1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 #include <linux/buffer_head.h>
11 #include <linux/gfp.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/sched/signal.h>
15 #include <linux/swap.h>
16 #include <linux/uio.h>
17 #include <linux/writeback.h>
18
19 #include <asm/page.h>
20 #include <linux/uaccess.h>
21
22 #include "attrib.h"
23 #include "bitmap.h"
24 #include "inode.h"
25 #include "debug.h"
26 #include "lcnalloc.h"
27 #include "malloc.h"
28 #include "mft.h"
29 #include "ntfs.h"
30
31 /**
32 * ntfs_file_open - called when an inode is about to be opened
33 * @vi: inode to be opened
34 * @filp: file structure describing the inode
35 *
36 * Limit file size to the page cache limit on architectures where unsigned long
37 * is 32-bits. This is the most we can do for now without overflowing the page
38 * cache page index. Doing it this way means we don't run into problems because
39 * of existing too large files. It would be better to allow the user to read
40 * the beginning of the file but I doubt very much anyone is going to hit this
41 * check on a 32-bit architecture, so there is no point in adding the extra
42 * complexity required to support this.
43 *
44 * On 64-bit architectures, the check is hopefully optimized away by the
45 * compiler.
46 *
47 * After the check passes, just call generic_file_open() to do its work.
48 */
ntfs_file_open(struct inode * vi,struct file * filp)49 static int ntfs_file_open(struct inode *vi, struct file *filp)
50 {
51 if (sizeof(unsigned long) < 8) {
52 if (i_size_read(vi) > MAX_LFS_FILESIZE)
53 return -EOVERFLOW;
54 }
55 return generic_file_open(vi, filp);
56 }
57
58 #ifdef NTFS_RW
59
60 /**
61 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
62 * @ni: ntfs inode of the attribute to extend
63 * @new_init_size: requested new initialized size in bytes
64 *
65 * Extend the initialized size of an attribute described by the ntfs inode @ni
66 * to @new_init_size bytes. This involves zeroing any non-sparse space between
67 * the old initialized size and @new_init_size both in the page cache and on
68 * disk (if relevant complete pages are already uptodate in the page cache then
69 * these are simply marked dirty).
70 *
71 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
72 * in the resident attribute case, it is tied to the initialized size and, in
73 * the non-resident attribute case, it may not fall below the initialized size.
74 *
75 * Note that if the attribute is resident, we do not need to touch the page
76 * cache at all. This is because if the page cache page is not uptodate we
77 * bring it uptodate later, when doing the write to the mft record since we
78 * then already have the page mapped. And if the page is uptodate, the
79 * non-initialized region will already have been zeroed when the page was
80 * brought uptodate and the region may in fact already have been overwritten
81 * with new data via mmap() based writes, so we cannot just zero it. And since
82 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
83 * is unspecified, we choose not to do zeroing and thus we do not need to touch
84 * the page at all. For a more detailed explanation see ntfs_truncate() in
85 * fs/ntfs/inode.c.
86 *
87 * Return 0 on success and -errno on error. In the case that an error is
88 * encountered it is possible that the initialized size will already have been
89 * incremented some way towards @new_init_size but it is guaranteed that if
90 * this is the case, the necessary zeroing will also have happened and that all
91 * metadata is self-consistent.
92 *
93 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
94 * held by the caller.
95 */
ntfs_attr_extend_initialized(ntfs_inode * ni,const s64 new_init_size)96 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
97 {
98 s64 old_init_size;
99 loff_t old_i_size;
100 pgoff_t index, end_index;
101 unsigned long flags;
102 struct inode *vi = VFS_I(ni);
103 ntfs_inode *base_ni;
104 MFT_RECORD *m = NULL;
105 ATTR_RECORD *a;
106 ntfs_attr_search_ctx *ctx = NULL;
107 struct address_space *mapping;
108 struct page *page = NULL;
109 u8 *kattr;
110 int err;
111 u32 attr_len;
112
113 read_lock_irqsave(&ni->size_lock, flags);
114 old_init_size = ni->initialized_size;
115 old_i_size = i_size_read(vi);
116 BUG_ON(new_init_size > ni->allocated_size);
117 read_unlock_irqrestore(&ni->size_lock, flags);
118 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
119 "old_initialized_size 0x%llx, "
120 "new_initialized_size 0x%llx, i_size 0x%llx.",
121 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
122 (unsigned long long)old_init_size,
123 (unsigned long long)new_init_size, old_i_size);
124 if (!NInoAttr(ni))
125 base_ni = ni;
126 else
127 base_ni = ni->ext.base_ntfs_ino;
128 /* Use goto to reduce indentation and we need the label below anyway. */
129 if (NInoNonResident(ni))
130 goto do_non_resident_extend;
131 BUG_ON(old_init_size != old_i_size);
132 m = map_mft_record(base_ni);
133 if (IS_ERR(m)) {
134 err = PTR_ERR(m);
135 m = NULL;
136 goto err_out;
137 }
138 ctx = ntfs_attr_get_search_ctx(base_ni, m);
139 if (unlikely(!ctx)) {
140 err = -ENOMEM;
141 goto err_out;
142 }
143 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
144 CASE_SENSITIVE, 0, NULL, 0, ctx);
145 if (unlikely(err)) {
146 if (err == -ENOENT)
147 err = -EIO;
148 goto err_out;
149 }
150 m = ctx->mrec;
151 a = ctx->attr;
152 BUG_ON(a->non_resident);
153 /* The total length of the attribute value. */
154 attr_len = le32_to_cpu(a->data.resident.value_length);
155 BUG_ON(old_i_size != (loff_t)attr_len);
156 /*
157 * Do the zeroing in the mft record and update the attribute size in
158 * the mft record.
159 */
160 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
161 memset(kattr + attr_len, 0, new_init_size - attr_len);
162 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
163 /* Finally, update the sizes in the vfs and ntfs inodes. */
164 write_lock_irqsave(&ni->size_lock, flags);
165 i_size_write(vi, new_init_size);
166 ni->initialized_size = new_init_size;
167 write_unlock_irqrestore(&ni->size_lock, flags);
168 goto done;
169 do_non_resident_extend:
170 /*
171 * If the new initialized size @new_init_size exceeds the current file
172 * size (vfs inode->i_size), we need to extend the file size to the
173 * new initialized size.
174 */
175 if (new_init_size > old_i_size) {
176 m = map_mft_record(base_ni);
177 if (IS_ERR(m)) {
178 err = PTR_ERR(m);
179 m = NULL;
180 goto err_out;
181 }
182 ctx = ntfs_attr_get_search_ctx(base_ni, m);
183 if (unlikely(!ctx)) {
184 err = -ENOMEM;
185 goto err_out;
186 }
187 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
188 CASE_SENSITIVE, 0, NULL, 0, ctx);
189 if (unlikely(err)) {
190 if (err == -ENOENT)
191 err = -EIO;
192 goto err_out;
193 }
194 m = ctx->mrec;
195 a = ctx->attr;
196 BUG_ON(!a->non_resident);
197 BUG_ON(old_i_size != (loff_t)
198 sle64_to_cpu(a->data.non_resident.data_size));
199 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
200 flush_dcache_mft_record_page(ctx->ntfs_ino);
201 mark_mft_record_dirty(ctx->ntfs_ino);
202 /* Update the file size in the vfs inode. */
203 i_size_write(vi, new_init_size);
204 ntfs_attr_put_search_ctx(ctx);
205 ctx = NULL;
206 unmap_mft_record(base_ni);
207 m = NULL;
208 }
209 mapping = vi->i_mapping;
210 index = old_init_size >> PAGE_SHIFT;
211 end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
212 do {
213 /*
214 * Read the page. If the page is not present, this will zero
215 * the uninitialized regions for us.
216 */
217 page = read_mapping_page(mapping, index, NULL);
218 if (IS_ERR(page)) {
219 err = PTR_ERR(page);
220 goto init_err_out;
221 }
222 if (unlikely(PageError(page))) {
223 put_page(page);
224 err = -EIO;
225 goto init_err_out;
226 }
227 /*
228 * Update the initialized size in the ntfs inode. This is
229 * enough to make ntfs_writepage() work.
230 */
231 write_lock_irqsave(&ni->size_lock, flags);
232 ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
233 if (ni->initialized_size > new_init_size)
234 ni->initialized_size = new_init_size;
235 write_unlock_irqrestore(&ni->size_lock, flags);
236 /* Set the page dirty so it gets written out. */
237 set_page_dirty(page);
238 put_page(page);
239 /*
240 * Play nice with the vm and the rest of the system. This is
241 * very much needed as we can potentially be modifying the
242 * initialised size from a very small value to a really huge
243 * value, e.g.
244 * f = open(somefile, O_TRUNC);
245 * truncate(f, 10GiB);
246 * seek(f, 10GiB);
247 * write(f, 1);
248 * And this would mean we would be marking dirty hundreds of
249 * thousands of pages or as in the above example more than
250 * two and a half million pages!
251 *
252 * TODO: For sparse pages could optimize this workload by using
253 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
254 * would be set in read_folio for sparse pages and here we would
255 * not need to mark dirty any pages which have this bit set.
256 * The only caveat is that we have to clear the bit everywhere
257 * where we allocate any clusters that lie in the page or that
258 * contain the page.
259 *
260 * TODO: An even greater optimization would be for us to only
261 * call read_folio() on pages which are not in sparse regions as
262 * determined from the runlist. This would greatly reduce the
263 * number of pages we read and make dirty in the case of sparse
264 * files.
265 */
266 balance_dirty_pages_ratelimited(mapping);
267 cond_resched();
268 } while (++index < end_index);
269 read_lock_irqsave(&ni->size_lock, flags);
270 BUG_ON(ni->initialized_size != new_init_size);
271 read_unlock_irqrestore(&ni->size_lock, flags);
272 /* Now bring in sync the initialized_size in the mft record. */
273 m = map_mft_record(base_ni);
274 if (IS_ERR(m)) {
275 err = PTR_ERR(m);
276 m = NULL;
277 goto init_err_out;
278 }
279 ctx = ntfs_attr_get_search_ctx(base_ni, m);
280 if (unlikely(!ctx)) {
281 err = -ENOMEM;
282 goto init_err_out;
283 }
284 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
285 CASE_SENSITIVE, 0, NULL, 0, ctx);
286 if (unlikely(err)) {
287 if (err == -ENOENT)
288 err = -EIO;
289 goto init_err_out;
290 }
291 m = ctx->mrec;
292 a = ctx->attr;
293 BUG_ON(!a->non_resident);
294 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
295 done:
296 flush_dcache_mft_record_page(ctx->ntfs_ino);
297 mark_mft_record_dirty(ctx->ntfs_ino);
298 if (ctx)
299 ntfs_attr_put_search_ctx(ctx);
300 if (m)
301 unmap_mft_record(base_ni);
302 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
303 (unsigned long long)new_init_size, i_size_read(vi));
304 return 0;
305 init_err_out:
306 write_lock_irqsave(&ni->size_lock, flags);
307 ni->initialized_size = old_init_size;
308 write_unlock_irqrestore(&ni->size_lock, flags);
309 err_out:
310 if (ctx)
311 ntfs_attr_put_search_ctx(ctx);
312 if (m)
313 unmap_mft_record(base_ni);
314 ntfs_debug("Failed. Returning error code %i.", err);
315 return err;
316 }
317
ntfs_prepare_file_for_write(struct kiocb * iocb,struct iov_iter * from)318 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
319 struct iov_iter *from)
320 {
321 loff_t pos;
322 s64 end, ll;
323 ssize_t err;
324 unsigned long flags;
325 struct file *file = iocb->ki_filp;
326 struct inode *vi = file_inode(file);
327 ntfs_inode *ni = NTFS_I(vi);
328 ntfs_volume *vol = ni->vol;
329
330 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
331 "0x%llx, count 0x%zx.", vi->i_ino,
332 (unsigned)le32_to_cpu(ni->type),
333 (unsigned long long)iocb->ki_pos,
334 iov_iter_count(from));
335 err = generic_write_checks(iocb, from);
336 if (unlikely(err <= 0))
337 goto out;
338 /*
339 * All checks have passed. Before we start doing any writing we want
340 * to abort any totally illegal writes.
341 */
342 BUG_ON(NInoMstProtected(ni));
343 BUG_ON(ni->type != AT_DATA);
344 /* If file is encrypted, deny access, just like NT4. */
345 if (NInoEncrypted(ni)) {
346 /* Only $DATA attributes can be encrypted. */
347 /*
348 * Reminder for later: Encrypted files are _always_
349 * non-resident so that the content can always be encrypted.
350 */
351 ntfs_debug("Denying write access to encrypted file.");
352 err = -EACCES;
353 goto out;
354 }
355 if (NInoCompressed(ni)) {
356 /* Only unnamed $DATA attribute can be compressed. */
357 BUG_ON(ni->name_len);
358 /*
359 * Reminder for later: If resident, the data is not actually
360 * compressed. Only on the switch to non-resident does
361 * compression kick in. This is in contrast to encrypted files
362 * (see above).
363 */
364 ntfs_error(vi->i_sb, "Writing to compressed files is not "
365 "implemented yet. Sorry.");
366 err = -EOPNOTSUPP;
367 goto out;
368 }
369 err = file_remove_privs(file);
370 if (unlikely(err))
371 goto out;
372 /*
373 * Our ->update_time method always succeeds thus file_update_time()
374 * cannot fail either so there is no need to check the return code.
375 */
376 file_update_time(file);
377 pos = iocb->ki_pos;
378 /* The first byte after the last cluster being written to. */
379 end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
380 ~(u64)vol->cluster_size_mask;
381 /*
382 * If the write goes beyond the allocated size, extend the allocation
383 * to cover the whole of the write, rounded up to the nearest cluster.
384 */
385 read_lock_irqsave(&ni->size_lock, flags);
386 ll = ni->allocated_size;
387 read_unlock_irqrestore(&ni->size_lock, flags);
388 if (end > ll) {
389 /*
390 * Extend the allocation without changing the data size.
391 *
392 * Note we ensure the allocation is big enough to at least
393 * write some data but we do not require the allocation to be
394 * complete, i.e. it may be partial.
395 */
396 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
397 if (likely(ll >= 0)) {
398 BUG_ON(pos >= ll);
399 /* If the extension was partial truncate the write. */
400 if (end > ll) {
401 ntfs_debug("Truncating write to inode 0x%lx, "
402 "attribute type 0x%x, because "
403 "the allocation was only "
404 "partially extended.",
405 vi->i_ino, (unsigned)
406 le32_to_cpu(ni->type));
407 iov_iter_truncate(from, ll - pos);
408 }
409 } else {
410 err = ll;
411 read_lock_irqsave(&ni->size_lock, flags);
412 ll = ni->allocated_size;
413 read_unlock_irqrestore(&ni->size_lock, flags);
414 /* Perform a partial write if possible or fail. */
415 if (pos < ll) {
416 ntfs_debug("Truncating write to inode 0x%lx "
417 "attribute type 0x%x, because "
418 "extending the allocation "
419 "failed (error %d).",
420 vi->i_ino, (unsigned)
421 le32_to_cpu(ni->type),
422 (int)-err);
423 iov_iter_truncate(from, ll - pos);
424 } else {
425 if (err != -ENOSPC)
426 ntfs_error(vi->i_sb, "Cannot perform "
427 "write to inode "
428 "0x%lx, attribute "
429 "type 0x%x, because "
430 "extending the "
431 "allocation failed "
432 "(error %ld).",
433 vi->i_ino, (unsigned)
434 le32_to_cpu(ni->type),
435 (long)-err);
436 else
437 ntfs_debug("Cannot perform write to "
438 "inode 0x%lx, "
439 "attribute type 0x%x, "
440 "because there is not "
441 "space left.",
442 vi->i_ino, (unsigned)
443 le32_to_cpu(ni->type));
444 goto out;
445 }
446 }
447 }
448 /*
449 * If the write starts beyond the initialized size, extend it up to the
450 * beginning of the write and initialize all non-sparse space between
451 * the old initialized size and the new one. This automatically also
452 * increments the vfs inode->i_size to keep it above or equal to the
453 * initialized_size.
454 */
455 read_lock_irqsave(&ni->size_lock, flags);
456 ll = ni->initialized_size;
457 read_unlock_irqrestore(&ni->size_lock, flags);
458 if (pos > ll) {
459 /*
460 * Wait for ongoing direct i/o to complete before proceeding.
461 * New direct i/o cannot start as we hold i_mutex.
462 */
463 inode_dio_wait(vi);
464 err = ntfs_attr_extend_initialized(ni, pos);
465 if (unlikely(err < 0))
466 ntfs_error(vi->i_sb, "Cannot perform write to inode "
467 "0x%lx, attribute type 0x%x, because "
468 "extending the initialized size "
469 "failed (error %d).", vi->i_ino,
470 (unsigned)le32_to_cpu(ni->type),
471 (int)-err);
472 }
473 out:
474 return err;
475 }
476
477 /**
478 * __ntfs_grab_cache_pages - obtain a number of locked pages
479 * @mapping: address space mapping from which to obtain page cache pages
480 * @index: starting index in @mapping at which to begin obtaining pages
481 * @nr_pages: number of page cache pages to obtain
482 * @pages: array of pages in which to return the obtained page cache pages
483 * @cached_page: allocated but as yet unused page
484 *
485 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
486 * starting at index @index.
487 *
488 * If a page is newly created, add it to lru list
489 *
490 * Note, the page locks are obtained in ascending page index order.
491 */
__ntfs_grab_cache_pages(struct address_space * mapping,pgoff_t index,const unsigned nr_pages,struct page ** pages,struct page ** cached_page)492 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
493 pgoff_t index, const unsigned nr_pages, struct page **pages,
494 struct page **cached_page)
495 {
496 int err, nr;
497
498 BUG_ON(!nr_pages);
499 err = nr = 0;
500 do {
501 pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
502 FGP_ACCESSED);
503 if (!pages[nr]) {
504 if (!*cached_page) {
505 *cached_page = page_cache_alloc(mapping);
506 if (unlikely(!*cached_page)) {
507 err = -ENOMEM;
508 goto err_out;
509 }
510 }
511 err = add_to_page_cache_lru(*cached_page, mapping,
512 index,
513 mapping_gfp_constraint(mapping, GFP_KERNEL));
514 if (unlikely(err)) {
515 if (err == -EEXIST)
516 continue;
517 goto err_out;
518 }
519 pages[nr] = *cached_page;
520 *cached_page = NULL;
521 }
522 index++;
523 nr++;
524 } while (nr < nr_pages);
525 out:
526 return err;
527 err_out:
528 while (nr > 0) {
529 unlock_page(pages[--nr]);
530 put_page(pages[nr]);
531 }
532 goto out;
533 }
534
ntfs_submit_bh_for_read(struct buffer_head * bh)535 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
536 {
537 lock_buffer(bh);
538 get_bh(bh);
539 bh->b_end_io = end_buffer_read_sync;
540 return submit_bh(REQ_OP_READ, 0, bh);
541 }
542
543 /**
544 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
545 * @pages: array of destination pages
546 * @nr_pages: number of pages in @pages
547 * @pos: byte position in file at which the write begins
548 * @bytes: number of bytes to be written
549 *
550 * This is called for non-resident attributes from ntfs_file_buffered_write()
551 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
552 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
553 * data has not yet been copied into the @pages.
554 *
555 * Need to fill any holes with actual clusters, allocate buffers if necessary,
556 * ensure all the buffers are mapped, and bring uptodate any buffers that are
557 * only partially being written to.
558 *
559 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
560 * greater than PAGE_SIZE, that all pages in @pages are entirely inside
561 * the same cluster and that they are the entirety of that cluster, and that
562 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
563 *
564 * i_size is not to be modified yet.
565 *
566 * Return 0 on success or -errno on error.
567 */
ntfs_prepare_pages_for_non_resident_write(struct page ** pages,unsigned nr_pages,s64 pos,size_t bytes)568 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
569 unsigned nr_pages, s64 pos, size_t bytes)
570 {
571 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
572 LCN lcn;
573 s64 bh_pos, vcn_len, end, initialized_size;
574 sector_t lcn_block;
575 struct page *page;
576 struct inode *vi;
577 ntfs_inode *ni, *base_ni = NULL;
578 ntfs_volume *vol;
579 runlist_element *rl, *rl2;
580 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
581 ntfs_attr_search_ctx *ctx = NULL;
582 MFT_RECORD *m = NULL;
583 ATTR_RECORD *a = NULL;
584 unsigned long flags;
585 u32 attr_rec_len = 0;
586 unsigned blocksize, u;
587 int err, mp_size;
588 bool rl_write_locked, was_hole, is_retry;
589 unsigned char blocksize_bits;
590 struct {
591 u8 runlist_merged:1;
592 u8 mft_attr_mapped:1;
593 u8 mp_rebuilt:1;
594 u8 attr_switched:1;
595 } status = { 0, 0, 0, 0 };
596
597 BUG_ON(!nr_pages);
598 BUG_ON(!pages);
599 BUG_ON(!*pages);
600 vi = pages[0]->mapping->host;
601 ni = NTFS_I(vi);
602 vol = ni->vol;
603 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
604 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
605 vi->i_ino, ni->type, pages[0]->index, nr_pages,
606 (long long)pos, bytes);
607 blocksize = vol->sb->s_blocksize;
608 blocksize_bits = vol->sb->s_blocksize_bits;
609 u = 0;
610 do {
611 page = pages[u];
612 BUG_ON(!page);
613 /*
614 * create_empty_buffers() will create uptodate/dirty buffers if
615 * the page is uptodate/dirty.
616 */
617 if (!page_has_buffers(page)) {
618 create_empty_buffers(page, blocksize, 0);
619 if (unlikely(!page_has_buffers(page)))
620 return -ENOMEM;
621 }
622 } while (++u < nr_pages);
623 rl_write_locked = false;
624 rl = NULL;
625 err = 0;
626 vcn = lcn = -1;
627 vcn_len = 0;
628 lcn_block = -1;
629 was_hole = false;
630 cpos = pos >> vol->cluster_size_bits;
631 end = pos + bytes;
632 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
633 /*
634 * Loop over each page and for each page over each buffer. Use goto to
635 * reduce indentation.
636 */
637 u = 0;
638 do_next_page:
639 page = pages[u];
640 bh_pos = (s64)page->index << PAGE_SHIFT;
641 bh = head = page_buffers(page);
642 do {
643 VCN cdelta;
644 s64 bh_end;
645 unsigned bh_cofs;
646
647 /* Clear buffer_new on all buffers to reinitialise state. */
648 if (buffer_new(bh))
649 clear_buffer_new(bh);
650 bh_end = bh_pos + blocksize;
651 bh_cpos = bh_pos >> vol->cluster_size_bits;
652 bh_cofs = bh_pos & vol->cluster_size_mask;
653 if (buffer_mapped(bh)) {
654 /*
655 * The buffer is already mapped. If it is uptodate,
656 * ignore it.
657 */
658 if (buffer_uptodate(bh))
659 continue;
660 /*
661 * The buffer is not uptodate. If the page is uptodate
662 * set the buffer uptodate and otherwise ignore it.
663 */
664 if (PageUptodate(page)) {
665 set_buffer_uptodate(bh);
666 continue;
667 }
668 /*
669 * Neither the page nor the buffer are uptodate. If
670 * the buffer is only partially being written to, we
671 * need to read it in before the write, i.e. now.
672 */
673 if ((bh_pos < pos && bh_end > pos) ||
674 (bh_pos < end && bh_end > end)) {
675 /*
676 * If the buffer is fully or partially within
677 * the initialized size, do an actual read.
678 * Otherwise, simply zero the buffer.
679 */
680 read_lock_irqsave(&ni->size_lock, flags);
681 initialized_size = ni->initialized_size;
682 read_unlock_irqrestore(&ni->size_lock, flags);
683 if (bh_pos < initialized_size) {
684 ntfs_submit_bh_for_read(bh);
685 *wait_bh++ = bh;
686 } else {
687 zero_user(page, bh_offset(bh),
688 blocksize);
689 set_buffer_uptodate(bh);
690 }
691 }
692 continue;
693 }
694 /* Unmapped buffer. Need to map it. */
695 bh->b_bdev = vol->sb->s_bdev;
696 /*
697 * If the current buffer is in the same clusters as the map
698 * cache, there is no need to check the runlist again. The
699 * map cache is made up of @vcn, which is the first cached file
700 * cluster, @vcn_len which is the number of cached file
701 * clusters, @lcn is the device cluster corresponding to @vcn,
702 * and @lcn_block is the block number corresponding to @lcn.
703 */
704 cdelta = bh_cpos - vcn;
705 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
706 map_buffer_cached:
707 BUG_ON(lcn < 0);
708 bh->b_blocknr = lcn_block +
709 (cdelta << (vol->cluster_size_bits -
710 blocksize_bits)) +
711 (bh_cofs >> blocksize_bits);
712 set_buffer_mapped(bh);
713 /*
714 * If the page is uptodate so is the buffer. If the
715 * buffer is fully outside the write, we ignore it if
716 * it was already allocated and we mark it dirty so it
717 * gets written out if we allocated it. On the other
718 * hand, if we allocated the buffer but we are not
719 * marking it dirty we set buffer_new so we can do
720 * error recovery.
721 */
722 if (PageUptodate(page)) {
723 if (!buffer_uptodate(bh))
724 set_buffer_uptodate(bh);
725 if (unlikely(was_hole)) {
726 /* We allocated the buffer. */
727 clean_bdev_bh_alias(bh);
728 if (bh_end <= pos || bh_pos >= end)
729 mark_buffer_dirty(bh);
730 else
731 set_buffer_new(bh);
732 }
733 continue;
734 }
735 /* Page is _not_ uptodate. */
736 if (likely(!was_hole)) {
737 /*
738 * Buffer was already allocated. If it is not
739 * uptodate and is only partially being written
740 * to, we need to read it in before the write,
741 * i.e. now.
742 */
743 if (!buffer_uptodate(bh) && bh_pos < end &&
744 bh_end > pos &&
745 (bh_pos < pos ||
746 bh_end > end)) {
747 /*
748 * If the buffer is fully or partially
749 * within the initialized size, do an
750 * actual read. Otherwise, simply zero
751 * the buffer.
752 */
753 read_lock_irqsave(&ni->size_lock,
754 flags);
755 initialized_size = ni->initialized_size;
756 read_unlock_irqrestore(&ni->size_lock,
757 flags);
758 if (bh_pos < initialized_size) {
759 ntfs_submit_bh_for_read(bh);
760 *wait_bh++ = bh;
761 } else {
762 zero_user(page, bh_offset(bh),
763 blocksize);
764 set_buffer_uptodate(bh);
765 }
766 }
767 continue;
768 }
769 /* We allocated the buffer. */
770 clean_bdev_bh_alias(bh);
771 /*
772 * If the buffer is fully outside the write, zero it,
773 * set it uptodate, and mark it dirty so it gets
774 * written out. If it is partially being written to,
775 * zero region surrounding the write but leave it to
776 * commit write to do anything else. Finally, if the
777 * buffer is fully being overwritten, do nothing.
778 */
779 if (bh_end <= pos || bh_pos >= end) {
780 if (!buffer_uptodate(bh)) {
781 zero_user(page, bh_offset(bh),
782 blocksize);
783 set_buffer_uptodate(bh);
784 }
785 mark_buffer_dirty(bh);
786 continue;
787 }
788 set_buffer_new(bh);
789 if (!buffer_uptodate(bh) &&
790 (bh_pos < pos || bh_end > end)) {
791 u8 *kaddr;
792 unsigned pofs;
793
794 kaddr = kmap_atomic(page);
795 if (bh_pos < pos) {
796 pofs = bh_pos & ~PAGE_MASK;
797 memset(kaddr + pofs, 0, pos - bh_pos);
798 }
799 if (bh_end > end) {
800 pofs = end & ~PAGE_MASK;
801 memset(kaddr + pofs, 0, bh_end - end);
802 }
803 kunmap_atomic(kaddr);
804 flush_dcache_page(page);
805 }
806 continue;
807 }
808 /*
809 * Slow path: this is the first buffer in the cluster. If it
810 * is outside allocated size and is not uptodate, zero it and
811 * set it uptodate.
812 */
813 read_lock_irqsave(&ni->size_lock, flags);
814 initialized_size = ni->allocated_size;
815 read_unlock_irqrestore(&ni->size_lock, flags);
816 if (bh_pos > initialized_size) {
817 if (PageUptodate(page)) {
818 if (!buffer_uptodate(bh))
819 set_buffer_uptodate(bh);
820 } else if (!buffer_uptodate(bh)) {
821 zero_user(page, bh_offset(bh), blocksize);
822 set_buffer_uptodate(bh);
823 }
824 continue;
825 }
826 is_retry = false;
827 if (!rl) {
828 down_read(&ni->runlist.lock);
829 retry_remap:
830 rl = ni->runlist.rl;
831 }
832 if (likely(rl != NULL)) {
833 /* Seek to element containing target cluster. */
834 while (rl->length && rl[1].vcn <= bh_cpos)
835 rl++;
836 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
837 if (likely(lcn >= 0)) {
838 /*
839 * Successful remap, setup the map cache and
840 * use that to deal with the buffer.
841 */
842 was_hole = false;
843 vcn = bh_cpos;
844 vcn_len = rl[1].vcn - vcn;
845 lcn_block = lcn << (vol->cluster_size_bits -
846 blocksize_bits);
847 cdelta = 0;
848 /*
849 * If the number of remaining clusters touched
850 * by the write is smaller or equal to the
851 * number of cached clusters, unlock the
852 * runlist as the map cache will be used from
853 * now on.
854 */
855 if (likely(vcn + vcn_len >= cend)) {
856 if (rl_write_locked) {
857 up_write(&ni->runlist.lock);
858 rl_write_locked = false;
859 } else
860 up_read(&ni->runlist.lock);
861 rl = NULL;
862 }
863 goto map_buffer_cached;
864 }
865 } else
866 lcn = LCN_RL_NOT_MAPPED;
867 /*
868 * If it is not a hole and not out of bounds, the runlist is
869 * probably unmapped so try to map it now.
870 */
871 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
872 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
873 /* Attempt to map runlist. */
874 if (!rl_write_locked) {
875 /*
876 * We need the runlist locked for
877 * writing, so if it is locked for
878 * reading relock it now and retry in
879 * case it changed whilst we dropped
880 * the lock.
881 */
882 up_read(&ni->runlist.lock);
883 down_write(&ni->runlist.lock);
884 rl_write_locked = true;
885 goto retry_remap;
886 }
887 err = ntfs_map_runlist_nolock(ni, bh_cpos,
888 NULL);
889 if (likely(!err)) {
890 is_retry = true;
891 goto retry_remap;
892 }
893 /*
894 * If @vcn is out of bounds, pretend @lcn is
895 * LCN_ENOENT. As long as the buffer is out
896 * of bounds this will work fine.
897 */
898 if (err == -ENOENT) {
899 lcn = LCN_ENOENT;
900 err = 0;
901 goto rl_not_mapped_enoent;
902 }
903 } else
904 err = -EIO;
905 /* Failed to map the buffer, even after retrying. */
906 bh->b_blocknr = -1;
907 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
908 "attribute type 0x%x, vcn 0x%llx, "
909 "vcn offset 0x%x, because its "
910 "location on disk could not be "
911 "determined%s (error code %i).",
912 ni->mft_no, ni->type,
913 (unsigned long long)bh_cpos,
914 (unsigned)bh_pos &
915 vol->cluster_size_mask,
916 is_retry ? " even after retrying" : "",
917 err);
918 break;
919 }
920 rl_not_mapped_enoent:
921 /*
922 * The buffer is in a hole or out of bounds. We need to fill
923 * the hole, unless the buffer is in a cluster which is not
924 * touched by the write, in which case we just leave the buffer
925 * unmapped. This can only happen when the cluster size is
926 * less than the page cache size.
927 */
928 if (unlikely(vol->cluster_size < PAGE_SIZE)) {
929 bh_cend = (bh_end + vol->cluster_size - 1) >>
930 vol->cluster_size_bits;
931 if ((bh_cend <= cpos || bh_cpos >= cend)) {
932 bh->b_blocknr = -1;
933 /*
934 * If the buffer is uptodate we skip it. If it
935 * is not but the page is uptodate, we can set
936 * the buffer uptodate. If the page is not
937 * uptodate, we can clear the buffer and set it
938 * uptodate. Whether this is worthwhile is
939 * debatable and this could be removed.
940 */
941 if (PageUptodate(page)) {
942 if (!buffer_uptodate(bh))
943 set_buffer_uptodate(bh);
944 } else if (!buffer_uptodate(bh)) {
945 zero_user(page, bh_offset(bh),
946 blocksize);
947 set_buffer_uptodate(bh);
948 }
949 continue;
950 }
951 }
952 /*
953 * Out of bounds buffer is invalid if it was not really out of
954 * bounds.
955 */
956 BUG_ON(lcn != LCN_HOLE);
957 /*
958 * We need the runlist locked for writing, so if it is locked
959 * for reading relock it now and retry in case it changed
960 * whilst we dropped the lock.
961 */
962 BUG_ON(!rl);
963 if (!rl_write_locked) {
964 up_read(&ni->runlist.lock);
965 down_write(&ni->runlist.lock);
966 rl_write_locked = true;
967 goto retry_remap;
968 }
969 /* Find the previous last allocated cluster. */
970 BUG_ON(rl->lcn != LCN_HOLE);
971 lcn = -1;
972 rl2 = rl;
973 while (--rl2 >= ni->runlist.rl) {
974 if (rl2->lcn >= 0) {
975 lcn = rl2->lcn + rl2->length;
976 break;
977 }
978 }
979 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
980 false);
981 if (IS_ERR(rl2)) {
982 err = PTR_ERR(rl2);
983 ntfs_debug("Failed to allocate cluster, error code %i.",
984 err);
985 break;
986 }
987 lcn = rl2->lcn;
988 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
989 if (IS_ERR(rl)) {
990 err = PTR_ERR(rl);
991 if (err != -ENOMEM)
992 err = -EIO;
993 if (ntfs_cluster_free_from_rl(vol, rl2)) {
994 ntfs_error(vol->sb, "Failed to release "
995 "allocated cluster in error "
996 "code path. Run chkdsk to "
997 "recover the lost cluster.");
998 NVolSetErrors(vol);
999 }
1000 ntfs_free(rl2);
1001 break;
1002 }
1003 ni->runlist.rl = rl;
1004 status.runlist_merged = 1;
1005 ntfs_debug("Allocated cluster, lcn 0x%llx.",
1006 (unsigned long long)lcn);
1007 /* Map and lock the mft record and get the attribute record. */
1008 if (!NInoAttr(ni))
1009 base_ni = ni;
1010 else
1011 base_ni = ni->ext.base_ntfs_ino;
1012 m = map_mft_record(base_ni);
1013 if (IS_ERR(m)) {
1014 err = PTR_ERR(m);
1015 break;
1016 }
1017 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1018 if (unlikely(!ctx)) {
1019 err = -ENOMEM;
1020 unmap_mft_record(base_ni);
1021 break;
1022 }
1023 status.mft_attr_mapped = 1;
1024 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1025 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1026 if (unlikely(err)) {
1027 if (err == -ENOENT)
1028 err = -EIO;
1029 break;
1030 }
1031 m = ctx->mrec;
1032 a = ctx->attr;
1033 /*
1034 * Find the runlist element with which the attribute extent
1035 * starts. Note, we cannot use the _attr_ version because we
1036 * have mapped the mft record. That is ok because we know the
1037 * runlist fragment must be mapped already to have ever gotten
1038 * here, so we can just use the _rl_ version.
1039 */
1040 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1041 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1042 BUG_ON(!rl2);
1043 BUG_ON(!rl2->length);
1044 BUG_ON(rl2->lcn < LCN_HOLE);
1045 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1046 /*
1047 * If @highest_vcn is zero, calculate the real highest_vcn
1048 * (which can really be zero).
1049 */
1050 if (!highest_vcn)
1051 highest_vcn = (sle64_to_cpu(
1052 a->data.non_resident.allocated_size) >>
1053 vol->cluster_size_bits) - 1;
1054 /*
1055 * Determine the size of the mapping pairs array for the new
1056 * extent, i.e. the old extent with the hole filled.
1057 */
1058 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1059 highest_vcn);
1060 if (unlikely(mp_size <= 0)) {
1061 if (!(err = mp_size))
1062 err = -EIO;
1063 ntfs_debug("Failed to get size for mapping pairs "
1064 "array, error code %i.", err);
1065 break;
1066 }
1067 /*
1068 * Resize the attribute record to fit the new mapping pairs
1069 * array.
1070 */
1071 attr_rec_len = le32_to_cpu(a->length);
1072 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1073 a->data.non_resident.mapping_pairs_offset));
1074 if (unlikely(err)) {
1075 BUG_ON(err != -ENOSPC);
1076 // TODO: Deal with this by using the current attribute
1077 // and fill it with as much of the mapping pairs
1078 // array as possible. Then loop over each attribute
1079 // extent rewriting the mapping pairs arrays as we go
1080 // along and if when we reach the end we have not
1081 // enough space, try to resize the last attribute
1082 // extent and if even that fails, add a new attribute
1083 // extent.
1084 // We could also try to resize at each step in the hope
1085 // that we will not need to rewrite every single extent.
1086 // Note, we may need to decompress some extents to fill
1087 // the runlist as we are walking the extents...
1088 ntfs_error(vol->sb, "Not enough space in the mft "
1089 "record for the extended attribute "
1090 "record. This case is not "
1091 "implemented yet.");
1092 err = -EOPNOTSUPP;
1093 break ;
1094 }
1095 status.mp_rebuilt = 1;
1096 /*
1097 * Generate the mapping pairs array directly into the attribute
1098 * record.
1099 */
1100 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1101 a->data.non_resident.mapping_pairs_offset),
1102 mp_size, rl2, vcn, highest_vcn, NULL);
1103 if (unlikely(err)) {
1104 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1105 "attribute type 0x%x, because building "
1106 "the mapping pairs failed with error "
1107 "code %i.", vi->i_ino,
1108 (unsigned)le32_to_cpu(ni->type), err);
1109 err = -EIO;
1110 break;
1111 }
1112 /* Update the highest_vcn but only if it was not set. */
1113 if (unlikely(!a->data.non_resident.highest_vcn))
1114 a->data.non_resident.highest_vcn =
1115 cpu_to_sle64(highest_vcn);
1116 /*
1117 * If the attribute is sparse/compressed, update the compressed
1118 * size in the ntfs_inode structure and the attribute record.
1119 */
1120 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1121 /*
1122 * If we are not in the first attribute extent, switch
1123 * to it, but first ensure the changes will make it to
1124 * disk later.
1125 */
1126 if (a->data.non_resident.lowest_vcn) {
1127 flush_dcache_mft_record_page(ctx->ntfs_ino);
1128 mark_mft_record_dirty(ctx->ntfs_ino);
1129 ntfs_attr_reinit_search_ctx(ctx);
1130 err = ntfs_attr_lookup(ni->type, ni->name,
1131 ni->name_len, CASE_SENSITIVE,
1132 0, NULL, 0, ctx);
1133 if (unlikely(err)) {
1134 status.attr_switched = 1;
1135 break;
1136 }
1137 /* @m is not used any more so do not set it. */
1138 a = ctx->attr;
1139 }
1140 write_lock_irqsave(&ni->size_lock, flags);
1141 ni->itype.compressed.size += vol->cluster_size;
1142 a->data.non_resident.compressed_size =
1143 cpu_to_sle64(ni->itype.compressed.size);
1144 write_unlock_irqrestore(&ni->size_lock, flags);
1145 }
1146 /* Ensure the changes make it to disk. */
1147 flush_dcache_mft_record_page(ctx->ntfs_ino);
1148 mark_mft_record_dirty(ctx->ntfs_ino);
1149 ntfs_attr_put_search_ctx(ctx);
1150 unmap_mft_record(base_ni);
1151 /* Successfully filled the hole. */
1152 status.runlist_merged = 0;
1153 status.mft_attr_mapped = 0;
1154 status.mp_rebuilt = 0;
1155 /* Setup the map cache and use that to deal with the buffer. */
1156 was_hole = true;
1157 vcn = bh_cpos;
1158 vcn_len = 1;
1159 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1160 cdelta = 0;
1161 /*
1162 * If the number of remaining clusters in the @pages is smaller
1163 * or equal to the number of cached clusters, unlock the
1164 * runlist as the map cache will be used from now on.
1165 */
1166 if (likely(vcn + vcn_len >= cend)) {
1167 up_write(&ni->runlist.lock);
1168 rl_write_locked = false;
1169 rl = NULL;
1170 }
1171 goto map_buffer_cached;
1172 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1173 /* If there are no errors, do the next page. */
1174 if (likely(!err && ++u < nr_pages))
1175 goto do_next_page;
1176 /* If there are no errors, release the runlist lock if we took it. */
1177 if (likely(!err)) {
1178 if (unlikely(rl_write_locked)) {
1179 up_write(&ni->runlist.lock);
1180 rl_write_locked = false;
1181 } else if (unlikely(rl))
1182 up_read(&ni->runlist.lock);
1183 rl = NULL;
1184 }
1185 /* If we issued read requests, let them complete. */
1186 read_lock_irqsave(&ni->size_lock, flags);
1187 initialized_size = ni->initialized_size;
1188 read_unlock_irqrestore(&ni->size_lock, flags);
1189 while (wait_bh > wait) {
1190 bh = *--wait_bh;
1191 wait_on_buffer(bh);
1192 if (likely(buffer_uptodate(bh))) {
1193 page = bh->b_page;
1194 bh_pos = ((s64)page->index << PAGE_SHIFT) +
1195 bh_offset(bh);
1196 /*
1197 * If the buffer overflows the initialized size, need
1198 * to zero the overflowing region.
1199 */
1200 if (unlikely(bh_pos + blocksize > initialized_size)) {
1201 int ofs = 0;
1202
1203 if (likely(bh_pos < initialized_size))
1204 ofs = initialized_size - bh_pos;
1205 zero_user_segment(page, bh_offset(bh) + ofs,
1206 blocksize);
1207 }
1208 } else /* if (unlikely(!buffer_uptodate(bh))) */
1209 err = -EIO;
1210 }
1211 if (likely(!err)) {
1212 /* Clear buffer_new on all buffers. */
1213 u = 0;
1214 do {
1215 bh = head = page_buffers(pages[u]);
1216 do {
1217 if (buffer_new(bh))
1218 clear_buffer_new(bh);
1219 } while ((bh = bh->b_this_page) != head);
1220 } while (++u < nr_pages);
1221 ntfs_debug("Done.");
1222 return err;
1223 }
1224 if (status.attr_switched) {
1225 /* Get back to the attribute extent we modified. */
1226 ntfs_attr_reinit_search_ctx(ctx);
1227 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1228 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1229 ntfs_error(vol->sb, "Failed to find required "
1230 "attribute extent of attribute in "
1231 "error code path. Run chkdsk to "
1232 "recover.");
1233 write_lock_irqsave(&ni->size_lock, flags);
1234 ni->itype.compressed.size += vol->cluster_size;
1235 write_unlock_irqrestore(&ni->size_lock, flags);
1236 flush_dcache_mft_record_page(ctx->ntfs_ino);
1237 mark_mft_record_dirty(ctx->ntfs_ino);
1238 /*
1239 * The only thing that is now wrong is the compressed
1240 * size of the base attribute extent which chkdsk
1241 * should be able to fix.
1242 */
1243 NVolSetErrors(vol);
1244 } else {
1245 m = ctx->mrec;
1246 a = ctx->attr;
1247 status.attr_switched = 0;
1248 }
1249 }
1250 /*
1251 * If the runlist has been modified, need to restore it by punching a
1252 * hole into it and we then need to deallocate the on-disk cluster as
1253 * well. Note, we only modify the runlist if we are able to generate a
1254 * new mapping pairs array, i.e. only when the mapped attribute extent
1255 * is not switched.
1256 */
1257 if (status.runlist_merged && !status.attr_switched) {
1258 BUG_ON(!rl_write_locked);
1259 /* Make the file cluster we allocated sparse in the runlist. */
1260 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1261 ntfs_error(vol->sb, "Failed to punch hole into "
1262 "attribute runlist in error code "
1263 "path. Run chkdsk to recover the "
1264 "lost cluster.");
1265 NVolSetErrors(vol);
1266 } else /* if (success) */ {
1267 status.runlist_merged = 0;
1268 /*
1269 * Deallocate the on-disk cluster we allocated but only
1270 * if we succeeded in punching its vcn out of the
1271 * runlist.
1272 */
1273 down_write(&vol->lcnbmp_lock);
1274 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1275 ntfs_error(vol->sb, "Failed to release "
1276 "allocated cluster in error "
1277 "code path. Run chkdsk to "
1278 "recover the lost cluster.");
1279 NVolSetErrors(vol);
1280 }
1281 up_write(&vol->lcnbmp_lock);
1282 }
1283 }
1284 /*
1285 * Resize the attribute record to its old size and rebuild the mapping
1286 * pairs array. Note, we only can do this if the runlist has been
1287 * restored to its old state which also implies that the mapped
1288 * attribute extent is not switched.
1289 */
1290 if (status.mp_rebuilt && !status.runlist_merged) {
1291 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1292 ntfs_error(vol->sb, "Failed to restore attribute "
1293 "record in error code path. Run "
1294 "chkdsk to recover.");
1295 NVolSetErrors(vol);
1296 } else /* if (success) */ {
1297 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1298 le16_to_cpu(a->data.non_resident.
1299 mapping_pairs_offset), attr_rec_len -
1300 le16_to_cpu(a->data.non_resident.
1301 mapping_pairs_offset), ni->runlist.rl,
1302 vcn, highest_vcn, NULL)) {
1303 ntfs_error(vol->sb, "Failed to restore "
1304 "mapping pairs array in error "
1305 "code path. Run chkdsk to "
1306 "recover.");
1307 NVolSetErrors(vol);
1308 }
1309 flush_dcache_mft_record_page(ctx->ntfs_ino);
1310 mark_mft_record_dirty(ctx->ntfs_ino);
1311 }
1312 }
1313 /* Release the mft record and the attribute. */
1314 if (status.mft_attr_mapped) {
1315 ntfs_attr_put_search_ctx(ctx);
1316 unmap_mft_record(base_ni);
1317 }
1318 /* Release the runlist lock. */
1319 if (rl_write_locked)
1320 up_write(&ni->runlist.lock);
1321 else if (rl)
1322 up_read(&ni->runlist.lock);
1323 /*
1324 * Zero out any newly allocated blocks to avoid exposing stale data.
1325 * If BH_New is set, we know that the block was newly allocated above
1326 * and that it has not been fully zeroed and marked dirty yet.
1327 */
1328 nr_pages = u;
1329 u = 0;
1330 end = bh_cpos << vol->cluster_size_bits;
1331 do {
1332 page = pages[u];
1333 bh = head = page_buffers(page);
1334 do {
1335 if (u == nr_pages &&
1336 ((s64)page->index << PAGE_SHIFT) +
1337 bh_offset(bh) >= end)
1338 break;
1339 if (!buffer_new(bh))
1340 continue;
1341 clear_buffer_new(bh);
1342 if (!buffer_uptodate(bh)) {
1343 if (PageUptodate(page))
1344 set_buffer_uptodate(bh);
1345 else {
1346 zero_user(page, bh_offset(bh),
1347 blocksize);
1348 set_buffer_uptodate(bh);
1349 }
1350 }
1351 mark_buffer_dirty(bh);
1352 } while ((bh = bh->b_this_page) != head);
1353 } while (++u <= nr_pages);
1354 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1355 return err;
1356 }
1357
ntfs_flush_dcache_pages(struct page ** pages,unsigned nr_pages)1358 static inline void ntfs_flush_dcache_pages(struct page **pages,
1359 unsigned nr_pages)
1360 {
1361 BUG_ON(!nr_pages);
1362 /*
1363 * Warning: Do not do the decrement at the same time as the call to
1364 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1365 * decrement never happens so the loop never terminates.
1366 */
1367 do {
1368 --nr_pages;
1369 flush_dcache_page(pages[nr_pages]);
1370 } while (nr_pages > 0);
1371 }
1372
1373 /**
1374 * ntfs_commit_pages_after_non_resident_write - commit the received data
1375 * @pages: array of destination pages
1376 * @nr_pages: number of pages in @pages
1377 * @pos: byte position in file at which the write begins
1378 * @bytes: number of bytes to be written
1379 *
1380 * See description of ntfs_commit_pages_after_write(), below.
1381 */
ntfs_commit_pages_after_non_resident_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1382 static inline int ntfs_commit_pages_after_non_resident_write(
1383 struct page **pages, const unsigned nr_pages,
1384 s64 pos, size_t bytes)
1385 {
1386 s64 end, initialized_size;
1387 struct inode *vi;
1388 ntfs_inode *ni, *base_ni;
1389 struct buffer_head *bh, *head;
1390 ntfs_attr_search_ctx *ctx;
1391 MFT_RECORD *m;
1392 ATTR_RECORD *a;
1393 unsigned long flags;
1394 unsigned blocksize, u;
1395 int err;
1396
1397 vi = pages[0]->mapping->host;
1398 ni = NTFS_I(vi);
1399 blocksize = vi->i_sb->s_blocksize;
1400 end = pos + bytes;
1401 u = 0;
1402 do {
1403 s64 bh_pos;
1404 struct page *page;
1405 bool partial;
1406
1407 page = pages[u];
1408 bh_pos = (s64)page->index << PAGE_SHIFT;
1409 bh = head = page_buffers(page);
1410 partial = false;
1411 do {
1412 s64 bh_end;
1413
1414 bh_end = bh_pos + blocksize;
1415 if (bh_end <= pos || bh_pos >= end) {
1416 if (!buffer_uptodate(bh))
1417 partial = true;
1418 } else {
1419 set_buffer_uptodate(bh);
1420 mark_buffer_dirty(bh);
1421 }
1422 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1423 /*
1424 * If all buffers are now uptodate but the page is not, set the
1425 * page uptodate.
1426 */
1427 if (!partial && !PageUptodate(page))
1428 SetPageUptodate(page);
1429 } while (++u < nr_pages);
1430 /*
1431 * Finally, if we do not need to update initialized_size or i_size we
1432 * are finished.
1433 */
1434 read_lock_irqsave(&ni->size_lock, flags);
1435 initialized_size = ni->initialized_size;
1436 read_unlock_irqrestore(&ni->size_lock, flags);
1437 if (end <= initialized_size) {
1438 ntfs_debug("Done.");
1439 return 0;
1440 }
1441 /*
1442 * Update initialized_size/i_size as appropriate, both in the inode and
1443 * the mft record.
1444 */
1445 if (!NInoAttr(ni))
1446 base_ni = ni;
1447 else
1448 base_ni = ni->ext.base_ntfs_ino;
1449 /* Map, pin, and lock the mft record. */
1450 m = map_mft_record(base_ni);
1451 if (IS_ERR(m)) {
1452 err = PTR_ERR(m);
1453 m = NULL;
1454 ctx = NULL;
1455 goto err_out;
1456 }
1457 BUG_ON(!NInoNonResident(ni));
1458 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1459 if (unlikely(!ctx)) {
1460 err = -ENOMEM;
1461 goto err_out;
1462 }
1463 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1464 CASE_SENSITIVE, 0, NULL, 0, ctx);
1465 if (unlikely(err)) {
1466 if (err == -ENOENT)
1467 err = -EIO;
1468 goto err_out;
1469 }
1470 a = ctx->attr;
1471 BUG_ON(!a->non_resident);
1472 write_lock_irqsave(&ni->size_lock, flags);
1473 BUG_ON(end > ni->allocated_size);
1474 ni->initialized_size = end;
1475 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1476 if (end > i_size_read(vi)) {
1477 i_size_write(vi, end);
1478 a->data.non_resident.data_size =
1479 a->data.non_resident.initialized_size;
1480 }
1481 write_unlock_irqrestore(&ni->size_lock, flags);
1482 /* Mark the mft record dirty, so it gets written back. */
1483 flush_dcache_mft_record_page(ctx->ntfs_ino);
1484 mark_mft_record_dirty(ctx->ntfs_ino);
1485 ntfs_attr_put_search_ctx(ctx);
1486 unmap_mft_record(base_ni);
1487 ntfs_debug("Done.");
1488 return 0;
1489 err_out:
1490 if (ctx)
1491 ntfs_attr_put_search_ctx(ctx);
1492 if (m)
1493 unmap_mft_record(base_ni);
1494 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1495 "code %i).", err);
1496 if (err != -ENOMEM)
1497 NVolSetErrors(ni->vol);
1498 return err;
1499 }
1500
1501 /**
1502 * ntfs_commit_pages_after_write - commit the received data
1503 * @pages: array of destination pages
1504 * @nr_pages: number of pages in @pages
1505 * @pos: byte position in file at which the write begins
1506 * @bytes: number of bytes to be written
1507 *
1508 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1509 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1510 * locked but not kmap()ped. The source data has already been copied into the
1511 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1512 * the data was copied (for non-resident attributes only) and it returned
1513 * success.
1514 *
1515 * Need to set uptodate and mark dirty all buffers within the boundary of the
1516 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1517 *
1518 * Setting the buffers dirty ensures that they get written out later when
1519 * ntfs_writepage() is invoked by the VM.
1520 *
1521 * Finally, we need to update i_size and initialized_size as appropriate both
1522 * in the inode and the mft record.
1523 *
1524 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1525 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1526 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1527 * that case, it also marks the inode dirty.
1528 *
1529 * If things have gone as outlined in
1530 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1531 * content modifications here for non-resident attributes. For resident
1532 * attributes we need to do the uptodate bringing here which we combine with
1533 * the copying into the mft record which means we save one atomic kmap.
1534 *
1535 * Return 0 on success or -errno on error.
1536 */
ntfs_commit_pages_after_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1537 static int ntfs_commit_pages_after_write(struct page **pages,
1538 const unsigned nr_pages, s64 pos, size_t bytes)
1539 {
1540 s64 end, initialized_size;
1541 loff_t i_size;
1542 struct inode *vi;
1543 ntfs_inode *ni, *base_ni;
1544 struct page *page;
1545 ntfs_attr_search_ctx *ctx;
1546 MFT_RECORD *m;
1547 ATTR_RECORD *a;
1548 char *kattr, *kaddr;
1549 unsigned long flags;
1550 u32 attr_len;
1551 int err;
1552
1553 BUG_ON(!nr_pages);
1554 BUG_ON(!pages);
1555 page = pages[0];
1556 BUG_ON(!page);
1557 vi = page->mapping->host;
1558 ni = NTFS_I(vi);
1559 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1560 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1561 vi->i_ino, ni->type, page->index, nr_pages,
1562 (long long)pos, bytes);
1563 if (NInoNonResident(ni))
1564 return ntfs_commit_pages_after_non_resident_write(pages,
1565 nr_pages, pos, bytes);
1566 BUG_ON(nr_pages > 1);
1567 /*
1568 * Attribute is resident, implying it is not compressed, encrypted, or
1569 * sparse.
1570 */
1571 if (!NInoAttr(ni))
1572 base_ni = ni;
1573 else
1574 base_ni = ni->ext.base_ntfs_ino;
1575 BUG_ON(NInoNonResident(ni));
1576 /* Map, pin, and lock the mft record. */
1577 m = map_mft_record(base_ni);
1578 if (IS_ERR(m)) {
1579 err = PTR_ERR(m);
1580 m = NULL;
1581 ctx = NULL;
1582 goto err_out;
1583 }
1584 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1585 if (unlikely(!ctx)) {
1586 err = -ENOMEM;
1587 goto err_out;
1588 }
1589 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1590 CASE_SENSITIVE, 0, NULL, 0, ctx);
1591 if (unlikely(err)) {
1592 if (err == -ENOENT)
1593 err = -EIO;
1594 goto err_out;
1595 }
1596 a = ctx->attr;
1597 BUG_ON(a->non_resident);
1598 /* The total length of the attribute value. */
1599 attr_len = le32_to_cpu(a->data.resident.value_length);
1600 i_size = i_size_read(vi);
1601 BUG_ON(attr_len != i_size);
1602 BUG_ON(pos > attr_len);
1603 end = pos + bytes;
1604 BUG_ON(end > le32_to_cpu(a->length) -
1605 le16_to_cpu(a->data.resident.value_offset));
1606 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1607 kaddr = kmap_atomic(page);
1608 /* Copy the received data from the page to the mft record. */
1609 memcpy(kattr + pos, kaddr + pos, bytes);
1610 /* Update the attribute length if necessary. */
1611 if (end > attr_len) {
1612 attr_len = end;
1613 a->data.resident.value_length = cpu_to_le32(attr_len);
1614 }
1615 /*
1616 * If the page is not uptodate, bring the out of bounds area(s)
1617 * uptodate by copying data from the mft record to the page.
1618 */
1619 if (!PageUptodate(page)) {
1620 if (pos > 0)
1621 memcpy(kaddr, kattr, pos);
1622 if (end < attr_len)
1623 memcpy(kaddr + end, kattr + end, attr_len - end);
1624 /* Zero the region outside the end of the attribute value. */
1625 memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1626 flush_dcache_page(page);
1627 SetPageUptodate(page);
1628 }
1629 kunmap_atomic(kaddr);
1630 /* Update initialized_size/i_size if necessary. */
1631 read_lock_irqsave(&ni->size_lock, flags);
1632 initialized_size = ni->initialized_size;
1633 BUG_ON(end > ni->allocated_size);
1634 read_unlock_irqrestore(&ni->size_lock, flags);
1635 BUG_ON(initialized_size != i_size);
1636 if (end > initialized_size) {
1637 write_lock_irqsave(&ni->size_lock, flags);
1638 ni->initialized_size = end;
1639 i_size_write(vi, end);
1640 write_unlock_irqrestore(&ni->size_lock, flags);
1641 }
1642 /* Mark the mft record dirty, so it gets written back. */
1643 flush_dcache_mft_record_page(ctx->ntfs_ino);
1644 mark_mft_record_dirty(ctx->ntfs_ino);
1645 ntfs_attr_put_search_ctx(ctx);
1646 unmap_mft_record(base_ni);
1647 ntfs_debug("Done.");
1648 return 0;
1649 err_out:
1650 if (err == -ENOMEM) {
1651 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1652 "commit the write.");
1653 if (PageUptodate(page)) {
1654 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1655 "dirty so the write will be retried "
1656 "later on by the VM.");
1657 /*
1658 * Put the page on mapping->dirty_pages, but leave its
1659 * buffers' dirty state as-is.
1660 */
1661 __set_page_dirty_nobuffers(page);
1662 err = 0;
1663 } else
1664 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1665 "data has been lost.");
1666 } else {
1667 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1668 "with error %i.", err);
1669 NVolSetErrors(ni->vol);
1670 }
1671 if (ctx)
1672 ntfs_attr_put_search_ctx(ctx);
1673 if (m)
1674 unmap_mft_record(base_ni);
1675 return err;
1676 }
1677
1678 /*
1679 * Copy as much as we can into the pages and return the number of bytes which
1680 * were successfully copied. If a fault is encountered then clear the pages
1681 * out to (ofs + bytes) and return the number of bytes which were copied.
1682 */
ntfs_copy_from_user_iter(struct page ** pages,unsigned nr_pages,unsigned ofs,struct iov_iter * i,size_t bytes)1683 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1684 unsigned ofs, struct iov_iter *i, size_t bytes)
1685 {
1686 struct page **last_page = pages + nr_pages;
1687 size_t total = 0;
1688 unsigned len, copied;
1689
1690 do {
1691 len = PAGE_SIZE - ofs;
1692 if (len > bytes)
1693 len = bytes;
1694 copied = copy_page_from_iter_atomic(*pages, ofs, len, i);
1695 total += copied;
1696 bytes -= copied;
1697 if (!bytes)
1698 break;
1699 if (copied < len)
1700 goto err;
1701 ofs = 0;
1702 } while (++pages < last_page);
1703 out:
1704 return total;
1705 err:
1706 /* Zero the rest of the target like __copy_from_user(). */
1707 len = PAGE_SIZE - copied;
1708 do {
1709 if (len > bytes)
1710 len = bytes;
1711 zero_user(*pages, copied, len);
1712 bytes -= len;
1713 copied = 0;
1714 len = PAGE_SIZE;
1715 } while (++pages < last_page);
1716 goto out;
1717 }
1718
1719 /**
1720 * ntfs_perform_write - perform buffered write to a file
1721 * @file: file to write to
1722 * @i: iov_iter with data to write
1723 * @pos: byte offset in file at which to begin writing to
1724 */
ntfs_perform_write(struct file * file,struct iov_iter * i,loff_t pos)1725 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1726 loff_t pos)
1727 {
1728 struct address_space *mapping = file->f_mapping;
1729 struct inode *vi = mapping->host;
1730 ntfs_inode *ni = NTFS_I(vi);
1731 ntfs_volume *vol = ni->vol;
1732 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1733 struct page *cached_page = NULL;
1734 VCN last_vcn;
1735 LCN lcn;
1736 size_t bytes;
1737 ssize_t status, written = 0;
1738 unsigned nr_pages;
1739
1740 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1741 "0x%llx, count 0x%lx.", vi->i_ino,
1742 (unsigned)le32_to_cpu(ni->type),
1743 (unsigned long long)pos,
1744 (unsigned long)iov_iter_count(i));
1745 /*
1746 * If a previous ntfs_truncate() failed, repeat it and abort if it
1747 * fails again.
1748 */
1749 if (unlikely(NInoTruncateFailed(ni))) {
1750 int err;
1751
1752 inode_dio_wait(vi);
1753 err = ntfs_truncate(vi);
1754 if (err || NInoTruncateFailed(ni)) {
1755 if (!err)
1756 err = -EIO;
1757 ntfs_error(vol->sb, "Cannot perform write to inode "
1758 "0x%lx, attribute type 0x%x, because "
1759 "ntfs_truncate() failed (error code "
1760 "%i).", vi->i_ino,
1761 (unsigned)le32_to_cpu(ni->type), err);
1762 return err;
1763 }
1764 }
1765 /*
1766 * Determine the number of pages per cluster for non-resident
1767 * attributes.
1768 */
1769 nr_pages = 1;
1770 if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1771 nr_pages = vol->cluster_size >> PAGE_SHIFT;
1772 last_vcn = -1;
1773 do {
1774 VCN vcn;
1775 pgoff_t start_idx;
1776 unsigned ofs, do_pages, u;
1777 size_t copied;
1778
1779 start_idx = pos >> PAGE_SHIFT;
1780 ofs = pos & ~PAGE_MASK;
1781 bytes = PAGE_SIZE - ofs;
1782 do_pages = 1;
1783 if (nr_pages > 1) {
1784 vcn = pos >> vol->cluster_size_bits;
1785 if (vcn != last_vcn) {
1786 last_vcn = vcn;
1787 /*
1788 * Get the lcn of the vcn the write is in. If
1789 * it is a hole, need to lock down all pages in
1790 * the cluster.
1791 */
1792 down_read(&ni->runlist.lock);
1793 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1794 vol->cluster_size_bits, false);
1795 up_read(&ni->runlist.lock);
1796 if (unlikely(lcn < LCN_HOLE)) {
1797 if (lcn == LCN_ENOMEM)
1798 status = -ENOMEM;
1799 else {
1800 status = -EIO;
1801 ntfs_error(vol->sb, "Cannot "
1802 "perform write to "
1803 "inode 0x%lx, "
1804 "attribute type 0x%x, "
1805 "because the attribute "
1806 "is corrupt.",
1807 vi->i_ino, (unsigned)
1808 le32_to_cpu(ni->type));
1809 }
1810 break;
1811 }
1812 if (lcn == LCN_HOLE) {
1813 start_idx = (pos & ~(s64)
1814 vol->cluster_size_mask)
1815 >> PAGE_SHIFT;
1816 bytes = vol->cluster_size - (pos &
1817 vol->cluster_size_mask);
1818 do_pages = nr_pages;
1819 }
1820 }
1821 }
1822 if (bytes > iov_iter_count(i))
1823 bytes = iov_iter_count(i);
1824 again:
1825 /*
1826 * Bring in the user page(s) that we will copy from _first_.
1827 * Otherwise there is a nasty deadlock on copying from the same
1828 * page(s) as we are writing to, without it/them being marked
1829 * up-to-date. Note, at present there is nothing to stop the
1830 * pages being swapped out between us bringing them into memory
1831 * and doing the actual copying.
1832 */
1833 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
1834 status = -EFAULT;
1835 break;
1836 }
1837 /* Get and lock @do_pages starting at index @start_idx. */
1838 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1839 pages, &cached_page);
1840 if (unlikely(status))
1841 break;
1842 /*
1843 * For non-resident attributes, we need to fill any holes with
1844 * actual clusters and ensure all bufferes are mapped. We also
1845 * need to bring uptodate any buffers that are only partially
1846 * being written to.
1847 */
1848 if (NInoNonResident(ni)) {
1849 status = ntfs_prepare_pages_for_non_resident_write(
1850 pages, do_pages, pos, bytes);
1851 if (unlikely(status)) {
1852 do {
1853 unlock_page(pages[--do_pages]);
1854 put_page(pages[do_pages]);
1855 } while (do_pages);
1856 break;
1857 }
1858 }
1859 u = (pos >> PAGE_SHIFT) - pages[0]->index;
1860 copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1861 i, bytes);
1862 ntfs_flush_dcache_pages(pages + u, do_pages - u);
1863 status = 0;
1864 if (likely(copied == bytes)) {
1865 status = ntfs_commit_pages_after_write(pages, do_pages,
1866 pos, bytes);
1867 }
1868 do {
1869 unlock_page(pages[--do_pages]);
1870 put_page(pages[do_pages]);
1871 } while (do_pages);
1872 if (unlikely(status < 0)) {
1873 iov_iter_revert(i, copied);
1874 break;
1875 }
1876 cond_resched();
1877 if (unlikely(copied < bytes)) {
1878 iov_iter_revert(i, copied);
1879 if (copied)
1880 bytes = copied;
1881 else if (bytes > PAGE_SIZE - ofs)
1882 bytes = PAGE_SIZE - ofs;
1883 goto again;
1884 }
1885 pos += copied;
1886 written += copied;
1887 balance_dirty_pages_ratelimited(mapping);
1888 if (fatal_signal_pending(current)) {
1889 status = -EINTR;
1890 break;
1891 }
1892 } while (iov_iter_count(i));
1893 if (cached_page)
1894 put_page(cached_page);
1895 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
1896 written ? "written" : "status", (unsigned long)written,
1897 (long)status);
1898 return written ? written : status;
1899 }
1900
1901 /**
1902 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1903 * @iocb: IO state structure
1904 * @from: iov_iter with data to write
1905 *
1906 * Basically the same as generic_file_write_iter() except that it ends up
1907 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1908 * O_DIRECT is not implemented.
1909 */
ntfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1910 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1911 {
1912 struct file *file = iocb->ki_filp;
1913 struct inode *vi = file_inode(file);
1914 ssize_t written = 0;
1915 ssize_t err;
1916
1917 inode_lock(vi);
1918 /* We can write back this queue in page reclaim. */
1919 current->backing_dev_info = inode_to_bdi(vi);
1920 err = ntfs_prepare_file_for_write(iocb, from);
1921 if (iov_iter_count(from) && !err)
1922 written = ntfs_perform_write(file, from, iocb->ki_pos);
1923 current->backing_dev_info = NULL;
1924 inode_unlock(vi);
1925 iocb->ki_pos += written;
1926 if (likely(written > 0))
1927 written = generic_write_sync(iocb, written);
1928 return written ? written : err;
1929 }
1930
1931 /**
1932 * ntfs_file_fsync - sync a file to disk
1933 * @filp: file to be synced
1934 * @datasync: if non-zero only flush user data and not metadata
1935 *
1936 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
1937 * system calls. This function is inspired by fs/buffer.c::file_fsync().
1938 *
1939 * If @datasync is false, write the mft record and all associated extent mft
1940 * records as well as the $DATA attribute and then sync the block device.
1941 *
1942 * If @datasync is true and the attribute is non-resident, we skip the writing
1943 * of the mft record and all associated extent mft records (this might still
1944 * happen due to the write_inode_now() call).
1945 *
1946 * Also, if @datasync is true, we do not wait on the inode to be written out
1947 * but we always wait on the page cache pages to be written out.
1948 *
1949 * Locking: Caller must hold i_mutex on the inode.
1950 *
1951 * TODO: We should probably also write all attribute/index inodes associated
1952 * with this inode but since we have no simple way of getting to them we ignore
1953 * this problem for now.
1954 */
ntfs_file_fsync(struct file * filp,loff_t start,loff_t end,int datasync)1955 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1956 int datasync)
1957 {
1958 struct inode *vi = filp->f_mapping->host;
1959 int err, ret = 0;
1960
1961 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1962
1963 err = file_write_and_wait_range(filp, start, end);
1964 if (err)
1965 return err;
1966 inode_lock(vi);
1967
1968 BUG_ON(S_ISDIR(vi->i_mode));
1969 if (!datasync || !NInoNonResident(NTFS_I(vi)))
1970 ret = __ntfs_write_inode(vi, 1);
1971 write_inode_now(vi, !datasync);
1972 /*
1973 * NOTE: If we were to use mapping->private_list (see ext2 and
1974 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1975 * sync_mapping_buffers(vi->i_mapping).
1976 */
1977 err = sync_blockdev(vi->i_sb->s_bdev);
1978 if (unlikely(err && !ret))
1979 ret = err;
1980 if (likely(!ret))
1981 ntfs_debug("Done.");
1982 else
1983 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
1984 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
1985 inode_unlock(vi);
1986 return ret;
1987 }
1988
1989 #endif /* NTFS_RW */
1990
1991 const struct file_operations ntfs_file_ops = {
1992 .llseek = generic_file_llseek,
1993 .read_iter = generic_file_read_iter,
1994 #ifdef NTFS_RW
1995 .write_iter = ntfs_file_write_iter,
1996 .fsync = ntfs_file_fsync,
1997 #endif /* NTFS_RW */
1998 .mmap = generic_file_mmap,
1999 .open = ntfs_file_open,
2000 .splice_read = generic_file_splice_read,
2001 };
2002
2003 const struct inode_operations ntfs_file_inode_ops = {
2004 #ifdef NTFS_RW
2005 .setattr = ntfs_setattr,
2006 #endif /* NTFS_RW */
2007 };
2008
2009 const struct file_operations ntfs_empty_file_ops = {};
2010
2011 const struct inode_operations ntfs_empty_inode_ops = {};
2012