1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
66 
67 #include "tree.h"
68 #include "rcu.h"
69 
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
72 #endif
73 #define MODULE_PARAM_PREFIX "rcutree."
74 
75 /* Data structures. */
76 
77 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
78 	.dynticks_nesting = 1,
79 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
80 	.dynticks = ATOMIC_INIT(1),
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
151 static void invoke_rcu_core(void);
152 static void rcu_report_exp_rdp(struct rcu_data *rdp);
153 static void sync_sched_exp_online_cleanup(int cpu);
154 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
155 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
156 
157 /* rcuc/rcub/rcuop kthread realtime priority */
158 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
159 module_param(kthread_prio, int, 0444);
160 
161 /* Delay in jiffies for grace-period initialization delays, debug only. */
162 
163 static int gp_preinit_delay;
164 module_param(gp_preinit_delay, int, 0444);
165 static int gp_init_delay;
166 module_param(gp_init_delay, int, 0444);
167 static int gp_cleanup_delay;
168 module_param(gp_cleanup_delay, int, 0444);
169 
170 // Add delay to rcu_read_unlock() for strict grace periods.
171 static int rcu_unlock_delay;
172 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
173 module_param(rcu_unlock_delay, int, 0444);
174 #endif
175 
176 /*
177  * This rcu parameter is runtime-read-only. It reflects
178  * a minimum allowed number of objects which can be cached
179  * per-CPU. Object size is equal to one page. This value
180  * can be changed at boot time.
181  */
182 static int rcu_min_cached_objs = 5;
183 module_param(rcu_min_cached_objs, int, 0444);
184 
185 // A page shrinker can ask for pages to be freed to make them
186 // available for other parts of the system. This usually happens
187 // under low memory conditions, and in that case we should also
188 // defer page-cache filling for a short time period.
189 //
190 // The default value is 5 seconds, which is long enough to reduce
191 // interference with the shrinker while it asks other systems to
192 // drain their caches.
193 static int rcu_delay_page_cache_fill_msec = 5000;
194 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
195 
196 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)197 int rcu_get_gp_kthreads_prio(void)
198 {
199 	return kthread_prio;
200 }
201 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
202 
203 /*
204  * Number of grace periods between delays, normalized by the duration of
205  * the delay.  The longer the delay, the more the grace periods between
206  * each delay.  The reason for this normalization is that it means that,
207  * for non-zero delays, the overall slowdown of grace periods is constant
208  * regardless of the duration of the delay.  This arrangement balances
209  * the need for long delays to increase some race probabilities with the
210  * need for fast grace periods to increase other race probabilities.
211  */
212 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
213 
214 /*
215  * Compute the mask of online CPUs for the specified rcu_node structure.
216  * This will not be stable unless the rcu_node structure's ->lock is
217  * held, but the bit corresponding to the current CPU will be stable
218  * in most contexts.
219  */
rcu_rnp_online_cpus(struct rcu_node * rnp)220 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
221 {
222 	return READ_ONCE(rnp->qsmaskinitnext);
223 }
224 
225 /*
226  * Is the CPU corresponding to the specified rcu_data structure online
227  * from RCU's perspective?  This perspective is given by that structure's
228  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
229  */
rcu_rdp_cpu_online(struct rcu_data * rdp)230 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
231 {
232 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
233 }
234 
235 /*
236  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
237  * permit this function to be invoked without holding the root rcu_node
238  * structure's ->lock, but of course results can be subject to change.
239  */
rcu_gp_in_progress(void)240 static int rcu_gp_in_progress(void)
241 {
242 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
243 }
244 
245 /*
246  * Return the number of callbacks queued on the specified CPU.
247  * Handles both the nocbs and normal cases.
248  */
rcu_get_n_cbs_cpu(int cpu)249 static long rcu_get_n_cbs_cpu(int cpu)
250 {
251 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
252 
253 	if (rcu_segcblist_is_enabled(&rdp->cblist))
254 		return rcu_segcblist_n_cbs(&rdp->cblist);
255 	return 0;
256 }
257 
rcu_softirq_qs(void)258 void rcu_softirq_qs(void)
259 {
260 	rcu_qs();
261 	rcu_preempt_deferred_qs(current);
262 	rcu_tasks_qs(current, false);
263 }
264 
265 /*
266  * Increment the current CPU's rcu_data structure's ->dynticks field
267  * with ordering.  Return the new value.
268  */
rcu_dynticks_inc(int incby)269 static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
270 {
271 	return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
272 }
273 
274 /*
275  * Record entry into an extended quiescent state.  This is only to be
276  * called when not already in an extended quiescent state, that is,
277  * RCU is watching prior to the call to this function and is no longer
278  * watching upon return.
279  */
rcu_dynticks_eqs_enter(void)280 static noinstr void rcu_dynticks_eqs_enter(void)
281 {
282 	int seq;
283 
284 	/*
285 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
286 	 * critical sections, and we also must force ordering with the
287 	 * next idle sojourn.
288 	 */
289 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
290 	seq = rcu_dynticks_inc(1);
291 	// RCU is no longer watching.  Better be in extended quiescent state!
292 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
293 }
294 
295 /*
296  * Record exit from an extended quiescent state.  This is only to be
297  * called from an extended quiescent state, that is, RCU is not watching
298  * prior to the call to this function and is watching upon return.
299  */
rcu_dynticks_eqs_exit(void)300 static noinstr void rcu_dynticks_eqs_exit(void)
301 {
302 	int seq;
303 
304 	/*
305 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
306 	 * and we also must force ordering with the next RCU read-side
307 	 * critical section.
308 	 */
309 	seq = rcu_dynticks_inc(1);
310 	// RCU is now watching.  Better not be in an extended quiescent state!
311 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
312 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
313 }
314 
315 /*
316  * Reset the current CPU's ->dynticks counter to indicate that the
317  * newly onlined CPU is no longer in an extended quiescent state.
318  * This will either leave the counter unchanged, or increment it
319  * to the next non-quiescent value.
320  *
321  * The non-atomic test/increment sequence works because the upper bits
322  * of the ->dynticks counter are manipulated only by the corresponding CPU,
323  * or when the corresponding CPU is offline.
324  */
rcu_dynticks_eqs_online(void)325 static void rcu_dynticks_eqs_online(void)
326 {
327 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
328 
329 	if (atomic_read(&rdp->dynticks) & 0x1)
330 		return;
331 	rcu_dynticks_inc(1);
332 }
333 
334 /*
335  * Is the current CPU in an extended quiescent state?
336  *
337  * No ordering, as we are sampling CPU-local information.
338  */
rcu_dynticks_curr_cpu_in_eqs(void)339 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
340 {
341 	return !(arch_atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
342 }
343 
344 /*
345  * Snapshot the ->dynticks counter with full ordering so as to allow
346  * stable comparison of this counter with past and future snapshots.
347  */
rcu_dynticks_snap(struct rcu_data * rdp)348 static int rcu_dynticks_snap(struct rcu_data *rdp)
349 {
350 	smp_mb();  // Fundamental RCU ordering guarantee.
351 	return atomic_read_acquire(&rdp->dynticks);
352 }
353 
354 /*
355  * Return true if the snapshot returned from rcu_dynticks_snap()
356  * indicates that RCU is in an extended quiescent state.
357  */
rcu_dynticks_in_eqs(int snap)358 static bool rcu_dynticks_in_eqs(int snap)
359 {
360 	return !(snap & 0x1);
361 }
362 
363 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
rcu_is_idle_cpu(int cpu)364 bool rcu_is_idle_cpu(int cpu)
365 {
366 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
367 
368 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
369 }
370 
371 /*
372  * Return true if the CPU corresponding to the specified rcu_data
373  * structure has spent some time in an extended quiescent state since
374  * rcu_dynticks_snap() returned the specified snapshot.
375  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)376 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
377 {
378 	return snap != rcu_dynticks_snap(rdp);
379 }
380 
381 /*
382  * Return true if the referenced integer is zero while the specified
383  * CPU remains within a single extended quiescent state.
384  */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)385 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
386 {
387 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
388 	int snap;
389 
390 	// If not quiescent, force back to earlier extended quiescent state.
391 	snap = atomic_read(&rdp->dynticks) & ~0x1;
392 
393 	smp_rmb(); // Order ->dynticks and *vp reads.
394 	if (READ_ONCE(*vp))
395 		return false;  // Non-zero, so report failure;
396 	smp_rmb(); // Order *vp read and ->dynticks re-read.
397 
398 	// If still in the same extended quiescent state, we are good!
399 	return snap == atomic_read(&rdp->dynticks);
400 }
401 
402 /*
403  * Let the RCU core know that this CPU has gone through the scheduler,
404  * which is a quiescent state.  This is called when the need for a
405  * quiescent state is urgent, so we burn an atomic operation and full
406  * memory barriers to let the RCU core know about it, regardless of what
407  * this CPU might (or might not) do in the near future.
408  *
409  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
410  *
411  * The caller must have disabled interrupts and must not be idle.
412  */
rcu_momentary_dyntick_idle(void)413 notrace void rcu_momentary_dyntick_idle(void)
414 {
415 	int seq;
416 
417 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
418 	seq = rcu_dynticks_inc(2);
419 	/* It is illegal to call this from idle state. */
420 	WARN_ON_ONCE(!(seq & 0x1));
421 	rcu_preempt_deferred_qs(current);
422 }
423 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
424 
425 /**
426  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
427  *
428  * If the current CPU is idle and running at a first-level (not nested)
429  * interrupt, or directly, from idle, return true.
430  *
431  * The caller must have at least disabled IRQs.
432  */
rcu_is_cpu_rrupt_from_idle(void)433 static int rcu_is_cpu_rrupt_from_idle(void)
434 {
435 	long nesting;
436 
437 	/*
438 	 * Usually called from the tick; but also used from smp_function_call()
439 	 * for expedited grace periods. This latter can result in running from
440 	 * the idle task, instead of an actual IPI.
441 	 */
442 	lockdep_assert_irqs_disabled();
443 
444 	/* Check for counter underflows */
445 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
446 			 "RCU dynticks_nesting counter underflow!");
447 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
448 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
449 
450 	/* Are we at first interrupt nesting level? */
451 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
452 	if (nesting > 1)
453 		return false;
454 
455 	/*
456 	 * If we're not in an interrupt, we must be in the idle task!
457 	 */
458 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
459 
460 	/* Does CPU appear to be idle from an RCU standpoint? */
461 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
462 }
463 
464 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
465 				// Maximum callbacks per rcu_do_batch ...
466 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
467 static long blimit = DEFAULT_RCU_BLIMIT;
468 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
469 static long qhimark = DEFAULT_RCU_QHIMARK;
470 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
471 static long qlowmark = DEFAULT_RCU_QLOMARK;
472 #define DEFAULT_RCU_QOVLD_MULT 2
473 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
474 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
475 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
476 
477 module_param(blimit, long, 0444);
478 module_param(qhimark, long, 0444);
479 module_param(qlowmark, long, 0444);
480 module_param(qovld, long, 0444);
481 
482 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
483 static ulong jiffies_till_next_fqs = ULONG_MAX;
484 static bool rcu_kick_kthreads;
485 static int rcu_divisor = 7;
486 module_param(rcu_divisor, int, 0644);
487 
488 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
489 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
490 module_param(rcu_resched_ns, long, 0644);
491 
492 /*
493  * How long the grace period must be before we start recruiting
494  * quiescent-state help from rcu_note_context_switch().
495  */
496 static ulong jiffies_till_sched_qs = ULONG_MAX;
497 module_param(jiffies_till_sched_qs, ulong, 0444);
498 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
499 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
500 
501 /*
502  * Make sure that we give the grace-period kthread time to detect any
503  * idle CPUs before taking active measures to force quiescent states.
504  * However, don't go below 100 milliseconds, adjusted upwards for really
505  * large systems.
506  */
adjust_jiffies_till_sched_qs(void)507 static void adjust_jiffies_till_sched_qs(void)
508 {
509 	unsigned long j;
510 
511 	/* If jiffies_till_sched_qs was specified, respect the request. */
512 	if (jiffies_till_sched_qs != ULONG_MAX) {
513 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
514 		return;
515 	}
516 	/* Otherwise, set to third fqs scan, but bound below on large system. */
517 	j = READ_ONCE(jiffies_till_first_fqs) +
518 		      2 * READ_ONCE(jiffies_till_next_fqs);
519 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
520 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
521 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
522 	WRITE_ONCE(jiffies_to_sched_qs, j);
523 }
524 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)525 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
526 {
527 	ulong j;
528 	int ret = kstrtoul(val, 0, &j);
529 
530 	if (!ret) {
531 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
532 		adjust_jiffies_till_sched_qs();
533 	}
534 	return ret;
535 }
536 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)537 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
538 {
539 	ulong j;
540 	int ret = kstrtoul(val, 0, &j);
541 
542 	if (!ret) {
543 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
544 		adjust_jiffies_till_sched_qs();
545 	}
546 	return ret;
547 }
548 
549 static const struct kernel_param_ops first_fqs_jiffies_ops = {
550 	.set = param_set_first_fqs_jiffies,
551 	.get = param_get_ulong,
552 };
553 
554 static const struct kernel_param_ops next_fqs_jiffies_ops = {
555 	.set = param_set_next_fqs_jiffies,
556 	.get = param_get_ulong,
557 };
558 
559 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
560 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
561 module_param(rcu_kick_kthreads, bool, 0644);
562 
563 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
564 static int rcu_pending(int user);
565 
566 /*
567  * Return the number of RCU GPs completed thus far for debug & stats.
568  */
rcu_get_gp_seq(void)569 unsigned long rcu_get_gp_seq(void)
570 {
571 	return READ_ONCE(rcu_state.gp_seq);
572 }
573 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
574 
575 /*
576  * Return the number of RCU expedited batches completed thus far for
577  * debug & stats.  Odd numbers mean that a batch is in progress, even
578  * numbers mean idle.  The value returned will thus be roughly double
579  * the cumulative batches since boot.
580  */
rcu_exp_batches_completed(void)581 unsigned long rcu_exp_batches_completed(void)
582 {
583 	return rcu_state.expedited_sequence;
584 }
585 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
586 
587 /*
588  * Return the root node of the rcu_state structure.
589  */
rcu_get_root(void)590 static struct rcu_node *rcu_get_root(void)
591 {
592 	return &rcu_state.node[0];
593 }
594 
595 /*
596  * Send along grace-period-related data for rcutorture diagnostics.
597  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
599 			    unsigned long *gp_seq)
600 {
601 	switch (test_type) {
602 	case RCU_FLAVOR:
603 		*flags = READ_ONCE(rcu_state.gp_flags);
604 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
605 		break;
606 	default:
607 		break;
608 	}
609 }
610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
611 
612 /*
613  * Enter an RCU extended quiescent state, which can be either the
614  * idle loop or adaptive-tickless usermode execution.
615  *
616  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
617  * the possibility of usermode upcalls having messed up our count
618  * of interrupt nesting level during the prior busy period.
619  */
rcu_eqs_enter(bool user)620 static noinstr void rcu_eqs_enter(bool user)
621 {
622 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
623 
624 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
625 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
626 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
627 		     rdp->dynticks_nesting == 0);
628 	if (rdp->dynticks_nesting != 1) {
629 		// RCU will still be watching, so just do accounting and leave.
630 		rdp->dynticks_nesting--;
631 		return;
632 	}
633 
634 	lockdep_assert_irqs_disabled();
635 	instrumentation_begin();
636 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
637 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
638 	rcu_preempt_deferred_qs(current);
639 
640 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
641 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
642 
643 	instrumentation_end();
644 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
645 	// RCU is watching here ...
646 	rcu_dynticks_eqs_enter();
647 	// ... but is no longer watching here.
648 	rcu_dynticks_task_enter();
649 }
650 
651 /**
652  * rcu_idle_enter - inform RCU that current CPU is entering idle
653  *
654  * Enter idle mode, in other words, -leave- the mode in which RCU
655  * read-side critical sections can occur.  (Though RCU read-side
656  * critical sections can occur in irq handlers in idle, a possibility
657  * handled by irq_enter() and irq_exit().)
658  *
659  * If you add or remove a call to rcu_idle_enter(), be sure to test with
660  * CONFIG_RCU_EQS_DEBUG=y.
661  */
rcu_idle_enter(void)662 void rcu_idle_enter(void)
663 {
664 	lockdep_assert_irqs_disabled();
665 	rcu_eqs_enter(false);
666 }
667 EXPORT_SYMBOL_GPL(rcu_idle_enter);
668 
669 #ifdef CONFIG_NO_HZ_FULL
670 
671 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
672 /*
673  * An empty function that will trigger a reschedule on
674  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
675  */
late_wakeup_func(struct irq_work * work)676 static void late_wakeup_func(struct irq_work *work)
677 {
678 }
679 
680 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
681 	IRQ_WORK_INIT(late_wakeup_func);
682 
683 /*
684  * If either:
685  *
686  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
687  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
688  *
689  * In these cases the late RCU wake ups aren't supported in the resched loops and our
690  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
691  * get re-enabled again.
692  */
rcu_irq_work_resched(void)693 noinstr static void rcu_irq_work_resched(void)
694 {
695 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
696 
697 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
698 		return;
699 
700 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
701 		return;
702 
703 	instrumentation_begin();
704 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
705 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
706 	}
707 	instrumentation_end();
708 }
709 
710 #else
rcu_irq_work_resched(void)711 static inline void rcu_irq_work_resched(void) { }
712 #endif
713 
714 /**
715  * rcu_user_enter - inform RCU that we are resuming userspace.
716  *
717  * Enter RCU idle mode right before resuming userspace.  No use of RCU
718  * is permitted between this call and rcu_user_exit(). This way the
719  * CPU doesn't need to maintain the tick for RCU maintenance purposes
720  * when the CPU runs in userspace.
721  *
722  * If you add or remove a call to rcu_user_enter(), be sure to test with
723  * CONFIG_RCU_EQS_DEBUG=y.
724  */
rcu_user_enter(void)725 noinstr void rcu_user_enter(void)
726 {
727 	lockdep_assert_irqs_disabled();
728 
729 	/*
730 	 * Other than generic entry implementation, we may be past the last
731 	 * rescheduling opportunity in the entry code. Trigger a self IPI
732 	 * that will fire and reschedule once we resume in user/guest mode.
733 	 */
734 	rcu_irq_work_resched();
735 	rcu_eqs_enter(true);
736 }
737 
738 #endif /* CONFIG_NO_HZ_FULL */
739 
740 /**
741  * rcu_nmi_exit - inform RCU of exit from NMI context
742  *
743  * If we are returning from the outermost NMI handler that interrupted an
744  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
745  * to let the RCU grace-period handling know that the CPU is back to
746  * being RCU-idle.
747  *
748  * If you add or remove a call to rcu_nmi_exit(), be sure to test
749  * with CONFIG_RCU_EQS_DEBUG=y.
750  */
rcu_nmi_exit(void)751 noinstr void rcu_nmi_exit(void)
752 {
753 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
754 
755 	instrumentation_begin();
756 	/*
757 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
758 	 * (We are exiting an NMI handler, so RCU better be paying attention
759 	 * to us!)
760 	 */
761 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
762 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
763 
764 	/*
765 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
766 	 * leave it in non-RCU-idle state.
767 	 */
768 	if (rdp->dynticks_nmi_nesting != 1) {
769 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
770 				  atomic_read(&rdp->dynticks));
771 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
772 			   rdp->dynticks_nmi_nesting - 2);
773 		instrumentation_end();
774 		return;
775 	}
776 
777 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
778 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
779 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
780 
781 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
782 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
783 	instrumentation_end();
784 
785 	// RCU is watching here ...
786 	rcu_dynticks_eqs_enter();
787 	// ... but is no longer watching here.
788 
789 	if (!in_nmi())
790 		rcu_dynticks_task_enter();
791 }
792 
793 /**
794  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
795  *
796  * Exit from an interrupt handler, which might possibly result in entering
797  * idle mode, in other words, leaving the mode in which read-side critical
798  * sections can occur.  The caller must have disabled interrupts.
799  *
800  * This code assumes that the idle loop never does anything that might
801  * result in unbalanced calls to irq_enter() and irq_exit().  If your
802  * architecture's idle loop violates this assumption, RCU will give you what
803  * you deserve, good and hard.  But very infrequently and irreproducibly.
804  *
805  * Use things like work queues to work around this limitation.
806  *
807  * You have been warned.
808  *
809  * If you add or remove a call to rcu_irq_exit(), be sure to test with
810  * CONFIG_RCU_EQS_DEBUG=y.
811  */
rcu_irq_exit(void)812 void noinstr rcu_irq_exit(void)
813 {
814 	lockdep_assert_irqs_disabled();
815 	rcu_nmi_exit();
816 }
817 
818 #ifdef CONFIG_PROVE_RCU
819 /**
820  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
821  */
rcu_irq_exit_check_preempt(void)822 void rcu_irq_exit_check_preempt(void)
823 {
824 	lockdep_assert_irqs_disabled();
825 
826 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
827 			 "RCU dynticks_nesting counter underflow/zero!");
828 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
829 			 DYNTICK_IRQ_NONIDLE,
830 			 "Bad RCU  dynticks_nmi_nesting counter\n");
831 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
832 			 "RCU in extended quiescent state!");
833 }
834 #endif /* #ifdef CONFIG_PROVE_RCU */
835 
836 /*
837  * Wrapper for rcu_irq_exit() where interrupts are enabled.
838  *
839  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
840  * with CONFIG_RCU_EQS_DEBUG=y.
841  */
rcu_irq_exit_irqson(void)842 void rcu_irq_exit_irqson(void)
843 {
844 	unsigned long flags;
845 
846 	local_irq_save(flags);
847 	rcu_irq_exit();
848 	local_irq_restore(flags);
849 }
850 
851 /*
852  * Exit an RCU extended quiescent state, which can be either the
853  * idle loop or adaptive-tickless usermode execution.
854  *
855  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
856  * allow for the possibility of usermode upcalls messing up our count of
857  * interrupt nesting level during the busy period that is just now starting.
858  */
rcu_eqs_exit(bool user)859 static void noinstr rcu_eqs_exit(bool user)
860 {
861 	struct rcu_data *rdp;
862 	long oldval;
863 
864 	lockdep_assert_irqs_disabled();
865 	rdp = this_cpu_ptr(&rcu_data);
866 	oldval = rdp->dynticks_nesting;
867 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
868 	if (oldval) {
869 		// RCU was already watching, so just do accounting and leave.
870 		rdp->dynticks_nesting++;
871 		return;
872 	}
873 	rcu_dynticks_task_exit();
874 	// RCU is not watching here ...
875 	rcu_dynticks_eqs_exit();
876 	// ... but is watching here.
877 	instrumentation_begin();
878 
879 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
880 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
881 
882 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
883 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
884 	WRITE_ONCE(rdp->dynticks_nesting, 1);
885 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
886 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
887 	instrumentation_end();
888 }
889 
890 /**
891  * rcu_idle_exit - inform RCU that current CPU is leaving idle
892  *
893  * Exit idle mode, in other words, -enter- the mode in which RCU
894  * read-side critical sections can occur.
895  *
896  * If you add or remove a call to rcu_idle_exit(), be sure to test with
897  * CONFIG_RCU_EQS_DEBUG=y.
898  */
rcu_idle_exit(void)899 void rcu_idle_exit(void)
900 {
901 	unsigned long flags;
902 
903 	local_irq_save(flags);
904 	rcu_eqs_exit(false);
905 	local_irq_restore(flags);
906 }
907 EXPORT_SYMBOL_GPL(rcu_idle_exit);
908 
909 #ifdef CONFIG_NO_HZ_FULL
910 /**
911  * rcu_user_exit - inform RCU that we are exiting userspace.
912  *
913  * Exit RCU idle mode while entering the kernel because it can
914  * run a RCU read side critical section anytime.
915  *
916  * If you add or remove a call to rcu_user_exit(), be sure to test with
917  * CONFIG_RCU_EQS_DEBUG=y.
918  */
rcu_user_exit(void)919 void noinstr rcu_user_exit(void)
920 {
921 	rcu_eqs_exit(true);
922 }
923 
924 /**
925  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
926  *
927  * The scheduler tick is not normally enabled when CPUs enter the kernel
928  * from nohz_full userspace execution.  After all, nohz_full userspace
929  * execution is an RCU quiescent state and the time executing in the kernel
930  * is quite short.  Except of course when it isn't.  And it is not hard to
931  * cause a large system to spend tens of seconds or even minutes looping
932  * in the kernel, which can cause a number of problems, include RCU CPU
933  * stall warnings.
934  *
935  * Therefore, if a nohz_full CPU fails to report a quiescent state
936  * in a timely manner, the RCU grace-period kthread sets that CPU's
937  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
938  * exception will invoke this function, which will turn on the scheduler
939  * tick, which will enable RCU to detect that CPU's quiescent states,
940  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
941  * The tick will be disabled once a quiescent state is reported for
942  * this CPU.
943  *
944  * Of course, in carefully tuned systems, there might never be an
945  * interrupt or exception.  In that case, the RCU grace-period kthread
946  * will eventually cause one to happen.  However, in less carefully
947  * controlled environments, this function allows RCU to get what it
948  * needs without creating otherwise useless interruptions.
949  */
__rcu_irq_enter_check_tick(void)950 void __rcu_irq_enter_check_tick(void)
951 {
952 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
953 
954 	// If we're here from NMI there's nothing to do.
955 	if (in_nmi())
956 		return;
957 
958 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
959 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
960 
961 	if (!tick_nohz_full_cpu(rdp->cpu) ||
962 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
963 	    READ_ONCE(rdp->rcu_forced_tick)) {
964 		// RCU doesn't need nohz_full help from this CPU, or it is
965 		// already getting that help.
966 		return;
967 	}
968 
969 	// We get here only when not in an extended quiescent state and
970 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
971 	// already watching and (2) The fact that we are in an interrupt
972 	// handler and that the rcu_node lock is an irq-disabled lock
973 	// prevents self-deadlock.  So we can safely recheck under the lock.
974 	// Note that the nohz_full state currently cannot change.
975 	raw_spin_lock_rcu_node(rdp->mynode);
976 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
977 		// A nohz_full CPU is in the kernel and RCU needs a
978 		// quiescent state.  Turn on the tick!
979 		WRITE_ONCE(rdp->rcu_forced_tick, true);
980 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
981 	}
982 	raw_spin_unlock_rcu_node(rdp->mynode);
983 }
984 #endif /* CONFIG_NO_HZ_FULL */
985 
986 /**
987  * rcu_nmi_enter - inform RCU of entry to NMI context
988  *
989  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
990  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
991  * that the CPU is active.  This implementation permits nested NMIs, as
992  * long as the nesting level does not overflow an int.  (You will probably
993  * run out of stack space first.)
994  *
995  * If you add or remove a call to rcu_nmi_enter(), be sure to test
996  * with CONFIG_RCU_EQS_DEBUG=y.
997  */
rcu_nmi_enter(void)998 noinstr void rcu_nmi_enter(void)
999 {
1000 	long incby = 2;
1001 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1002 
1003 	/* Complain about underflow. */
1004 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1005 
1006 	/*
1007 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1008 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1009 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1010 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1011 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1012 	 * period (observation due to Andy Lutomirski).
1013 	 */
1014 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1015 
1016 		if (!in_nmi())
1017 			rcu_dynticks_task_exit();
1018 
1019 		// RCU is not watching here ...
1020 		rcu_dynticks_eqs_exit();
1021 		// ... but is watching here.
1022 
1023 		instrumentation_begin();
1024 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1025 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1026 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1027 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1028 
1029 		incby = 1;
1030 	} else if (!in_nmi()) {
1031 		instrumentation_begin();
1032 		rcu_irq_enter_check_tick();
1033 	} else  {
1034 		instrumentation_begin();
1035 	}
1036 
1037 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1038 			  rdp->dynticks_nmi_nesting,
1039 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1040 	instrumentation_end();
1041 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1042 		   rdp->dynticks_nmi_nesting + incby);
1043 	barrier();
1044 }
1045 
1046 /**
1047  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1048  *
1049  * Enter an interrupt handler, which might possibly result in exiting
1050  * idle mode, in other words, entering the mode in which read-side critical
1051  * sections can occur.  The caller must have disabled interrupts.
1052  *
1053  * Note that the Linux kernel is fully capable of entering an interrupt
1054  * handler that it never exits, for example when doing upcalls to user mode!
1055  * This code assumes that the idle loop never does upcalls to user mode.
1056  * If your architecture's idle loop does do upcalls to user mode (or does
1057  * anything else that results in unbalanced calls to the irq_enter() and
1058  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1059  * But very infrequently and irreproducibly.
1060  *
1061  * Use things like work queues to work around this limitation.
1062  *
1063  * You have been warned.
1064  *
1065  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1066  * CONFIG_RCU_EQS_DEBUG=y.
1067  */
rcu_irq_enter(void)1068 noinstr void rcu_irq_enter(void)
1069 {
1070 	lockdep_assert_irqs_disabled();
1071 	rcu_nmi_enter();
1072 }
1073 
1074 /*
1075  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1076  *
1077  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1078  * with CONFIG_RCU_EQS_DEBUG=y.
1079  */
rcu_irq_enter_irqson(void)1080 void rcu_irq_enter_irqson(void)
1081 {
1082 	unsigned long flags;
1083 
1084 	local_irq_save(flags);
1085 	rcu_irq_enter();
1086 	local_irq_restore(flags);
1087 }
1088 
1089 /*
1090  * Check to see if any future non-offloaded RCU-related work will need
1091  * to be done by the current CPU, even if none need be done immediately,
1092  * returning 1 if so.  This function is part of the RCU implementation;
1093  * it is -not- an exported member of the RCU API.  This is used by
1094  * the idle-entry code to figure out whether it is safe to disable the
1095  * scheduler-clock interrupt.
1096  *
1097  * Just check whether or not this CPU has non-offloaded RCU callbacks
1098  * queued.
1099  */
rcu_needs_cpu(void)1100 int rcu_needs_cpu(void)
1101 {
1102 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1103 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1104 }
1105 
1106 /*
1107  * If any sort of urgency was applied to the current CPU (for example,
1108  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1109  * to get to a quiescent state, disable it.
1110  */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1111 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1112 {
1113 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1114 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1115 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1116 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1117 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1118 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1119 	}
1120 }
1121 
1122 /**
1123  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1124  *
1125  * Return true if RCU is watching the running CPU, which means that this
1126  * CPU can safely enter RCU read-side critical sections.  In other words,
1127  * if the current CPU is not in its idle loop or is in an interrupt or
1128  * NMI handler, return true.
1129  *
1130  * Make notrace because it can be called by the internal functions of
1131  * ftrace, and making this notrace removes unnecessary recursion calls.
1132  */
rcu_is_watching(void)1133 notrace bool rcu_is_watching(void)
1134 {
1135 	bool ret;
1136 
1137 	preempt_disable_notrace();
1138 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1139 	preempt_enable_notrace();
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(rcu_is_watching);
1143 
1144 /*
1145  * If a holdout task is actually running, request an urgent quiescent
1146  * state from its CPU.  This is unsynchronized, so migrations can cause
1147  * the request to go to the wrong CPU.  Which is OK, all that will happen
1148  * is that the CPU's next context switch will be a bit slower and next
1149  * time around this task will generate another request.
1150  */
rcu_request_urgent_qs_task(struct task_struct * t)1151 void rcu_request_urgent_qs_task(struct task_struct *t)
1152 {
1153 	int cpu;
1154 
1155 	barrier();
1156 	cpu = task_cpu(t);
1157 	if (!task_curr(t))
1158 		return; /* This task is not running on that CPU. */
1159 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1160 }
1161 
1162 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1163 
1164 /*
1165  * Is the current CPU online as far as RCU is concerned?
1166  *
1167  * Disable preemption to avoid false positives that could otherwise
1168  * happen due to the current CPU number being sampled, this task being
1169  * preempted, its old CPU being taken offline, resuming on some other CPU,
1170  * then determining that its old CPU is now offline.
1171  *
1172  * Disable checking if in an NMI handler because we cannot safely
1173  * report errors from NMI handlers anyway.  In addition, it is OK to use
1174  * RCU on an offline processor during initial boot, hence the check for
1175  * rcu_scheduler_fully_active.
1176  */
rcu_lockdep_current_cpu_online(void)1177 bool rcu_lockdep_current_cpu_online(void)
1178 {
1179 	struct rcu_data *rdp;
1180 	bool ret = false;
1181 
1182 	if (in_nmi() || !rcu_scheduler_fully_active)
1183 		return true;
1184 	preempt_disable_notrace();
1185 	rdp = this_cpu_ptr(&rcu_data);
1186 	/*
1187 	 * Strictly, we care here about the case where the current CPU is
1188 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
1189 	 * not being up to date. So arch_spin_is_locked() might have a
1190 	 * false positive if it's held by some *other* CPU, but that's
1191 	 * OK because that just means a false *negative* on the warning.
1192 	 */
1193 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
1194 		ret = true;
1195 	preempt_enable_notrace();
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1199 
1200 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1201 
1202 /*
1203  * When trying to report a quiescent state on behalf of some other CPU,
1204  * it is our responsibility to check for and handle potential overflow
1205  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1206  * After all, the CPU might be in deep idle state, and thus executing no
1207  * code whatsoever.
1208  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1209 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1210 {
1211 	raw_lockdep_assert_held_rcu_node(rnp);
1212 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1213 			 rnp->gp_seq))
1214 		WRITE_ONCE(rdp->gpwrap, true);
1215 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1216 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1217 }
1218 
1219 /*
1220  * Snapshot the specified CPU's dynticks counter so that we can later
1221  * credit them with an implicit quiescent state.  Return 1 if this CPU
1222  * is in dynticks idle mode, which is an extended quiescent state.
1223  */
dyntick_save_progress_counter(struct rcu_data * rdp)1224 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1225 {
1226 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1227 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1228 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1229 		rcu_gpnum_ovf(rdp->mynode, rdp);
1230 		return 1;
1231 	}
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Return true if the specified CPU has passed through a quiescent
1237  * state by virtue of being in or having passed through an dynticks
1238  * idle state since the last call to dyntick_save_progress_counter()
1239  * for this same CPU, or by virtue of having been offline.
1240  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1241 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1242 {
1243 	unsigned long jtsq;
1244 	struct rcu_node *rnp = rdp->mynode;
1245 
1246 	/*
1247 	 * If the CPU passed through or entered a dynticks idle phase with
1248 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1249 	 * already acknowledged the request to pass through a quiescent
1250 	 * state.  Either way, that CPU cannot possibly be in an RCU
1251 	 * read-side critical section that started before the beginning
1252 	 * of the current RCU grace period.
1253 	 */
1254 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1255 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1256 		rcu_gpnum_ovf(rnp, rdp);
1257 		return 1;
1258 	}
1259 
1260 	/*
1261 	 * Complain if a CPU that is considered to be offline from RCU's
1262 	 * perspective has not yet reported a quiescent state.  After all,
1263 	 * the offline CPU should have reported a quiescent state during
1264 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1265 	 * if it ran concurrently with either the CPU going offline or the
1266 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1267 	 * critical section while all CPUs corresponding to that structure
1268 	 * are offline.  This added warning detects bugs in any of these
1269 	 * code paths.
1270 	 *
1271 	 * The rcu_node structure's ->lock is held here, which excludes
1272 	 * the relevant portions the CPU-hotplug code, the grace-period
1273 	 * initialization code, and the rcu_read_unlock() code paths.
1274 	 *
1275 	 * For more detail, please refer to the "Hotplug CPU" section
1276 	 * of RCU's Requirements documentation.
1277 	 */
1278 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
1279 		struct rcu_node *rnp1;
1280 
1281 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1282 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1283 			(long)rnp->gp_seq, (long)rnp->completedqs);
1284 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1285 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1286 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1287 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1288 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
1289 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1290 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1291 		return 1; /* Break things loose after complaining. */
1292 	}
1293 
1294 	/*
1295 	 * A CPU running for an extended time within the kernel can
1296 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1297 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1298 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1299 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1300 	 * variable are safe because the assignments are repeated if this
1301 	 * CPU failed to pass through a quiescent state.  This code
1302 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1303 	 * is set way high.
1304 	 */
1305 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1306 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
1307 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1308 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1309 	     rcu_state.cbovld)) {
1310 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
1311 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1312 		smp_store_release(&rdp->rcu_urgent_qs, true);
1313 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1314 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
1315 	}
1316 
1317 	/*
1318 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1319 	 * The above code handles this, but only for straight cond_resched().
1320 	 * And some in-kernel loops check need_resched() before calling
1321 	 * cond_resched(), which defeats the above code for CPUs that are
1322 	 * running in-kernel with scheduling-clock interrupts disabled.
1323 	 * So hit them over the head with the resched_cpu() hammer!
1324 	 */
1325 	if (tick_nohz_full_cpu(rdp->cpu) &&
1326 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1327 	     rcu_state.cbovld)) {
1328 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
1329 		resched_cpu(rdp->cpu);
1330 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1331 	}
1332 
1333 	/*
1334 	 * If more than halfway to RCU CPU stall-warning time, invoke
1335 	 * resched_cpu() more frequently to try to loosen things up a bit.
1336 	 * Also check to see if the CPU is getting hammered with interrupts,
1337 	 * but only once per grace period, just to keep the IPIs down to
1338 	 * a dull roar.
1339 	 */
1340 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1341 		if (time_after(jiffies,
1342 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1343 			resched_cpu(rdp->cpu);
1344 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1345 		}
1346 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1347 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1348 		    (rnp->ffmask & rdp->grpmask)) {
1349 			rdp->rcu_iw_pending = true;
1350 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1351 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1359 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1360 			      unsigned long gp_seq_req, const char *s)
1361 {
1362 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1363 				      gp_seq_req, rnp->level,
1364 				      rnp->grplo, rnp->grphi, s);
1365 }
1366 
1367 /*
1368  * rcu_start_this_gp - Request the start of a particular grace period
1369  * @rnp_start: The leaf node of the CPU from which to start.
1370  * @rdp: The rcu_data corresponding to the CPU from which to start.
1371  * @gp_seq_req: The gp_seq of the grace period to start.
1372  *
1373  * Start the specified grace period, as needed to handle newly arrived
1374  * callbacks.  The required future grace periods are recorded in each
1375  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1376  * is reason to awaken the grace-period kthread.
1377  *
1378  * The caller must hold the specified rcu_node structure's ->lock, which
1379  * is why the caller is responsible for waking the grace-period kthread.
1380  *
1381  * Returns true if the GP thread needs to be awakened else false.
1382  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1383 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1384 			      unsigned long gp_seq_req)
1385 {
1386 	bool ret = false;
1387 	struct rcu_node *rnp;
1388 
1389 	/*
1390 	 * Use funnel locking to either acquire the root rcu_node
1391 	 * structure's lock or bail out if the need for this grace period
1392 	 * has already been recorded -- or if that grace period has in
1393 	 * fact already started.  If there is already a grace period in
1394 	 * progress in a non-leaf node, no recording is needed because the
1395 	 * end of the grace period will scan the leaf rcu_node structures.
1396 	 * Note that rnp_start->lock must not be released.
1397 	 */
1398 	raw_lockdep_assert_held_rcu_node(rnp_start);
1399 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1400 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1401 		if (rnp != rnp_start)
1402 			raw_spin_lock_rcu_node(rnp);
1403 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1404 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1405 		    (rnp != rnp_start &&
1406 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1407 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1408 					  TPS("Prestarted"));
1409 			goto unlock_out;
1410 		}
1411 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1412 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1413 			/*
1414 			 * We just marked the leaf or internal node, and a
1415 			 * grace period is in progress, which means that
1416 			 * rcu_gp_cleanup() will see the marking.  Bail to
1417 			 * reduce contention.
1418 			 */
1419 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1420 					  TPS("Startedleaf"));
1421 			goto unlock_out;
1422 		}
1423 		if (rnp != rnp_start && rnp->parent != NULL)
1424 			raw_spin_unlock_rcu_node(rnp);
1425 		if (!rnp->parent)
1426 			break;  /* At root, and perhaps also leaf. */
1427 	}
1428 
1429 	/* If GP already in progress, just leave, otherwise start one. */
1430 	if (rcu_gp_in_progress()) {
1431 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1432 		goto unlock_out;
1433 	}
1434 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1435 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1436 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1437 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1438 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1439 		goto unlock_out;
1440 	}
1441 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1442 	ret = true;  /* Caller must wake GP kthread. */
1443 unlock_out:
1444 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1445 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1446 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1447 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1448 	}
1449 	if (rnp != rnp_start)
1450 		raw_spin_unlock_rcu_node(rnp);
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Clean up any old requests for the just-ended grace period.  Also return
1456  * whether any additional grace periods have been requested.
1457  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1458 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1459 {
1460 	bool needmore;
1461 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1462 
1463 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1464 	if (!needmore)
1465 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1466 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1467 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1468 	return needmore;
1469 }
1470 
1471 /*
1472  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1473  * interrupt or softirq handler, in which case we just might immediately
1474  * sleep upon return, resulting in a grace-period hang), and don't bother
1475  * awakening when there is nothing for the grace-period kthread to do
1476  * (as in several CPUs raced to awaken, we lost), and finally don't try
1477  * to awaken a kthread that has not yet been created.  If all those checks
1478  * are passed, track some debug information and awaken.
1479  *
1480  * So why do the self-wakeup when in an interrupt or softirq handler
1481  * in the grace-period kthread's context?  Because the kthread might have
1482  * been interrupted just as it was going to sleep, and just after the final
1483  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1484  * is required, and is therefore supplied.
1485  */
rcu_gp_kthread_wake(void)1486 static void rcu_gp_kthread_wake(void)
1487 {
1488 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1489 
1490 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1491 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1492 		return;
1493 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1494 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1495 	swake_up_one(&rcu_state.gp_wq);
1496 }
1497 
1498 /*
1499  * If there is room, assign a ->gp_seq number to any callbacks on this
1500  * CPU that have not already been assigned.  Also accelerate any callbacks
1501  * that were previously assigned a ->gp_seq number that has since proven
1502  * to be too conservative, which can happen if callbacks get assigned a
1503  * ->gp_seq number while RCU is idle, but with reference to a non-root
1504  * rcu_node structure.  This function is idempotent, so it does not hurt
1505  * to call it repeatedly.  Returns an flag saying that we should awaken
1506  * the RCU grace-period kthread.
1507  *
1508  * The caller must hold rnp->lock with interrupts disabled.
1509  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1510 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1511 {
1512 	unsigned long gp_seq_req;
1513 	bool ret = false;
1514 
1515 	rcu_lockdep_assert_cblist_protected(rdp);
1516 	raw_lockdep_assert_held_rcu_node(rnp);
1517 
1518 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1519 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1520 		return false;
1521 
1522 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1523 
1524 	/*
1525 	 * Callbacks are often registered with incomplete grace-period
1526 	 * information.  Something about the fact that getting exact
1527 	 * information requires acquiring a global lock...  RCU therefore
1528 	 * makes a conservative estimate of the grace period number at which
1529 	 * a given callback will become ready to invoke.	The following
1530 	 * code checks this estimate and improves it when possible, thus
1531 	 * accelerating callback invocation to an earlier grace-period
1532 	 * number.
1533 	 */
1534 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1535 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1536 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1537 
1538 	/* Trace depending on how much we were able to accelerate. */
1539 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1540 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1541 	else
1542 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1543 
1544 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1545 
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1551  * rcu_node structure's ->lock be held.  It consults the cached value
1552  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1553  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1554  * while holding the leaf rcu_node structure's ->lock.
1555  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1556 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1557 					struct rcu_data *rdp)
1558 {
1559 	unsigned long c;
1560 	bool needwake;
1561 
1562 	rcu_lockdep_assert_cblist_protected(rdp);
1563 	c = rcu_seq_snap(&rcu_state.gp_seq);
1564 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1565 		/* Old request still live, so mark recent callbacks. */
1566 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1567 		return;
1568 	}
1569 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1570 	needwake = rcu_accelerate_cbs(rnp, rdp);
1571 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1572 	if (needwake)
1573 		rcu_gp_kthread_wake();
1574 }
1575 
1576 /*
1577  * Move any callbacks whose grace period has completed to the
1578  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1579  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1580  * sublist.  This function is idempotent, so it does not hurt to
1581  * invoke it repeatedly.  As long as it is not invoked -too- often...
1582  * Returns true if the RCU grace-period kthread needs to be awakened.
1583  *
1584  * The caller must hold rnp->lock with interrupts disabled.
1585  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1586 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1587 {
1588 	rcu_lockdep_assert_cblist_protected(rdp);
1589 	raw_lockdep_assert_held_rcu_node(rnp);
1590 
1591 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1592 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1593 		return false;
1594 
1595 	/*
1596 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1597 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1598 	 */
1599 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1600 
1601 	/* Classify any remaining callbacks. */
1602 	return rcu_accelerate_cbs(rnp, rdp);
1603 }
1604 
1605 /*
1606  * Move and classify callbacks, but only if doing so won't require
1607  * that the RCU grace-period kthread be awakened.
1608  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1609 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1610 						  struct rcu_data *rdp)
1611 {
1612 	rcu_lockdep_assert_cblist_protected(rdp);
1613 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1614 		return;
1615 	// The grace period cannot end while we hold the rcu_node lock.
1616 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1617 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1618 	raw_spin_unlock_rcu_node(rnp);
1619 }
1620 
1621 /*
1622  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1623  * quiescent state.  This is intended to be invoked when the CPU notices
1624  * a new grace period.
1625  */
rcu_strict_gp_check_qs(void)1626 static void rcu_strict_gp_check_qs(void)
1627 {
1628 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1629 		rcu_read_lock();
1630 		rcu_read_unlock();
1631 	}
1632 }
1633 
1634 /*
1635  * Update CPU-local rcu_data state to record the beginnings and ends of
1636  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1637  * structure corresponding to the current CPU, and must have irqs disabled.
1638  * Returns true if the grace-period kthread needs to be awakened.
1639  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1640 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1641 {
1642 	bool ret = false;
1643 	bool need_qs;
1644 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1645 
1646 	raw_lockdep_assert_held_rcu_node(rnp);
1647 
1648 	if (rdp->gp_seq == rnp->gp_seq)
1649 		return false; /* Nothing to do. */
1650 
1651 	/* Handle the ends of any preceding grace periods first. */
1652 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1653 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1654 		if (!offloaded)
1655 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1656 		rdp->core_needs_qs = false;
1657 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1658 	} else {
1659 		if (!offloaded)
1660 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1661 		if (rdp->core_needs_qs)
1662 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1663 	}
1664 
1665 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1666 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1667 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1668 		/*
1669 		 * If the current grace period is waiting for this CPU,
1670 		 * set up to detect a quiescent state, otherwise don't
1671 		 * go looking for one.
1672 		 */
1673 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1674 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1675 		rdp->cpu_no_qs.b.norm = need_qs;
1676 		rdp->core_needs_qs = need_qs;
1677 		zero_cpu_stall_ticks(rdp);
1678 	}
1679 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1680 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1681 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1682 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1683 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1684 	WRITE_ONCE(rdp->gpwrap, false);
1685 	rcu_gpnum_ovf(rnp, rdp);
1686 	return ret;
1687 }
1688 
note_gp_changes(struct rcu_data * rdp)1689 static void note_gp_changes(struct rcu_data *rdp)
1690 {
1691 	unsigned long flags;
1692 	bool needwake;
1693 	struct rcu_node *rnp;
1694 
1695 	local_irq_save(flags);
1696 	rnp = rdp->mynode;
1697 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1698 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1699 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1700 		local_irq_restore(flags);
1701 		return;
1702 	}
1703 	needwake = __note_gp_changes(rnp, rdp);
1704 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1705 	rcu_strict_gp_check_qs();
1706 	if (needwake)
1707 		rcu_gp_kthread_wake();
1708 }
1709 
1710 static atomic_t *rcu_gp_slow_suppress;
1711 
1712 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1713 void rcu_gp_slow_register(atomic_t *rgssp)
1714 {
1715 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1716 
1717 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1718 }
1719 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1720 
1721 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1722 void rcu_gp_slow_unregister(atomic_t *rgssp)
1723 {
1724 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1725 
1726 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1727 }
1728 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1729 
rcu_gp_slow_is_suppressed(void)1730 static bool rcu_gp_slow_is_suppressed(void)
1731 {
1732 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1733 
1734 	return rgssp && atomic_read(rgssp);
1735 }
1736 
rcu_gp_slow(int delay)1737 static void rcu_gp_slow(int delay)
1738 {
1739 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1740 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1741 		schedule_timeout_idle(delay);
1742 }
1743 
1744 static unsigned long sleep_duration;
1745 
1746 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1747 void rcu_gp_set_torture_wait(int duration)
1748 {
1749 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1750 		WRITE_ONCE(sleep_duration, duration);
1751 }
1752 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1753 
1754 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1755 static void rcu_gp_torture_wait(void)
1756 {
1757 	unsigned long duration;
1758 
1759 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1760 		return;
1761 	duration = xchg(&sleep_duration, 0UL);
1762 	if (duration > 0) {
1763 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1764 		schedule_timeout_idle(duration);
1765 		pr_alert("%s: Wait complete\n", __func__);
1766 	}
1767 }
1768 
1769 /*
1770  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1771  * processing.
1772  */
rcu_strict_gp_boundary(void * unused)1773 static void rcu_strict_gp_boundary(void *unused)
1774 {
1775 	invoke_rcu_core();
1776 }
1777 
1778 /*
1779  * Initialize a new grace period.  Return false if no grace period required.
1780  */
rcu_gp_init(void)1781 static noinline_for_stack bool rcu_gp_init(void)
1782 {
1783 	unsigned long flags;
1784 	unsigned long oldmask;
1785 	unsigned long mask;
1786 	struct rcu_data *rdp;
1787 	struct rcu_node *rnp = rcu_get_root();
1788 
1789 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1790 	raw_spin_lock_irq_rcu_node(rnp);
1791 	if (!READ_ONCE(rcu_state.gp_flags)) {
1792 		/* Spurious wakeup, tell caller to go back to sleep.  */
1793 		raw_spin_unlock_irq_rcu_node(rnp);
1794 		return false;
1795 	}
1796 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1797 
1798 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1799 		/*
1800 		 * Grace period already in progress, don't start another.
1801 		 * Not supposed to be able to happen.
1802 		 */
1803 		raw_spin_unlock_irq_rcu_node(rnp);
1804 		return false;
1805 	}
1806 
1807 	/* Advance to a new grace period and initialize state. */
1808 	record_gp_stall_check_time();
1809 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1810 	rcu_seq_start(&rcu_state.gp_seq);
1811 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1812 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1813 	raw_spin_unlock_irq_rcu_node(rnp);
1814 
1815 	/*
1816 	 * Apply per-leaf buffered online and offline operations to
1817 	 * the rcu_node tree. Note that this new grace period need not
1818 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1819 	 * offlining path, when combined with checks in this function,
1820 	 * will handle CPUs that are currently going offline or that will
1821 	 * go offline later.  Please also refer to "Hotplug CPU" section
1822 	 * of RCU's Requirements documentation.
1823 	 */
1824 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1825 	/* Exclude CPU hotplug operations. */
1826 	rcu_for_each_leaf_node(rnp) {
1827 		local_irq_save(flags);
1828 		arch_spin_lock(&rcu_state.ofl_lock);
1829 		raw_spin_lock_rcu_node(rnp);
1830 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1831 		    !rnp->wait_blkd_tasks) {
1832 			/* Nothing to do on this leaf rcu_node structure. */
1833 			raw_spin_unlock_rcu_node(rnp);
1834 			arch_spin_unlock(&rcu_state.ofl_lock);
1835 			local_irq_restore(flags);
1836 			continue;
1837 		}
1838 
1839 		/* Record old state, apply changes to ->qsmaskinit field. */
1840 		oldmask = rnp->qsmaskinit;
1841 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1842 
1843 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1844 		if (!oldmask != !rnp->qsmaskinit) {
1845 			if (!oldmask) { /* First online CPU for rcu_node. */
1846 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1847 					rcu_init_new_rnp(rnp);
1848 			} else if (rcu_preempt_has_tasks(rnp)) {
1849 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1850 			} else { /* Last offline CPU and can propagate. */
1851 				rcu_cleanup_dead_rnp(rnp);
1852 			}
1853 		}
1854 
1855 		/*
1856 		 * If all waited-on tasks from prior grace period are
1857 		 * done, and if all this rcu_node structure's CPUs are
1858 		 * still offline, propagate up the rcu_node tree and
1859 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1860 		 * rcu_node structure's CPUs has since come back online,
1861 		 * simply clear ->wait_blkd_tasks.
1862 		 */
1863 		if (rnp->wait_blkd_tasks &&
1864 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1865 			rnp->wait_blkd_tasks = false;
1866 			if (!rnp->qsmaskinit)
1867 				rcu_cleanup_dead_rnp(rnp);
1868 		}
1869 
1870 		raw_spin_unlock_rcu_node(rnp);
1871 		arch_spin_unlock(&rcu_state.ofl_lock);
1872 		local_irq_restore(flags);
1873 	}
1874 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1875 
1876 	/*
1877 	 * Set the quiescent-state-needed bits in all the rcu_node
1878 	 * structures for all currently online CPUs in breadth-first
1879 	 * order, starting from the root rcu_node structure, relying on the
1880 	 * layout of the tree within the rcu_state.node[] array.  Note that
1881 	 * other CPUs will access only the leaves of the hierarchy, thus
1882 	 * seeing that no grace period is in progress, at least until the
1883 	 * corresponding leaf node has been initialized.
1884 	 *
1885 	 * The grace period cannot complete until the initialization
1886 	 * process finishes, because this kthread handles both.
1887 	 */
1888 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1889 	rcu_for_each_node_breadth_first(rnp) {
1890 		rcu_gp_slow(gp_init_delay);
1891 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1892 		rdp = this_cpu_ptr(&rcu_data);
1893 		rcu_preempt_check_blocked_tasks(rnp);
1894 		rnp->qsmask = rnp->qsmaskinit;
1895 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1896 		if (rnp == rdp->mynode)
1897 			(void)__note_gp_changes(rnp, rdp);
1898 		rcu_preempt_boost_start_gp(rnp);
1899 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1900 					    rnp->level, rnp->grplo,
1901 					    rnp->grphi, rnp->qsmask);
1902 		/* Quiescent states for tasks on any now-offline CPUs. */
1903 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1904 		rnp->rcu_gp_init_mask = mask;
1905 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1906 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1907 		else
1908 			raw_spin_unlock_irq_rcu_node(rnp);
1909 		cond_resched_tasks_rcu_qs();
1910 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1911 	}
1912 
1913 	// If strict, make all CPUs aware of new grace period.
1914 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1915 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1916 
1917 	return true;
1918 }
1919 
1920 /*
1921  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1922  * time.
1923  */
rcu_gp_fqs_check_wake(int * gfp)1924 static bool rcu_gp_fqs_check_wake(int *gfp)
1925 {
1926 	struct rcu_node *rnp = rcu_get_root();
1927 
1928 	// If under overload conditions, force an immediate FQS scan.
1929 	if (*gfp & RCU_GP_FLAG_OVLD)
1930 		return true;
1931 
1932 	// Someone like call_rcu() requested a force-quiescent-state scan.
1933 	*gfp = READ_ONCE(rcu_state.gp_flags);
1934 	if (*gfp & RCU_GP_FLAG_FQS)
1935 		return true;
1936 
1937 	// The current grace period has completed.
1938 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1939 		return true;
1940 
1941 	return false;
1942 }
1943 
1944 /*
1945  * Do one round of quiescent-state forcing.
1946  */
rcu_gp_fqs(bool first_time)1947 static void rcu_gp_fqs(bool first_time)
1948 {
1949 	struct rcu_node *rnp = rcu_get_root();
1950 
1951 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1952 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1953 	if (first_time) {
1954 		/* Collect dyntick-idle snapshots. */
1955 		force_qs_rnp(dyntick_save_progress_counter);
1956 	} else {
1957 		/* Handle dyntick-idle and offline CPUs. */
1958 		force_qs_rnp(rcu_implicit_dynticks_qs);
1959 	}
1960 	/* Clear flag to prevent immediate re-entry. */
1961 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1962 		raw_spin_lock_irq_rcu_node(rnp);
1963 		WRITE_ONCE(rcu_state.gp_flags,
1964 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1965 		raw_spin_unlock_irq_rcu_node(rnp);
1966 	}
1967 }
1968 
1969 /*
1970  * Loop doing repeated quiescent-state forcing until the grace period ends.
1971  */
rcu_gp_fqs_loop(void)1972 static noinline_for_stack void rcu_gp_fqs_loop(void)
1973 {
1974 	bool first_gp_fqs;
1975 	int gf = 0;
1976 	unsigned long j;
1977 	int ret;
1978 	struct rcu_node *rnp = rcu_get_root();
1979 
1980 	first_gp_fqs = true;
1981 	j = READ_ONCE(jiffies_till_first_fqs);
1982 	if (rcu_state.cbovld)
1983 		gf = RCU_GP_FLAG_OVLD;
1984 	ret = 0;
1985 	for (;;) {
1986 		if (!ret) {
1987 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1988 			/*
1989 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1990 			 * update; required for stall checks.
1991 			 */
1992 			smp_wmb();
1993 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1994 				   jiffies + (j ? 3 * j : 2));
1995 		}
1996 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1997 				       TPS("fqswait"));
1998 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1999 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2000 				 rcu_gp_fqs_check_wake(&gf), j);
2001 		rcu_gp_torture_wait();
2002 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2003 		/* Locking provides needed memory barriers. */
2004 		/* If grace period done, leave loop. */
2005 		if (!READ_ONCE(rnp->qsmask) &&
2006 		    !rcu_preempt_blocked_readers_cgp(rnp))
2007 			break;
2008 		/* If time for quiescent-state forcing, do it. */
2009 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2010 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2011 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2012 					       TPS("fqsstart"));
2013 			rcu_gp_fqs(first_gp_fqs);
2014 			gf = 0;
2015 			if (first_gp_fqs) {
2016 				first_gp_fqs = false;
2017 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2018 			}
2019 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2020 					       TPS("fqsend"));
2021 			cond_resched_tasks_rcu_qs();
2022 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2023 			ret = 0; /* Force full wait till next FQS. */
2024 			j = READ_ONCE(jiffies_till_next_fqs);
2025 		} else {
2026 			/* Deal with stray signal. */
2027 			cond_resched_tasks_rcu_qs();
2028 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2029 			WARN_ON(signal_pending(current));
2030 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2031 					       TPS("fqswaitsig"));
2032 			ret = 1; /* Keep old FQS timing. */
2033 			j = jiffies;
2034 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2035 				j = 1;
2036 			else
2037 				j = rcu_state.jiffies_force_qs - j;
2038 			gf = 0;
2039 		}
2040 	}
2041 }
2042 
2043 /*
2044  * Clean up after the old grace period.
2045  */
rcu_gp_cleanup(void)2046 static noinline void rcu_gp_cleanup(void)
2047 {
2048 	int cpu;
2049 	bool needgp = false;
2050 	unsigned long gp_duration;
2051 	unsigned long new_gp_seq;
2052 	bool offloaded;
2053 	struct rcu_data *rdp;
2054 	struct rcu_node *rnp = rcu_get_root();
2055 	struct swait_queue_head *sq;
2056 
2057 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2058 	raw_spin_lock_irq_rcu_node(rnp);
2059 	rcu_state.gp_end = jiffies;
2060 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2061 	if (gp_duration > rcu_state.gp_max)
2062 		rcu_state.gp_max = gp_duration;
2063 
2064 	/*
2065 	 * We know the grace period is complete, but to everyone else
2066 	 * it appears to still be ongoing.  But it is also the case
2067 	 * that to everyone else it looks like there is nothing that
2068 	 * they can do to advance the grace period.  It is therefore
2069 	 * safe for us to drop the lock in order to mark the grace
2070 	 * period as completed in all of the rcu_node structures.
2071 	 */
2072 	raw_spin_unlock_irq_rcu_node(rnp);
2073 
2074 	/*
2075 	 * Propagate new ->gp_seq value to rcu_node structures so that
2076 	 * other CPUs don't have to wait until the start of the next grace
2077 	 * period to process their callbacks.  This also avoids some nasty
2078 	 * RCU grace-period initialization races by forcing the end of
2079 	 * the current grace period to be completely recorded in all of
2080 	 * the rcu_node structures before the beginning of the next grace
2081 	 * period is recorded in any of the rcu_node structures.
2082 	 */
2083 	new_gp_seq = rcu_state.gp_seq;
2084 	rcu_seq_end(&new_gp_seq);
2085 	rcu_for_each_node_breadth_first(rnp) {
2086 		raw_spin_lock_irq_rcu_node(rnp);
2087 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2088 			dump_blkd_tasks(rnp, 10);
2089 		WARN_ON_ONCE(rnp->qsmask);
2090 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2091 		rdp = this_cpu_ptr(&rcu_data);
2092 		if (rnp == rdp->mynode)
2093 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2094 		/* smp_mb() provided by prior unlock-lock pair. */
2095 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2096 		// Reset overload indication for CPUs no longer overloaded
2097 		if (rcu_is_leaf_node(rnp))
2098 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2099 				rdp = per_cpu_ptr(&rcu_data, cpu);
2100 				check_cb_ovld_locked(rdp, rnp);
2101 			}
2102 		sq = rcu_nocb_gp_get(rnp);
2103 		raw_spin_unlock_irq_rcu_node(rnp);
2104 		rcu_nocb_gp_cleanup(sq);
2105 		cond_resched_tasks_rcu_qs();
2106 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2107 		rcu_gp_slow(gp_cleanup_delay);
2108 	}
2109 	rnp = rcu_get_root();
2110 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2111 
2112 	/* Declare grace period done, trace first to use old GP number. */
2113 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2114 	rcu_seq_end(&rcu_state.gp_seq);
2115 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2116 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2117 	/* Check for GP requests since above loop. */
2118 	rdp = this_cpu_ptr(&rcu_data);
2119 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2120 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2121 				  TPS("CleanupMore"));
2122 		needgp = true;
2123 	}
2124 	/* Advance CBs to reduce false positives below. */
2125 	offloaded = rcu_rdp_is_offloaded(rdp);
2126 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2127 
2128 		// We get here if a grace period was needed (“needgp”)
2129 		// and the above call to rcu_accelerate_cbs() did not set
2130 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2131 		// the need for another grace period).  The purpose
2132 		// of the “offloaded” check is to avoid invoking
2133 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
2134 		// hold the ->nocb_lock needed to safely access an offloaded
2135 		// ->cblist.  We do not want to acquire that lock because
2136 		// it can be heavily contended during callback floods.
2137 
2138 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2139 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2140 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2141 	} else {
2142 
2143 		// We get here either if there is no need for an
2144 		// additional grace period or if rcu_accelerate_cbs() has
2145 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2146 		// So all we need to do is to clear all of the other
2147 		// ->gp_flags bits.
2148 
2149 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2150 	}
2151 	raw_spin_unlock_irq_rcu_node(rnp);
2152 
2153 	// If strict, make all CPUs aware of the end of the old grace period.
2154 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2155 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2156 }
2157 
2158 /*
2159  * Body of kthread that handles grace periods.
2160  */
rcu_gp_kthread(void * unused)2161 static int __noreturn rcu_gp_kthread(void *unused)
2162 {
2163 	rcu_bind_gp_kthread();
2164 	for (;;) {
2165 
2166 		/* Handle grace-period start. */
2167 		for (;;) {
2168 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2169 					       TPS("reqwait"));
2170 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2171 			swait_event_idle_exclusive(rcu_state.gp_wq,
2172 					 READ_ONCE(rcu_state.gp_flags) &
2173 					 RCU_GP_FLAG_INIT);
2174 			rcu_gp_torture_wait();
2175 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2176 			/* Locking provides needed memory barrier. */
2177 			if (rcu_gp_init())
2178 				break;
2179 			cond_resched_tasks_rcu_qs();
2180 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2181 			WARN_ON(signal_pending(current));
2182 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2183 					       TPS("reqwaitsig"));
2184 		}
2185 
2186 		/* Handle quiescent-state forcing. */
2187 		rcu_gp_fqs_loop();
2188 
2189 		/* Handle grace-period end. */
2190 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2191 		rcu_gp_cleanup();
2192 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2193 	}
2194 }
2195 
2196 /*
2197  * Report a full set of quiescent states to the rcu_state data structure.
2198  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2199  * another grace period is required.  Whether we wake the grace-period
2200  * kthread or it awakens itself for the next round of quiescent-state
2201  * forcing, that kthread will clean up after the just-completed grace
2202  * period.  Note that the caller must hold rnp->lock, which is released
2203  * before return.
2204  */
rcu_report_qs_rsp(unsigned long flags)2205 static void rcu_report_qs_rsp(unsigned long flags)
2206 	__releases(rcu_get_root()->lock)
2207 {
2208 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2209 	WARN_ON_ONCE(!rcu_gp_in_progress());
2210 	WRITE_ONCE(rcu_state.gp_flags,
2211 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2212 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2213 	rcu_gp_kthread_wake();
2214 }
2215 
2216 /*
2217  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2218  * Allows quiescent states for a group of CPUs to be reported at one go
2219  * to the specified rcu_node structure, though all the CPUs in the group
2220  * must be represented by the same rcu_node structure (which need not be a
2221  * leaf rcu_node structure, though it often will be).  The gps parameter
2222  * is the grace-period snapshot, which means that the quiescent states
2223  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2224  * must be held upon entry, and it is released before return.
2225  *
2226  * As a special case, if mask is zero, the bit-already-cleared check is
2227  * disabled.  This allows propagating quiescent state due to resumed tasks
2228  * during grace-period initialization.
2229  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2230 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2231 			      unsigned long gps, unsigned long flags)
2232 	__releases(rnp->lock)
2233 {
2234 	unsigned long oldmask = 0;
2235 	struct rcu_node *rnp_c;
2236 
2237 	raw_lockdep_assert_held_rcu_node(rnp);
2238 
2239 	/* Walk up the rcu_node hierarchy. */
2240 	for (;;) {
2241 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2242 
2243 			/*
2244 			 * Our bit has already been cleared, or the
2245 			 * relevant grace period is already over, so done.
2246 			 */
2247 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2248 			return;
2249 		}
2250 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2251 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2252 			     rcu_preempt_blocked_readers_cgp(rnp));
2253 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2254 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2255 						 mask, rnp->qsmask, rnp->level,
2256 						 rnp->grplo, rnp->grphi,
2257 						 !!rnp->gp_tasks);
2258 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2259 
2260 			/* Other bits still set at this level, so done. */
2261 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2262 			return;
2263 		}
2264 		rnp->completedqs = rnp->gp_seq;
2265 		mask = rnp->grpmask;
2266 		if (rnp->parent == NULL) {
2267 
2268 			/* No more levels.  Exit loop holding root lock. */
2269 
2270 			break;
2271 		}
2272 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2273 		rnp_c = rnp;
2274 		rnp = rnp->parent;
2275 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2276 		oldmask = READ_ONCE(rnp_c->qsmask);
2277 	}
2278 
2279 	/*
2280 	 * Get here if we are the last CPU to pass through a quiescent
2281 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2282 	 * to clean up and start the next grace period if one is needed.
2283 	 */
2284 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2285 }
2286 
2287 /*
2288  * Record a quiescent state for all tasks that were previously queued
2289  * on the specified rcu_node structure and that were blocking the current
2290  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2291  * irqs disabled, and this lock is released upon return, but irqs remain
2292  * disabled.
2293  */
2294 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2295 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2296 	__releases(rnp->lock)
2297 {
2298 	unsigned long gps;
2299 	unsigned long mask;
2300 	struct rcu_node *rnp_p;
2301 
2302 	raw_lockdep_assert_held_rcu_node(rnp);
2303 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2304 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2305 	    rnp->qsmask != 0) {
2306 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307 		return;  /* Still need more quiescent states! */
2308 	}
2309 
2310 	rnp->completedqs = rnp->gp_seq;
2311 	rnp_p = rnp->parent;
2312 	if (rnp_p == NULL) {
2313 		/*
2314 		 * Only one rcu_node structure in the tree, so don't
2315 		 * try to report up to its nonexistent parent!
2316 		 */
2317 		rcu_report_qs_rsp(flags);
2318 		return;
2319 	}
2320 
2321 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2322 	gps = rnp->gp_seq;
2323 	mask = rnp->grpmask;
2324 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2325 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2326 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2327 }
2328 
2329 /*
2330  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2331  * structure.  This must be called from the specified CPU.
2332  */
2333 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2334 rcu_report_qs_rdp(struct rcu_data *rdp)
2335 {
2336 	unsigned long flags;
2337 	unsigned long mask;
2338 	bool needwake = false;
2339 	bool needacc = false;
2340 	struct rcu_node *rnp;
2341 
2342 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2343 	rnp = rdp->mynode;
2344 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2345 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2346 	    rdp->gpwrap) {
2347 
2348 		/*
2349 		 * The grace period in which this quiescent state was
2350 		 * recorded has ended, so don't report it upwards.
2351 		 * We will instead need a new quiescent state that lies
2352 		 * within the current grace period.
2353 		 */
2354 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2355 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2356 		return;
2357 	}
2358 	mask = rdp->grpmask;
2359 	rdp->core_needs_qs = false;
2360 	if ((rnp->qsmask & mask) == 0) {
2361 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2362 	} else {
2363 		/*
2364 		 * This GP can't end until cpu checks in, so all of our
2365 		 * callbacks can be processed during the next GP.
2366 		 *
2367 		 * NOCB kthreads have their own way to deal with that...
2368 		 */
2369 		if (!rcu_rdp_is_offloaded(rdp)) {
2370 			needwake = rcu_accelerate_cbs(rnp, rdp);
2371 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2372 			/*
2373 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2374 			 * if in the middle of a (de-)offloading process.
2375 			 */
2376 			needacc = true;
2377 		}
2378 
2379 		rcu_disable_urgency_upon_qs(rdp);
2380 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2381 		/* ^^^ Released rnp->lock */
2382 		if (needwake)
2383 			rcu_gp_kthread_wake();
2384 
2385 		if (needacc) {
2386 			rcu_nocb_lock_irqsave(rdp, flags);
2387 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2388 			rcu_nocb_unlock_irqrestore(rdp, flags);
2389 		}
2390 	}
2391 }
2392 
2393 /*
2394  * Check to see if there is a new grace period of which this CPU
2395  * is not yet aware, and if so, set up local rcu_data state for it.
2396  * Otherwise, see if this CPU has just passed through its first
2397  * quiescent state for this grace period, and record that fact if so.
2398  */
2399 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2400 rcu_check_quiescent_state(struct rcu_data *rdp)
2401 {
2402 	/* Check for grace-period ends and beginnings. */
2403 	note_gp_changes(rdp);
2404 
2405 	/*
2406 	 * Does this CPU still need to do its part for current grace period?
2407 	 * If no, return and let the other CPUs do their part as well.
2408 	 */
2409 	if (!rdp->core_needs_qs)
2410 		return;
2411 
2412 	/*
2413 	 * Was there a quiescent state since the beginning of the grace
2414 	 * period? If no, then exit and wait for the next call.
2415 	 */
2416 	if (rdp->cpu_no_qs.b.norm)
2417 		return;
2418 
2419 	/*
2420 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2421 	 * judge of that).
2422 	 */
2423 	rcu_report_qs_rdp(rdp);
2424 }
2425 
2426 /*
2427  * Near the end of the offline process.  Trace the fact that this CPU
2428  * is going offline.
2429  */
rcutree_dying_cpu(unsigned int cpu)2430 int rcutree_dying_cpu(unsigned int cpu)
2431 {
2432 	bool blkd;
2433 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2434 	struct rcu_node *rnp = rdp->mynode;
2435 
2436 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2437 		return 0;
2438 
2439 	blkd = !!(rnp->qsmask & rdp->grpmask);
2440 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2441 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2442 	return 0;
2443 }
2444 
2445 /*
2446  * All CPUs for the specified rcu_node structure have gone offline,
2447  * and all tasks that were preempted within an RCU read-side critical
2448  * section while running on one of those CPUs have since exited their RCU
2449  * read-side critical section.  Some other CPU is reporting this fact with
2450  * the specified rcu_node structure's ->lock held and interrupts disabled.
2451  * This function therefore goes up the tree of rcu_node structures,
2452  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2453  * the leaf rcu_node structure's ->qsmaskinit field has already been
2454  * updated.
2455  *
2456  * This function does check that the specified rcu_node structure has
2457  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2458  * prematurely.  That said, invoking it after the fact will cost you
2459  * a needless lock acquisition.  So once it has done its work, don't
2460  * invoke it again.
2461  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2462 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2463 {
2464 	long mask;
2465 	struct rcu_node *rnp = rnp_leaf;
2466 
2467 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2468 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2469 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2470 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2471 		return;
2472 	for (;;) {
2473 		mask = rnp->grpmask;
2474 		rnp = rnp->parent;
2475 		if (!rnp)
2476 			break;
2477 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2478 		rnp->qsmaskinit &= ~mask;
2479 		/* Between grace periods, so better already be zero! */
2480 		WARN_ON_ONCE(rnp->qsmask);
2481 		if (rnp->qsmaskinit) {
2482 			raw_spin_unlock_rcu_node(rnp);
2483 			/* irqs remain disabled. */
2484 			return;
2485 		}
2486 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2487 	}
2488 }
2489 
2490 /*
2491  * The CPU has been completely removed, and some other CPU is reporting
2492  * this fact from process context.  Do the remainder of the cleanup.
2493  * There can only be one CPU hotplug operation at a time, so no need for
2494  * explicit locking.
2495  */
rcutree_dead_cpu(unsigned int cpu)2496 int rcutree_dead_cpu(unsigned int cpu)
2497 {
2498 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2499 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2500 
2501 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2502 		return 0;
2503 
2504 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2505 	/* Adjust any no-longer-needed kthreads. */
2506 	rcu_boost_kthread_setaffinity(rnp, -1);
2507 	// Stop-machine done, so allow nohz_full to disable tick.
2508 	tick_dep_clear(TICK_DEP_BIT_RCU);
2509 	return 0;
2510 }
2511 
2512 /*
2513  * Invoke any RCU callbacks that have made it to the end of their grace
2514  * period.  Throttle as specified by rdp->blimit.
2515  */
rcu_do_batch(struct rcu_data * rdp)2516 static void rcu_do_batch(struct rcu_data *rdp)
2517 {
2518 	int div;
2519 	bool __maybe_unused empty;
2520 	unsigned long flags;
2521 	struct rcu_head *rhp;
2522 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2523 	long bl, count = 0;
2524 	long pending, tlimit = 0;
2525 
2526 	/* If no callbacks are ready, just return. */
2527 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2528 		trace_rcu_batch_start(rcu_state.name,
2529 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2530 		trace_rcu_batch_end(rcu_state.name, 0,
2531 				    !rcu_segcblist_empty(&rdp->cblist),
2532 				    need_resched(), is_idle_task(current),
2533 				    rcu_is_callbacks_kthread());
2534 		return;
2535 	}
2536 
2537 	/*
2538 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2539 	 * races with call_rcu() from interrupt handlers.  Leave the
2540 	 * callback counts, as rcu_barrier() needs to be conservative.
2541 	 */
2542 	rcu_nocb_lock_irqsave(rdp, flags);
2543 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2544 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2545 	div = READ_ONCE(rcu_divisor);
2546 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2547 	bl = max(rdp->blimit, pending >> div);
2548 	if (in_serving_softirq() && unlikely(bl > 100)) {
2549 		long rrn = READ_ONCE(rcu_resched_ns);
2550 
2551 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2552 		tlimit = local_clock() + rrn;
2553 	}
2554 	trace_rcu_batch_start(rcu_state.name,
2555 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2556 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2557 	if (rcu_rdp_is_offloaded(rdp))
2558 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2559 
2560 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2561 	rcu_nocb_unlock_irqrestore(rdp, flags);
2562 
2563 	/* Invoke callbacks. */
2564 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2565 	rhp = rcu_cblist_dequeue(&rcl);
2566 
2567 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2568 		rcu_callback_t f;
2569 
2570 		count++;
2571 		debug_rcu_head_unqueue(rhp);
2572 
2573 		rcu_lock_acquire(&rcu_callback_map);
2574 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2575 
2576 		f = rhp->func;
2577 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2578 		f(rhp);
2579 
2580 		rcu_lock_release(&rcu_callback_map);
2581 
2582 		/*
2583 		 * Stop only if limit reached and CPU has something to do.
2584 		 */
2585 		if (in_serving_softirq()) {
2586 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2587 				break;
2588 			/*
2589 			 * Make sure we don't spend too much time here and deprive other
2590 			 * softirq vectors of CPU cycles.
2591 			 */
2592 			if (unlikely(tlimit)) {
2593 				/* only call local_clock() every 32 callbacks */
2594 				if (likely((count & 31) || local_clock() < tlimit))
2595 					continue;
2596 				/* Exceeded the time limit, so leave. */
2597 				break;
2598 			}
2599 		} else {
2600 			local_bh_enable();
2601 			lockdep_assert_irqs_enabled();
2602 			cond_resched_tasks_rcu_qs();
2603 			lockdep_assert_irqs_enabled();
2604 			local_bh_disable();
2605 		}
2606 	}
2607 
2608 	rcu_nocb_lock_irqsave(rdp, flags);
2609 	rdp->n_cbs_invoked += count;
2610 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2611 			    is_idle_task(current), rcu_is_callbacks_kthread());
2612 
2613 	/* Update counts and requeue any remaining callbacks. */
2614 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2615 	rcu_segcblist_add_len(&rdp->cblist, -count);
2616 
2617 	/* Reinstate batch limit if we have worked down the excess. */
2618 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2619 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2620 		rdp->blimit = blimit;
2621 
2622 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2623 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2624 		rdp->qlen_last_fqs_check = 0;
2625 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2626 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2627 		rdp->qlen_last_fqs_check = count;
2628 
2629 	/*
2630 	 * The following usually indicates a double call_rcu().  To track
2631 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2632 	 */
2633 	empty = rcu_segcblist_empty(&rdp->cblist);
2634 	WARN_ON_ONCE(count == 0 && !empty);
2635 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2636 		     count != 0 && empty);
2637 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2638 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2639 
2640 	rcu_nocb_unlock_irqrestore(rdp, flags);
2641 
2642 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2643 }
2644 
2645 /*
2646  * This function is invoked from each scheduling-clock interrupt,
2647  * and checks to see if this CPU is in a non-context-switch quiescent
2648  * state, for example, user mode or idle loop.  It also schedules RCU
2649  * core processing.  If the current grace period has gone on too long,
2650  * it will ask the scheduler to manufacture a context switch for the sole
2651  * purpose of providing the needed quiescent state.
2652  */
rcu_sched_clock_irq(int user)2653 void rcu_sched_clock_irq(int user)
2654 {
2655 	unsigned long j;
2656 
2657 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2658 		j = jiffies;
2659 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2660 		__this_cpu_write(rcu_data.last_sched_clock, j);
2661 	}
2662 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2663 	lockdep_assert_irqs_disabled();
2664 	raw_cpu_inc(rcu_data.ticks_this_gp);
2665 	/* The load-acquire pairs with the store-release setting to true. */
2666 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2667 		/* Idle and userspace execution already are quiescent states. */
2668 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2669 			set_tsk_need_resched(current);
2670 			set_preempt_need_resched();
2671 		}
2672 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2673 	}
2674 	rcu_flavor_sched_clock_irq(user);
2675 	if (rcu_pending(user))
2676 		invoke_rcu_core();
2677 	if (user)
2678 		rcu_tasks_classic_qs(current, false);
2679 	lockdep_assert_irqs_disabled();
2680 
2681 	trace_rcu_utilization(TPS("End scheduler-tick"));
2682 }
2683 
2684 /*
2685  * Scan the leaf rcu_node structures.  For each structure on which all
2686  * CPUs have reported a quiescent state and on which there are tasks
2687  * blocking the current grace period, initiate RCU priority boosting.
2688  * Otherwise, invoke the specified function to check dyntick state for
2689  * each CPU that has not yet reported a quiescent state.
2690  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2691 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2692 {
2693 	int cpu;
2694 	unsigned long flags;
2695 	unsigned long mask;
2696 	struct rcu_data *rdp;
2697 	struct rcu_node *rnp;
2698 
2699 	rcu_state.cbovld = rcu_state.cbovldnext;
2700 	rcu_state.cbovldnext = false;
2701 	rcu_for_each_leaf_node(rnp) {
2702 		cond_resched_tasks_rcu_qs();
2703 		mask = 0;
2704 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2705 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2706 		if (rnp->qsmask == 0) {
2707 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2708 				/*
2709 				 * No point in scanning bits because they
2710 				 * are all zero.  But we might need to
2711 				 * priority-boost blocked readers.
2712 				 */
2713 				rcu_initiate_boost(rnp, flags);
2714 				/* rcu_initiate_boost() releases rnp->lock */
2715 				continue;
2716 			}
2717 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2718 			continue;
2719 		}
2720 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2721 			rdp = per_cpu_ptr(&rcu_data, cpu);
2722 			if (f(rdp)) {
2723 				mask |= rdp->grpmask;
2724 				rcu_disable_urgency_upon_qs(rdp);
2725 			}
2726 		}
2727 		if (mask != 0) {
2728 			/* Idle/offline CPUs, report (releases rnp->lock). */
2729 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2730 		} else {
2731 			/* Nothing to do here, so just drop the lock. */
2732 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2733 		}
2734 	}
2735 }
2736 
2737 /*
2738  * Force quiescent states on reluctant CPUs, and also detect which
2739  * CPUs are in dyntick-idle mode.
2740  */
rcu_force_quiescent_state(void)2741 void rcu_force_quiescent_state(void)
2742 {
2743 	unsigned long flags;
2744 	bool ret;
2745 	struct rcu_node *rnp;
2746 	struct rcu_node *rnp_old = NULL;
2747 
2748 	/* Funnel through hierarchy to reduce memory contention. */
2749 	rnp = __this_cpu_read(rcu_data.mynode);
2750 	for (; rnp != NULL; rnp = rnp->parent) {
2751 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2752 		       !raw_spin_trylock(&rnp->fqslock);
2753 		if (rnp_old != NULL)
2754 			raw_spin_unlock(&rnp_old->fqslock);
2755 		if (ret)
2756 			return;
2757 		rnp_old = rnp;
2758 	}
2759 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2760 
2761 	/* Reached the root of the rcu_node tree, acquire lock. */
2762 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2763 	raw_spin_unlock(&rnp_old->fqslock);
2764 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2765 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2766 		return;  /* Someone beat us to it. */
2767 	}
2768 	WRITE_ONCE(rcu_state.gp_flags,
2769 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2770 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2771 	rcu_gp_kthread_wake();
2772 }
2773 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2774 
2775 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2776 // grace periods.
strict_work_handler(struct work_struct * work)2777 static void strict_work_handler(struct work_struct *work)
2778 {
2779 	rcu_read_lock();
2780 	rcu_read_unlock();
2781 }
2782 
2783 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2784 static __latent_entropy void rcu_core(void)
2785 {
2786 	unsigned long flags;
2787 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2788 	struct rcu_node *rnp = rdp->mynode;
2789 	/*
2790 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2791 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2792 	 * on this CPU and the below condition must be considered volatile.
2793 	 * However if we race with:
2794 	 *
2795 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2796 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2797 	 *                 call rcu_nocb_lock() if that happens.
2798 	 *
2799 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2800 	 *                 processing. This is fine because the early stage
2801 	 *                 of deoffloading invokes rcu_core() after setting
2802 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2803 	 *                 what could have been dismissed without the need to wait
2804 	 *                 for the next rcu_pending() check in the next jiffy.
2805 	 */
2806 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2807 
2808 	if (cpu_is_offline(smp_processor_id()))
2809 		return;
2810 	trace_rcu_utilization(TPS("Start RCU core"));
2811 	WARN_ON_ONCE(!rdp->beenonline);
2812 
2813 	/* Report any deferred quiescent states if preemption enabled. */
2814 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2815 		rcu_preempt_deferred_qs(current);
2816 	} else if (rcu_preempt_need_deferred_qs(current)) {
2817 		set_tsk_need_resched(current);
2818 		set_preempt_need_resched();
2819 	}
2820 
2821 	/* Update RCU state based on any recent quiescent states. */
2822 	rcu_check_quiescent_state(rdp);
2823 
2824 	/* No grace period and unregistered callbacks? */
2825 	if (!rcu_gp_in_progress() &&
2826 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2827 		rcu_nocb_lock_irqsave(rdp, flags);
2828 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2829 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2830 		rcu_nocb_unlock_irqrestore(rdp, flags);
2831 	}
2832 
2833 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2834 
2835 	/* If there are callbacks ready, invoke them. */
2836 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2837 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2838 		rcu_do_batch(rdp);
2839 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2840 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2841 			invoke_rcu_core();
2842 	}
2843 
2844 	/* Do any needed deferred wakeups of rcuo kthreads. */
2845 	do_nocb_deferred_wakeup(rdp);
2846 	trace_rcu_utilization(TPS("End RCU core"));
2847 
2848 	// If strict GPs, schedule an RCU reader in a clean environment.
2849 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2850 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2851 }
2852 
rcu_core_si(struct softirq_action * h)2853 static void rcu_core_si(struct softirq_action *h)
2854 {
2855 	rcu_core();
2856 }
2857 
rcu_wake_cond(struct task_struct * t,int status)2858 static void rcu_wake_cond(struct task_struct *t, int status)
2859 {
2860 	/*
2861 	 * If the thread is yielding, only wake it when this
2862 	 * is invoked from idle
2863 	 */
2864 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2865 		wake_up_process(t);
2866 }
2867 
invoke_rcu_core_kthread(void)2868 static void invoke_rcu_core_kthread(void)
2869 {
2870 	struct task_struct *t;
2871 	unsigned long flags;
2872 
2873 	local_irq_save(flags);
2874 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2875 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2876 	if (t != NULL && t != current)
2877 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2878 	local_irq_restore(flags);
2879 }
2880 
2881 /*
2882  * Wake up this CPU's rcuc kthread to do RCU core processing.
2883  */
invoke_rcu_core(void)2884 static void invoke_rcu_core(void)
2885 {
2886 	if (!cpu_online(smp_processor_id()))
2887 		return;
2888 	if (use_softirq)
2889 		raise_softirq(RCU_SOFTIRQ);
2890 	else
2891 		invoke_rcu_core_kthread();
2892 }
2893 
rcu_cpu_kthread_park(unsigned int cpu)2894 static void rcu_cpu_kthread_park(unsigned int cpu)
2895 {
2896 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2897 }
2898 
rcu_cpu_kthread_should_run(unsigned int cpu)2899 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2900 {
2901 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2902 }
2903 
2904 /*
2905  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2906  * the RCU softirq used in configurations of RCU that do not support RCU
2907  * priority boosting.
2908  */
rcu_cpu_kthread(unsigned int cpu)2909 static void rcu_cpu_kthread(unsigned int cpu)
2910 {
2911 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2912 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2913 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2914 	int spincnt;
2915 
2916 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2917 	for (spincnt = 0; spincnt < 10; spincnt++) {
2918 		WRITE_ONCE(*j, jiffies);
2919 		local_bh_disable();
2920 		*statusp = RCU_KTHREAD_RUNNING;
2921 		local_irq_disable();
2922 		work = *workp;
2923 		*workp = 0;
2924 		local_irq_enable();
2925 		if (work)
2926 			rcu_core();
2927 		local_bh_enable();
2928 		if (*workp == 0) {
2929 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2930 			*statusp = RCU_KTHREAD_WAITING;
2931 			return;
2932 		}
2933 	}
2934 	*statusp = RCU_KTHREAD_YIELDING;
2935 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2936 	schedule_timeout_idle(2);
2937 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2938 	*statusp = RCU_KTHREAD_WAITING;
2939 	WRITE_ONCE(*j, jiffies);
2940 }
2941 
2942 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2943 	.store			= &rcu_data.rcu_cpu_kthread_task,
2944 	.thread_should_run	= rcu_cpu_kthread_should_run,
2945 	.thread_fn		= rcu_cpu_kthread,
2946 	.thread_comm		= "rcuc/%u",
2947 	.setup			= rcu_cpu_kthread_setup,
2948 	.park			= rcu_cpu_kthread_park,
2949 };
2950 
2951 /*
2952  * Spawn per-CPU RCU core processing kthreads.
2953  */
rcu_spawn_core_kthreads(void)2954 static int __init rcu_spawn_core_kthreads(void)
2955 {
2956 	int cpu;
2957 
2958 	for_each_possible_cpu(cpu)
2959 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2960 	if (use_softirq)
2961 		return 0;
2962 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2963 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2964 	return 0;
2965 }
2966 
2967 /*
2968  * Handle any core-RCU processing required by a call_rcu() invocation.
2969  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2970 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2971 			    unsigned long flags)
2972 {
2973 	/*
2974 	 * If called from an extended quiescent state, invoke the RCU
2975 	 * core in order to force a re-evaluation of RCU's idleness.
2976 	 */
2977 	if (!rcu_is_watching())
2978 		invoke_rcu_core();
2979 
2980 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2981 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2982 		return;
2983 
2984 	/*
2985 	 * Force the grace period if too many callbacks or too long waiting.
2986 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2987 	 * if some other CPU has recently done so.  Also, don't bother
2988 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2989 	 * is the only one waiting for a grace period to complete.
2990 	 */
2991 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2992 		     rdp->qlen_last_fqs_check + qhimark)) {
2993 
2994 		/* Are we ignoring a completed grace period? */
2995 		note_gp_changes(rdp);
2996 
2997 		/* Start a new grace period if one not already started. */
2998 		if (!rcu_gp_in_progress()) {
2999 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
3000 		} else {
3001 			/* Give the grace period a kick. */
3002 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
3003 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
3004 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3005 				rcu_force_quiescent_state();
3006 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3007 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3008 		}
3009 	}
3010 }
3011 
3012 /*
3013  * RCU callback function to leak a callback.
3014  */
rcu_leak_callback(struct rcu_head * rhp)3015 static void rcu_leak_callback(struct rcu_head *rhp)
3016 {
3017 }
3018 
3019 /*
3020  * Check and if necessary update the leaf rcu_node structure's
3021  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3022  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
3023  * structure's ->lock.
3024  */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)3025 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3026 {
3027 	raw_lockdep_assert_held_rcu_node(rnp);
3028 	if (qovld_calc <= 0)
3029 		return; // Early boot and wildcard value set.
3030 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3031 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3032 	else
3033 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3034 }
3035 
3036 /*
3037  * Check and if necessary update the leaf rcu_node structure's
3038  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3039  * number of queued RCU callbacks.  No locks need be held, but the
3040  * caller must have disabled interrupts.
3041  *
3042  * Note that this function ignores the possibility that there are a lot
3043  * of callbacks all of which have already seen the end of their respective
3044  * grace periods.  This omission is due to the need for no-CBs CPUs to
3045  * be holding ->nocb_lock to do this check, which is too heavy for a
3046  * common-case operation.
3047  */
check_cb_ovld(struct rcu_data * rdp)3048 static void check_cb_ovld(struct rcu_data *rdp)
3049 {
3050 	struct rcu_node *const rnp = rdp->mynode;
3051 
3052 	if (qovld_calc <= 0 ||
3053 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3054 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3055 		return; // Early boot wildcard value or already set correctly.
3056 	raw_spin_lock_rcu_node(rnp);
3057 	check_cb_ovld_locked(rdp, rnp);
3058 	raw_spin_unlock_rcu_node(rnp);
3059 }
3060 
3061 /**
3062  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3063  * @head: structure to be used for queueing the RCU updates.
3064  * @func: actual callback function to be invoked after the grace period
3065  *
3066  * The callback function will be invoked some time after a full grace
3067  * period elapses, in other words after all pre-existing RCU read-side
3068  * critical sections have completed.  However, the callback function
3069  * might well execute concurrently with RCU read-side critical sections
3070  * that started after call_rcu() was invoked.
3071  *
3072  * RCU read-side critical sections are delimited by rcu_read_lock()
3073  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3074  * v5.0 and later, regions of code across which interrupts, preemption,
3075  * or softirqs have been disabled also serve as RCU read-side critical
3076  * sections.  This includes hardware interrupt handlers, softirq handlers,
3077  * and NMI handlers.
3078  *
3079  * Note that all CPUs must agree that the grace period extended beyond
3080  * all pre-existing RCU read-side critical section.  On systems with more
3081  * than one CPU, this means that when "func()" is invoked, each CPU is
3082  * guaranteed to have executed a full memory barrier since the end of its
3083  * last RCU read-side critical section whose beginning preceded the call
3084  * to call_rcu().  It also means that each CPU executing an RCU read-side
3085  * critical section that continues beyond the start of "func()" must have
3086  * executed a memory barrier after the call_rcu() but before the beginning
3087  * of that RCU read-side critical section.  Note that these guarantees
3088  * include CPUs that are offline, idle, or executing in user mode, as
3089  * well as CPUs that are executing in the kernel.
3090  *
3091  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3092  * resulting RCU callback function "func()", then both CPU A and CPU B are
3093  * guaranteed to execute a full memory barrier during the time interval
3094  * between the call to call_rcu() and the invocation of "func()" -- even
3095  * if CPU A and CPU B are the same CPU (but again only if the system has
3096  * more than one CPU).
3097  *
3098  * Implementation of these memory-ordering guarantees is described here:
3099  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3100  */
call_rcu(struct rcu_head * head,rcu_callback_t func)3101 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3102 {
3103 	static atomic_t doublefrees;
3104 	unsigned long flags;
3105 	struct rcu_data *rdp;
3106 	bool was_alldone;
3107 
3108 	/* Misaligned rcu_head! */
3109 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3110 
3111 	if (debug_rcu_head_queue(head)) {
3112 		/*
3113 		 * Probable double call_rcu(), so leak the callback.
3114 		 * Use rcu:rcu_callback trace event to find the previous
3115 		 * time callback was passed to call_rcu().
3116 		 */
3117 		if (atomic_inc_return(&doublefrees) < 4) {
3118 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3119 			mem_dump_obj(head);
3120 		}
3121 		WRITE_ONCE(head->func, rcu_leak_callback);
3122 		return;
3123 	}
3124 	head->func = func;
3125 	head->next = NULL;
3126 	kasan_record_aux_stack_noalloc(head);
3127 	local_irq_save(flags);
3128 	rdp = this_cpu_ptr(&rcu_data);
3129 
3130 	/* Add the callback to our list. */
3131 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3132 		// This can trigger due to call_rcu() from offline CPU:
3133 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3134 		WARN_ON_ONCE(!rcu_is_watching());
3135 		// Very early boot, before rcu_init().  Initialize if needed
3136 		// and then drop through to queue the callback.
3137 		if (rcu_segcblist_empty(&rdp->cblist))
3138 			rcu_segcblist_init(&rdp->cblist);
3139 	}
3140 
3141 	check_cb_ovld(rdp);
3142 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3143 		return; // Enqueued onto ->nocb_bypass, so just leave.
3144 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3145 	rcu_segcblist_enqueue(&rdp->cblist, head);
3146 	if (__is_kvfree_rcu_offset((unsigned long)func))
3147 		trace_rcu_kvfree_callback(rcu_state.name, head,
3148 					 (unsigned long)func,
3149 					 rcu_segcblist_n_cbs(&rdp->cblist));
3150 	else
3151 		trace_rcu_callback(rcu_state.name, head,
3152 				   rcu_segcblist_n_cbs(&rdp->cblist));
3153 
3154 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3155 
3156 	/* Go handle any RCU core processing required. */
3157 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3158 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3159 	} else {
3160 		__call_rcu_core(rdp, head, flags);
3161 		local_irq_restore(flags);
3162 	}
3163 }
3164 EXPORT_SYMBOL_GPL(call_rcu);
3165 
3166 
3167 /* Maximum number of jiffies to wait before draining a batch. */
3168 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3169 #define KFREE_N_BATCHES 2
3170 #define FREE_N_CHANNELS 2
3171 
3172 /**
3173  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3174  * @nr_records: Number of active pointers in the array
3175  * @next: Next bulk object in the block chain
3176  * @records: Array of the kvfree_rcu() pointers
3177  */
3178 struct kvfree_rcu_bulk_data {
3179 	unsigned long nr_records;
3180 	struct kvfree_rcu_bulk_data *next;
3181 	void *records[];
3182 };
3183 
3184 /*
3185  * This macro defines how many entries the "records" array
3186  * will contain. It is based on the fact that the size of
3187  * kvfree_rcu_bulk_data structure becomes exactly one page.
3188  */
3189 #define KVFREE_BULK_MAX_ENTR \
3190 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3191 
3192 /**
3193  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3194  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3195  * @head_free: List of kfree_rcu() objects waiting for a grace period
3196  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3197  * @krcp: Pointer to @kfree_rcu_cpu structure
3198  */
3199 
3200 struct kfree_rcu_cpu_work {
3201 	struct rcu_work rcu_work;
3202 	struct rcu_head *head_free;
3203 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3204 	struct kfree_rcu_cpu *krcp;
3205 };
3206 
3207 /**
3208  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3209  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3210  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3211  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3212  * @lock: Synchronize access to this structure
3213  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3214  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3215  * @initialized: The @rcu_work fields have been initialized
3216  * @count: Number of objects for which GP not started
3217  * @bkvcache:
3218  *	A simple cache list that contains objects for reuse purpose.
3219  *	In order to save some per-cpu space the list is singular.
3220  *	Even though it is lockless an access has to be protected by the
3221  *	per-cpu lock.
3222  * @page_cache_work: A work to refill the cache when it is empty
3223  * @backoff_page_cache_fill: Delay cache refills
3224  * @work_in_progress: Indicates that page_cache_work is running
3225  * @hrtimer: A hrtimer for scheduling a page_cache_work
3226  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3227  *
3228  * This is a per-CPU structure.  The reason that it is not included in
3229  * the rcu_data structure is to permit this code to be extracted from
3230  * the RCU files.  Such extraction could allow further optimization of
3231  * the interactions with the slab allocators.
3232  */
3233 struct kfree_rcu_cpu {
3234 	struct rcu_head *head;
3235 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3236 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3237 	raw_spinlock_t lock;
3238 	struct delayed_work monitor_work;
3239 	bool monitor_todo;
3240 	bool initialized;
3241 	int count;
3242 
3243 	struct delayed_work page_cache_work;
3244 	atomic_t backoff_page_cache_fill;
3245 	atomic_t work_in_progress;
3246 	struct hrtimer hrtimer;
3247 
3248 	struct llist_head bkvcache;
3249 	int nr_bkv_objs;
3250 };
3251 
3252 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3253 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3254 };
3255 
3256 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3257 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3258 {
3259 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3260 	int i;
3261 
3262 	for (i = 0; i < bhead->nr_records; i++)
3263 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3264 #endif
3265 }
3266 
3267 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3268 krc_this_cpu_lock(unsigned long *flags)
3269 {
3270 	struct kfree_rcu_cpu *krcp;
3271 
3272 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3273 	krcp = this_cpu_ptr(&krc);
3274 	raw_spin_lock(&krcp->lock);
3275 
3276 	return krcp;
3277 }
3278 
3279 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3280 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3281 {
3282 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3283 }
3284 
3285 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3286 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3287 {
3288 	if (!krcp->nr_bkv_objs)
3289 		return NULL;
3290 
3291 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3292 	return (struct kvfree_rcu_bulk_data *)
3293 		llist_del_first(&krcp->bkvcache);
3294 }
3295 
3296 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3297 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3298 	struct kvfree_rcu_bulk_data *bnode)
3299 {
3300 	// Check the limit.
3301 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3302 		return false;
3303 
3304 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3305 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3306 	return true;
3307 }
3308 
3309 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)3310 drain_page_cache(struct kfree_rcu_cpu *krcp)
3311 {
3312 	unsigned long flags;
3313 	struct llist_node *page_list, *pos, *n;
3314 	int freed = 0;
3315 
3316 	raw_spin_lock_irqsave(&krcp->lock, flags);
3317 	page_list = llist_del_all(&krcp->bkvcache);
3318 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3319 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3320 
3321 	llist_for_each_safe(pos, n, page_list) {
3322 		free_page((unsigned long)pos);
3323 		freed++;
3324 	}
3325 
3326 	return freed;
3327 }
3328 
3329 /*
3330  * This function is invoked in workqueue context after a grace period.
3331  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3332  */
kfree_rcu_work(struct work_struct * work)3333 static void kfree_rcu_work(struct work_struct *work)
3334 {
3335 	unsigned long flags;
3336 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3337 	struct rcu_head *head, *next;
3338 	struct kfree_rcu_cpu *krcp;
3339 	struct kfree_rcu_cpu_work *krwp;
3340 	int i, j;
3341 
3342 	krwp = container_of(to_rcu_work(work),
3343 			    struct kfree_rcu_cpu_work, rcu_work);
3344 	krcp = krwp->krcp;
3345 
3346 	raw_spin_lock_irqsave(&krcp->lock, flags);
3347 	// Channels 1 and 2.
3348 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3349 		bkvhead[i] = krwp->bkvhead_free[i];
3350 		krwp->bkvhead_free[i] = NULL;
3351 	}
3352 
3353 	// Channel 3.
3354 	head = krwp->head_free;
3355 	krwp->head_free = NULL;
3356 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3357 
3358 	// Handle the first two channels.
3359 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3360 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3361 			bnext = bkvhead[i]->next;
3362 			debug_rcu_bhead_unqueue(bkvhead[i]);
3363 
3364 			rcu_lock_acquire(&rcu_callback_map);
3365 			if (i == 0) { // kmalloc() / kfree().
3366 				trace_rcu_invoke_kfree_bulk_callback(
3367 					rcu_state.name, bkvhead[i]->nr_records,
3368 					bkvhead[i]->records);
3369 
3370 				kfree_bulk(bkvhead[i]->nr_records,
3371 					bkvhead[i]->records);
3372 			} else { // vmalloc() / vfree().
3373 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3374 					trace_rcu_invoke_kvfree_callback(
3375 						rcu_state.name,
3376 						bkvhead[i]->records[j], 0);
3377 
3378 					vfree(bkvhead[i]->records[j]);
3379 				}
3380 			}
3381 			rcu_lock_release(&rcu_callback_map);
3382 
3383 			raw_spin_lock_irqsave(&krcp->lock, flags);
3384 			if (put_cached_bnode(krcp, bkvhead[i]))
3385 				bkvhead[i] = NULL;
3386 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3387 
3388 			if (bkvhead[i])
3389 				free_page((unsigned long) bkvhead[i]);
3390 
3391 			cond_resched_tasks_rcu_qs();
3392 		}
3393 	}
3394 
3395 	/*
3396 	 * This is used when the "bulk" path can not be used for the
3397 	 * double-argument of kvfree_rcu().  This happens when the
3398 	 * page-cache is empty, which means that objects are instead
3399 	 * queued on a linked list through their rcu_head structures.
3400 	 * This list is named "Channel 3".
3401 	 */
3402 	for (; head; head = next) {
3403 		unsigned long offset = (unsigned long)head->func;
3404 		void *ptr = (void *)head - offset;
3405 
3406 		next = head->next;
3407 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3408 		rcu_lock_acquire(&rcu_callback_map);
3409 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3410 
3411 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3412 			kvfree(ptr);
3413 
3414 		rcu_lock_release(&rcu_callback_map);
3415 		cond_resched_tasks_rcu_qs();
3416 	}
3417 }
3418 
3419 /*
3420  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3421  */
kfree_rcu_monitor(struct work_struct * work)3422 static void kfree_rcu_monitor(struct work_struct *work)
3423 {
3424 	struct kfree_rcu_cpu *krcp = container_of(work,
3425 		struct kfree_rcu_cpu, monitor_work.work);
3426 	unsigned long flags;
3427 	int i, j;
3428 
3429 	raw_spin_lock_irqsave(&krcp->lock, flags);
3430 
3431 	// Attempt to start a new batch.
3432 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3433 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3434 
3435 		// Try to detach bkvhead or head and attach it over any
3436 		// available corresponding free channel. It can be that
3437 		// a previous RCU batch is in progress, it means that
3438 		// immediately to queue another one is not possible so
3439 		// in that case the monitor work is rearmed.
3440 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3441 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3442 				(krcp->head && !krwp->head_free)) {
3443 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3444 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3445 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3446 				if (!krwp->bkvhead_free[j]) {
3447 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3448 					krcp->bkvhead[j] = NULL;
3449 				}
3450 			}
3451 
3452 			// Channel 3 corresponds to both SLAB and vmalloc
3453 			// objects queued on the linked list.
3454 			if (!krwp->head_free) {
3455 				krwp->head_free = krcp->head;
3456 				krcp->head = NULL;
3457 			}
3458 
3459 			WRITE_ONCE(krcp->count, 0);
3460 
3461 			// One work is per one batch, so there are three
3462 			// "free channels", the batch can handle. It can
3463 			// be that the work is in the pending state when
3464 			// channels have been detached following by each
3465 			// other.
3466 			queue_rcu_work(system_wq, &krwp->rcu_work);
3467 		}
3468 	}
3469 
3470 	// If there is nothing to detach, it means that our job is
3471 	// successfully done here. In case of having at least one
3472 	// of the channels that is still busy we should rearm the
3473 	// work to repeat an attempt. Because previous batches are
3474 	// still in progress.
3475 	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3476 		krcp->monitor_todo = false;
3477 	else
3478 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3479 
3480 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3481 }
3482 
3483 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3484 schedule_page_work_fn(struct hrtimer *t)
3485 {
3486 	struct kfree_rcu_cpu *krcp =
3487 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3488 
3489 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3490 	return HRTIMER_NORESTART;
3491 }
3492 
fill_page_cache_func(struct work_struct * work)3493 static void fill_page_cache_func(struct work_struct *work)
3494 {
3495 	struct kvfree_rcu_bulk_data *bnode;
3496 	struct kfree_rcu_cpu *krcp =
3497 		container_of(work, struct kfree_rcu_cpu,
3498 			page_cache_work.work);
3499 	unsigned long flags;
3500 	int nr_pages;
3501 	bool pushed;
3502 	int i;
3503 
3504 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3505 		1 : rcu_min_cached_objs;
3506 
3507 	for (i = 0; i < nr_pages; i++) {
3508 		bnode = (struct kvfree_rcu_bulk_data *)
3509 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3510 
3511 		if (bnode) {
3512 			raw_spin_lock_irqsave(&krcp->lock, flags);
3513 			pushed = put_cached_bnode(krcp, bnode);
3514 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3515 
3516 			if (!pushed) {
3517 				free_page((unsigned long) bnode);
3518 				break;
3519 			}
3520 		}
3521 	}
3522 
3523 	atomic_set(&krcp->work_in_progress, 0);
3524 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3525 }
3526 
3527 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3528 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3529 {
3530 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3531 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3532 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3533 			queue_delayed_work(system_wq,
3534 				&krcp->page_cache_work,
3535 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3536 		} else {
3537 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3538 			krcp->hrtimer.function = schedule_page_work_fn;
3539 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3540 		}
3541 	}
3542 }
3543 
3544 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3545 // state specified by flags.  If can_alloc is true, the caller must
3546 // be schedulable and not be holding any locks or mutexes that might be
3547 // acquired by the memory allocator or anything that it might invoke.
3548 // Returns true if ptr was successfully recorded, else the caller must
3549 // use a fallback.
3550 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3551 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3552 	unsigned long *flags, void *ptr, bool can_alloc)
3553 {
3554 	struct kvfree_rcu_bulk_data *bnode;
3555 	int idx;
3556 
3557 	*krcp = krc_this_cpu_lock(flags);
3558 	if (unlikely(!(*krcp)->initialized))
3559 		return false;
3560 
3561 	idx = !!is_vmalloc_addr(ptr);
3562 
3563 	/* Check if a new block is required. */
3564 	if (!(*krcp)->bkvhead[idx] ||
3565 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3566 		bnode = get_cached_bnode(*krcp);
3567 		if (!bnode && can_alloc) {
3568 			krc_this_cpu_unlock(*krcp, *flags);
3569 
3570 			// __GFP_NORETRY - allows a light-weight direct reclaim
3571 			// what is OK from minimizing of fallback hitting point of
3572 			// view. Apart of that it forbids any OOM invoking what is
3573 			// also beneficial since we are about to release memory soon.
3574 			//
3575 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3576 			// memory reserves. Please note we have a fallback path.
3577 			//
3578 			// __GFP_NOWARN - it is supposed that an allocation can
3579 			// be failed under low memory or high memory pressure
3580 			// scenarios.
3581 			bnode = (struct kvfree_rcu_bulk_data *)
3582 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3583 			*krcp = krc_this_cpu_lock(flags);
3584 		}
3585 
3586 		if (!bnode)
3587 			return false;
3588 
3589 		/* Initialize the new block. */
3590 		bnode->nr_records = 0;
3591 		bnode->next = (*krcp)->bkvhead[idx];
3592 
3593 		/* Attach it to the head. */
3594 		(*krcp)->bkvhead[idx] = bnode;
3595 	}
3596 
3597 	/* Finally insert. */
3598 	(*krcp)->bkvhead[idx]->records
3599 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3600 
3601 	return true;
3602 }
3603 
3604 /*
3605  * Queue a request for lazy invocation of the appropriate free routine
3606  * after a grace period.  Please note that three paths are maintained,
3607  * two for the common case using arrays of pointers and a third one that
3608  * is used only when the main paths cannot be used, for example, due to
3609  * memory pressure.
3610  *
3611  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3612  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3613  * be free'd in workqueue context. This allows us to: batch requests together to
3614  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3615  */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3616 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3617 {
3618 	unsigned long flags;
3619 	struct kfree_rcu_cpu *krcp;
3620 	bool success;
3621 	void *ptr;
3622 
3623 	if (head) {
3624 		ptr = (void *) head - (unsigned long) func;
3625 	} else {
3626 		/*
3627 		 * Please note there is a limitation for the head-less
3628 		 * variant, that is why there is a clear rule for such
3629 		 * objects: it can be used from might_sleep() context
3630 		 * only. For other places please embed an rcu_head to
3631 		 * your data.
3632 		 */
3633 		might_sleep();
3634 		ptr = (unsigned long *) func;
3635 	}
3636 
3637 	// Queue the object but don't yet schedule the batch.
3638 	if (debug_rcu_head_queue(ptr)) {
3639 		// Probable double kfree_rcu(), just leak.
3640 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3641 			  __func__, head);
3642 
3643 		// Mark as success and leave.
3644 		return;
3645 	}
3646 
3647 	kasan_record_aux_stack_noalloc(ptr);
3648 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3649 	if (!success) {
3650 		run_page_cache_worker(krcp);
3651 
3652 		if (head == NULL)
3653 			// Inline if kvfree_rcu(one_arg) call.
3654 			goto unlock_return;
3655 
3656 		head->func = func;
3657 		head->next = krcp->head;
3658 		krcp->head = head;
3659 		success = true;
3660 	}
3661 
3662 	WRITE_ONCE(krcp->count, krcp->count + 1);
3663 
3664 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3665 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3666 	    !krcp->monitor_todo) {
3667 		krcp->monitor_todo = true;
3668 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3669 	}
3670 
3671 unlock_return:
3672 	krc_this_cpu_unlock(krcp, flags);
3673 
3674 	/*
3675 	 * Inline kvfree() after synchronize_rcu(). We can do
3676 	 * it from might_sleep() context only, so the current
3677 	 * CPU can pass the QS state.
3678 	 */
3679 	if (!success) {
3680 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3681 		synchronize_rcu();
3682 		kvfree(ptr);
3683 	}
3684 }
3685 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3686 
3687 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3688 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3689 {
3690 	int cpu;
3691 	unsigned long count = 0;
3692 
3693 	/* Snapshot count of all CPUs */
3694 	for_each_possible_cpu(cpu) {
3695 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3696 
3697 		count += READ_ONCE(krcp->count);
3698 		count += READ_ONCE(krcp->nr_bkv_objs);
3699 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3700 	}
3701 
3702 	return count;
3703 }
3704 
3705 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3706 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3707 {
3708 	int cpu, freed = 0;
3709 
3710 	for_each_possible_cpu(cpu) {
3711 		int count;
3712 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3713 
3714 		count = krcp->count;
3715 		count += drain_page_cache(krcp);
3716 		kfree_rcu_monitor(&krcp->monitor_work.work);
3717 
3718 		sc->nr_to_scan -= count;
3719 		freed += count;
3720 
3721 		if (sc->nr_to_scan <= 0)
3722 			break;
3723 	}
3724 
3725 	return freed == 0 ? SHRINK_STOP : freed;
3726 }
3727 
3728 static struct shrinker kfree_rcu_shrinker = {
3729 	.count_objects = kfree_rcu_shrink_count,
3730 	.scan_objects = kfree_rcu_shrink_scan,
3731 	.batch = 0,
3732 	.seeks = DEFAULT_SEEKS,
3733 };
3734 
kfree_rcu_scheduler_running(void)3735 void __init kfree_rcu_scheduler_running(void)
3736 {
3737 	int cpu;
3738 	unsigned long flags;
3739 
3740 	for_each_possible_cpu(cpu) {
3741 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3742 
3743 		raw_spin_lock_irqsave(&krcp->lock, flags);
3744 		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3745 				krcp->monitor_todo) {
3746 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3747 			continue;
3748 		}
3749 		krcp->monitor_todo = true;
3750 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3751 					 KFREE_DRAIN_JIFFIES);
3752 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3753 	}
3754 }
3755 
3756 /*
3757  * During early boot, any blocking grace-period wait automatically
3758  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3759  *
3760  * However, because a context switch is a grace period for !PREEMPTION, any
3761  * blocking grace-period wait automatically implies a grace period if
3762  * there is only one CPU online at any point time during execution of
3763  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3764  * occasionally incorrectly indicate that there are multiple CPUs online
3765  * when there was in fact only one the whole time, as this just adds some
3766  * overhead: RCU still operates correctly.
3767  */
rcu_blocking_is_gp(void)3768 static int rcu_blocking_is_gp(void)
3769 {
3770 	int ret;
3771 
3772 	// Invoking preempt_model_*() too early gets a splat.
3773 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE ||
3774 	    preempt_model_full() || preempt_model_rt())
3775 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3776 	might_sleep();  /* Check for RCU read-side critical section. */
3777 	preempt_disable();
3778 	/*
3779 	 * If the rcu_state.n_online_cpus counter is equal to one,
3780 	 * there is only one CPU, and that CPU sees all prior accesses
3781 	 * made by any CPU that was online at the time of its access.
3782 	 * Furthermore, if this counter is equal to one, its value cannot
3783 	 * change until after the preempt_enable() below.
3784 	 *
3785 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3786 	 * all later CPUs (both this one and any that come online later
3787 	 * on) are guaranteed to see all accesses prior to this point
3788 	 * in the code, without the need for additional memory barriers.
3789 	 * Those memory barriers are provided by CPU-hotplug code.
3790 	 */
3791 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3792 	preempt_enable();
3793 	return ret;
3794 }
3795 
3796 /**
3797  * synchronize_rcu - wait until a grace period has elapsed.
3798  *
3799  * Control will return to the caller some time after a full grace
3800  * period has elapsed, in other words after all currently executing RCU
3801  * read-side critical sections have completed.  Note, however, that
3802  * upon return from synchronize_rcu(), the caller might well be executing
3803  * concurrently with new RCU read-side critical sections that began while
3804  * synchronize_rcu() was waiting.
3805  *
3806  * RCU read-side critical sections are delimited by rcu_read_lock()
3807  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3808  * v5.0 and later, regions of code across which interrupts, preemption,
3809  * or softirqs have been disabled also serve as RCU read-side critical
3810  * sections.  This includes hardware interrupt handlers, softirq handlers,
3811  * and NMI handlers.
3812  *
3813  * Note that this guarantee implies further memory-ordering guarantees.
3814  * On systems with more than one CPU, when synchronize_rcu() returns,
3815  * each CPU is guaranteed to have executed a full memory barrier since
3816  * the end of its last RCU read-side critical section whose beginning
3817  * preceded the call to synchronize_rcu().  In addition, each CPU having
3818  * an RCU read-side critical section that extends beyond the return from
3819  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3820  * after the beginning of synchronize_rcu() and before the beginning of
3821  * that RCU read-side critical section.  Note that these guarantees include
3822  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3823  * that are executing in the kernel.
3824  *
3825  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3826  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3827  * to have executed a full memory barrier during the execution of
3828  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3829  * again only if the system has more than one CPU).
3830  *
3831  * Implementation of these memory-ordering guarantees is described here:
3832  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3833  */
synchronize_rcu(void)3834 void synchronize_rcu(void)
3835 {
3836 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3837 			 lock_is_held(&rcu_lock_map) ||
3838 			 lock_is_held(&rcu_sched_lock_map),
3839 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3840 	if (rcu_blocking_is_gp())
3841 		return;  // Context allows vacuous grace periods.
3842 	if (rcu_gp_is_expedited())
3843 		synchronize_rcu_expedited();
3844 	else
3845 		wait_rcu_gp(call_rcu);
3846 }
3847 EXPORT_SYMBOL_GPL(synchronize_rcu);
3848 
3849 /**
3850  * get_state_synchronize_rcu - Snapshot current RCU state
3851  *
3852  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3853  * or poll_state_synchronize_rcu() to determine whether or not a full
3854  * grace period has elapsed in the meantime.
3855  */
get_state_synchronize_rcu(void)3856 unsigned long get_state_synchronize_rcu(void)
3857 {
3858 	/*
3859 	 * Any prior manipulation of RCU-protected data must happen
3860 	 * before the load from ->gp_seq.
3861 	 */
3862 	smp_mb();  /* ^^^ */
3863 	return rcu_seq_snap(&rcu_state.gp_seq);
3864 }
3865 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3866 
3867 /**
3868  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3869  *
3870  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3871  * or poll_state_synchronize_rcu() to determine whether or not a full
3872  * grace period has elapsed in the meantime.  If the needed grace period
3873  * is not already slated to start, notifies RCU core of the need for that
3874  * grace period.
3875  *
3876  * Interrupts must be enabled for the case where it is necessary to awaken
3877  * the grace-period kthread.
3878  */
start_poll_synchronize_rcu(void)3879 unsigned long start_poll_synchronize_rcu(void)
3880 {
3881 	unsigned long flags;
3882 	unsigned long gp_seq = get_state_synchronize_rcu();
3883 	bool needwake;
3884 	struct rcu_data *rdp;
3885 	struct rcu_node *rnp;
3886 
3887 	lockdep_assert_irqs_enabled();
3888 	local_irq_save(flags);
3889 	rdp = this_cpu_ptr(&rcu_data);
3890 	rnp = rdp->mynode;
3891 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3892 	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3893 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3894 	if (needwake)
3895 		rcu_gp_kthread_wake();
3896 	return gp_seq;
3897 }
3898 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3899 
3900 /**
3901  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3902  *
3903  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3904  *
3905  * If a full RCU grace period has elapsed since the earlier call from
3906  * which oldstate was obtained, return @true, otherwise return @false.
3907  * If @false is returned, it is the caller's responsibility to invoke this
3908  * function later on until it does return @true.  Alternatively, the caller
3909  * can explicitly wait for a grace period, for example, by passing @oldstate
3910  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3911  *
3912  * Yes, this function does not take counter wrap into account.
3913  * But counter wrap is harmless.  If the counter wraps, we have waited for
3914  * more than 2 billion grace periods (and way more on a 64-bit system!).
3915  * Those needing to keep oldstate values for very long time periods
3916  * (many hours even on 32-bit systems) should check them occasionally
3917  * and either refresh them or set a flag indicating that the grace period
3918  * has completed.
3919  *
3920  * This function provides the same memory-ordering guarantees that
3921  * would be provided by a synchronize_rcu() that was invoked at the call
3922  * to the function that provided @oldstate, and that returned at the end
3923  * of this function.
3924  */
poll_state_synchronize_rcu(unsigned long oldstate)3925 bool poll_state_synchronize_rcu(unsigned long oldstate)
3926 {
3927 	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3928 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3929 		return true;
3930 	}
3931 	return false;
3932 }
3933 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3934 
3935 /**
3936  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3937  *
3938  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3939  *
3940  * If a full RCU grace period has elapsed since the earlier call to
3941  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3942  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3943  *
3944  * Yes, this function does not take counter wrap into account.  But
3945  * counter wrap is harmless.  If the counter wraps, we have waited for
3946  * more than 2 billion grace periods (and way more on a 64-bit system!),
3947  * so waiting for one additional grace period should be just fine.
3948  *
3949  * This function provides the same memory-ordering guarantees that
3950  * would be provided by a synchronize_rcu() that was invoked at the call
3951  * to the function that provided @oldstate, and that returned at the end
3952  * of this function.
3953  */
cond_synchronize_rcu(unsigned long oldstate)3954 void cond_synchronize_rcu(unsigned long oldstate)
3955 {
3956 	if (!poll_state_synchronize_rcu(oldstate))
3957 		synchronize_rcu();
3958 }
3959 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3960 
3961 /*
3962  * Check to see if there is any immediate RCU-related work to be done by
3963  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3964  * in order of increasing expense: checks that can be carried out against
3965  * CPU-local state are performed first.  However, we must check for CPU
3966  * stalls first, else we might not get a chance.
3967  */
rcu_pending(int user)3968 static int rcu_pending(int user)
3969 {
3970 	bool gp_in_progress;
3971 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3972 	struct rcu_node *rnp = rdp->mynode;
3973 
3974 	lockdep_assert_irqs_disabled();
3975 
3976 	/* Check for CPU stalls, if enabled. */
3977 	check_cpu_stall(rdp);
3978 
3979 	/* Does this CPU need a deferred NOCB wakeup? */
3980 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3981 		return 1;
3982 
3983 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3984 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3985 		return 0;
3986 
3987 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3988 	gp_in_progress = rcu_gp_in_progress();
3989 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3990 		return 1;
3991 
3992 	/* Does this CPU have callbacks ready to invoke? */
3993 	if (!rcu_rdp_is_offloaded(rdp) &&
3994 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3995 		return 1;
3996 
3997 	/* Has RCU gone idle with this CPU needing another grace period? */
3998 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3999 	    !rcu_rdp_is_offloaded(rdp) &&
4000 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
4001 		return 1;
4002 
4003 	/* Have RCU grace period completed or started?  */
4004 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
4005 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
4006 		return 1;
4007 
4008 	/* nothing to do */
4009 	return 0;
4010 }
4011 
4012 /*
4013  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
4014  * the compiler is expected to optimize this away.
4015  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)4016 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
4017 {
4018 	trace_rcu_barrier(rcu_state.name, s, cpu,
4019 			  atomic_read(&rcu_state.barrier_cpu_count), done);
4020 }
4021 
4022 /*
4023  * RCU callback function for rcu_barrier().  If we are last, wake
4024  * up the task executing rcu_barrier().
4025  *
4026  * Note that the value of rcu_state.barrier_sequence must be captured
4027  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
4028  * other CPUs might count the value down to zero before this CPU gets
4029  * around to invoking rcu_barrier_trace(), which might result in bogus
4030  * data from the next instance of rcu_barrier().
4031  */
rcu_barrier_callback(struct rcu_head * rhp)4032 static void rcu_barrier_callback(struct rcu_head *rhp)
4033 {
4034 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4035 
4036 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4037 		rcu_barrier_trace(TPS("LastCB"), -1, s);
4038 		complete(&rcu_state.barrier_completion);
4039 	} else {
4040 		rcu_barrier_trace(TPS("CB"), -1, s);
4041 	}
4042 }
4043 
4044 /*
4045  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4046  */
rcu_barrier_entrain(struct rcu_data * rdp)4047 static void rcu_barrier_entrain(struct rcu_data *rdp)
4048 {
4049 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4050 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4051 
4052 	lockdep_assert_held(&rcu_state.barrier_lock);
4053 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4054 		return;
4055 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4056 	rdp->barrier_head.func = rcu_barrier_callback;
4057 	debug_rcu_head_queue(&rdp->barrier_head);
4058 	rcu_nocb_lock(rdp);
4059 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4060 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4061 		atomic_inc(&rcu_state.barrier_cpu_count);
4062 	} else {
4063 		debug_rcu_head_unqueue(&rdp->barrier_head);
4064 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4065 	}
4066 	rcu_nocb_unlock(rdp);
4067 	smp_store_release(&rdp->barrier_seq_snap, gseq);
4068 }
4069 
4070 /*
4071  * Called with preemption disabled, and from cross-cpu IRQ context.
4072  */
rcu_barrier_handler(void * cpu_in)4073 static void rcu_barrier_handler(void *cpu_in)
4074 {
4075 	uintptr_t cpu = (uintptr_t)cpu_in;
4076 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4077 
4078 	lockdep_assert_irqs_disabled();
4079 	WARN_ON_ONCE(cpu != rdp->cpu);
4080 	WARN_ON_ONCE(cpu != smp_processor_id());
4081 	raw_spin_lock(&rcu_state.barrier_lock);
4082 	rcu_barrier_entrain(rdp);
4083 	raw_spin_unlock(&rcu_state.barrier_lock);
4084 }
4085 
4086 /**
4087  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4088  *
4089  * Note that this primitive does not necessarily wait for an RCU grace period
4090  * to complete.  For example, if there are no RCU callbacks queued anywhere
4091  * in the system, then rcu_barrier() is within its rights to return
4092  * immediately, without waiting for anything, much less an RCU grace period.
4093  */
rcu_barrier(void)4094 void rcu_barrier(void)
4095 {
4096 	uintptr_t cpu;
4097 	unsigned long flags;
4098 	unsigned long gseq;
4099 	struct rcu_data *rdp;
4100 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4101 
4102 	rcu_barrier_trace(TPS("Begin"), -1, s);
4103 
4104 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4105 	mutex_lock(&rcu_state.barrier_mutex);
4106 
4107 	/* Did someone else do our work for us? */
4108 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4109 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4110 		smp_mb(); /* caller's subsequent code after above check. */
4111 		mutex_unlock(&rcu_state.barrier_mutex);
4112 		return;
4113 	}
4114 
4115 	/* Mark the start of the barrier operation. */
4116 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4117 	rcu_seq_start(&rcu_state.barrier_sequence);
4118 	gseq = rcu_state.barrier_sequence;
4119 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4120 
4121 	/*
4122 	 * Initialize the count to two rather than to zero in order
4123 	 * to avoid a too-soon return to zero in case of an immediate
4124 	 * invocation of the just-enqueued callback (or preemption of
4125 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4126 	 * offline non-offloaded CPU has callbacks queued.
4127 	 */
4128 	init_completion(&rcu_state.barrier_completion);
4129 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4130 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4131 
4132 	/*
4133 	 * Force each CPU with callbacks to register a new callback.
4134 	 * When that callback is invoked, we will know that all of the
4135 	 * corresponding CPU's preceding callbacks have been invoked.
4136 	 */
4137 	for_each_possible_cpu(cpu) {
4138 		rdp = per_cpu_ptr(&rcu_data, cpu);
4139 retry:
4140 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4141 			continue;
4142 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4143 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4144 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4145 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4146 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4147 			continue;
4148 		}
4149 		if (!rcu_rdp_cpu_online(rdp)) {
4150 			rcu_barrier_entrain(rdp);
4151 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4152 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4153 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4154 			continue;
4155 		}
4156 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4157 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4158 			schedule_timeout_uninterruptible(1);
4159 			goto retry;
4160 		}
4161 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4162 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4163 	}
4164 
4165 	/*
4166 	 * Now that we have an rcu_barrier_callback() callback on each
4167 	 * CPU, and thus each counted, remove the initial count.
4168 	 */
4169 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4170 		complete(&rcu_state.barrier_completion);
4171 
4172 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4173 	wait_for_completion(&rcu_state.barrier_completion);
4174 
4175 	/* Mark the end of the barrier operation. */
4176 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4177 	rcu_seq_end(&rcu_state.barrier_sequence);
4178 	gseq = rcu_state.barrier_sequence;
4179 	for_each_possible_cpu(cpu) {
4180 		rdp = per_cpu_ptr(&rcu_data, cpu);
4181 
4182 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4183 	}
4184 
4185 	/* Other rcu_barrier() invocations can now safely proceed. */
4186 	mutex_unlock(&rcu_state.barrier_mutex);
4187 }
4188 EXPORT_SYMBOL_GPL(rcu_barrier);
4189 
4190 /*
4191  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4192  * first CPU in a given leaf rcu_node structure coming online.  The caller
4193  * must hold the corresponding leaf rcu_node ->lock with interrupts
4194  * disabled.
4195  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4196 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4197 {
4198 	long mask;
4199 	long oldmask;
4200 	struct rcu_node *rnp = rnp_leaf;
4201 
4202 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4203 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4204 	for (;;) {
4205 		mask = rnp->grpmask;
4206 		rnp = rnp->parent;
4207 		if (rnp == NULL)
4208 			return;
4209 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4210 		oldmask = rnp->qsmaskinit;
4211 		rnp->qsmaskinit |= mask;
4212 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4213 		if (oldmask)
4214 			return;
4215 	}
4216 }
4217 
4218 /*
4219  * Do boot-time initialization of a CPU's per-CPU RCU data.
4220  */
4221 static void __init
rcu_boot_init_percpu_data(int cpu)4222 rcu_boot_init_percpu_data(int cpu)
4223 {
4224 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4225 
4226 	/* Set up local state, ensuring consistent view of global state. */
4227 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4228 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4229 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4230 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4231 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4232 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4233 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4234 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4235 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4236 	rdp->last_sched_clock = jiffies;
4237 	rdp->cpu = cpu;
4238 	rcu_boot_init_nocb_percpu_data(rdp);
4239 }
4240 
4241 /*
4242  * Invoked early in the CPU-online process, when pretty much all services
4243  * are available.  The incoming CPU is not present.
4244  *
4245  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4246  * offline event can be happening at a given time.  Note also that we can
4247  * accept some slop in the rsp->gp_seq access due to the fact that this
4248  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4249  * And any offloaded callbacks are being numbered elsewhere.
4250  */
rcutree_prepare_cpu(unsigned int cpu)4251 int rcutree_prepare_cpu(unsigned int cpu)
4252 {
4253 	unsigned long flags;
4254 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4255 	struct rcu_node *rnp = rcu_get_root();
4256 
4257 	/* Set up local state, ensuring consistent view of global state. */
4258 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4259 	rdp->qlen_last_fqs_check = 0;
4260 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4261 	rdp->blimit = blimit;
4262 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4263 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4264 
4265 	/*
4266 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4267 	 * (re-)initialized.
4268 	 */
4269 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4270 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4271 
4272 	/*
4273 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4274 	 * propagation up the rcu_node tree will happen at the beginning
4275 	 * of the next grace period.
4276 	 */
4277 	rnp = rdp->mynode;
4278 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4279 	rdp->beenonline = true;	 /* We have now been online. */
4280 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4281 	rdp->gp_seq_needed = rdp->gp_seq;
4282 	rdp->cpu_no_qs.b.norm = true;
4283 	rdp->core_needs_qs = false;
4284 	rdp->rcu_iw_pending = false;
4285 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4286 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4287 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4288 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4289 	rcu_spawn_one_boost_kthread(rnp);
4290 	rcu_spawn_cpu_nocb_kthread(cpu);
4291 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4292 
4293 	return 0;
4294 }
4295 
4296 /*
4297  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4298  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4299 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4300 {
4301 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4302 
4303 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4304 }
4305 
4306 /*
4307  * Near the end of the CPU-online process.  Pretty much all services
4308  * enabled, and the CPU is now very much alive.
4309  */
rcutree_online_cpu(unsigned int cpu)4310 int rcutree_online_cpu(unsigned int cpu)
4311 {
4312 	unsigned long flags;
4313 	struct rcu_data *rdp;
4314 	struct rcu_node *rnp;
4315 
4316 	rdp = per_cpu_ptr(&rcu_data, cpu);
4317 	rnp = rdp->mynode;
4318 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4319 	rnp->ffmask |= rdp->grpmask;
4320 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4321 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4322 		return 0; /* Too early in boot for scheduler work. */
4323 	sync_sched_exp_online_cleanup(cpu);
4324 	rcutree_affinity_setting(cpu, -1);
4325 
4326 	// Stop-machine done, so allow nohz_full to disable tick.
4327 	tick_dep_clear(TICK_DEP_BIT_RCU);
4328 	return 0;
4329 }
4330 
4331 /*
4332  * Near the beginning of the process.  The CPU is still very much alive
4333  * with pretty much all services enabled.
4334  */
rcutree_offline_cpu(unsigned int cpu)4335 int rcutree_offline_cpu(unsigned int cpu)
4336 {
4337 	unsigned long flags;
4338 	struct rcu_data *rdp;
4339 	struct rcu_node *rnp;
4340 
4341 	rdp = per_cpu_ptr(&rcu_data, cpu);
4342 	rnp = rdp->mynode;
4343 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4344 	rnp->ffmask &= ~rdp->grpmask;
4345 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4346 
4347 	rcutree_affinity_setting(cpu, cpu);
4348 
4349 	// nohz_full CPUs need the tick for stop-machine to work quickly
4350 	tick_dep_set(TICK_DEP_BIT_RCU);
4351 	return 0;
4352 }
4353 
4354 /*
4355  * Mark the specified CPU as being online so that subsequent grace periods
4356  * (both expedited and normal) will wait on it.  Note that this means that
4357  * incoming CPUs are not allowed to use RCU read-side critical sections
4358  * until this function is called.  Failing to observe this restriction
4359  * will result in lockdep splats.
4360  *
4361  * Note that this function is special in that it is invoked directly
4362  * from the incoming CPU rather than from the cpuhp_step mechanism.
4363  * This is because this function must be invoked at a precise location.
4364  */
rcu_cpu_starting(unsigned int cpu)4365 void rcu_cpu_starting(unsigned int cpu)
4366 {
4367 	unsigned long flags;
4368 	unsigned long mask;
4369 	struct rcu_data *rdp;
4370 	struct rcu_node *rnp;
4371 	bool newcpu;
4372 
4373 	rdp = per_cpu_ptr(&rcu_data, cpu);
4374 	if (rdp->cpu_started)
4375 		return;
4376 	rdp->cpu_started = true;
4377 
4378 	rnp = rdp->mynode;
4379 	mask = rdp->grpmask;
4380 	local_irq_save(flags);
4381 	arch_spin_lock(&rcu_state.ofl_lock);
4382 	rcu_dynticks_eqs_online();
4383 	raw_spin_lock(&rcu_state.barrier_lock);
4384 	raw_spin_lock_rcu_node(rnp);
4385 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4386 	raw_spin_unlock(&rcu_state.barrier_lock);
4387 	newcpu = !(rnp->expmaskinitnext & mask);
4388 	rnp->expmaskinitnext |= mask;
4389 	/* Allow lockless access for expedited grace periods. */
4390 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4391 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4392 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4393 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4394 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4395 
4396 	/* An incoming CPU should never be blocking a grace period. */
4397 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4398 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4399 		unsigned long flags2;
4400 
4401 		local_irq_save(flags2);
4402 		rcu_disable_urgency_upon_qs(rdp);
4403 		/* Report QS -after- changing ->qsmaskinitnext! */
4404 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4405 	} else {
4406 		raw_spin_unlock_rcu_node(rnp);
4407 	}
4408 	arch_spin_unlock(&rcu_state.ofl_lock);
4409 	local_irq_restore(flags);
4410 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4411 }
4412 
4413 /*
4414  * The outgoing function has no further need of RCU, so remove it from
4415  * the rcu_node tree's ->qsmaskinitnext bit masks.
4416  *
4417  * Note that this function is special in that it is invoked directly
4418  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4419  * This is because this function must be invoked at a precise location.
4420  */
rcu_report_dead(unsigned int cpu)4421 void rcu_report_dead(unsigned int cpu)
4422 {
4423 	unsigned long flags, seq_flags;
4424 	unsigned long mask;
4425 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4426 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4427 
4428 	// Do any dangling deferred wakeups.
4429 	do_nocb_deferred_wakeup(rdp);
4430 
4431 	/* QS for any half-done expedited grace period. */
4432 	rcu_report_exp_rdp(rdp);
4433 	rcu_preempt_deferred_qs(current);
4434 
4435 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4436 	mask = rdp->grpmask;
4437 	local_irq_save(seq_flags);
4438 	arch_spin_lock(&rcu_state.ofl_lock);
4439 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4440 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4441 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4442 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4443 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4444 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4445 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4446 	}
4447 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4448 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4449 	arch_spin_unlock(&rcu_state.ofl_lock);
4450 	local_irq_restore(seq_flags);
4451 
4452 	rdp->cpu_started = false;
4453 }
4454 
4455 #ifdef CONFIG_HOTPLUG_CPU
4456 /*
4457  * The outgoing CPU has just passed through the dying-idle state, and we
4458  * are being invoked from the CPU that was IPIed to continue the offline
4459  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4460  */
rcutree_migrate_callbacks(int cpu)4461 void rcutree_migrate_callbacks(int cpu)
4462 {
4463 	unsigned long flags;
4464 	struct rcu_data *my_rdp;
4465 	struct rcu_node *my_rnp;
4466 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4467 	bool needwake;
4468 
4469 	if (rcu_rdp_is_offloaded(rdp) ||
4470 	    rcu_segcblist_empty(&rdp->cblist))
4471 		return;  /* No callbacks to migrate. */
4472 
4473 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4474 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4475 	rcu_barrier_entrain(rdp);
4476 	my_rdp = this_cpu_ptr(&rcu_data);
4477 	my_rnp = my_rdp->mynode;
4478 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4479 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4480 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4481 	/* Leverage recent GPs and set GP for new callbacks. */
4482 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4483 		   rcu_advance_cbs(my_rnp, my_rdp);
4484 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4485 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4486 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4487 	rcu_segcblist_disable(&rdp->cblist);
4488 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4489 	if (rcu_rdp_is_offloaded(my_rdp)) {
4490 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4491 		__call_rcu_nocb_wake(my_rdp, true, flags);
4492 	} else {
4493 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4494 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4495 	}
4496 	if (needwake)
4497 		rcu_gp_kthread_wake();
4498 	lockdep_assert_irqs_enabled();
4499 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4500 		  !rcu_segcblist_empty(&rdp->cblist),
4501 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4502 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4503 		  rcu_segcblist_first_cb(&rdp->cblist));
4504 }
4505 #endif
4506 
4507 /*
4508  * On non-huge systems, use expedited RCU grace periods to make suspend
4509  * and hibernation run faster.
4510  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4511 static int rcu_pm_notify(struct notifier_block *self,
4512 			 unsigned long action, void *hcpu)
4513 {
4514 	switch (action) {
4515 	case PM_HIBERNATION_PREPARE:
4516 	case PM_SUSPEND_PREPARE:
4517 		rcu_expedite_gp();
4518 		break;
4519 	case PM_POST_HIBERNATION:
4520 	case PM_POST_SUSPEND:
4521 		rcu_unexpedite_gp();
4522 		break;
4523 	default:
4524 		break;
4525 	}
4526 	return NOTIFY_OK;
4527 }
4528 
4529 #ifdef CONFIG_RCU_EXP_KTHREAD
4530 struct kthread_worker *rcu_exp_gp_kworker;
4531 struct kthread_worker *rcu_exp_par_gp_kworker;
4532 
rcu_start_exp_gp_kworkers(void)4533 static void __init rcu_start_exp_gp_kworkers(void)
4534 {
4535 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4536 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4537 	struct sched_param param = { .sched_priority = kthread_prio };
4538 
4539 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4540 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4541 		pr_err("Failed to create %s!\n", gp_kworker_name);
4542 		return;
4543 	}
4544 
4545 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4546 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4547 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4548 		kthread_destroy_worker(rcu_exp_gp_kworker);
4549 		return;
4550 	}
4551 
4552 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4553 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4554 				   &param);
4555 }
4556 
rcu_alloc_par_gp_wq(void)4557 static inline void rcu_alloc_par_gp_wq(void)
4558 {
4559 }
4560 #else /* !CONFIG_RCU_EXP_KTHREAD */
4561 struct workqueue_struct *rcu_par_gp_wq;
4562 
rcu_start_exp_gp_kworkers(void)4563 static void __init rcu_start_exp_gp_kworkers(void)
4564 {
4565 }
4566 
rcu_alloc_par_gp_wq(void)4567 static inline void rcu_alloc_par_gp_wq(void)
4568 {
4569 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4570 	WARN_ON(!rcu_par_gp_wq);
4571 }
4572 #endif /* CONFIG_RCU_EXP_KTHREAD */
4573 
4574 /*
4575  * Spawn the kthreads that handle RCU's grace periods.
4576  */
rcu_spawn_gp_kthread(void)4577 static int __init rcu_spawn_gp_kthread(void)
4578 {
4579 	unsigned long flags;
4580 	struct rcu_node *rnp;
4581 	struct sched_param sp;
4582 	struct task_struct *t;
4583 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4584 
4585 	rcu_scheduler_fully_active = 1;
4586 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4587 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4588 		return 0;
4589 	if (kthread_prio) {
4590 		sp.sched_priority = kthread_prio;
4591 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4592 	}
4593 	rnp = rcu_get_root();
4594 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4595 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4596 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4597 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4598 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4599 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4600 	wake_up_process(t);
4601 	/* This is a pre-SMP initcall, we expect a single CPU */
4602 	WARN_ON(num_online_cpus() > 1);
4603 	/*
4604 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4605 	 * due to rcu_scheduler_fully_active.
4606 	 */
4607 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4608 	rcu_spawn_one_boost_kthread(rdp->mynode);
4609 	rcu_spawn_core_kthreads();
4610 	/* Create kthread worker for expedited GPs */
4611 	rcu_start_exp_gp_kworkers();
4612 	return 0;
4613 }
4614 early_initcall(rcu_spawn_gp_kthread);
4615 
4616 /*
4617  * This function is invoked towards the end of the scheduler's
4618  * initialization process.  Before this is called, the idle task might
4619  * contain synchronous grace-period primitives (during which time, this idle
4620  * task is booting the system, and such primitives are no-ops).  After this
4621  * function is called, any synchronous grace-period primitives are run as
4622  * expedited, with the requesting task driving the grace period forward.
4623  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4624  * runtime RCU functionality.
4625  */
rcu_scheduler_starting(void)4626 void rcu_scheduler_starting(void)
4627 {
4628 	WARN_ON(num_online_cpus() != 1);
4629 	WARN_ON(nr_context_switches() > 0);
4630 	rcu_test_sync_prims();
4631 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4632 	rcu_test_sync_prims();
4633 }
4634 
4635 /*
4636  * Helper function for rcu_init() that initializes the rcu_state structure.
4637  */
rcu_init_one(void)4638 static void __init rcu_init_one(void)
4639 {
4640 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4641 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4642 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4643 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4644 
4645 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4646 	int cpustride = 1;
4647 	int i;
4648 	int j;
4649 	struct rcu_node *rnp;
4650 
4651 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4652 
4653 	/* Silence gcc 4.8 false positive about array index out of range. */
4654 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4655 		panic("rcu_init_one: rcu_num_lvls out of range");
4656 
4657 	/* Initialize the level-tracking arrays. */
4658 
4659 	for (i = 1; i < rcu_num_lvls; i++)
4660 		rcu_state.level[i] =
4661 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4662 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4663 
4664 	/* Initialize the elements themselves, starting from the leaves. */
4665 
4666 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4667 		cpustride *= levelspread[i];
4668 		rnp = rcu_state.level[i];
4669 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4670 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4671 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4672 						   &rcu_node_class[i], buf[i]);
4673 			raw_spin_lock_init(&rnp->fqslock);
4674 			lockdep_set_class_and_name(&rnp->fqslock,
4675 						   &rcu_fqs_class[i], fqs[i]);
4676 			rnp->gp_seq = rcu_state.gp_seq;
4677 			rnp->gp_seq_needed = rcu_state.gp_seq;
4678 			rnp->completedqs = rcu_state.gp_seq;
4679 			rnp->qsmask = 0;
4680 			rnp->qsmaskinit = 0;
4681 			rnp->grplo = j * cpustride;
4682 			rnp->grphi = (j + 1) * cpustride - 1;
4683 			if (rnp->grphi >= nr_cpu_ids)
4684 				rnp->grphi = nr_cpu_ids - 1;
4685 			if (i == 0) {
4686 				rnp->grpnum = 0;
4687 				rnp->grpmask = 0;
4688 				rnp->parent = NULL;
4689 			} else {
4690 				rnp->grpnum = j % levelspread[i - 1];
4691 				rnp->grpmask = BIT(rnp->grpnum);
4692 				rnp->parent = rcu_state.level[i - 1] +
4693 					      j / levelspread[i - 1];
4694 			}
4695 			rnp->level = i;
4696 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4697 			rcu_init_one_nocb(rnp);
4698 			init_waitqueue_head(&rnp->exp_wq[0]);
4699 			init_waitqueue_head(&rnp->exp_wq[1]);
4700 			init_waitqueue_head(&rnp->exp_wq[2]);
4701 			init_waitqueue_head(&rnp->exp_wq[3]);
4702 			spin_lock_init(&rnp->exp_lock);
4703 			mutex_init(&rnp->boost_kthread_mutex);
4704 		}
4705 	}
4706 
4707 	init_swait_queue_head(&rcu_state.gp_wq);
4708 	init_swait_queue_head(&rcu_state.expedited_wq);
4709 	rnp = rcu_first_leaf_node();
4710 	for_each_possible_cpu(i) {
4711 		while (i > rnp->grphi)
4712 			rnp++;
4713 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4714 		rcu_boot_init_percpu_data(i);
4715 	}
4716 }
4717 
4718 /*
4719  * Force priority from the kernel command-line into range.
4720  */
sanitize_kthread_prio(void)4721 static void __init sanitize_kthread_prio(void)
4722 {
4723 	int kthread_prio_in = kthread_prio;
4724 
4725 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4726 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4727 		kthread_prio = 2;
4728 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4729 		kthread_prio = 1;
4730 	else if (kthread_prio < 0)
4731 		kthread_prio = 0;
4732 	else if (kthread_prio > 99)
4733 		kthread_prio = 99;
4734 
4735 	if (kthread_prio != kthread_prio_in)
4736 		pr_alert("%s: Limited prio to %d from %d\n",
4737 			 __func__, kthread_prio, kthread_prio_in);
4738 }
4739 
4740 /*
4741  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4742  * replace the definitions in tree.h because those are needed to size
4743  * the ->node array in the rcu_state structure.
4744  */
rcu_init_geometry(void)4745 void rcu_init_geometry(void)
4746 {
4747 	ulong d;
4748 	int i;
4749 	static unsigned long old_nr_cpu_ids;
4750 	int rcu_capacity[RCU_NUM_LVLS];
4751 	static bool initialized;
4752 
4753 	if (initialized) {
4754 		/*
4755 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4756 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4757 		 */
4758 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4759 		return;
4760 	}
4761 
4762 	old_nr_cpu_ids = nr_cpu_ids;
4763 	initialized = true;
4764 
4765 	/*
4766 	 * Initialize any unspecified boot parameters.
4767 	 * The default values of jiffies_till_first_fqs and
4768 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4769 	 * value, which is a function of HZ, then adding one for each
4770 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4771 	 */
4772 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4773 	if (jiffies_till_first_fqs == ULONG_MAX)
4774 		jiffies_till_first_fqs = d;
4775 	if (jiffies_till_next_fqs == ULONG_MAX)
4776 		jiffies_till_next_fqs = d;
4777 	adjust_jiffies_till_sched_qs();
4778 
4779 	/* If the compile-time values are accurate, just leave. */
4780 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4781 	    nr_cpu_ids == NR_CPUS)
4782 		return;
4783 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4784 		rcu_fanout_leaf, nr_cpu_ids);
4785 
4786 	/*
4787 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4788 	 * and cannot exceed the number of bits in the rcu_node masks.
4789 	 * Complain and fall back to the compile-time values if this
4790 	 * limit is exceeded.
4791 	 */
4792 	if (rcu_fanout_leaf < 2 ||
4793 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4794 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4795 		WARN_ON(1);
4796 		return;
4797 	}
4798 
4799 	/*
4800 	 * Compute number of nodes that can be handled an rcu_node tree
4801 	 * with the given number of levels.
4802 	 */
4803 	rcu_capacity[0] = rcu_fanout_leaf;
4804 	for (i = 1; i < RCU_NUM_LVLS; i++)
4805 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4806 
4807 	/*
4808 	 * The tree must be able to accommodate the configured number of CPUs.
4809 	 * If this limit is exceeded, fall back to the compile-time values.
4810 	 */
4811 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4812 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4813 		WARN_ON(1);
4814 		return;
4815 	}
4816 
4817 	/* Calculate the number of levels in the tree. */
4818 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4819 	}
4820 	rcu_num_lvls = i + 1;
4821 
4822 	/* Calculate the number of rcu_nodes at each level of the tree. */
4823 	for (i = 0; i < rcu_num_lvls; i++) {
4824 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4825 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4826 	}
4827 
4828 	/* Calculate the total number of rcu_node structures. */
4829 	rcu_num_nodes = 0;
4830 	for (i = 0; i < rcu_num_lvls; i++)
4831 		rcu_num_nodes += num_rcu_lvl[i];
4832 }
4833 
4834 /*
4835  * Dump out the structure of the rcu_node combining tree associated
4836  * with the rcu_state structure.
4837  */
rcu_dump_rcu_node_tree(void)4838 static void __init rcu_dump_rcu_node_tree(void)
4839 {
4840 	int level = 0;
4841 	struct rcu_node *rnp;
4842 
4843 	pr_info("rcu_node tree layout dump\n");
4844 	pr_info(" ");
4845 	rcu_for_each_node_breadth_first(rnp) {
4846 		if (rnp->level != level) {
4847 			pr_cont("\n");
4848 			pr_info(" ");
4849 			level = rnp->level;
4850 		}
4851 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4852 	}
4853 	pr_cont("\n");
4854 }
4855 
4856 struct workqueue_struct *rcu_gp_wq;
4857 
kfree_rcu_batch_init(void)4858 static void __init kfree_rcu_batch_init(void)
4859 {
4860 	int cpu;
4861 	int i;
4862 
4863 	/* Clamp it to [0:100] seconds interval. */
4864 	if (rcu_delay_page_cache_fill_msec < 0 ||
4865 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4866 
4867 		rcu_delay_page_cache_fill_msec =
4868 			clamp(rcu_delay_page_cache_fill_msec, 0,
4869 				(int) (100 * MSEC_PER_SEC));
4870 
4871 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4872 			rcu_delay_page_cache_fill_msec);
4873 	}
4874 
4875 	for_each_possible_cpu(cpu) {
4876 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4877 
4878 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4879 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4880 			krcp->krw_arr[i].krcp = krcp;
4881 		}
4882 
4883 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4884 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4885 		krcp->initialized = true;
4886 	}
4887 	if (register_shrinker(&kfree_rcu_shrinker))
4888 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4889 }
4890 
rcu_init(void)4891 void __init rcu_init(void)
4892 {
4893 	int cpu = smp_processor_id();
4894 
4895 	rcu_early_boot_tests();
4896 
4897 	kfree_rcu_batch_init();
4898 	rcu_bootup_announce();
4899 	sanitize_kthread_prio();
4900 	rcu_init_geometry();
4901 	rcu_init_one();
4902 	if (dump_tree)
4903 		rcu_dump_rcu_node_tree();
4904 	if (use_softirq)
4905 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4906 
4907 	/*
4908 	 * We don't need protection against CPU-hotplug here because
4909 	 * this is called early in boot, before either interrupts
4910 	 * or the scheduler are operational.
4911 	 */
4912 	pm_notifier(rcu_pm_notify, 0);
4913 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4914 	rcutree_prepare_cpu(cpu);
4915 	rcu_cpu_starting(cpu);
4916 	rcutree_online_cpu(cpu);
4917 
4918 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4919 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4920 	WARN_ON(!rcu_gp_wq);
4921 	rcu_alloc_par_gp_wq();
4922 
4923 	/* Fill in default value for rcutree.qovld boot parameter. */
4924 	/* -After- the rcu_node ->lock fields are initialized! */
4925 	if (qovld < 0)
4926 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4927 	else
4928 		qovld_calc = qovld;
4929 }
4930 
4931 #include "tree_stall.h"
4932 #include "tree_exp.h"
4933 #include "tree_nocb.h"
4934 #include "tree_plugin.h"
4935