1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 #include <linux/buffer_head.h>
11 #include <linux/gfp.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/sched/signal.h>
15 #include <linux/swap.h>
16 #include <linux/uio.h>
17 #include <linux/writeback.h>
18 
19 #include <asm/page.h>
20 #include <linux/uaccess.h>
21 
22 #include "attrib.h"
23 #include "bitmap.h"
24 #include "inode.h"
25 #include "debug.h"
26 #include "lcnalloc.h"
27 #include "malloc.h"
28 #include "mft.h"
29 #include "ntfs.h"
30 
31 /**
32  * ntfs_file_open - called when an inode is about to be opened
33  * @vi:		inode to be opened
34  * @filp:	file structure describing the inode
35  *
36  * Limit file size to the page cache limit on architectures where unsigned long
37  * is 32-bits. This is the most we can do for now without overflowing the page
38  * cache page index. Doing it this way means we don't run into problems because
39  * of existing too large files. It would be better to allow the user to read
40  * the beginning of the file but I doubt very much anyone is going to hit this
41  * check on a 32-bit architecture, so there is no point in adding the extra
42  * complexity required to support this.
43  *
44  * On 64-bit architectures, the check is hopefully optimized away by the
45  * compiler.
46  *
47  * After the check passes, just call generic_file_open() to do its work.
48  */
ntfs_file_open(struct inode * vi,struct file * filp)49 static int ntfs_file_open(struct inode *vi, struct file *filp)
50 {
51 	if (sizeof(unsigned long) < 8) {
52 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
53 			return -EOVERFLOW;
54 	}
55 	return generic_file_open(vi, filp);
56 }
57 
58 #ifdef NTFS_RW
59 
60 /**
61  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
62  * @ni:			ntfs inode of the attribute to extend
63  * @new_init_size:	requested new initialized size in bytes
64  *
65  * Extend the initialized size of an attribute described by the ntfs inode @ni
66  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
67  * the old initialized size and @new_init_size both in the page cache and on
68  * disk (if relevant complete pages are already uptodate in the page cache then
69  * these are simply marked dirty).
70  *
71  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
72  * in the resident attribute case, it is tied to the initialized size and, in
73  * the non-resident attribute case, it may not fall below the initialized size.
74  *
75  * Note that if the attribute is resident, we do not need to touch the page
76  * cache at all.  This is because if the page cache page is not uptodate we
77  * bring it uptodate later, when doing the write to the mft record since we
78  * then already have the page mapped.  And if the page is uptodate, the
79  * non-initialized region will already have been zeroed when the page was
80  * brought uptodate and the region may in fact already have been overwritten
81  * with new data via mmap() based writes, so we cannot just zero it.  And since
82  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
83  * is unspecified, we choose not to do zeroing and thus we do not need to touch
84  * the page at all.  For a more detailed explanation see ntfs_truncate() in
85  * fs/ntfs/inode.c.
86  *
87  * Return 0 on success and -errno on error.  In the case that an error is
88  * encountered it is possible that the initialized size will already have been
89  * incremented some way towards @new_init_size but it is guaranteed that if
90  * this is the case, the necessary zeroing will also have happened and that all
91  * metadata is self-consistent.
92  *
93  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
94  *	    held by the caller.
95  */
ntfs_attr_extend_initialized(ntfs_inode * ni,const s64 new_init_size)96 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
97 {
98 	s64 old_init_size;
99 	loff_t old_i_size;
100 	pgoff_t index, end_index;
101 	unsigned long flags;
102 	struct inode *vi = VFS_I(ni);
103 	ntfs_inode *base_ni;
104 	MFT_RECORD *m = NULL;
105 	ATTR_RECORD *a;
106 	ntfs_attr_search_ctx *ctx = NULL;
107 	struct address_space *mapping;
108 	struct page *page = NULL;
109 	u8 *kattr;
110 	int err;
111 	u32 attr_len;
112 
113 	read_lock_irqsave(&ni->size_lock, flags);
114 	old_init_size = ni->initialized_size;
115 	old_i_size = i_size_read(vi);
116 	BUG_ON(new_init_size > ni->allocated_size);
117 	read_unlock_irqrestore(&ni->size_lock, flags);
118 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
119 			"old_initialized_size 0x%llx, "
120 			"new_initialized_size 0x%llx, i_size 0x%llx.",
121 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
122 			(unsigned long long)old_init_size,
123 			(unsigned long long)new_init_size, old_i_size);
124 	if (!NInoAttr(ni))
125 		base_ni = ni;
126 	else
127 		base_ni = ni->ext.base_ntfs_ino;
128 	/* Use goto to reduce indentation and we need the label below anyway. */
129 	if (NInoNonResident(ni))
130 		goto do_non_resident_extend;
131 	BUG_ON(old_init_size != old_i_size);
132 	m = map_mft_record(base_ni);
133 	if (IS_ERR(m)) {
134 		err = PTR_ERR(m);
135 		m = NULL;
136 		goto err_out;
137 	}
138 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
139 	if (unlikely(!ctx)) {
140 		err = -ENOMEM;
141 		goto err_out;
142 	}
143 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
144 			CASE_SENSITIVE, 0, NULL, 0, ctx);
145 	if (unlikely(err)) {
146 		if (err == -ENOENT)
147 			err = -EIO;
148 		goto err_out;
149 	}
150 	m = ctx->mrec;
151 	a = ctx->attr;
152 	BUG_ON(a->non_resident);
153 	/* The total length of the attribute value. */
154 	attr_len = le32_to_cpu(a->data.resident.value_length);
155 	BUG_ON(old_i_size != (loff_t)attr_len);
156 	/*
157 	 * Do the zeroing in the mft record and update the attribute size in
158 	 * the mft record.
159 	 */
160 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
161 	memset(kattr + attr_len, 0, new_init_size - attr_len);
162 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
163 	/* Finally, update the sizes in the vfs and ntfs inodes. */
164 	write_lock_irqsave(&ni->size_lock, flags);
165 	i_size_write(vi, new_init_size);
166 	ni->initialized_size = new_init_size;
167 	write_unlock_irqrestore(&ni->size_lock, flags);
168 	goto done;
169 do_non_resident_extend:
170 	/*
171 	 * If the new initialized size @new_init_size exceeds the current file
172 	 * size (vfs inode->i_size), we need to extend the file size to the
173 	 * new initialized size.
174 	 */
175 	if (new_init_size > old_i_size) {
176 		m = map_mft_record(base_ni);
177 		if (IS_ERR(m)) {
178 			err = PTR_ERR(m);
179 			m = NULL;
180 			goto err_out;
181 		}
182 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
183 		if (unlikely(!ctx)) {
184 			err = -ENOMEM;
185 			goto err_out;
186 		}
187 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
188 				CASE_SENSITIVE, 0, NULL, 0, ctx);
189 		if (unlikely(err)) {
190 			if (err == -ENOENT)
191 				err = -EIO;
192 			goto err_out;
193 		}
194 		m = ctx->mrec;
195 		a = ctx->attr;
196 		BUG_ON(!a->non_resident);
197 		BUG_ON(old_i_size != (loff_t)
198 				sle64_to_cpu(a->data.non_resident.data_size));
199 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
200 		flush_dcache_mft_record_page(ctx->ntfs_ino);
201 		mark_mft_record_dirty(ctx->ntfs_ino);
202 		/* Update the file size in the vfs inode. */
203 		i_size_write(vi, new_init_size);
204 		ntfs_attr_put_search_ctx(ctx);
205 		ctx = NULL;
206 		unmap_mft_record(base_ni);
207 		m = NULL;
208 	}
209 	mapping = vi->i_mapping;
210 	index = old_init_size >> PAGE_SHIFT;
211 	end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
212 	do {
213 		/*
214 		 * Read the page.  If the page is not present, this will zero
215 		 * the uninitialized regions for us.
216 		 */
217 		page = read_mapping_page(mapping, index, NULL);
218 		if (IS_ERR(page)) {
219 			err = PTR_ERR(page);
220 			goto init_err_out;
221 		}
222 		if (unlikely(PageError(page))) {
223 			put_page(page);
224 			err = -EIO;
225 			goto init_err_out;
226 		}
227 		/*
228 		 * Update the initialized size in the ntfs inode.  This is
229 		 * enough to make ntfs_writepage() work.
230 		 */
231 		write_lock_irqsave(&ni->size_lock, flags);
232 		ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
233 		if (ni->initialized_size > new_init_size)
234 			ni->initialized_size = new_init_size;
235 		write_unlock_irqrestore(&ni->size_lock, flags);
236 		/* Set the page dirty so it gets written out. */
237 		set_page_dirty(page);
238 		put_page(page);
239 		/*
240 		 * Play nice with the vm and the rest of the system.  This is
241 		 * very much needed as we can potentially be modifying the
242 		 * initialised size from a very small value to a really huge
243 		 * value, e.g.
244 		 *	f = open(somefile, O_TRUNC);
245 		 *	truncate(f, 10GiB);
246 		 *	seek(f, 10GiB);
247 		 *	write(f, 1);
248 		 * And this would mean we would be marking dirty hundreds of
249 		 * thousands of pages or as in the above example more than
250 		 * two and a half million pages!
251 		 *
252 		 * TODO: For sparse pages could optimize this workload by using
253 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
254 		 * would be set in read_folio for sparse pages and here we would
255 		 * not need to mark dirty any pages which have this bit set.
256 		 * The only caveat is that we have to clear the bit everywhere
257 		 * where we allocate any clusters that lie in the page or that
258 		 * contain the page.
259 		 *
260 		 * TODO: An even greater optimization would be for us to only
261 		 * call read_folio() on pages which are not in sparse regions as
262 		 * determined from the runlist.  This would greatly reduce the
263 		 * number of pages we read and make dirty in the case of sparse
264 		 * files.
265 		 */
266 		balance_dirty_pages_ratelimited(mapping);
267 		cond_resched();
268 	} while (++index < end_index);
269 	read_lock_irqsave(&ni->size_lock, flags);
270 	BUG_ON(ni->initialized_size != new_init_size);
271 	read_unlock_irqrestore(&ni->size_lock, flags);
272 	/* Now bring in sync the initialized_size in the mft record. */
273 	m = map_mft_record(base_ni);
274 	if (IS_ERR(m)) {
275 		err = PTR_ERR(m);
276 		m = NULL;
277 		goto init_err_out;
278 	}
279 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
280 	if (unlikely(!ctx)) {
281 		err = -ENOMEM;
282 		goto init_err_out;
283 	}
284 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
285 			CASE_SENSITIVE, 0, NULL, 0, ctx);
286 	if (unlikely(err)) {
287 		if (err == -ENOENT)
288 			err = -EIO;
289 		goto init_err_out;
290 	}
291 	m = ctx->mrec;
292 	a = ctx->attr;
293 	BUG_ON(!a->non_resident);
294 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
295 done:
296 	flush_dcache_mft_record_page(ctx->ntfs_ino);
297 	mark_mft_record_dirty(ctx->ntfs_ino);
298 	if (ctx)
299 		ntfs_attr_put_search_ctx(ctx);
300 	if (m)
301 		unmap_mft_record(base_ni);
302 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
303 			(unsigned long long)new_init_size, i_size_read(vi));
304 	return 0;
305 init_err_out:
306 	write_lock_irqsave(&ni->size_lock, flags);
307 	ni->initialized_size = old_init_size;
308 	write_unlock_irqrestore(&ni->size_lock, flags);
309 err_out:
310 	if (ctx)
311 		ntfs_attr_put_search_ctx(ctx);
312 	if (m)
313 		unmap_mft_record(base_ni);
314 	ntfs_debug("Failed.  Returning error code %i.", err);
315 	return err;
316 }
317 
ntfs_prepare_file_for_write(struct kiocb * iocb,struct iov_iter * from)318 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
319 		struct iov_iter *from)
320 {
321 	loff_t pos;
322 	s64 end, ll;
323 	ssize_t err;
324 	unsigned long flags;
325 	struct file *file = iocb->ki_filp;
326 	struct inode *vi = file_inode(file);
327 	ntfs_inode *ni = NTFS_I(vi);
328 	ntfs_volume *vol = ni->vol;
329 
330 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
331 			"0x%llx, count 0x%zx.", vi->i_ino,
332 			(unsigned)le32_to_cpu(ni->type),
333 			(unsigned long long)iocb->ki_pos,
334 			iov_iter_count(from));
335 	err = generic_write_checks(iocb, from);
336 	if (unlikely(err <= 0))
337 		goto out;
338 	/*
339 	 * All checks have passed.  Before we start doing any writing we want
340 	 * to abort any totally illegal writes.
341 	 */
342 	BUG_ON(NInoMstProtected(ni));
343 	BUG_ON(ni->type != AT_DATA);
344 	/* If file is encrypted, deny access, just like NT4. */
345 	if (NInoEncrypted(ni)) {
346 		/* Only $DATA attributes can be encrypted. */
347 		/*
348 		 * Reminder for later: Encrypted files are _always_
349 		 * non-resident so that the content can always be encrypted.
350 		 */
351 		ntfs_debug("Denying write access to encrypted file.");
352 		err = -EACCES;
353 		goto out;
354 	}
355 	if (NInoCompressed(ni)) {
356 		/* Only unnamed $DATA attribute can be compressed. */
357 		BUG_ON(ni->name_len);
358 		/*
359 		 * Reminder for later: If resident, the data is not actually
360 		 * compressed.  Only on the switch to non-resident does
361 		 * compression kick in.  This is in contrast to encrypted files
362 		 * (see above).
363 		 */
364 		ntfs_error(vi->i_sb, "Writing to compressed files is not "
365 				"implemented yet.  Sorry.");
366 		err = -EOPNOTSUPP;
367 		goto out;
368 	}
369 	err = file_remove_privs(file);
370 	if (unlikely(err))
371 		goto out;
372 	/*
373 	 * Our ->update_time method always succeeds thus file_update_time()
374 	 * cannot fail either so there is no need to check the return code.
375 	 */
376 	file_update_time(file);
377 	pos = iocb->ki_pos;
378 	/* The first byte after the last cluster being written to. */
379 	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
380 			~(u64)vol->cluster_size_mask;
381 	/*
382 	 * If the write goes beyond the allocated size, extend the allocation
383 	 * to cover the whole of the write, rounded up to the nearest cluster.
384 	 */
385 	read_lock_irqsave(&ni->size_lock, flags);
386 	ll = ni->allocated_size;
387 	read_unlock_irqrestore(&ni->size_lock, flags);
388 	if (end > ll) {
389 		/*
390 		 * Extend the allocation without changing the data size.
391 		 *
392 		 * Note we ensure the allocation is big enough to at least
393 		 * write some data but we do not require the allocation to be
394 		 * complete, i.e. it may be partial.
395 		 */
396 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
397 		if (likely(ll >= 0)) {
398 			BUG_ON(pos >= ll);
399 			/* If the extension was partial truncate the write. */
400 			if (end > ll) {
401 				ntfs_debug("Truncating write to inode 0x%lx, "
402 						"attribute type 0x%x, because "
403 						"the allocation was only "
404 						"partially extended.",
405 						vi->i_ino, (unsigned)
406 						le32_to_cpu(ni->type));
407 				iov_iter_truncate(from, ll - pos);
408 			}
409 		} else {
410 			err = ll;
411 			read_lock_irqsave(&ni->size_lock, flags);
412 			ll = ni->allocated_size;
413 			read_unlock_irqrestore(&ni->size_lock, flags);
414 			/* Perform a partial write if possible or fail. */
415 			if (pos < ll) {
416 				ntfs_debug("Truncating write to inode 0x%lx "
417 						"attribute type 0x%x, because "
418 						"extending the allocation "
419 						"failed (error %d).",
420 						vi->i_ino, (unsigned)
421 						le32_to_cpu(ni->type),
422 						(int)-err);
423 				iov_iter_truncate(from, ll - pos);
424 			} else {
425 				if (err != -ENOSPC)
426 					ntfs_error(vi->i_sb, "Cannot perform "
427 							"write to inode "
428 							"0x%lx, attribute "
429 							"type 0x%x, because "
430 							"extending the "
431 							"allocation failed "
432 							"(error %ld).",
433 							vi->i_ino, (unsigned)
434 							le32_to_cpu(ni->type),
435 							(long)-err);
436 				else
437 					ntfs_debug("Cannot perform write to "
438 							"inode 0x%lx, "
439 							"attribute type 0x%x, "
440 							"because there is not "
441 							"space left.",
442 							vi->i_ino, (unsigned)
443 							le32_to_cpu(ni->type));
444 				goto out;
445 			}
446 		}
447 	}
448 	/*
449 	 * If the write starts beyond the initialized size, extend it up to the
450 	 * beginning of the write and initialize all non-sparse space between
451 	 * the old initialized size and the new one.  This automatically also
452 	 * increments the vfs inode->i_size to keep it above or equal to the
453 	 * initialized_size.
454 	 */
455 	read_lock_irqsave(&ni->size_lock, flags);
456 	ll = ni->initialized_size;
457 	read_unlock_irqrestore(&ni->size_lock, flags);
458 	if (pos > ll) {
459 		/*
460 		 * Wait for ongoing direct i/o to complete before proceeding.
461 		 * New direct i/o cannot start as we hold i_mutex.
462 		 */
463 		inode_dio_wait(vi);
464 		err = ntfs_attr_extend_initialized(ni, pos);
465 		if (unlikely(err < 0))
466 			ntfs_error(vi->i_sb, "Cannot perform write to inode "
467 					"0x%lx, attribute type 0x%x, because "
468 					"extending the initialized size "
469 					"failed (error %d).", vi->i_ino,
470 					(unsigned)le32_to_cpu(ni->type),
471 					(int)-err);
472 	}
473 out:
474 	return err;
475 }
476 
477 /**
478  * __ntfs_grab_cache_pages - obtain a number of locked pages
479  * @mapping:	address space mapping from which to obtain page cache pages
480  * @index:	starting index in @mapping at which to begin obtaining pages
481  * @nr_pages:	number of page cache pages to obtain
482  * @pages:	array of pages in which to return the obtained page cache pages
483  * @cached_page: allocated but as yet unused page
484  *
485  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
486  * starting at index @index.
487  *
488  * If a page is newly created, add it to lru list
489  *
490  * Note, the page locks are obtained in ascending page index order.
491  */
__ntfs_grab_cache_pages(struct address_space * mapping,pgoff_t index,const unsigned nr_pages,struct page ** pages,struct page ** cached_page)492 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
493 		pgoff_t index, const unsigned nr_pages, struct page **pages,
494 		struct page **cached_page)
495 {
496 	int err, nr;
497 
498 	BUG_ON(!nr_pages);
499 	err = nr = 0;
500 	do {
501 		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
502 				FGP_ACCESSED);
503 		if (!pages[nr]) {
504 			if (!*cached_page) {
505 				*cached_page = page_cache_alloc(mapping);
506 				if (unlikely(!*cached_page)) {
507 					err = -ENOMEM;
508 					goto err_out;
509 				}
510 			}
511 			err = add_to_page_cache_lru(*cached_page, mapping,
512 				   index,
513 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
514 			if (unlikely(err)) {
515 				if (err == -EEXIST)
516 					continue;
517 				goto err_out;
518 			}
519 			pages[nr] = *cached_page;
520 			*cached_page = NULL;
521 		}
522 		index++;
523 		nr++;
524 	} while (nr < nr_pages);
525 out:
526 	return err;
527 err_out:
528 	while (nr > 0) {
529 		unlock_page(pages[--nr]);
530 		put_page(pages[nr]);
531 	}
532 	goto out;
533 }
534 
ntfs_submit_bh_for_read(struct buffer_head * bh)535 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
536 {
537 	lock_buffer(bh);
538 	get_bh(bh);
539 	bh->b_end_io = end_buffer_read_sync;
540 	return submit_bh(REQ_OP_READ, 0, bh);
541 }
542 
543 /**
544  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
545  * @pages:	array of destination pages
546  * @nr_pages:	number of pages in @pages
547  * @pos:	byte position in file at which the write begins
548  * @bytes:	number of bytes to be written
549  *
550  * This is called for non-resident attributes from ntfs_file_buffered_write()
551  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
552  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
553  * data has not yet been copied into the @pages.
554  *
555  * Need to fill any holes with actual clusters, allocate buffers if necessary,
556  * ensure all the buffers are mapped, and bring uptodate any buffers that are
557  * only partially being written to.
558  *
559  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
560  * greater than PAGE_SIZE, that all pages in @pages are entirely inside
561  * the same cluster and that they are the entirety of that cluster, and that
562  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
563  *
564  * i_size is not to be modified yet.
565  *
566  * Return 0 on success or -errno on error.
567  */
ntfs_prepare_pages_for_non_resident_write(struct page ** pages,unsigned nr_pages,s64 pos,size_t bytes)568 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
569 		unsigned nr_pages, s64 pos, size_t bytes)
570 {
571 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
572 	LCN lcn;
573 	s64 bh_pos, vcn_len, end, initialized_size;
574 	sector_t lcn_block;
575 	struct page *page;
576 	struct inode *vi;
577 	ntfs_inode *ni, *base_ni = NULL;
578 	ntfs_volume *vol;
579 	runlist_element *rl, *rl2;
580 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
581 	ntfs_attr_search_ctx *ctx = NULL;
582 	MFT_RECORD *m = NULL;
583 	ATTR_RECORD *a = NULL;
584 	unsigned long flags;
585 	u32 attr_rec_len = 0;
586 	unsigned blocksize, u;
587 	int err, mp_size;
588 	bool rl_write_locked, was_hole, is_retry;
589 	unsigned char blocksize_bits;
590 	struct {
591 		u8 runlist_merged:1;
592 		u8 mft_attr_mapped:1;
593 		u8 mp_rebuilt:1;
594 		u8 attr_switched:1;
595 	} status = { 0, 0, 0, 0 };
596 
597 	BUG_ON(!nr_pages);
598 	BUG_ON(!pages);
599 	BUG_ON(!*pages);
600 	vi = pages[0]->mapping->host;
601 	ni = NTFS_I(vi);
602 	vol = ni->vol;
603 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
604 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
605 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
606 			(long long)pos, bytes);
607 	blocksize = vol->sb->s_blocksize;
608 	blocksize_bits = vol->sb->s_blocksize_bits;
609 	u = 0;
610 	do {
611 		page = pages[u];
612 		BUG_ON(!page);
613 		/*
614 		 * create_empty_buffers() will create uptodate/dirty buffers if
615 		 * the page is uptodate/dirty.
616 		 */
617 		if (!page_has_buffers(page)) {
618 			create_empty_buffers(page, blocksize, 0);
619 			if (unlikely(!page_has_buffers(page)))
620 				return -ENOMEM;
621 		}
622 	} while (++u < nr_pages);
623 	rl_write_locked = false;
624 	rl = NULL;
625 	err = 0;
626 	vcn = lcn = -1;
627 	vcn_len = 0;
628 	lcn_block = -1;
629 	was_hole = false;
630 	cpos = pos >> vol->cluster_size_bits;
631 	end = pos + bytes;
632 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
633 	/*
634 	 * Loop over each page and for each page over each buffer.  Use goto to
635 	 * reduce indentation.
636 	 */
637 	u = 0;
638 do_next_page:
639 	page = pages[u];
640 	bh_pos = (s64)page->index << PAGE_SHIFT;
641 	bh = head = page_buffers(page);
642 	do {
643 		VCN cdelta;
644 		s64 bh_end;
645 		unsigned bh_cofs;
646 
647 		/* Clear buffer_new on all buffers to reinitialise state. */
648 		if (buffer_new(bh))
649 			clear_buffer_new(bh);
650 		bh_end = bh_pos + blocksize;
651 		bh_cpos = bh_pos >> vol->cluster_size_bits;
652 		bh_cofs = bh_pos & vol->cluster_size_mask;
653 		if (buffer_mapped(bh)) {
654 			/*
655 			 * The buffer is already mapped.  If it is uptodate,
656 			 * ignore it.
657 			 */
658 			if (buffer_uptodate(bh))
659 				continue;
660 			/*
661 			 * The buffer is not uptodate.  If the page is uptodate
662 			 * set the buffer uptodate and otherwise ignore it.
663 			 */
664 			if (PageUptodate(page)) {
665 				set_buffer_uptodate(bh);
666 				continue;
667 			}
668 			/*
669 			 * Neither the page nor the buffer are uptodate.  If
670 			 * the buffer is only partially being written to, we
671 			 * need to read it in before the write, i.e. now.
672 			 */
673 			if ((bh_pos < pos && bh_end > pos) ||
674 					(bh_pos < end && bh_end > end)) {
675 				/*
676 				 * If the buffer is fully or partially within
677 				 * the initialized size, do an actual read.
678 				 * Otherwise, simply zero the buffer.
679 				 */
680 				read_lock_irqsave(&ni->size_lock, flags);
681 				initialized_size = ni->initialized_size;
682 				read_unlock_irqrestore(&ni->size_lock, flags);
683 				if (bh_pos < initialized_size) {
684 					ntfs_submit_bh_for_read(bh);
685 					*wait_bh++ = bh;
686 				} else {
687 					zero_user(page, bh_offset(bh),
688 							blocksize);
689 					set_buffer_uptodate(bh);
690 				}
691 			}
692 			continue;
693 		}
694 		/* Unmapped buffer.  Need to map it. */
695 		bh->b_bdev = vol->sb->s_bdev;
696 		/*
697 		 * If the current buffer is in the same clusters as the map
698 		 * cache, there is no need to check the runlist again.  The
699 		 * map cache is made up of @vcn, which is the first cached file
700 		 * cluster, @vcn_len which is the number of cached file
701 		 * clusters, @lcn is the device cluster corresponding to @vcn,
702 		 * and @lcn_block is the block number corresponding to @lcn.
703 		 */
704 		cdelta = bh_cpos - vcn;
705 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
706 map_buffer_cached:
707 			BUG_ON(lcn < 0);
708 			bh->b_blocknr = lcn_block +
709 					(cdelta << (vol->cluster_size_bits -
710 					blocksize_bits)) +
711 					(bh_cofs >> blocksize_bits);
712 			set_buffer_mapped(bh);
713 			/*
714 			 * If the page is uptodate so is the buffer.  If the
715 			 * buffer is fully outside the write, we ignore it if
716 			 * it was already allocated and we mark it dirty so it
717 			 * gets written out if we allocated it.  On the other
718 			 * hand, if we allocated the buffer but we are not
719 			 * marking it dirty we set buffer_new so we can do
720 			 * error recovery.
721 			 */
722 			if (PageUptodate(page)) {
723 				if (!buffer_uptodate(bh))
724 					set_buffer_uptodate(bh);
725 				if (unlikely(was_hole)) {
726 					/* We allocated the buffer. */
727 					clean_bdev_bh_alias(bh);
728 					if (bh_end <= pos || bh_pos >= end)
729 						mark_buffer_dirty(bh);
730 					else
731 						set_buffer_new(bh);
732 				}
733 				continue;
734 			}
735 			/* Page is _not_ uptodate. */
736 			if (likely(!was_hole)) {
737 				/*
738 				 * Buffer was already allocated.  If it is not
739 				 * uptodate and is only partially being written
740 				 * to, we need to read it in before the write,
741 				 * i.e. now.
742 				 */
743 				if (!buffer_uptodate(bh) && bh_pos < end &&
744 						bh_end > pos &&
745 						(bh_pos < pos ||
746 						bh_end > end)) {
747 					/*
748 					 * If the buffer is fully or partially
749 					 * within the initialized size, do an
750 					 * actual read.  Otherwise, simply zero
751 					 * the buffer.
752 					 */
753 					read_lock_irqsave(&ni->size_lock,
754 							flags);
755 					initialized_size = ni->initialized_size;
756 					read_unlock_irqrestore(&ni->size_lock,
757 							flags);
758 					if (bh_pos < initialized_size) {
759 						ntfs_submit_bh_for_read(bh);
760 						*wait_bh++ = bh;
761 					} else {
762 						zero_user(page, bh_offset(bh),
763 								blocksize);
764 						set_buffer_uptodate(bh);
765 					}
766 				}
767 				continue;
768 			}
769 			/* We allocated the buffer. */
770 			clean_bdev_bh_alias(bh);
771 			/*
772 			 * If the buffer is fully outside the write, zero it,
773 			 * set it uptodate, and mark it dirty so it gets
774 			 * written out.  If it is partially being written to,
775 			 * zero region surrounding the write but leave it to
776 			 * commit write to do anything else.  Finally, if the
777 			 * buffer is fully being overwritten, do nothing.
778 			 */
779 			if (bh_end <= pos || bh_pos >= end) {
780 				if (!buffer_uptodate(bh)) {
781 					zero_user(page, bh_offset(bh),
782 							blocksize);
783 					set_buffer_uptodate(bh);
784 				}
785 				mark_buffer_dirty(bh);
786 				continue;
787 			}
788 			set_buffer_new(bh);
789 			if (!buffer_uptodate(bh) &&
790 					(bh_pos < pos || bh_end > end)) {
791 				u8 *kaddr;
792 				unsigned pofs;
793 
794 				kaddr = kmap_atomic(page);
795 				if (bh_pos < pos) {
796 					pofs = bh_pos & ~PAGE_MASK;
797 					memset(kaddr + pofs, 0, pos - bh_pos);
798 				}
799 				if (bh_end > end) {
800 					pofs = end & ~PAGE_MASK;
801 					memset(kaddr + pofs, 0, bh_end - end);
802 				}
803 				kunmap_atomic(kaddr);
804 				flush_dcache_page(page);
805 			}
806 			continue;
807 		}
808 		/*
809 		 * Slow path: this is the first buffer in the cluster.  If it
810 		 * is outside allocated size and is not uptodate, zero it and
811 		 * set it uptodate.
812 		 */
813 		read_lock_irqsave(&ni->size_lock, flags);
814 		initialized_size = ni->allocated_size;
815 		read_unlock_irqrestore(&ni->size_lock, flags);
816 		if (bh_pos > initialized_size) {
817 			if (PageUptodate(page)) {
818 				if (!buffer_uptodate(bh))
819 					set_buffer_uptodate(bh);
820 			} else if (!buffer_uptodate(bh)) {
821 				zero_user(page, bh_offset(bh), blocksize);
822 				set_buffer_uptodate(bh);
823 			}
824 			continue;
825 		}
826 		is_retry = false;
827 		if (!rl) {
828 			down_read(&ni->runlist.lock);
829 retry_remap:
830 			rl = ni->runlist.rl;
831 		}
832 		if (likely(rl != NULL)) {
833 			/* Seek to element containing target cluster. */
834 			while (rl->length && rl[1].vcn <= bh_cpos)
835 				rl++;
836 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
837 			if (likely(lcn >= 0)) {
838 				/*
839 				 * Successful remap, setup the map cache and
840 				 * use that to deal with the buffer.
841 				 */
842 				was_hole = false;
843 				vcn = bh_cpos;
844 				vcn_len = rl[1].vcn - vcn;
845 				lcn_block = lcn << (vol->cluster_size_bits -
846 						blocksize_bits);
847 				cdelta = 0;
848 				/*
849 				 * If the number of remaining clusters touched
850 				 * by the write is smaller or equal to the
851 				 * number of cached clusters, unlock the
852 				 * runlist as the map cache will be used from
853 				 * now on.
854 				 */
855 				if (likely(vcn + vcn_len >= cend)) {
856 					if (rl_write_locked) {
857 						up_write(&ni->runlist.lock);
858 						rl_write_locked = false;
859 					} else
860 						up_read(&ni->runlist.lock);
861 					rl = NULL;
862 				}
863 				goto map_buffer_cached;
864 			}
865 		} else
866 			lcn = LCN_RL_NOT_MAPPED;
867 		/*
868 		 * If it is not a hole and not out of bounds, the runlist is
869 		 * probably unmapped so try to map it now.
870 		 */
871 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
872 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
873 				/* Attempt to map runlist. */
874 				if (!rl_write_locked) {
875 					/*
876 					 * We need the runlist locked for
877 					 * writing, so if it is locked for
878 					 * reading relock it now and retry in
879 					 * case it changed whilst we dropped
880 					 * the lock.
881 					 */
882 					up_read(&ni->runlist.lock);
883 					down_write(&ni->runlist.lock);
884 					rl_write_locked = true;
885 					goto retry_remap;
886 				}
887 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
888 						NULL);
889 				if (likely(!err)) {
890 					is_retry = true;
891 					goto retry_remap;
892 				}
893 				/*
894 				 * If @vcn is out of bounds, pretend @lcn is
895 				 * LCN_ENOENT.  As long as the buffer is out
896 				 * of bounds this will work fine.
897 				 */
898 				if (err == -ENOENT) {
899 					lcn = LCN_ENOENT;
900 					err = 0;
901 					goto rl_not_mapped_enoent;
902 				}
903 			} else
904 				err = -EIO;
905 			/* Failed to map the buffer, even after retrying. */
906 			bh->b_blocknr = -1;
907 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
908 					"attribute type 0x%x, vcn 0x%llx, "
909 					"vcn offset 0x%x, because its "
910 					"location on disk could not be "
911 					"determined%s (error code %i).",
912 					ni->mft_no, ni->type,
913 					(unsigned long long)bh_cpos,
914 					(unsigned)bh_pos &
915 					vol->cluster_size_mask,
916 					is_retry ? " even after retrying" : "",
917 					err);
918 			break;
919 		}
920 rl_not_mapped_enoent:
921 		/*
922 		 * The buffer is in a hole or out of bounds.  We need to fill
923 		 * the hole, unless the buffer is in a cluster which is not
924 		 * touched by the write, in which case we just leave the buffer
925 		 * unmapped.  This can only happen when the cluster size is
926 		 * less than the page cache size.
927 		 */
928 		if (unlikely(vol->cluster_size < PAGE_SIZE)) {
929 			bh_cend = (bh_end + vol->cluster_size - 1) >>
930 					vol->cluster_size_bits;
931 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
932 				bh->b_blocknr = -1;
933 				/*
934 				 * If the buffer is uptodate we skip it.  If it
935 				 * is not but the page is uptodate, we can set
936 				 * the buffer uptodate.  If the page is not
937 				 * uptodate, we can clear the buffer and set it
938 				 * uptodate.  Whether this is worthwhile is
939 				 * debatable and this could be removed.
940 				 */
941 				if (PageUptodate(page)) {
942 					if (!buffer_uptodate(bh))
943 						set_buffer_uptodate(bh);
944 				} else if (!buffer_uptodate(bh)) {
945 					zero_user(page, bh_offset(bh),
946 						blocksize);
947 					set_buffer_uptodate(bh);
948 				}
949 				continue;
950 			}
951 		}
952 		/*
953 		 * Out of bounds buffer is invalid if it was not really out of
954 		 * bounds.
955 		 */
956 		BUG_ON(lcn != LCN_HOLE);
957 		/*
958 		 * We need the runlist locked for writing, so if it is locked
959 		 * for reading relock it now and retry in case it changed
960 		 * whilst we dropped the lock.
961 		 */
962 		BUG_ON(!rl);
963 		if (!rl_write_locked) {
964 			up_read(&ni->runlist.lock);
965 			down_write(&ni->runlist.lock);
966 			rl_write_locked = true;
967 			goto retry_remap;
968 		}
969 		/* Find the previous last allocated cluster. */
970 		BUG_ON(rl->lcn != LCN_HOLE);
971 		lcn = -1;
972 		rl2 = rl;
973 		while (--rl2 >= ni->runlist.rl) {
974 			if (rl2->lcn >= 0) {
975 				lcn = rl2->lcn + rl2->length;
976 				break;
977 			}
978 		}
979 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
980 				false);
981 		if (IS_ERR(rl2)) {
982 			err = PTR_ERR(rl2);
983 			ntfs_debug("Failed to allocate cluster, error code %i.",
984 					err);
985 			break;
986 		}
987 		lcn = rl2->lcn;
988 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
989 		if (IS_ERR(rl)) {
990 			err = PTR_ERR(rl);
991 			if (err != -ENOMEM)
992 				err = -EIO;
993 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
994 				ntfs_error(vol->sb, "Failed to release "
995 						"allocated cluster in error "
996 						"code path.  Run chkdsk to "
997 						"recover the lost cluster.");
998 				NVolSetErrors(vol);
999 			}
1000 			ntfs_free(rl2);
1001 			break;
1002 		}
1003 		ni->runlist.rl = rl;
1004 		status.runlist_merged = 1;
1005 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
1006 				(unsigned long long)lcn);
1007 		/* Map and lock the mft record and get the attribute record. */
1008 		if (!NInoAttr(ni))
1009 			base_ni = ni;
1010 		else
1011 			base_ni = ni->ext.base_ntfs_ino;
1012 		m = map_mft_record(base_ni);
1013 		if (IS_ERR(m)) {
1014 			err = PTR_ERR(m);
1015 			break;
1016 		}
1017 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1018 		if (unlikely(!ctx)) {
1019 			err = -ENOMEM;
1020 			unmap_mft_record(base_ni);
1021 			break;
1022 		}
1023 		status.mft_attr_mapped = 1;
1024 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1025 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1026 		if (unlikely(err)) {
1027 			if (err == -ENOENT)
1028 				err = -EIO;
1029 			break;
1030 		}
1031 		m = ctx->mrec;
1032 		a = ctx->attr;
1033 		/*
1034 		 * Find the runlist element with which the attribute extent
1035 		 * starts.  Note, we cannot use the _attr_ version because we
1036 		 * have mapped the mft record.  That is ok because we know the
1037 		 * runlist fragment must be mapped already to have ever gotten
1038 		 * here, so we can just use the _rl_ version.
1039 		 */
1040 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1041 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1042 		BUG_ON(!rl2);
1043 		BUG_ON(!rl2->length);
1044 		BUG_ON(rl2->lcn < LCN_HOLE);
1045 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1046 		/*
1047 		 * If @highest_vcn is zero, calculate the real highest_vcn
1048 		 * (which can really be zero).
1049 		 */
1050 		if (!highest_vcn)
1051 			highest_vcn = (sle64_to_cpu(
1052 					a->data.non_resident.allocated_size) >>
1053 					vol->cluster_size_bits) - 1;
1054 		/*
1055 		 * Determine the size of the mapping pairs array for the new
1056 		 * extent, i.e. the old extent with the hole filled.
1057 		 */
1058 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1059 				highest_vcn);
1060 		if (unlikely(mp_size <= 0)) {
1061 			if (!(err = mp_size))
1062 				err = -EIO;
1063 			ntfs_debug("Failed to get size for mapping pairs "
1064 					"array, error code %i.", err);
1065 			break;
1066 		}
1067 		/*
1068 		 * Resize the attribute record to fit the new mapping pairs
1069 		 * array.
1070 		 */
1071 		attr_rec_len = le32_to_cpu(a->length);
1072 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1073 				a->data.non_resident.mapping_pairs_offset));
1074 		if (unlikely(err)) {
1075 			BUG_ON(err != -ENOSPC);
1076 			// TODO: Deal with this by using the current attribute
1077 			// and fill it with as much of the mapping pairs
1078 			// array as possible.  Then loop over each attribute
1079 			// extent rewriting the mapping pairs arrays as we go
1080 			// along and if when we reach the end we have not
1081 			// enough space, try to resize the last attribute
1082 			// extent and if even that fails, add a new attribute
1083 			// extent.
1084 			// We could also try to resize at each step in the hope
1085 			// that we will not need to rewrite every single extent.
1086 			// Note, we may need to decompress some extents to fill
1087 			// the runlist as we are walking the extents...
1088 			ntfs_error(vol->sb, "Not enough space in the mft "
1089 					"record for the extended attribute "
1090 					"record.  This case is not "
1091 					"implemented yet.");
1092 			err = -EOPNOTSUPP;
1093 			break ;
1094 		}
1095 		status.mp_rebuilt = 1;
1096 		/*
1097 		 * Generate the mapping pairs array directly into the attribute
1098 		 * record.
1099 		 */
1100 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1101 				a->data.non_resident.mapping_pairs_offset),
1102 				mp_size, rl2, vcn, highest_vcn, NULL);
1103 		if (unlikely(err)) {
1104 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1105 					"attribute type 0x%x, because building "
1106 					"the mapping pairs failed with error "
1107 					"code %i.", vi->i_ino,
1108 					(unsigned)le32_to_cpu(ni->type), err);
1109 			err = -EIO;
1110 			break;
1111 		}
1112 		/* Update the highest_vcn but only if it was not set. */
1113 		if (unlikely(!a->data.non_resident.highest_vcn))
1114 			a->data.non_resident.highest_vcn =
1115 					cpu_to_sle64(highest_vcn);
1116 		/*
1117 		 * If the attribute is sparse/compressed, update the compressed
1118 		 * size in the ntfs_inode structure and the attribute record.
1119 		 */
1120 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1121 			/*
1122 			 * If we are not in the first attribute extent, switch
1123 			 * to it, but first ensure the changes will make it to
1124 			 * disk later.
1125 			 */
1126 			if (a->data.non_resident.lowest_vcn) {
1127 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1128 				mark_mft_record_dirty(ctx->ntfs_ino);
1129 				ntfs_attr_reinit_search_ctx(ctx);
1130 				err = ntfs_attr_lookup(ni->type, ni->name,
1131 						ni->name_len, CASE_SENSITIVE,
1132 						0, NULL, 0, ctx);
1133 				if (unlikely(err)) {
1134 					status.attr_switched = 1;
1135 					break;
1136 				}
1137 				/* @m is not used any more so do not set it. */
1138 				a = ctx->attr;
1139 			}
1140 			write_lock_irqsave(&ni->size_lock, flags);
1141 			ni->itype.compressed.size += vol->cluster_size;
1142 			a->data.non_resident.compressed_size =
1143 					cpu_to_sle64(ni->itype.compressed.size);
1144 			write_unlock_irqrestore(&ni->size_lock, flags);
1145 		}
1146 		/* Ensure the changes make it to disk. */
1147 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1148 		mark_mft_record_dirty(ctx->ntfs_ino);
1149 		ntfs_attr_put_search_ctx(ctx);
1150 		unmap_mft_record(base_ni);
1151 		/* Successfully filled the hole. */
1152 		status.runlist_merged = 0;
1153 		status.mft_attr_mapped = 0;
1154 		status.mp_rebuilt = 0;
1155 		/* Setup the map cache and use that to deal with the buffer. */
1156 		was_hole = true;
1157 		vcn = bh_cpos;
1158 		vcn_len = 1;
1159 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1160 		cdelta = 0;
1161 		/*
1162 		 * If the number of remaining clusters in the @pages is smaller
1163 		 * or equal to the number of cached clusters, unlock the
1164 		 * runlist as the map cache will be used from now on.
1165 		 */
1166 		if (likely(vcn + vcn_len >= cend)) {
1167 			up_write(&ni->runlist.lock);
1168 			rl_write_locked = false;
1169 			rl = NULL;
1170 		}
1171 		goto map_buffer_cached;
1172 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1173 	/* If there are no errors, do the next page. */
1174 	if (likely(!err && ++u < nr_pages))
1175 		goto do_next_page;
1176 	/* If there are no errors, release the runlist lock if we took it. */
1177 	if (likely(!err)) {
1178 		if (unlikely(rl_write_locked)) {
1179 			up_write(&ni->runlist.lock);
1180 			rl_write_locked = false;
1181 		} else if (unlikely(rl))
1182 			up_read(&ni->runlist.lock);
1183 		rl = NULL;
1184 	}
1185 	/* If we issued read requests, let them complete. */
1186 	read_lock_irqsave(&ni->size_lock, flags);
1187 	initialized_size = ni->initialized_size;
1188 	read_unlock_irqrestore(&ni->size_lock, flags);
1189 	while (wait_bh > wait) {
1190 		bh = *--wait_bh;
1191 		wait_on_buffer(bh);
1192 		if (likely(buffer_uptodate(bh))) {
1193 			page = bh->b_page;
1194 			bh_pos = ((s64)page->index << PAGE_SHIFT) +
1195 					bh_offset(bh);
1196 			/*
1197 			 * If the buffer overflows the initialized size, need
1198 			 * to zero the overflowing region.
1199 			 */
1200 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1201 				int ofs = 0;
1202 
1203 				if (likely(bh_pos < initialized_size))
1204 					ofs = initialized_size - bh_pos;
1205 				zero_user_segment(page, bh_offset(bh) + ofs,
1206 						blocksize);
1207 			}
1208 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1209 			err = -EIO;
1210 	}
1211 	if (likely(!err)) {
1212 		/* Clear buffer_new on all buffers. */
1213 		u = 0;
1214 		do {
1215 			bh = head = page_buffers(pages[u]);
1216 			do {
1217 				if (buffer_new(bh))
1218 					clear_buffer_new(bh);
1219 			} while ((bh = bh->b_this_page) != head);
1220 		} while (++u < nr_pages);
1221 		ntfs_debug("Done.");
1222 		return err;
1223 	}
1224 	if (status.attr_switched) {
1225 		/* Get back to the attribute extent we modified. */
1226 		ntfs_attr_reinit_search_ctx(ctx);
1227 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1228 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1229 			ntfs_error(vol->sb, "Failed to find required "
1230 					"attribute extent of attribute in "
1231 					"error code path.  Run chkdsk to "
1232 					"recover.");
1233 			write_lock_irqsave(&ni->size_lock, flags);
1234 			ni->itype.compressed.size += vol->cluster_size;
1235 			write_unlock_irqrestore(&ni->size_lock, flags);
1236 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1237 			mark_mft_record_dirty(ctx->ntfs_ino);
1238 			/*
1239 			 * The only thing that is now wrong is the compressed
1240 			 * size of the base attribute extent which chkdsk
1241 			 * should be able to fix.
1242 			 */
1243 			NVolSetErrors(vol);
1244 		} else {
1245 			m = ctx->mrec;
1246 			a = ctx->attr;
1247 			status.attr_switched = 0;
1248 		}
1249 	}
1250 	/*
1251 	 * If the runlist has been modified, need to restore it by punching a
1252 	 * hole into it and we then need to deallocate the on-disk cluster as
1253 	 * well.  Note, we only modify the runlist if we are able to generate a
1254 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1255 	 * is not switched.
1256 	 */
1257 	if (status.runlist_merged && !status.attr_switched) {
1258 		BUG_ON(!rl_write_locked);
1259 		/* Make the file cluster we allocated sparse in the runlist. */
1260 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1261 			ntfs_error(vol->sb, "Failed to punch hole into "
1262 					"attribute runlist in error code "
1263 					"path.  Run chkdsk to recover the "
1264 					"lost cluster.");
1265 			NVolSetErrors(vol);
1266 		} else /* if (success) */ {
1267 			status.runlist_merged = 0;
1268 			/*
1269 			 * Deallocate the on-disk cluster we allocated but only
1270 			 * if we succeeded in punching its vcn out of the
1271 			 * runlist.
1272 			 */
1273 			down_write(&vol->lcnbmp_lock);
1274 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1275 				ntfs_error(vol->sb, "Failed to release "
1276 						"allocated cluster in error "
1277 						"code path.  Run chkdsk to "
1278 						"recover the lost cluster.");
1279 				NVolSetErrors(vol);
1280 			}
1281 			up_write(&vol->lcnbmp_lock);
1282 		}
1283 	}
1284 	/*
1285 	 * Resize the attribute record to its old size and rebuild the mapping
1286 	 * pairs array.  Note, we only can do this if the runlist has been
1287 	 * restored to its old state which also implies that the mapped
1288 	 * attribute extent is not switched.
1289 	 */
1290 	if (status.mp_rebuilt && !status.runlist_merged) {
1291 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1292 			ntfs_error(vol->sb, "Failed to restore attribute "
1293 					"record in error code path.  Run "
1294 					"chkdsk to recover.");
1295 			NVolSetErrors(vol);
1296 		} else /* if (success) */ {
1297 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1298 					le16_to_cpu(a->data.non_resident.
1299 					mapping_pairs_offset), attr_rec_len -
1300 					le16_to_cpu(a->data.non_resident.
1301 					mapping_pairs_offset), ni->runlist.rl,
1302 					vcn, highest_vcn, NULL)) {
1303 				ntfs_error(vol->sb, "Failed to restore "
1304 						"mapping pairs array in error "
1305 						"code path.  Run chkdsk to "
1306 						"recover.");
1307 				NVolSetErrors(vol);
1308 			}
1309 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1310 			mark_mft_record_dirty(ctx->ntfs_ino);
1311 		}
1312 	}
1313 	/* Release the mft record and the attribute. */
1314 	if (status.mft_attr_mapped) {
1315 		ntfs_attr_put_search_ctx(ctx);
1316 		unmap_mft_record(base_ni);
1317 	}
1318 	/* Release the runlist lock. */
1319 	if (rl_write_locked)
1320 		up_write(&ni->runlist.lock);
1321 	else if (rl)
1322 		up_read(&ni->runlist.lock);
1323 	/*
1324 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1325 	 * If BH_New is set, we know that the block was newly allocated above
1326 	 * and that it has not been fully zeroed and marked dirty yet.
1327 	 */
1328 	nr_pages = u;
1329 	u = 0;
1330 	end = bh_cpos << vol->cluster_size_bits;
1331 	do {
1332 		page = pages[u];
1333 		bh = head = page_buffers(page);
1334 		do {
1335 			if (u == nr_pages &&
1336 					((s64)page->index << PAGE_SHIFT) +
1337 					bh_offset(bh) >= end)
1338 				break;
1339 			if (!buffer_new(bh))
1340 				continue;
1341 			clear_buffer_new(bh);
1342 			if (!buffer_uptodate(bh)) {
1343 				if (PageUptodate(page))
1344 					set_buffer_uptodate(bh);
1345 				else {
1346 					zero_user(page, bh_offset(bh),
1347 							blocksize);
1348 					set_buffer_uptodate(bh);
1349 				}
1350 			}
1351 			mark_buffer_dirty(bh);
1352 		} while ((bh = bh->b_this_page) != head);
1353 	} while (++u <= nr_pages);
1354 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1355 	return err;
1356 }
1357 
ntfs_flush_dcache_pages(struct page ** pages,unsigned nr_pages)1358 static inline void ntfs_flush_dcache_pages(struct page **pages,
1359 		unsigned nr_pages)
1360 {
1361 	BUG_ON(!nr_pages);
1362 	/*
1363 	 * Warning: Do not do the decrement at the same time as the call to
1364 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1365 	 * decrement never happens so the loop never terminates.
1366 	 */
1367 	do {
1368 		--nr_pages;
1369 		flush_dcache_page(pages[nr_pages]);
1370 	} while (nr_pages > 0);
1371 }
1372 
1373 /**
1374  * ntfs_commit_pages_after_non_resident_write - commit the received data
1375  * @pages:	array of destination pages
1376  * @nr_pages:	number of pages in @pages
1377  * @pos:	byte position in file at which the write begins
1378  * @bytes:	number of bytes to be written
1379  *
1380  * See description of ntfs_commit_pages_after_write(), below.
1381  */
ntfs_commit_pages_after_non_resident_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1382 static inline int ntfs_commit_pages_after_non_resident_write(
1383 		struct page **pages, const unsigned nr_pages,
1384 		s64 pos, size_t bytes)
1385 {
1386 	s64 end, initialized_size;
1387 	struct inode *vi;
1388 	ntfs_inode *ni, *base_ni;
1389 	struct buffer_head *bh, *head;
1390 	ntfs_attr_search_ctx *ctx;
1391 	MFT_RECORD *m;
1392 	ATTR_RECORD *a;
1393 	unsigned long flags;
1394 	unsigned blocksize, u;
1395 	int err;
1396 
1397 	vi = pages[0]->mapping->host;
1398 	ni = NTFS_I(vi);
1399 	blocksize = vi->i_sb->s_blocksize;
1400 	end = pos + bytes;
1401 	u = 0;
1402 	do {
1403 		s64 bh_pos;
1404 		struct page *page;
1405 		bool partial;
1406 
1407 		page = pages[u];
1408 		bh_pos = (s64)page->index << PAGE_SHIFT;
1409 		bh = head = page_buffers(page);
1410 		partial = false;
1411 		do {
1412 			s64 bh_end;
1413 
1414 			bh_end = bh_pos + blocksize;
1415 			if (bh_end <= pos || bh_pos >= end) {
1416 				if (!buffer_uptodate(bh))
1417 					partial = true;
1418 			} else {
1419 				set_buffer_uptodate(bh);
1420 				mark_buffer_dirty(bh);
1421 			}
1422 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1423 		/*
1424 		 * If all buffers are now uptodate but the page is not, set the
1425 		 * page uptodate.
1426 		 */
1427 		if (!partial && !PageUptodate(page))
1428 			SetPageUptodate(page);
1429 	} while (++u < nr_pages);
1430 	/*
1431 	 * Finally, if we do not need to update initialized_size or i_size we
1432 	 * are finished.
1433 	 */
1434 	read_lock_irqsave(&ni->size_lock, flags);
1435 	initialized_size = ni->initialized_size;
1436 	read_unlock_irqrestore(&ni->size_lock, flags);
1437 	if (end <= initialized_size) {
1438 		ntfs_debug("Done.");
1439 		return 0;
1440 	}
1441 	/*
1442 	 * Update initialized_size/i_size as appropriate, both in the inode and
1443 	 * the mft record.
1444 	 */
1445 	if (!NInoAttr(ni))
1446 		base_ni = ni;
1447 	else
1448 		base_ni = ni->ext.base_ntfs_ino;
1449 	/* Map, pin, and lock the mft record. */
1450 	m = map_mft_record(base_ni);
1451 	if (IS_ERR(m)) {
1452 		err = PTR_ERR(m);
1453 		m = NULL;
1454 		ctx = NULL;
1455 		goto err_out;
1456 	}
1457 	BUG_ON(!NInoNonResident(ni));
1458 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1459 	if (unlikely(!ctx)) {
1460 		err = -ENOMEM;
1461 		goto err_out;
1462 	}
1463 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1464 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1465 	if (unlikely(err)) {
1466 		if (err == -ENOENT)
1467 			err = -EIO;
1468 		goto err_out;
1469 	}
1470 	a = ctx->attr;
1471 	BUG_ON(!a->non_resident);
1472 	write_lock_irqsave(&ni->size_lock, flags);
1473 	BUG_ON(end > ni->allocated_size);
1474 	ni->initialized_size = end;
1475 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1476 	if (end > i_size_read(vi)) {
1477 		i_size_write(vi, end);
1478 		a->data.non_resident.data_size =
1479 				a->data.non_resident.initialized_size;
1480 	}
1481 	write_unlock_irqrestore(&ni->size_lock, flags);
1482 	/* Mark the mft record dirty, so it gets written back. */
1483 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1484 	mark_mft_record_dirty(ctx->ntfs_ino);
1485 	ntfs_attr_put_search_ctx(ctx);
1486 	unmap_mft_record(base_ni);
1487 	ntfs_debug("Done.");
1488 	return 0;
1489 err_out:
1490 	if (ctx)
1491 		ntfs_attr_put_search_ctx(ctx);
1492 	if (m)
1493 		unmap_mft_record(base_ni);
1494 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1495 			"code %i).", err);
1496 	if (err != -ENOMEM)
1497 		NVolSetErrors(ni->vol);
1498 	return err;
1499 }
1500 
1501 /**
1502  * ntfs_commit_pages_after_write - commit the received data
1503  * @pages:	array of destination pages
1504  * @nr_pages:	number of pages in @pages
1505  * @pos:	byte position in file at which the write begins
1506  * @bytes:	number of bytes to be written
1507  *
1508  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1509  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1510  * locked but not kmap()ped.  The source data has already been copied into the
1511  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1512  * the data was copied (for non-resident attributes only) and it returned
1513  * success.
1514  *
1515  * Need to set uptodate and mark dirty all buffers within the boundary of the
1516  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1517  *
1518  * Setting the buffers dirty ensures that they get written out later when
1519  * ntfs_writepage() is invoked by the VM.
1520  *
1521  * Finally, we need to update i_size and initialized_size as appropriate both
1522  * in the inode and the mft record.
1523  *
1524  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1525  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1526  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1527  * that case, it also marks the inode dirty.
1528  *
1529  * If things have gone as outlined in
1530  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1531  * content modifications here for non-resident attributes.  For resident
1532  * attributes we need to do the uptodate bringing here which we combine with
1533  * the copying into the mft record which means we save one atomic kmap.
1534  *
1535  * Return 0 on success or -errno on error.
1536  */
ntfs_commit_pages_after_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1537 static int ntfs_commit_pages_after_write(struct page **pages,
1538 		const unsigned nr_pages, s64 pos, size_t bytes)
1539 {
1540 	s64 end, initialized_size;
1541 	loff_t i_size;
1542 	struct inode *vi;
1543 	ntfs_inode *ni, *base_ni;
1544 	struct page *page;
1545 	ntfs_attr_search_ctx *ctx;
1546 	MFT_RECORD *m;
1547 	ATTR_RECORD *a;
1548 	char *kattr, *kaddr;
1549 	unsigned long flags;
1550 	u32 attr_len;
1551 	int err;
1552 
1553 	BUG_ON(!nr_pages);
1554 	BUG_ON(!pages);
1555 	page = pages[0];
1556 	BUG_ON(!page);
1557 	vi = page->mapping->host;
1558 	ni = NTFS_I(vi);
1559 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1560 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1561 			vi->i_ino, ni->type, page->index, nr_pages,
1562 			(long long)pos, bytes);
1563 	if (NInoNonResident(ni))
1564 		return ntfs_commit_pages_after_non_resident_write(pages,
1565 				nr_pages, pos, bytes);
1566 	BUG_ON(nr_pages > 1);
1567 	/*
1568 	 * Attribute is resident, implying it is not compressed, encrypted, or
1569 	 * sparse.
1570 	 */
1571 	if (!NInoAttr(ni))
1572 		base_ni = ni;
1573 	else
1574 		base_ni = ni->ext.base_ntfs_ino;
1575 	BUG_ON(NInoNonResident(ni));
1576 	/* Map, pin, and lock the mft record. */
1577 	m = map_mft_record(base_ni);
1578 	if (IS_ERR(m)) {
1579 		err = PTR_ERR(m);
1580 		m = NULL;
1581 		ctx = NULL;
1582 		goto err_out;
1583 	}
1584 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1585 	if (unlikely(!ctx)) {
1586 		err = -ENOMEM;
1587 		goto err_out;
1588 	}
1589 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1590 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1591 	if (unlikely(err)) {
1592 		if (err == -ENOENT)
1593 			err = -EIO;
1594 		goto err_out;
1595 	}
1596 	a = ctx->attr;
1597 	BUG_ON(a->non_resident);
1598 	/* The total length of the attribute value. */
1599 	attr_len = le32_to_cpu(a->data.resident.value_length);
1600 	i_size = i_size_read(vi);
1601 	BUG_ON(attr_len != i_size);
1602 	BUG_ON(pos > attr_len);
1603 	end = pos + bytes;
1604 	BUG_ON(end > le32_to_cpu(a->length) -
1605 			le16_to_cpu(a->data.resident.value_offset));
1606 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1607 	kaddr = kmap_atomic(page);
1608 	/* Copy the received data from the page to the mft record. */
1609 	memcpy(kattr + pos, kaddr + pos, bytes);
1610 	/* Update the attribute length if necessary. */
1611 	if (end > attr_len) {
1612 		attr_len = end;
1613 		a->data.resident.value_length = cpu_to_le32(attr_len);
1614 	}
1615 	/*
1616 	 * If the page is not uptodate, bring the out of bounds area(s)
1617 	 * uptodate by copying data from the mft record to the page.
1618 	 */
1619 	if (!PageUptodate(page)) {
1620 		if (pos > 0)
1621 			memcpy(kaddr, kattr, pos);
1622 		if (end < attr_len)
1623 			memcpy(kaddr + end, kattr + end, attr_len - end);
1624 		/* Zero the region outside the end of the attribute value. */
1625 		memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1626 		flush_dcache_page(page);
1627 		SetPageUptodate(page);
1628 	}
1629 	kunmap_atomic(kaddr);
1630 	/* Update initialized_size/i_size if necessary. */
1631 	read_lock_irqsave(&ni->size_lock, flags);
1632 	initialized_size = ni->initialized_size;
1633 	BUG_ON(end > ni->allocated_size);
1634 	read_unlock_irqrestore(&ni->size_lock, flags);
1635 	BUG_ON(initialized_size != i_size);
1636 	if (end > initialized_size) {
1637 		write_lock_irqsave(&ni->size_lock, flags);
1638 		ni->initialized_size = end;
1639 		i_size_write(vi, end);
1640 		write_unlock_irqrestore(&ni->size_lock, flags);
1641 	}
1642 	/* Mark the mft record dirty, so it gets written back. */
1643 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1644 	mark_mft_record_dirty(ctx->ntfs_ino);
1645 	ntfs_attr_put_search_ctx(ctx);
1646 	unmap_mft_record(base_ni);
1647 	ntfs_debug("Done.");
1648 	return 0;
1649 err_out:
1650 	if (err == -ENOMEM) {
1651 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1652 				"commit the write.");
1653 		if (PageUptodate(page)) {
1654 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1655 					"dirty so the write will be retried "
1656 					"later on by the VM.");
1657 			/*
1658 			 * Put the page on mapping->dirty_pages, but leave its
1659 			 * buffers' dirty state as-is.
1660 			 */
1661 			__set_page_dirty_nobuffers(page);
1662 			err = 0;
1663 		} else
1664 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1665 					"data has been lost.");
1666 	} else {
1667 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1668 				"with error %i.", err);
1669 		NVolSetErrors(ni->vol);
1670 	}
1671 	if (ctx)
1672 		ntfs_attr_put_search_ctx(ctx);
1673 	if (m)
1674 		unmap_mft_record(base_ni);
1675 	return err;
1676 }
1677 
1678 /*
1679  * Copy as much as we can into the pages and return the number of bytes which
1680  * were successfully copied.  If a fault is encountered then clear the pages
1681  * out to (ofs + bytes) and return the number of bytes which were copied.
1682  */
ntfs_copy_from_user_iter(struct page ** pages,unsigned nr_pages,unsigned ofs,struct iov_iter * i,size_t bytes)1683 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1684 		unsigned ofs, struct iov_iter *i, size_t bytes)
1685 {
1686 	struct page **last_page = pages + nr_pages;
1687 	size_t total = 0;
1688 	unsigned len, copied;
1689 
1690 	do {
1691 		len = PAGE_SIZE - ofs;
1692 		if (len > bytes)
1693 			len = bytes;
1694 		copied = copy_page_from_iter_atomic(*pages, ofs, len, i);
1695 		total += copied;
1696 		bytes -= copied;
1697 		if (!bytes)
1698 			break;
1699 		if (copied < len)
1700 			goto err;
1701 		ofs = 0;
1702 	} while (++pages < last_page);
1703 out:
1704 	return total;
1705 err:
1706 	/* Zero the rest of the target like __copy_from_user(). */
1707 	len = PAGE_SIZE - copied;
1708 	do {
1709 		if (len > bytes)
1710 			len = bytes;
1711 		zero_user(*pages, copied, len);
1712 		bytes -= len;
1713 		copied = 0;
1714 		len = PAGE_SIZE;
1715 	} while (++pages < last_page);
1716 	goto out;
1717 }
1718 
1719 /**
1720  * ntfs_perform_write - perform buffered write to a file
1721  * @file:	file to write to
1722  * @i:		iov_iter with data to write
1723  * @pos:	byte offset in file at which to begin writing to
1724  */
ntfs_perform_write(struct file * file,struct iov_iter * i,loff_t pos)1725 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1726 		loff_t pos)
1727 {
1728 	struct address_space *mapping = file->f_mapping;
1729 	struct inode *vi = mapping->host;
1730 	ntfs_inode *ni = NTFS_I(vi);
1731 	ntfs_volume *vol = ni->vol;
1732 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1733 	struct page *cached_page = NULL;
1734 	VCN last_vcn;
1735 	LCN lcn;
1736 	size_t bytes;
1737 	ssize_t status, written = 0;
1738 	unsigned nr_pages;
1739 
1740 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1741 			"0x%llx, count 0x%lx.", vi->i_ino,
1742 			(unsigned)le32_to_cpu(ni->type),
1743 			(unsigned long long)pos,
1744 			(unsigned long)iov_iter_count(i));
1745 	/*
1746 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1747 	 * fails again.
1748 	 */
1749 	if (unlikely(NInoTruncateFailed(ni))) {
1750 		int err;
1751 
1752 		inode_dio_wait(vi);
1753 		err = ntfs_truncate(vi);
1754 		if (err || NInoTruncateFailed(ni)) {
1755 			if (!err)
1756 				err = -EIO;
1757 			ntfs_error(vol->sb, "Cannot perform write to inode "
1758 					"0x%lx, attribute type 0x%x, because "
1759 					"ntfs_truncate() failed (error code "
1760 					"%i).", vi->i_ino,
1761 					(unsigned)le32_to_cpu(ni->type), err);
1762 			return err;
1763 		}
1764 	}
1765 	/*
1766 	 * Determine the number of pages per cluster for non-resident
1767 	 * attributes.
1768 	 */
1769 	nr_pages = 1;
1770 	if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1771 		nr_pages = vol->cluster_size >> PAGE_SHIFT;
1772 	last_vcn = -1;
1773 	do {
1774 		VCN vcn;
1775 		pgoff_t start_idx;
1776 		unsigned ofs, do_pages, u;
1777 		size_t copied;
1778 
1779 		start_idx = pos >> PAGE_SHIFT;
1780 		ofs = pos & ~PAGE_MASK;
1781 		bytes = PAGE_SIZE - ofs;
1782 		do_pages = 1;
1783 		if (nr_pages > 1) {
1784 			vcn = pos >> vol->cluster_size_bits;
1785 			if (vcn != last_vcn) {
1786 				last_vcn = vcn;
1787 				/*
1788 				 * Get the lcn of the vcn the write is in.  If
1789 				 * it is a hole, need to lock down all pages in
1790 				 * the cluster.
1791 				 */
1792 				down_read(&ni->runlist.lock);
1793 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1794 						vol->cluster_size_bits, false);
1795 				up_read(&ni->runlist.lock);
1796 				if (unlikely(lcn < LCN_HOLE)) {
1797 					if (lcn == LCN_ENOMEM)
1798 						status = -ENOMEM;
1799 					else {
1800 						status = -EIO;
1801 						ntfs_error(vol->sb, "Cannot "
1802 							"perform write to "
1803 							"inode 0x%lx, "
1804 							"attribute type 0x%x, "
1805 							"because the attribute "
1806 							"is corrupt.",
1807 							vi->i_ino, (unsigned)
1808 							le32_to_cpu(ni->type));
1809 					}
1810 					break;
1811 				}
1812 				if (lcn == LCN_HOLE) {
1813 					start_idx = (pos & ~(s64)
1814 							vol->cluster_size_mask)
1815 							>> PAGE_SHIFT;
1816 					bytes = vol->cluster_size - (pos &
1817 							vol->cluster_size_mask);
1818 					do_pages = nr_pages;
1819 				}
1820 			}
1821 		}
1822 		if (bytes > iov_iter_count(i))
1823 			bytes = iov_iter_count(i);
1824 again:
1825 		/*
1826 		 * Bring in the user page(s) that we will copy from _first_.
1827 		 * Otherwise there is a nasty deadlock on copying from the same
1828 		 * page(s) as we are writing to, without it/them being marked
1829 		 * up-to-date.  Note, at present there is nothing to stop the
1830 		 * pages being swapped out between us bringing them into memory
1831 		 * and doing the actual copying.
1832 		 */
1833 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
1834 			status = -EFAULT;
1835 			break;
1836 		}
1837 		/* Get and lock @do_pages starting at index @start_idx. */
1838 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1839 				pages, &cached_page);
1840 		if (unlikely(status))
1841 			break;
1842 		/*
1843 		 * For non-resident attributes, we need to fill any holes with
1844 		 * actual clusters and ensure all bufferes are mapped.  We also
1845 		 * need to bring uptodate any buffers that are only partially
1846 		 * being written to.
1847 		 */
1848 		if (NInoNonResident(ni)) {
1849 			status = ntfs_prepare_pages_for_non_resident_write(
1850 					pages, do_pages, pos, bytes);
1851 			if (unlikely(status)) {
1852 				do {
1853 					unlock_page(pages[--do_pages]);
1854 					put_page(pages[do_pages]);
1855 				} while (do_pages);
1856 				break;
1857 			}
1858 		}
1859 		u = (pos >> PAGE_SHIFT) - pages[0]->index;
1860 		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1861 					i, bytes);
1862 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1863 		status = 0;
1864 		if (likely(copied == bytes)) {
1865 			status = ntfs_commit_pages_after_write(pages, do_pages,
1866 					pos, bytes);
1867 		}
1868 		do {
1869 			unlock_page(pages[--do_pages]);
1870 			put_page(pages[do_pages]);
1871 		} while (do_pages);
1872 		if (unlikely(status < 0)) {
1873 			iov_iter_revert(i, copied);
1874 			break;
1875 		}
1876 		cond_resched();
1877 		if (unlikely(copied < bytes)) {
1878 			iov_iter_revert(i, copied);
1879 			if (copied)
1880 				bytes = copied;
1881 			else if (bytes > PAGE_SIZE - ofs)
1882 				bytes = PAGE_SIZE - ofs;
1883 			goto again;
1884 		}
1885 		pos += copied;
1886 		written += copied;
1887 		balance_dirty_pages_ratelimited(mapping);
1888 		if (fatal_signal_pending(current)) {
1889 			status = -EINTR;
1890 			break;
1891 		}
1892 	} while (iov_iter_count(i));
1893 	if (cached_page)
1894 		put_page(cached_page);
1895 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1896 			written ? "written" : "status", (unsigned long)written,
1897 			(long)status);
1898 	return written ? written : status;
1899 }
1900 
1901 /**
1902  * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1903  * @iocb:	IO state structure
1904  * @from:	iov_iter with data to write
1905  *
1906  * Basically the same as generic_file_write_iter() except that it ends up
1907  * up calling ntfs_perform_write() instead of generic_perform_write() and that
1908  * O_DIRECT is not implemented.
1909  */
ntfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1910 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1911 {
1912 	struct file *file = iocb->ki_filp;
1913 	struct inode *vi = file_inode(file);
1914 	ssize_t written = 0;
1915 	ssize_t err;
1916 
1917 	inode_lock(vi);
1918 	/* We can write back this queue in page reclaim. */
1919 	current->backing_dev_info = inode_to_bdi(vi);
1920 	err = ntfs_prepare_file_for_write(iocb, from);
1921 	if (iov_iter_count(from) && !err)
1922 		written = ntfs_perform_write(file, from, iocb->ki_pos);
1923 	current->backing_dev_info = NULL;
1924 	inode_unlock(vi);
1925 	iocb->ki_pos += written;
1926 	if (likely(written > 0))
1927 		written = generic_write_sync(iocb, written);
1928 	return written ? written : err;
1929 }
1930 
1931 /**
1932  * ntfs_file_fsync - sync a file to disk
1933  * @filp:	file to be synced
1934  * @datasync:	if non-zero only flush user data and not metadata
1935  *
1936  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1937  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1938  *
1939  * If @datasync is false, write the mft record and all associated extent mft
1940  * records as well as the $DATA attribute and then sync the block device.
1941  *
1942  * If @datasync is true and the attribute is non-resident, we skip the writing
1943  * of the mft record and all associated extent mft records (this might still
1944  * happen due to the write_inode_now() call).
1945  *
1946  * Also, if @datasync is true, we do not wait on the inode to be written out
1947  * but we always wait on the page cache pages to be written out.
1948  *
1949  * Locking: Caller must hold i_mutex on the inode.
1950  *
1951  * TODO: We should probably also write all attribute/index inodes associated
1952  * with this inode but since we have no simple way of getting to them we ignore
1953  * this problem for now.
1954  */
ntfs_file_fsync(struct file * filp,loff_t start,loff_t end,int datasync)1955 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1956 			   int datasync)
1957 {
1958 	struct inode *vi = filp->f_mapping->host;
1959 	int err, ret = 0;
1960 
1961 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1962 
1963 	err = file_write_and_wait_range(filp, start, end);
1964 	if (err)
1965 		return err;
1966 	inode_lock(vi);
1967 
1968 	BUG_ON(S_ISDIR(vi->i_mode));
1969 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
1970 		ret = __ntfs_write_inode(vi, 1);
1971 	write_inode_now(vi, !datasync);
1972 	/*
1973 	 * NOTE: If we were to use mapping->private_list (see ext2 and
1974 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1975 	 * sync_mapping_buffers(vi->i_mapping).
1976 	 */
1977 	err = sync_blockdev(vi->i_sb->s_bdev);
1978 	if (unlikely(err && !ret))
1979 		ret = err;
1980 	if (likely(!ret))
1981 		ntfs_debug("Done.");
1982 	else
1983 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
1984 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
1985 	inode_unlock(vi);
1986 	return ret;
1987 }
1988 
1989 #endif /* NTFS_RW */
1990 
1991 const struct file_operations ntfs_file_ops = {
1992 	.llseek		= generic_file_llseek,
1993 	.read_iter	= generic_file_read_iter,
1994 #ifdef NTFS_RW
1995 	.write_iter	= ntfs_file_write_iter,
1996 	.fsync		= ntfs_file_fsync,
1997 #endif /* NTFS_RW */
1998 	.mmap		= generic_file_mmap,
1999 	.open		= ntfs_file_open,
2000 	.splice_read	= generic_file_splice_read,
2001 };
2002 
2003 const struct inode_operations ntfs_file_inode_ops = {
2004 #ifdef NTFS_RW
2005 	.setattr	= ntfs_setattr,
2006 #endif /* NTFS_RW */
2007 };
2008 
2009 const struct file_operations ntfs_empty_file_ops = {};
2010 
2011 const struct inode_operations ntfs_empty_inode_ops = {};
2012