
742 	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
743 	.load_lut = nv50_crtc_lut_load,
744 };
745 
746 int
nv50_crtc_create(struct drm_device * dev,int index)747 nv50_crtc_create(struct drm_device *dev, int index)
748 {
749 	struct nouveau_crtc *nv_crtc = NULL;
750 	int ret, i;
751 
752 	NV_DEBUG_KMS(dev, "\n");
753 
754 	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
755 	if (!nv_crtc)
756 		return -ENOMEM;
757 
758 	nv_crtc->color_vibrance = 50;
759 	nv_crtc->vibrant_hue = 0;
760 
761 	/* Default CLUT parameters, will be activated on the hw upon
762 	 * first mode set.
763 	 */
764 	for (i = 0; i < 256; i++) {
765 		nv_crtc->lut.r[i] = i << 8;
766 		nv_crtc->lut.g[i] = i << 8;
767 		nv_crtc->lut.b[i] = i << 8;
768 	}
769 	nv_crtc->lut.depth = 0;
770 
771 	ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
772 			     0, 0x0000, &nv_crtc->lut.nvbo);
773 	if (!ret) {
774 		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
775 		if (!ret)
776 			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
777 		if (ret)
778 			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
779 	}
780 
781 	if (ret) {
782 		kfree(nv_crtc);
783 		return ret;
784 	}
785 
786 	nv_crtc->index = index;
787 
788 	/* set function pointers */
789 	nv_crtc->set_dither = nv50_crtc_set_dither;
790 	nv_crtc->set_scale = nv50_crtc_set_scale;
791 	nv_crtc->set_color_vibrance = nv50_crtc_set_color_vibrance;
792 
793 	drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
794 	drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
795 	drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
796 
797 	ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
798 			     0, 0x0000, &nv_crtc->cursor.nvbo);
799 	if (!ret) {
800 		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
801 		if (!ret)
802 			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
803 		if (ret)
804 			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
805 	}
806 
807 	nv50_cursor_init(nv_crtc);
808 	return 0;
809 }
810