1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_READ 0x00000001 /* currently active flags */
74 #define VM_WRITE 0x00000002
75 #define VM_EXEC 0x00000004
76 #define VM_SHARED 0x00000008
77
78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
79 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80 #define VM_MAYWRITE 0x00000020
81 #define VM_MAYEXEC 0x00000040
82 #define VM_MAYSHARE 0x00000080
83
84 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
85 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
86 #define VM_GROWSUP 0x00000200
87 #else
88 #define VM_GROWSUP 0x00000000
89 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
90 #endif
91 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
92 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
93
94 #define VM_EXECUTABLE 0x00001000
95 #define VM_LOCKED 0x00002000
96 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
97
98 /* Used by sys_madvise() */
99 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
101
102 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
104 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
105 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
106 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
107 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
109 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
110 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
111 #else
112 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
113 #endif
114 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
115 #define VM_NODUMP 0x04000000 /* Do not include in the core dump */
116
117 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
118 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
119 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
120 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
121 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
122
123 /* Bits set in the VMA until the stack is in its final location */
124 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
125
126 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
127 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
128 #endif
129
130 #ifdef CONFIG_STACK_GROWSUP
131 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132 #else
133 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
134 #endif
135
136 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
137 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
138 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
139 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
140 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
141
142 /*
143 * Special vmas that are non-mergable, non-mlock()able.
144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
145 */
146 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
147
148 /*
149 * mapping from the currently active vm_flags protection bits (the
150 * low four bits) to a page protection mask..
151 */
152 extern pgprot_t protection_map[16];
153
154 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
155 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
156 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
157 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
158 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
159 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
160
161 /*
162 * This interface is used by x86 PAT code to identify a pfn mapping that is
163 * linear over entire vma. This is to optimize PAT code that deals with
164 * marking the physical region with a particular prot. This is not for generic
165 * mm use. Note also that this check will not work if the pfn mapping is
166 * linear for a vma starting at physical address 0. In which case PAT code
167 * falls back to slow path of reserving physical range page by page.
168 */
is_linear_pfn_mapping(struct vm_area_struct * vma)169 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
170 {
171 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
172 }
173
is_pfn_mapping(struct vm_area_struct * vma)174 static inline int is_pfn_mapping(struct vm_area_struct *vma)
175 {
176 return !!(vma->vm_flags & VM_PFNMAP);
177 }
178
179 /*
180 * vm_fault is filled by the the pagefault handler and passed to the vma's
181 * ->fault function. The vma's ->fault is responsible for returning a bitmask
182 * of VM_FAULT_xxx flags that give details about how the fault was handled.
183 *
184 * pgoff should be used in favour of virtual_address, if possible. If pgoff
185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
186 * mapping support.
187 */
188 struct vm_fault {
189 unsigned int flags; /* FAULT_FLAG_xxx flags */
190 pgoff_t pgoff; /* Logical page offset based on vma */
191 void __user *virtual_address; /* Faulting virtual address */
192
193 struct page *page; /* ->fault handlers should return a
194 * page here, unless VM_FAULT_NOPAGE
195 * is set (which is also implied by
196 * VM_FAULT_ERROR).
197 */
198 };
199
200 /*
201 * These are the virtual MM functions - opening of an area, closing and
202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
203 * to the functions called when a no-page or a wp-page exception occurs.
204 */
205 struct vm_operations_struct {
206 void (*open)(struct vm_area_struct * area);
207 void (*close)(struct vm_area_struct * area);
208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
209
210 /* notification that a previously read-only page is about to become
211 * writable, if an error is returned it will cause a SIGBUS */
212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
213
214 /* called by access_process_vm when get_user_pages() fails, typically
215 * for use by special VMAs that can switch between memory and hardware
216 */
217 int (*access)(struct vm_area_struct *vma, unsigned long addr,
218 void *buf, int len, int write);
219 #ifdef CONFIG_NUMA
220 /*
221 * set_policy() op must add a reference to any non-NULL @new mempolicy
222 * to hold the policy upon return. Caller should pass NULL @new to
223 * remove a policy and fall back to surrounding context--i.e. do not
224 * install a MPOL_DEFAULT policy, nor the task or system default
225 * mempolicy.
226 */
227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
228
229 /*
230 * get_policy() op must add reference [mpol_get()] to any policy at
231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
232 * in mm/mempolicy.c will do this automatically.
233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
236 * must return NULL--i.e., do not "fallback" to task or system default
237 * policy.
238 */
239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 unsigned long addr);
241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 const nodemask_t *to, unsigned long flags);
243 #endif
244 };
245
246 struct mmu_gather;
247 struct inode;
248
249 #define page_private(page) ((page)->private)
250 #define set_page_private(page, v) ((page)->private = (v))
251
252 /*
253 * FIXME: take this include out, include page-flags.h in
254 * files which need it (119 of them)
255 */
256 #include <linux/page-flags.h>
257 #include <linux/huge_mm.h>
258
259 /*
260 * Methods to modify the page usage count.
261 *
262 * What counts for a page usage:
263 * - cache mapping (page->mapping)
264 * - private data (page->private)
265 * - page mapped in a task's page tables, each mapping
266 * is counted separately
267 *
268 * Also, many kernel routines increase the page count before a critical
269 * routine so they can be sure the page doesn't go away from under them.
270 */
271
272 /*
273 * Drop a ref, return true if the refcount fell to zero (the page has no users)
274 */
put_page_testzero(struct page * page)275 static inline int put_page_testzero(struct page *page)
276 {
277 VM_BUG_ON(atomic_read(&page->_count) == 0);
278 return atomic_dec_and_test(&page->_count);
279 }
280
281 /*
282 * Try to grab a ref unless the page has a refcount of zero, return false if
283 * that is the case.
284 */
get_page_unless_zero(struct page * page)285 static inline int get_page_unless_zero(struct page *page)
286 {
287 return atomic_inc_not_zero(&page->_count);
288 }
289
290 extern int page_is_ram(unsigned long pfn);
291
292 /* Support for virtually mapped pages */
293 struct page *vmalloc_to_page(const void *addr);
294 unsigned long vmalloc_to_pfn(const void *addr);
295
296 /*
297 * Determine if an address is within the vmalloc range
298 *
299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300 * is no special casing required.
301 */
is_vmalloc_addr(const void * x)302 static inline int is_vmalloc_addr(const void *x)
303 {
304 #ifdef CONFIG_MMU
305 unsigned long addr = (unsigned long)x;
306
307 return addr >= VMALLOC_START && addr < VMALLOC_END;
308 #else
309 return 0;
310 #endif
311 }
312 #ifdef CONFIG_MMU
313 extern int is_vmalloc_or_module_addr(const void *x);
314 #else
is_vmalloc_or_module_addr(const void * x)315 static inline int is_vmalloc_or_module_addr(const void *x)
316 {
317 return 0;
318 }
319 #endif
320
compound_lock(struct page * page)321 static inline void compound_lock(struct page *page)
322 {
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 bit_spin_lock(PG_compound_lock, &page->flags);
325 #endif
326 }
327
compound_unlock(struct page * page)328 static inline void compound_unlock(struct page *page)
329 {
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 bit_spin_unlock(PG_compound_lock, &page->flags);
332 #endif
333 }
334
compound_lock_irqsave(struct page * page)335 static inline unsigned long compound_lock_irqsave(struct page *page)
336 {
337 unsigned long uninitialized_var(flags);
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 local_irq_save(flags);
340 compound_lock(page);
341 #endif
342 return flags;
343 }
344
compound_unlock_irqrestore(struct page * page,unsigned long flags)345 static inline void compound_unlock_irqrestore(struct page *page,
346 unsigned long flags)
347 {
348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 compound_unlock(page);
350 local_irq_restore(flags);
351 #endif
352 }
353
compound_head(struct page * page)354 static inline struct page *compound_head(struct page *page)
355 {
356 if (unlikely(PageTail(page)))
357 return page->first_page;
358 return page;
359 }
360
361 /*
362 * The atomic page->_mapcount, starts from -1: so that transitions
363 * both from it and to it can be tracked, using atomic_inc_and_test
364 * and atomic_add_negative(-1).
365 */
reset_page_mapcount(struct page * page)366 static inline void reset_page_mapcount(struct page *page)
367 {
368 atomic_set(&(page)->_mapcount, -1);
369 }
370
page_mapcount(struct page * page)371 static inline int page_mapcount(struct page *page)
372 {
373 return atomic_read(&(page)->_mapcount) + 1;
374 }
375
page_count(struct page * page)376 static inline int page_count(struct page *page)
377 {
378 return atomic_read(&compound_head(page)->_count);
379 }
380
get_huge_page_tail(struct page * page)381 static inline void get_huge_page_tail(struct page *page)
382 {
383 /*
384 * __split_huge_page_refcount() cannot run
385 * from under us.
386 */
387 VM_BUG_ON(page_mapcount(page) < 0);
388 VM_BUG_ON(atomic_read(&page->_count) != 0);
389 atomic_inc(&page->_mapcount);
390 }
391
392 extern bool __get_page_tail(struct page *page);
393
get_page(struct page * page)394 static inline void get_page(struct page *page)
395 {
396 if (unlikely(PageTail(page)))
397 if (likely(__get_page_tail(page)))
398 return;
399 /*
400 * Getting a normal page or the head of a compound page
401 * requires to already have an elevated page->_count.
402 */
403 VM_BUG_ON(atomic_read(&page->_count) <= 0);
404 atomic_inc(&page->_count);
405 }
406
virt_to_head_page(const void * x)407 static inline struct page *virt_to_head_page(const void *x)
408 {
409 struct page *page = virt_to_page(x);
410 return compound_head(page);
411 }
412
413 /*
414 * Setup the page count before being freed into the page allocator for
415 * the first time (boot or memory hotplug)
416 */
init_page_count(struct page * page)417 static inline void init_page_count(struct page *page)
418 {
419 atomic_set(&page->_count, 1);
420 }
421
422 /*
423 * PageBuddy() indicate that the page is free and in the buddy system
424 * (see mm/page_alloc.c).
425 *
426 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
427 * -2 so that an underflow of the page_mapcount() won't be mistaken
428 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
429 * efficiently by most CPU architectures.
430 */
431 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
432
PageBuddy(struct page * page)433 static inline int PageBuddy(struct page *page)
434 {
435 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
436 }
437
__SetPageBuddy(struct page * page)438 static inline void __SetPageBuddy(struct page *page)
439 {
440 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
441 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
442 }
443
__ClearPageBuddy(struct page * page)444 static inline void __ClearPageBuddy(struct page *page)
445 {
446 VM_BUG_ON(!PageBuddy(page));
447 atomic_set(&page->_mapcount, -1);
448 }
449
450 void put_page(struct page *page);
451 void put_pages_list(struct list_head *pages);
452
453 void split_page(struct page *page, unsigned int order);
454 int split_free_page(struct page *page);
455
456 /*
457 * Compound pages have a destructor function. Provide a
458 * prototype for that function and accessor functions.
459 * These are _only_ valid on the head of a PG_compound page.
460 */
461 typedef void compound_page_dtor(struct page *);
462
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)463 static inline void set_compound_page_dtor(struct page *page,
464 compound_page_dtor *dtor)
465 {
466 page[1].lru.next = (void *)dtor;
467 }
468
get_compound_page_dtor(struct page * page)469 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
470 {
471 return (compound_page_dtor *)page[1].lru.next;
472 }
473
compound_order(struct page * page)474 static inline int compound_order(struct page *page)
475 {
476 if (!PageHead(page))
477 return 0;
478 return (unsigned long)page[1].lru.prev;
479 }
480
compound_trans_order(struct page * page)481 static inline int compound_trans_order(struct page *page)
482 {
483 int order;
484 unsigned long flags;
485
486 if (!PageHead(page))
487 return 0;
488
489 flags = compound_lock_irqsave(page);
490 order = compound_order(page);
491 compound_unlock_irqrestore(page, flags);
492 return order;
493 }
494
set_compound_order(struct page * page,unsigned long order)495 static inline void set_compound_order(struct page *page, unsigned long order)
496 {
497 page[1].lru.prev = (void *)order;
498 }
499
500 #ifdef CONFIG_MMU
501 /*
502 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
503 * servicing faults for write access. In the normal case, do always want
504 * pte_mkwrite. But get_user_pages can cause write faults for mappings
505 * that do not have writing enabled, when used by access_process_vm.
506 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)507 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
508 {
509 if (likely(vma->vm_flags & VM_WRITE))
510 pte = pte_mkwrite(pte);
511 return pte;
512 }
513 #endif
514
515 /*
516 * Multiple processes may "see" the same page. E.g. for untouched
517 * mappings of /dev/null, all processes see the same page full of
518 * zeroes, and text pages of executables and shared libraries have
519 * only one copy in memory, at most, normally.
520 *
521 * For the non-reserved pages, page_count(page) denotes a reference count.
522 * page_count() == 0 means the page is free. page->lru is then used for
523 * freelist management in the buddy allocator.
524 * page_count() > 0 means the page has been allocated.
525 *
526 * Pages are allocated by the slab allocator in order to provide memory
527 * to kmalloc and kmem_cache_alloc. In this case, the management of the
528 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
529 * unless a particular usage is carefully commented. (the responsibility of
530 * freeing the kmalloc memory is the caller's, of course).
531 *
532 * A page may be used by anyone else who does a __get_free_page().
533 * In this case, page_count still tracks the references, and should only
534 * be used through the normal accessor functions. The top bits of page->flags
535 * and page->virtual store page management information, but all other fields
536 * are unused and could be used privately, carefully. The management of this
537 * page is the responsibility of the one who allocated it, and those who have
538 * subsequently been given references to it.
539 *
540 * The other pages (we may call them "pagecache pages") are completely
541 * managed by the Linux memory manager: I/O, buffers, swapping etc.
542 * The following discussion applies only to them.
543 *
544 * A pagecache page contains an opaque `private' member, which belongs to the
545 * page's address_space. Usually, this is the address of a circular list of
546 * the page's disk buffers. PG_private must be set to tell the VM to call
547 * into the filesystem to release these pages.
548 *
549 * A page may belong to an inode's memory mapping. In this case, page->mapping
550 * is the pointer to the inode, and page->index is the file offset of the page,
551 * in units of PAGE_CACHE_SIZE.
552 *
553 * If pagecache pages are not associated with an inode, they are said to be
554 * anonymous pages. These may become associated with the swapcache, and in that
555 * case PG_swapcache is set, and page->private is an offset into the swapcache.
556 *
557 * In either case (swapcache or inode backed), the pagecache itself holds one
558 * reference to the page. Setting PG_private should also increment the
559 * refcount. The each user mapping also has a reference to the page.
560 *
561 * The pagecache pages are stored in a per-mapping radix tree, which is
562 * rooted at mapping->page_tree, and indexed by offset.
563 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
564 * lists, we instead now tag pages as dirty/writeback in the radix tree.
565 *
566 * All pagecache pages may be subject to I/O:
567 * - inode pages may need to be read from disk,
568 * - inode pages which have been modified and are MAP_SHARED may need
569 * to be written back to the inode on disk,
570 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
571 * modified may need to be swapped out to swap space and (later) to be read
572 * back into memory.
573 */
574
575 /*
576 * The zone field is never updated after free_area_init_core()
577 * sets it, so none of the operations on it need to be atomic.
578 */
579
580
581 /*
582 * page->flags layout:
583 *
584 * There are three possibilities for how page->flags get
585 * laid out. The first is for the normal case, without
586 * sparsemem. The second is for sparsemem when there is
587 * plenty of space for node and section. The last is when
588 * we have run out of space and have to fall back to an
589 * alternate (slower) way of determining the node.
590 *
591 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
592 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
593 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
594 */
595 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
596 #define SECTIONS_WIDTH SECTIONS_SHIFT
597 #else
598 #define SECTIONS_WIDTH 0
599 #endif
600
601 #define ZONES_WIDTH ZONES_SHIFT
602
603 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
604 #define NODES_WIDTH NODES_SHIFT
605 #else
606 #ifdef CONFIG_SPARSEMEM_VMEMMAP
607 #error "Vmemmap: No space for nodes field in page flags"
608 #endif
609 #define NODES_WIDTH 0
610 #endif
611
612 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
613 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
614 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
615 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
616
617 /*
618 * We are going to use the flags for the page to node mapping if its in
619 * there. This includes the case where there is no node, so it is implicit.
620 */
621 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
622 #define NODE_NOT_IN_PAGE_FLAGS
623 #endif
624
625 /*
626 * Define the bit shifts to access each section. For non-existent
627 * sections we define the shift as 0; that plus a 0 mask ensures
628 * the compiler will optimise away reference to them.
629 */
630 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
631 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
632 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
633
634 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
635 #ifdef NODE_NOT_IN_PAGE_FLAGS
636 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
637 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
638 SECTIONS_PGOFF : ZONES_PGOFF)
639 #else
640 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
641 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
642 NODES_PGOFF : ZONES_PGOFF)
643 #endif
644
645 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
646
647 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
648 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
649 #endif
650
651 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
652 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
653 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
654 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
655
page_zonenum(const struct page * page)656 static inline enum zone_type page_zonenum(const struct page *page)
657 {
658 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
659 }
660
661 /*
662 * The identification function is only used by the buddy allocator for
663 * determining if two pages could be buddies. We are not really
664 * identifying a zone since we could be using a the section number
665 * id if we have not node id available in page flags.
666 * We guarantee only that it will return the same value for two
667 * combinable pages in a zone.
668 */
page_zone_id(struct page * page)669 static inline int page_zone_id(struct page *page)
670 {
671 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
672 }
673
zone_to_nid(struct zone * zone)674 static inline int zone_to_nid(struct zone *zone)
675 {
676 #ifdef CONFIG_NUMA
677 return zone->node;
678 #else
679 return 0;
680 #endif
681 }
682
683 #ifdef NODE_NOT_IN_PAGE_FLAGS
684 extern int page_to_nid(const struct page *page);
685 #else
page_to_nid(const struct page * page)686 static inline int page_to_nid(const struct page *page)
687 {
688 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
689 }
690 #endif
691
page_zone(const struct page * page)692 static inline struct zone *page_zone(const struct page *page)
693 {
694 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
695 }
696
697 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
set_page_section(struct page * page,unsigned long section)698 static inline void set_page_section(struct page *page, unsigned long section)
699 {
700 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
701 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
702 }
703
page_to_section(const struct page * page)704 static inline unsigned long page_to_section(const struct page *page)
705 {
706 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
707 }
708 #endif
709
set_page_zone(struct page * page,enum zone_type zone)710 static inline void set_page_zone(struct page *page, enum zone_type zone)
711 {
712 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
713 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
714 }
715
set_page_node(struct page * page,unsigned long node)716 static inline void set_page_node(struct page *page, unsigned long node)
717 {
718 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
719 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
720 }
721
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)722 static inline void set_page_links(struct page *page, enum zone_type zone,
723 unsigned long node, unsigned long pfn)
724 {
725 set_page_zone(page, zone);
726 set_page_node(page, node);
727 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
728 set_page_section(page, pfn_to_section_nr(pfn));
729 #endif
730 }
731
732 /*
733 * Some inline functions in vmstat.h depend on page_zone()
734 */
735 #include <linux/vmstat.h>
736
lowmem_page_address(const struct page * page)737 static __always_inline void *lowmem_page_address(const struct page *page)
738 {
739 return __va(PFN_PHYS(page_to_pfn(page)));
740 }
741
742 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
743 #define HASHED_PAGE_VIRTUAL
744 #endif
745
746 #if defined(WANT_PAGE_VIRTUAL)
747 #define page_address(page) ((page)->virtual)
748 #define set_page_address(page, address) \
749 do { \
750 (page)->virtual = (address); \
751 } while(0)
752 #define page_address_init() do { } while(0)
753 #endif
754
755 #if defined(HASHED_PAGE_VIRTUAL)
756 void *page_address(const struct page *page);
757 void set_page_address(struct page *page, void *virtual);
758 void page_address_init(void);
759 #endif
760
761 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
762 #define page_address(page) lowmem_page_address(page)
763 #define set_page_address(page, address) do { } while(0)
764 #define page_address_init() do { } while(0)
765 #endif
766
767 /*
768 * On an anonymous page mapped into a user virtual memory area,
769 * page->mapping points to its anon_vma, not to a struct address_space;
770 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
771 *
772 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
773 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
774 * and then page->mapping points, not to an anon_vma, but to a private
775 * structure which KSM associates with that merged page. See ksm.h.
776 *
777 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
778 *
779 * Please note that, confusingly, "page_mapping" refers to the inode
780 * address_space which maps the page from disk; whereas "page_mapped"
781 * refers to user virtual address space into which the page is mapped.
782 */
783 #define PAGE_MAPPING_ANON 1
784 #define PAGE_MAPPING_KSM 2
785 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
786
787 extern struct address_space swapper_space;
page_mapping(struct page * page)788 static inline struct address_space *page_mapping(struct page *page)
789 {
790 struct address_space *mapping = page->mapping;
791
792 VM_BUG_ON(PageSlab(page));
793 if (unlikely(PageSwapCache(page)))
794 mapping = &swapper_space;
795 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
796 mapping = NULL;
797 return mapping;
798 }
799
800 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)801 static inline void *page_rmapping(struct page *page)
802 {
803 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
804 }
805
PageAnon(struct page * page)806 static inline int PageAnon(struct page *page)
807 {
808 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
809 }
810
811 /*
812 * Return the pagecache index of the passed page. Regular pagecache pages
813 * use ->index whereas swapcache pages use ->private
814 */
page_index(struct page * page)815 static inline pgoff_t page_index(struct page *page)
816 {
817 if (unlikely(PageSwapCache(page)))
818 return page_private(page);
819 return page->index;
820 }
821
822 /*
823 * Return true if this page is mapped into pagetables.
824 */
page_mapped(struct page * page)825 static inline int page_mapped(struct page *page)
826 {
827 return atomic_read(&(page)->_mapcount) >= 0;
828 }
829
830 /*
831 * Different kinds of faults, as returned by handle_mm_fault().
832 * Used to decide whether a process gets delivered SIGBUS or
833 * just gets major/minor fault counters bumped up.
834 */
835
836 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
837
838 #define VM_FAULT_OOM 0x0001
839 #define VM_FAULT_SIGBUS 0x0002
840 #define VM_FAULT_MAJOR 0x0004
841 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
842 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
843 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
844
845 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
846 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
847 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
848
849 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
850
851 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
852 VM_FAULT_HWPOISON_LARGE)
853
854 /* Encode hstate index for a hwpoisoned large page */
855 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
856 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
857
858 /*
859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
860 */
861 extern void pagefault_out_of_memory(void);
862
863 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
864
865 /*
866 * Flags passed to show_mem() and show_free_areas() to suppress output in
867 * various contexts.
868 */
869 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
870 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
871
872 extern void show_free_areas(unsigned int flags);
873 extern bool skip_free_areas_node(unsigned int flags, int nid);
874
875 int shmem_lock(struct file *file, int lock, struct user_struct *user);
876 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
877 int shmem_zero_setup(struct vm_area_struct *);
878
879 extern int can_do_mlock(void);
880 extern int user_shm_lock(size_t, struct user_struct *);
881 extern void user_shm_unlock(size_t, struct user_struct *);
882
883 /*
884 * Parameter block passed down to zap_pte_range in exceptional cases.
885 */
886 struct zap_details {
887 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
888 struct address_space *check_mapping; /* Check page->mapping if set */
889 pgoff_t first_index; /* Lowest page->index to unmap */
890 pgoff_t last_index; /* Highest page->index to unmap */
891 };
892
893 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
894 pte_t pte);
895
896 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
897 unsigned long size);
898 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
899 unsigned long size, struct zap_details *);
900 void unmap_vmas(struct mmu_gather *tlb,
901 struct vm_area_struct *start_vma, unsigned long start_addr,
902 unsigned long end_addr, unsigned long *nr_accounted,
903 struct zap_details *);
904
905 /**
906 * mm_walk - callbacks for walk_page_range
907 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
908 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
909 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
910 * this handler is required to be able to handle
911 * pmd_trans_huge() pmds. They may simply choose to
912 * split_huge_page() instead of handling it explicitly.
913 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
914 * @pte_hole: if set, called for each hole at all levels
915 * @hugetlb_entry: if set, called for each hugetlb entry
916 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
917 * is used.
918 *
919 * (see walk_page_range for more details)
920 */
921 struct mm_walk {
922 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
923 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
924 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
925 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
926 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
927 int (*hugetlb_entry)(pte_t *, unsigned long,
928 unsigned long, unsigned long, struct mm_walk *);
929 struct mm_struct *mm;
930 void *private;
931 };
932
933 int walk_page_range(unsigned long addr, unsigned long end,
934 struct mm_walk *walk);
935 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
936 unsigned long end, unsigned long floor, unsigned long ceiling);
937 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
938 struct vm_area_struct *vma);
939 void unmap_mapping_range(struct address_space *mapping,
940 loff_t const holebegin, loff_t const holelen, int even_cows);
941 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
942 unsigned long *pfn);
943 int follow_phys(struct vm_area_struct *vma, unsigned long address,
944 unsigned int flags, unsigned long *prot, resource_size_t *phys);
945 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
946 void *buf, int len, int write);
947
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)948 static inline void unmap_shared_mapping_range(struct address_space *mapping,
949 loff_t const holebegin, loff_t const holelen)
950 {
951 unmap_mapping_range(mapping, holebegin, holelen, 0);
952 }
953
954 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
955 extern void truncate_setsize(struct inode *inode, loff_t newsize);
956 extern int vmtruncate(struct inode *inode, loff_t offset);
957 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
958 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
959 int truncate_inode_page(struct address_space *mapping, struct page *page);
960 int generic_error_remove_page(struct address_space *mapping, struct page *page);
961
962 int invalidate_inode_page(struct page *page);
963
964 #ifdef CONFIG_MMU
965 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
966 unsigned long address, unsigned int flags);
967 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
968 unsigned long address, unsigned int fault_flags);
969 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)970 static inline int handle_mm_fault(struct mm_struct *mm,
971 struct vm_area_struct *vma, unsigned long address,
972 unsigned int flags)
973 {
974 /* should never happen if there's no MMU */
975 BUG();
976 return VM_FAULT_SIGBUS;
977 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)978 static inline int fixup_user_fault(struct task_struct *tsk,
979 struct mm_struct *mm, unsigned long address,
980 unsigned int fault_flags)
981 {
982 /* should never happen if there's no MMU */
983 BUG();
984 return -EFAULT;
985 }
986 #endif
987
988 extern int make_pages_present(unsigned long addr, unsigned long end);
989 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
990 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
991 void *buf, int len, int write);
992
993 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
994 unsigned long start, int len, unsigned int foll_flags,
995 struct page **pages, struct vm_area_struct **vmas,
996 int *nonblocking);
997 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
998 unsigned long start, int nr_pages, int write, int force,
999 struct page **pages, struct vm_area_struct **vmas);
1000 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1001 struct page **pages);
1002 struct page *get_dump_page(unsigned long addr);
1003
1004 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1005 extern void do_invalidatepage(struct page *page, unsigned long offset);
1006
1007 int __set_page_dirty_nobuffers(struct page *page);
1008 int __set_page_dirty_no_writeback(struct page *page);
1009 int redirty_page_for_writepage(struct writeback_control *wbc,
1010 struct page *page);
1011 void account_page_dirtied(struct page *page, struct address_space *mapping);
1012 void account_page_writeback(struct page *page);
1013 int set_page_dirty(struct page *page);
1014 int set_page_dirty_lock(struct page *page);
1015 int clear_page_dirty_for_io(struct page *page);
1016
1017 /* Is the vma a continuation of the stack vma above it? */
vma_growsdown(struct vm_area_struct * vma,unsigned long addr)1018 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1019 {
1020 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1021 }
1022
stack_guard_page_start(struct vm_area_struct * vma,unsigned long addr)1023 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1024 unsigned long addr)
1025 {
1026 return (vma->vm_flags & VM_GROWSDOWN) &&
1027 (vma->vm_start == addr) &&
1028 !vma_growsdown(vma->vm_prev, addr);
1029 }
1030
1031 /* Is the vma a continuation of the stack vma below it? */
vma_growsup(struct vm_area_struct * vma,unsigned long addr)1032 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1033 {
1034 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1035 }
1036
stack_guard_page_end(struct vm_area_struct * vma,unsigned long addr)1037 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1038 unsigned long addr)
1039 {
1040 return (vma->vm_flags & VM_GROWSUP) &&
1041 (vma->vm_end == addr) &&
1042 !vma_growsup(vma->vm_next, addr);
1043 }
1044
1045 extern pid_t
1046 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1047
1048 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1049 unsigned long old_addr, struct vm_area_struct *new_vma,
1050 unsigned long new_addr, unsigned long len);
1051 extern unsigned long do_mremap(unsigned long addr,
1052 unsigned long old_len, unsigned long new_len,
1053 unsigned long flags, unsigned long new_addr);
1054 extern int mprotect_fixup(struct vm_area_struct *vma,
1055 struct vm_area_struct **pprev, unsigned long start,
1056 unsigned long end, unsigned long newflags);
1057
1058 /*
1059 * doesn't attempt to fault and will return short.
1060 */
1061 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1062 struct page **pages);
1063 /*
1064 * per-process(per-mm_struct) statistics.
1065 */
get_mm_counter(struct mm_struct * mm,int member)1066 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1067 {
1068 long val = atomic_long_read(&mm->rss_stat.count[member]);
1069
1070 #ifdef SPLIT_RSS_COUNTING
1071 /*
1072 * counter is updated in asynchronous manner and may go to minus.
1073 * But it's never be expected number for users.
1074 */
1075 if (val < 0)
1076 val = 0;
1077 #endif
1078 return (unsigned long)val;
1079 }
1080
add_mm_counter(struct mm_struct * mm,int member,long value)1081 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1082 {
1083 atomic_long_add(value, &mm->rss_stat.count[member]);
1084 }
1085
inc_mm_counter(struct mm_struct * mm,int member)1086 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1087 {
1088 atomic_long_inc(&mm->rss_stat.count[member]);
1089 }
1090
dec_mm_counter(struct mm_struct * mm,int member)1091 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1092 {
1093 atomic_long_dec(&mm->rss_stat.count[member]);
1094 }
1095
get_mm_rss(struct mm_struct * mm)1096 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1097 {
1098 return get_mm_counter(mm, MM_FILEPAGES) +
1099 get_mm_counter(mm, MM_ANONPAGES);
1100 }
1101
get_mm_hiwater_rss(struct mm_struct * mm)1102 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1103 {
1104 return max(mm->hiwater_rss, get_mm_rss(mm));
1105 }
1106
get_mm_hiwater_vm(struct mm_struct * mm)1107 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1108 {
1109 return max(mm->hiwater_vm, mm->total_vm);
1110 }
1111
update_hiwater_rss(struct mm_struct * mm)1112 static inline void update_hiwater_rss(struct mm_struct *mm)
1113 {
1114 unsigned long _rss = get_mm_rss(mm);
1115
1116 if ((mm)->hiwater_rss < _rss)
1117 (mm)->hiwater_rss = _rss;
1118 }
1119
update_hiwater_vm(struct mm_struct * mm)1120 static inline void update_hiwater_vm(struct mm_struct *mm)
1121 {
1122 if (mm->hiwater_vm < mm->total_vm)
1123 mm->hiwater_vm = mm->total_vm;
1124 }
1125
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1126 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1127 struct mm_struct *mm)
1128 {
1129 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1130
1131 if (*maxrss < hiwater_rss)
1132 *maxrss = hiwater_rss;
1133 }
1134
1135 #if defined(SPLIT_RSS_COUNTING)
1136 void sync_mm_rss(struct mm_struct *mm);
1137 #else
sync_mm_rss(struct mm_struct * mm)1138 static inline void sync_mm_rss(struct mm_struct *mm)
1139 {
1140 }
1141 #endif
1142
1143 int vma_wants_writenotify(struct vm_area_struct *vma);
1144
1145 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1146 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1147 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1148 spinlock_t **ptl)
1149 {
1150 pte_t *ptep;
1151 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1152 return ptep;
1153 }
1154
1155 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1156 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1157 unsigned long address)
1158 {
1159 return 0;
1160 }
1161 #else
1162 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1163 #endif
1164
1165 #ifdef __PAGETABLE_PMD_FOLDED
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1166 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1167 unsigned long address)
1168 {
1169 return 0;
1170 }
1171 #else
1172 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1173 #endif
1174
1175 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1176 pmd_t *pmd, unsigned long address);
1177 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1178
1179 /*
1180 * The following ifdef needed to get the 4level-fixup.h header to work.
1181 * Remove it when 4level-fixup.h has been removed.
1182 */
1183 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1184 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1185 {
1186 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1187 NULL: pud_offset(pgd, address);
1188 }
1189
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1190 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1191 {
1192 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1193 NULL: pmd_offset(pud, address);
1194 }
1195 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1196
1197 #if USE_SPLIT_PTLOCKS
1198 /*
1199 * We tuck a spinlock to guard each pagetable page into its struct page,
1200 * at page->private, with BUILD_BUG_ON to make sure that this will not
1201 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1202 * When freeing, reset page->mapping so free_pages_check won't complain.
1203 */
1204 #define __pte_lockptr(page) &((page)->ptl)
1205 #define pte_lock_init(_page) do { \
1206 spin_lock_init(__pte_lockptr(_page)); \
1207 } while (0)
1208 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1209 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1210 #else /* !USE_SPLIT_PTLOCKS */
1211 /*
1212 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1213 */
1214 #define pte_lock_init(page) do {} while (0)
1215 #define pte_lock_deinit(page) do {} while (0)
1216 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1217 #endif /* USE_SPLIT_PTLOCKS */
1218
pgtable_page_ctor(struct page * page)1219 static inline void pgtable_page_ctor(struct page *page)
1220 {
1221 pte_lock_init(page);
1222 inc_zone_page_state(page, NR_PAGETABLE);
1223 }
1224
pgtable_page_dtor(struct page * page)1225 static inline void pgtable_page_dtor(struct page *page)
1226 {
1227 pte_lock_deinit(page);
1228 dec_zone_page_state(page, NR_PAGETABLE);
1229 }
1230
1231 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1232 ({ \
1233 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1234 pte_t *__pte = pte_offset_map(pmd, address); \
1235 *(ptlp) = __ptl; \
1236 spin_lock(__ptl); \
1237 __pte; \
1238 })
1239
1240 #define pte_unmap_unlock(pte, ptl) do { \
1241 spin_unlock(ptl); \
1242 pte_unmap(pte); \
1243 } while (0)
1244
1245 #define pte_alloc_map(mm, vma, pmd, address) \
1246 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1247 pmd, address))? \
1248 NULL: pte_offset_map(pmd, address))
1249
1250 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1251 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1252 pmd, address))? \
1253 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1254
1255 #define pte_alloc_kernel(pmd, address) \
1256 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1257 NULL: pte_offset_kernel(pmd, address))
1258
1259 extern void free_area_init(unsigned long * zones_size);
1260 extern void free_area_init_node(int nid, unsigned long * zones_size,
1261 unsigned long zone_start_pfn, unsigned long *zholes_size);
1262 extern void free_initmem(void);
1263
1264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1265 /*
1266 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1267 * zones, allocate the backing mem_map and account for memory holes in a more
1268 * architecture independent manner. This is a substitute for creating the
1269 * zone_sizes[] and zholes_size[] arrays and passing them to
1270 * free_area_init_node()
1271 *
1272 * An architecture is expected to register range of page frames backed by
1273 * physical memory with memblock_add[_node]() before calling
1274 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1275 * usage, an architecture is expected to do something like
1276 *
1277 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1278 * max_highmem_pfn};
1279 * for_each_valid_physical_page_range()
1280 * memblock_add_node(base, size, nid)
1281 * free_area_init_nodes(max_zone_pfns);
1282 *
1283 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1284 * registered physical page range. Similarly
1285 * sparse_memory_present_with_active_regions() calls memory_present() for
1286 * each range when SPARSEMEM is enabled.
1287 *
1288 * See mm/page_alloc.c for more information on each function exposed by
1289 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1290 */
1291 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1292 unsigned long node_map_pfn_alignment(void);
1293 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1294 unsigned long end_pfn);
1295 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1296 unsigned long end_pfn);
1297 extern void get_pfn_range_for_nid(unsigned int nid,
1298 unsigned long *start_pfn, unsigned long *end_pfn);
1299 extern unsigned long find_min_pfn_with_active_regions(void);
1300 extern void free_bootmem_with_active_regions(int nid,
1301 unsigned long max_low_pfn);
1302 extern void sparse_memory_present_with_active_regions(int nid);
1303
1304 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1305
1306 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1307 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1308 static inline int __early_pfn_to_nid(unsigned long pfn)
1309 {
1310 return 0;
1311 }
1312 #else
1313 /* please see mm/page_alloc.c */
1314 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1315 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1316 /* there is a per-arch backend function. */
1317 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1318 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1319 #endif
1320
1321 extern void set_dma_reserve(unsigned long new_dma_reserve);
1322 extern void memmap_init_zone(unsigned long, int, unsigned long,
1323 unsigned long, enum memmap_context);
1324 extern void setup_per_zone_wmarks(void);
1325 extern int __meminit init_per_zone_wmark_min(void);
1326 extern void mem_init(void);
1327 extern void __init mmap_init(void);
1328 extern void show_mem(unsigned int flags);
1329 extern void si_meminfo(struct sysinfo * val);
1330 extern void si_meminfo_node(struct sysinfo *val, int nid);
1331 extern int after_bootmem;
1332
1333 extern __printf(3, 4)
1334 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1335
1336 extern void setup_per_cpu_pageset(void);
1337
1338 extern void zone_pcp_update(struct zone *zone);
1339
1340 /* nommu.c */
1341 extern atomic_long_t mmap_pages_allocated;
1342 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1343
1344 /* prio_tree.c */
1345 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1346 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1347 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1348 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1349 struct prio_tree_iter *iter);
1350
1351 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1352 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1353 (vma = vma_prio_tree_next(vma, iter)); )
1354
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)1355 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1356 struct list_head *list)
1357 {
1358 vma->shared.vm_set.parent = NULL;
1359 list_add_tail(&vma->shared.vm_set.list, list);
1360 }
1361
1362 /* mmap.c */
1363 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1364 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1365 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1366 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1367 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1368 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1369 struct mempolicy *);
1370 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1371 extern int split_vma(struct mm_struct *,
1372 struct vm_area_struct *, unsigned long addr, int new_below);
1373 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1374 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1375 struct rb_node **, struct rb_node *);
1376 extern void unlink_file_vma(struct vm_area_struct *);
1377 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1378 unsigned long addr, unsigned long len, pgoff_t pgoff);
1379 extern void exit_mmap(struct mm_struct *);
1380
1381 extern int mm_take_all_locks(struct mm_struct *mm);
1382 extern void mm_drop_all_locks(struct mm_struct *mm);
1383
1384 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1385 extern void added_exe_file_vma(struct mm_struct *mm);
1386 extern void removed_exe_file_vma(struct mm_struct *mm);
1387 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1388 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1389
1390 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1391 extern int install_special_mapping(struct mm_struct *mm,
1392 unsigned long addr, unsigned long len,
1393 unsigned long flags, struct page **pages);
1394
1395 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1396
1397 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1398 unsigned long len, unsigned long flags,
1399 vm_flags_t vm_flags, unsigned long pgoff);
1400 extern unsigned long do_mmap(struct file *, unsigned long,
1401 unsigned long, unsigned long,
1402 unsigned long, unsigned long);
1403 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1404
1405 /* These take the mm semaphore themselves */
1406 extern unsigned long vm_brk(unsigned long, unsigned long);
1407 extern int vm_munmap(unsigned long, size_t);
1408 extern unsigned long vm_mmap(struct file *, unsigned long,
1409 unsigned long, unsigned long,
1410 unsigned long, unsigned long);
1411
1412 /* truncate.c */
1413 extern void truncate_inode_pages(struct address_space *, loff_t);
1414 extern void truncate_inode_pages_range(struct address_space *,
1415 loff_t lstart, loff_t lend);
1416
1417 /* generic vm_area_ops exported for stackable file systems */
1418 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1419
1420 /* mm/page-writeback.c */
1421 int write_one_page(struct page *page, int wait);
1422 void task_dirty_inc(struct task_struct *tsk);
1423
1424 /* readahead.c */
1425 #define VM_MAX_READAHEAD 128 /* kbytes */
1426 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1427
1428 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1429 pgoff_t offset, unsigned long nr_to_read);
1430
1431 void page_cache_sync_readahead(struct address_space *mapping,
1432 struct file_ra_state *ra,
1433 struct file *filp,
1434 pgoff_t offset,
1435 unsigned long size);
1436
1437 void page_cache_async_readahead(struct address_space *mapping,
1438 struct file_ra_state *ra,
1439 struct file *filp,
1440 struct page *pg,
1441 pgoff_t offset,
1442 unsigned long size);
1443
1444 unsigned long max_sane_readahead(unsigned long nr);
1445 unsigned long ra_submit(struct file_ra_state *ra,
1446 struct address_space *mapping,
1447 struct file *filp);
1448
1449 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1450 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1451
1452 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1453 extern int expand_downwards(struct vm_area_struct *vma,
1454 unsigned long address);
1455 #if VM_GROWSUP
1456 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1457 #else
1458 #define expand_upwards(vma, address) do { } while (0)
1459 #endif
1460
1461 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1462 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1463 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1464 struct vm_area_struct **pprev);
1465
1466 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1467 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1468 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1469 {
1470 struct vm_area_struct * vma = find_vma(mm,start_addr);
1471
1472 if (vma && end_addr <= vma->vm_start)
1473 vma = NULL;
1474 return vma;
1475 }
1476
vma_pages(struct vm_area_struct * vma)1477 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1478 {
1479 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1480 }
1481
1482 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)1483 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1484 unsigned long vm_start, unsigned long vm_end)
1485 {
1486 struct vm_area_struct *vma = find_vma(mm, vm_start);
1487
1488 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1489 vma = NULL;
1490
1491 return vma;
1492 }
1493
1494 #ifdef CONFIG_MMU
1495 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1496 #else
vm_get_page_prot(unsigned long vm_flags)1497 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1498 {
1499 return __pgprot(0);
1500 }
1501 #endif
1502
1503 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1504 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1505 unsigned long pfn, unsigned long size, pgprot_t);
1506 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1507 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1508 unsigned long pfn);
1509 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1510 unsigned long pfn);
1511 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1512
1513
1514 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1515 unsigned int foll_flags);
1516 #define FOLL_WRITE 0x01 /* check pte is writable */
1517 #define FOLL_TOUCH 0x02 /* mark page accessed */
1518 #define FOLL_GET 0x04 /* do get_page on page */
1519 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1520 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1521 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1522 * and return without waiting upon it */
1523 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1524 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1525 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1526
1527 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1528 void *data);
1529 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1530 unsigned long size, pte_fn_t fn, void *data);
1531
1532 #ifdef CONFIG_PROC_FS
1533 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1534 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1535 static inline void vm_stat_account(struct mm_struct *mm,
1536 unsigned long flags, struct file *file, long pages)
1537 {
1538 }
1539 #endif /* CONFIG_PROC_FS */
1540
1541 #ifdef CONFIG_DEBUG_PAGEALLOC
1542 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1543 #ifdef CONFIG_HIBERNATION
1544 extern bool kernel_page_present(struct page *page);
1545 #endif /* CONFIG_HIBERNATION */
1546 #else
1547 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)1548 kernel_map_pages(struct page *page, int numpages, int enable) {}
1549 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)1550 static inline bool kernel_page_present(struct page *page) { return true; }
1551 #endif /* CONFIG_HIBERNATION */
1552 #endif
1553
1554 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1555 #ifdef __HAVE_ARCH_GATE_AREA
1556 int in_gate_area_no_mm(unsigned long addr);
1557 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1558 #else
1559 int in_gate_area_no_mm(unsigned long addr);
1560 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1561 #endif /* __HAVE_ARCH_GATE_AREA */
1562
1563 int drop_caches_sysctl_handler(struct ctl_table *, int,
1564 void __user *, size_t *, loff_t *);
1565 unsigned long shrink_slab(struct shrink_control *shrink,
1566 unsigned long nr_pages_scanned,
1567 unsigned long lru_pages);
1568
1569 #ifndef CONFIG_MMU
1570 #define randomize_va_space 0
1571 #else
1572 extern int randomize_va_space;
1573 #endif
1574
1575 const char * arch_vma_name(struct vm_area_struct *vma);
1576 void print_vma_addr(char *prefix, unsigned long rip);
1577
1578 void sparse_mem_maps_populate_node(struct page **map_map,
1579 unsigned long pnum_begin,
1580 unsigned long pnum_end,
1581 unsigned long map_count,
1582 int nodeid);
1583
1584 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1585 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1586 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1587 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1588 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1589 void *vmemmap_alloc_block(unsigned long size, int node);
1590 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1591 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1592 int vmemmap_populate_basepages(struct page *start_page,
1593 unsigned long pages, int node);
1594 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1595 void vmemmap_populate_print_last(void);
1596
1597
1598 enum mf_flags {
1599 MF_COUNT_INCREASED = 1 << 0,
1600 MF_ACTION_REQUIRED = 1 << 1,
1601 MF_MUST_KILL = 1 << 2,
1602 };
1603 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1604 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1605 extern int unpoison_memory(unsigned long pfn);
1606 extern int sysctl_memory_failure_early_kill;
1607 extern int sysctl_memory_failure_recovery;
1608 extern void shake_page(struct page *p, int access);
1609 extern atomic_long_t mce_bad_pages;
1610 extern int soft_offline_page(struct page *page, int flags);
1611
1612 extern void dump_page(struct page *page);
1613
1614 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1615 extern void clear_huge_page(struct page *page,
1616 unsigned long addr,
1617 unsigned int pages_per_huge_page);
1618 extern void copy_user_huge_page(struct page *dst, struct page *src,
1619 unsigned long addr, struct vm_area_struct *vma,
1620 unsigned int pages_per_huge_page);
1621 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1622
1623 #ifdef CONFIG_DEBUG_PAGEALLOC
1624 extern unsigned int _debug_guardpage_minorder;
1625
debug_guardpage_minorder(void)1626 static inline unsigned int debug_guardpage_minorder(void)
1627 {
1628 return _debug_guardpage_minorder;
1629 }
1630
page_is_guard(struct page * page)1631 static inline bool page_is_guard(struct page *page)
1632 {
1633 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1634 }
1635 #else
debug_guardpage_minorder(void)1636 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
page_is_guard(struct page * page)1637 static inline bool page_is_guard(struct page *page) { return false; }
1638 #endif /* CONFIG_DEBUG_PAGEALLOC */
1639
1640 #endif /* __KERNEL__ */
1641 #endif /* _LINUX_MM_H */
1642