1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/memremap.h>
10 #include <linux/module.h>
11 #include "nvmet.h"
12
nvmet_bdev_set_limits(struct block_device * bdev,struct nvme_id_ns * id)13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
14 {
15 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
16 /* Number of logical blocks per physical block. */
17 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
18 /* Logical blocks per physical block, 0's based. */
19 const __le16 lpp0b = to0based(lpp);
20
21 /*
22 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
23 * NAWUPF, and NACWU are defined for this namespace and should be
24 * used by the host for this namespace instead of the AWUN, AWUPF,
25 * and ACWU fields in the Identify Controller data structure. If
26 * any of these fields are zero that means that the corresponding
27 * field from the identify controller data structure should be used.
28 */
29 id->nsfeat |= 1 << 1;
30 id->nawun = lpp0b;
31 id->nawupf = lpp0b;
32 id->nacwu = lpp0b;
33
34 /*
35 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
36 * NOWS are defined for this namespace and should be used by
37 * the host for I/O optimization.
38 */
39 id->nsfeat |= 1 << 4;
40 /* NPWG = Namespace Preferred Write Granularity. 0's based */
41 id->npwg = lpp0b;
42 /* NPWA = Namespace Preferred Write Alignment. 0's based */
43 id->npwa = id->npwg;
44 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
45 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
46 /* NPDG = Namespace Preferred Deallocate Alignment */
47 id->npda = id->npdg;
48 /* NOWS = Namespace Optimal Write Size */
49 id->nows = to0based(ql->io_opt / ql->logical_block_size);
50 }
51
nvmet_bdev_ns_disable(struct nvmet_ns * ns)52 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
53 {
54 if (ns->bdev) {
55 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
56 ns->bdev = NULL;
57 }
58 }
59
nvmet_bdev_ns_enable_integrity(struct nvmet_ns * ns)60 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
61 {
62 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
63
64 if (bi) {
65 ns->metadata_size = bi->tuple_size;
66 if (bi->profile == &t10_pi_type1_crc)
67 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
68 else if (bi->profile == &t10_pi_type3_crc)
69 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
70 else
71 /* Unsupported metadata type */
72 ns->metadata_size = 0;
73 }
74 }
75
nvmet_bdev_ns_enable(struct nvmet_ns * ns)76 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
77 {
78 int ret;
79
80 /*
81 * When buffered_io namespace attribute is enabled that means user want
82 * this block device to be used as a file, so block device can take
83 * an advantage of cache.
84 */
85 if (ns->buffered_io)
86 return -ENOTBLK;
87
88 ns->bdev = blkdev_get_by_path(ns->device_path,
89 FMODE_READ | FMODE_WRITE, NULL);
90 if (IS_ERR(ns->bdev)) {
91 ret = PTR_ERR(ns->bdev);
92 if (ret != -ENOTBLK) {
93 pr_err("failed to open block device %s: (%ld)\n",
94 ns->device_path, PTR_ERR(ns->bdev));
95 }
96 ns->bdev = NULL;
97 return ret;
98 }
99 ns->size = bdev_nr_bytes(ns->bdev);
100 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
101
102 ns->pi_type = 0;
103 ns->metadata_size = 0;
104 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
105 nvmet_bdev_ns_enable_integrity(ns);
106
107 if (bdev_is_zoned(ns->bdev)) {
108 if (!nvmet_bdev_zns_enable(ns)) {
109 nvmet_bdev_ns_disable(ns);
110 return -EINVAL;
111 }
112 ns->csi = NVME_CSI_ZNS;
113 }
114
115 return 0;
116 }
117
nvmet_bdev_ns_revalidate(struct nvmet_ns * ns)118 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
119 {
120 ns->size = bdev_nr_bytes(ns->bdev);
121 }
122
blk_to_nvme_status(struct nvmet_req * req,blk_status_t blk_sts)123 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
124 {
125 u16 status = NVME_SC_SUCCESS;
126
127 if (likely(blk_sts == BLK_STS_OK))
128 return status;
129 /*
130 * Right now there exists M : 1 mapping between block layer error
131 * to the NVMe status code (see nvme_error_status()). For consistency,
132 * when we reverse map we use most appropriate NVMe Status code from
133 * the group of the NVMe staus codes used in the nvme_error_status().
134 */
135 switch (blk_sts) {
136 case BLK_STS_NOSPC:
137 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
138 req->error_loc = offsetof(struct nvme_rw_command, length);
139 break;
140 case BLK_STS_TARGET:
141 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
142 req->error_loc = offsetof(struct nvme_rw_command, slba);
143 break;
144 case BLK_STS_NOTSUPP:
145 req->error_loc = offsetof(struct nvme_common_command, opcode);
146 switch (req->cmd->common.opcode) {
147 case nvme_cmd_dsm:
148 case nvme_cmd_write_zeroes:
149 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
150 break;
151 default:
152 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
153 }
154 break;
155 case BLK_STS_MEDIUM:
156 status = NVME_SC_ACCESS_DENIED;
157 req->error_loc = offsetof(struct nvme_rw_command, nsid);
158 break;
159 case BLK_STS_IOERR:
160 default:
161 status = NVME_SC_INTERNAL | NVME_SC_DNR;
162 req->error_loc = offsetof(struct nvme_common_command, opcode);
163 }
164
165 switch (req->cmd->common.opcode) {
166 case nvme_cmd_read:
167 case nvme_cmd_write:
168 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
169 break;
170 case nvme_cmd_write_zeroes:
171 req->error_slba =
172 le64_to_cpu(req->cmd->write_zeroes.slba);
173 break;
174 default:
175 req->error_slba = 0;
176 }
177 return status;
178 }
179
nvmet_bio_done(struct bio * bio)180 static void nvmet_bio_done(struct bio *bio)
181 {
182 struct nvmet_req *req = bio->bi_private;
183
184 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
185 nvmet_req_bio_put(req, bio);
186 }
187
188 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)189 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
190 struct sg_mapping_iter *miter)
191 {
192 struct blk_integrity *bi;
193 struct bio_integrity_payload *bip;
194 int rc;
195 size_t resid, len;
196
197 bi = bdev_get_integrity(req->ns->bdev);
198 if (unlikely(!bi)) {
199 pr_err("Unable to locate bio_integrity\n");
200 return -ENODEV;
201 }
202
203 bip = bio_integrity_alloc(bio, GFP_NOIO,
204 bio_max_segs(req->metadata_sg_cnt));
205 if (IS_ERR(bip)) {
206 pr_err("Unable to allocate bio_integrity_payload\n");
207 return PTR_ERR(bip);
208 }
209
210 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
211 /* virtual start sector must be in integrity interval units */
212 bip_set_seed(bip, bio->bi_iter.bi_sector >>
213 (bi->interval_exp - SECTOR_SHIFT));
214
215 resid = bip->bip_iter.bi_size;
216 while (resid > 0 && sg_miter_next(miter)) {
217 len = min_t(size_t, miter->length, resid);
218 rc = bio_integrity_add_page(bio, miter->page, len,
219 offset_in_page(miter->addr));
220 if (unlikely(rc != len)) {
221 pr_err("bio_integrity_add_page() failed; %d\n", rc);
222 sg_miter_stop(miter);
223 return -ENOMEM;
224 }
225
226 resid -= len;
227 if (len < miter->length)
228 miter->consumed -= miter->length - len;
229 }
230 sg_miter_stop(miter);
231
232 return 0;
233 }
234 #else
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)235 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
236 struct sg_mapping_iter *miter)
237 {
238 return -EINVAL;
239 }
240 #endif /* CONFIG_BLK_DEV_INTEGRITY */
241
nvmet_bdev_execute_rw(struct nvmet_req * req)242 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
243 {
244 unsigned int sg_cnt = req->sg_cnt;
245 struct bio *bio;
246 struct scatterlist *sg;
247 struct blk_plug plug;
248 sector_t sector;
249 int op, i, rc;
250 struct sg_mapping_iter prot_miter;
251 unsigned int iter_flags;
252 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
253
254 if (!nvmet_check_transfer_len(req, total_len))
255 return;
256
257 if (!req->sg_cnt) {
258 nvmet_req_complete(req, 0);
259 return;
260 }
261
262 if (req->cmd->rw.opcode == nvme_cmd_write) {
263 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
264 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
265 op |= REQ_FUA;
266 iter_flags = SG_MITER_TO_SG;
267 } else {
268 op = REQ_OP_READ;
269 iter_flags = SG_MITER_FROM_SG;
270 }
271
272 if (is_pci_p2pdma_page(sg_page(req->sg)))
273 op |= REQ_NOMERGE;
274
275 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
276
277 if (nvmet_use_inline_bvec(req)) {
278 bio = &req->b.inline_bio;
279 bio_init(bio, req->ns->bdev, req->inline_bvec,
280 ARRAY_SIZE(req->inline_bvec), op);
281 } else {
282 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), op,
283 GFP_KERNEL);
284 }
285 bio->bi_iter.bi_sector = sector;
286 bio->bi_private = req;
287 bio->bi_end_io = nvmet_bio_done;
288
289 blk_start_plug(&plug);
290 if (req->metadata_len)
291 sg_miter_start(&prot_miter, req->metadata_sg,
292 req->metadata_sg_cnt, iter_flags);
293
294 for_each_sg(req->sg, sg, req->sg_cnt, i) {
295 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
296 != sg->length) {
297 struct bio *prev = bio;
298
299 if (req->metadata_len) {
300 rc = nvmet_bdev_alloc_bip(req, bio,
301 &prot_miter);
302 if (unlikely(rc)) {
303 bio_io_error(bio);
304 return;
305 }
306 }
307
308 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
309 op, GFP_KERNEL);
310 bio->bi_iter.bi_sector = sector;
311
312 bio_chain(bio, prev);
313 submit_bio(prev);
314 }
315
316 sector += sg->length >> 9;
317 sg_cnt--;
318 }
319
320 if (req->metadata_len) {
321 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
322 if (unlikely(rc)) {
323 bio_io_error(bio);
324 return;
325 }
326 }
327
328 submit_bio(bio);
329 blk_finish_plug(&plug);
330 }
331
nvmet_bdev_execute_flush(struct nvmet_req * req)332 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
333 {
334 struct bio *bio = &req->b.inline_bio;
335
336 if (!nvmet_check_transfer_len(req, 0))
337 return;
338
339 bio_init(bio, req->ns->bdev, req->inline_bvec,
340 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
341 bio->bi_private = req;
342 bio->bi_end_io = nvmet_bio_done;
343
344 submit_bio(bio);
345 }
346
nvmet_bdev_flush(struct nvmet_req * req)347 u16 nvmet_bdev_flush(struct nvmet_req *req)
348 {
349 if (blkdev_issue_flush(req->ns->bdev))
350 return NVME_SC_INTERNAL | NVME_SC_DNR;
351 return 0;
352 }
353
nvmet_bdev_discard_range(struct nvmet_req * req,struct nvme_dsm_range * range,struct bio ** bio)354 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
355 struct nvme_dsm_range *range, struct bio **bio)
356 {
357 struct nvmet_ns *ns = req->ns;
358 int ret;
359
360 ret = __blkdev_issue_discard(ns->bdev,
361 nvmet_lba_to_sect(ns, range->slba),
362 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
363 GFP_KERNEL, bio);
364 if (ret && ret != -EOPNOTSUPP) {
365 req->error_slba = le64_to_cpu(range->slba);
366 return errno_to_nvme_status(req, ret);
367 }
368 return NVME_SC_SUCCESS;
369 }
370
nvmet_bdev_execute_discard(struct nvmet_req * req)371 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
372 {
373 struct nvme_dsm_range range;
374 struct bio *bio = NULL;
375 int i;
376 u16 status;
377
378 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
379 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
380 sizeof(range));
381 if (status)
382 break;
383
384 status = nvmet_bdev_discard_range(req, &range, &bio);
385 if (status)
386 break;
387 }
388
389 if (bio) {
390 bio->bi_private = req;
391 bio->bi_end_io = nvmet_bio_done;
392 if (status)
393 bio_io_error(bio);
394 else
395 submit_bio(bio);
396 } else {
397 nvmet_req_complete(req, status);
398 }
399 }
400
nvmet_bdev_execute_dsm(struct nvmet_req * req)401 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
402 {
403 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
404 return;
405
406 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
407 case NVME_DSMGMT_AD:
408 nvmet_bdev_execute_discard(req);
409 return;
410 case NVME_DSMGMT_IDR:
411 case NVME_DSMGMT_IDW:
412 default:
413 /* Not supported yet */
414 nvmet_req_complete(req, 0);
415 return;
416 }
417 }
418
nvmet_bdev_execute_write_zeroes(struct nvmet_req * req)419 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
420 {
421 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
422 struct bio *bio = NULL;
423 sector_t sector;
424 sector_t nr_sector;
425 int ret;
426
427 if (!nvmet_check_transfer_len(req, 0))
428 return;
429
430 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
431 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
432 (req->ns->blksize_shift - 9));
433
434 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
435 GFP_KERNEL, &bio, 0);
436 if (bio) {
437 bio->bi_private = req;
438 bio->bi_end_io = nvmet_bio_done;
439 submit_bio(bio);
440 } else {
441 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
442 }
443 }
444
nvmet_bdev_parse_io_cmd(struct nvmet_req * req)445 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
446 {
447 switch (req->cmd->common.opcode) {
448 case nvme_cmd_read:
449 case nvme_cmd_write:
450 req->execute = nvmet_bdev_execute_rw;
451 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
452 req->metadata_len = nvmet_rw_metadata_len(req);
453 return 0;
454 case nvme_cmd_flush:
455 req->execute = nvmet_bdev_execute_flush;
456 return 0;
457 case nvme_cmd_dsm:
458 req->execute = nvmet_bdev_execute_dsm;
459 return 0;
460 case nvme_cmd_write_zeroes:
461 req->execute = nvmet_bdev_execute_write_zeroes;
462 return 0;
463 default:
464 return nvmet_report_invalid_opcode(req);
465 }
466 }
467