1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24 /*
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
28 */
29
30 #include <linux/dma-mapping.h>
31 #include <drm/ttm/ttm_tt.h>
32
33 #include "nouveau_drv.h"
34 #include "nouveau_chan.h"
35 #include "nouveau_fence.h"
36
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
42
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
46
47 static int nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
48 struct ttm_resource *reg);
49 static void nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm);
50
51 /*
52 * NV10-NV40 tiling helpers
53 */
54
55 static void
nv10_bo_update_tile_region(struct drm_device * dev,struct nouveau_drm_tile * reg,u32 addr,u32 size,u32 pitch,u32 flags)56 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
57 u32 addr, u32 size, u32 pitch, u32 flags)
58 {
59 struct nouveau_drm *drm = nouveau_drm(dev);
60 int i = reg - drm->tile.reg;
61 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
62 struct nvkm_fb_tile *tile = &fb->tile.region[i];
63
64 nouveau_fence_unref(®->fence);
65
66 if (tile->pitch)
67 nvkm_fb_tile_fini(fb, i, tile);
68
69 if (pitch)
70 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
71
72 nvkm_fb_tile_prog(fb, i, tile);
73 }
74
75 static struct nouveau_drm_tile *
nv10_bo_get_tile_region(struct drm_device * dev,int i)76 nv10_bo_get_tile_region(struct drm_device *dev, int i)
77 {
78 struct nouveau_drm *drm = nouveau_drm(dev);
79 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
80
81 spin_lock(&drm->tile.lock);
82
83 if (!tile->used &&
84 (!tile->fence || nouveau_fence_done(tile->fence)))
85 tile->used = true;
86 else
87 tile = NULL;
88
89 spin_unlock(&drm->tile.lock);
90 return tile;
91 }
92
93 static void
nv10_bo_put_tile_region(struct drm_device * dev,struct nouveau_drm_tile * tile,struct dma_fence * fence)94 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
95 struct dma_fence *fence)
96 {
97 struct nouveau_drm *drm = nouveau_drm(dev);
98
99 if (tile) {
100 spin_lock(&drm->tile.lock);
101 tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
102 tile->used = false;
103 spin_unlock(&drm->tile.lock);
104 }
105 }
106
107 static struct nouveau_drm_tile *
nv10_bo_set_tiling(struct drm_device * dev,u32 addr,u32 size,u32 pitch,u32 zeta)108 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
109 u32 size, u32 pitch, u32 zeta)
110 {
111 struct nouveau_drm *drm = nouveau_drm(dev);
112 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
113 struct nouveau_drm_tile *tile, *found = NULL;
114 int i;
115
116 for (i = 0; i < fb->tile.regions; i++) {
117 tile = nv10_bo_get_tile_region(dev, i);
118
119 if (pitch && !found) {
120 found = tile;
121 continue;
122
123 } else if (tile && fb->tile.region[i].pitch) {
124 /* Kill an unused tile region. */
125 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
126 }
127
128 nv10_bo_put_tile_region(dev, tile, NULL);
129 }
130
131 if (found)
132 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
133 return found;
134 }
135
136 static void
nouveau_bo_del_ttm(struct ttm_buffer_object * bo)137 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
138 {
139 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
140 struct drm_device *dev = drm->dev;
141 struct nouveau_bo *nvbo = nouveau_bo(bo);
142
143 WARN_ON(nvbo->bo.pin_count > 0);
144 nouveau_bo_del_io_reserve_lru(bo);
145 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
146
147 /*
148 * If nouveau_bo_new() allocated this buffer, the GEM object was never
149 * initialized, so don't attempt to release it.
150 */
151 if (bo->base.dev)
152 drm_gem_object_release(&bo->base);
153 else
154 dma_resv_fini(&bo->base._resv);
155
156 kfree(nvbo);
157 }
158
159 static inline u64
roundup_64(u64 x,u32 y)160 roundup_64(u64 x, u32 y)
161 {
162 x += y - 1;
163 do_div(x, y);
164 return x * y;
165 }
166
167 static void
nouveau_bo_fixup_align(struct nouveau_bo * nvbo,int * align,u64 * size)168 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
169 {
170 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
171 struct nvif_device *device = &drm->client.device;
172
173 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
174 if (nvbo->mode) {
175 if (device->info.chipset >= 0x40) {
176 *align = 65536;
177 *size = roundup_64(*size, 64 * nvbo->mode);
178
179 } else if (device->info.chipset >= 0x30) {
180 *align = 32768;
181 *size = roundup_64(*size, 64 * nvbo->mode);
182
183 } else if (device->info.chipset >= 0x20) {
184 *align = 16384;
185 *size = roundup_64(*size, 64 * nvbo->mode);
186
187 } else if (device->info.chipset >= 0x10) {
188 *align = 16384;
189 *size = roundup_64(*size, 32 * nvbo->mode);
190 }
191 }
192 } else {
193 *size = roundup_64(*size, (1 << nvbo->page));
194 *align = max((1 << nvbo->page), *align);
195 }
196
197 *size = roundup_64(*size, PAGE_SIZE);
198 }
199
200 struct nouveau_bo *
nouveau_bo_alloc(struct nouveau_cli * cli,u64 * size,int * align,u32 domain,u32 tile_mode,u32 tile_flags,bool internal)201 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
202 u32 tile_mode, u32 tile_flags, bool internal)
203 {
204 struct nouveau_drm *drm = cli->drm;
205 struct nouveau_bo *nvbo;
206 struct nvif_mmu *mmu = &cli->mmu;
207 struct nvif_vmm *vmm = &nouveau_cli_vmm(cli)->vmm;
208 int i, pi = -1;
209
210 if (!*size) {
211 NV_WARN(drm, "skipped size %016llx\n", *size);
212 return ERR_PTR(-EINVAL);
213 }
214
215 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
216 if (!nvbo)
217 return ERR_PTR(-ENOMEM);
218
219 INIT_LIST_HEAD(&nvbo->head);
220 INIT_LIST_HEAD(&nvbo->entry);
221 INIT_LIST_HEAD(&nvbo->vma_list);
222 nvbo->bo.bdev = &drm->ttm.bdev;
223
224 /* This is confusing, and doesn't actually mean we want an uncached
225 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
226 * into in nouveau_gem_new().
227 */
228 if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
229 /* Determine if we can get a cache-coherent map, forcing
230 * uncached mapping if we can't.
231 */
232 if (!nouveau_drm_use_coherent_gpu_mapping(drm))
233 nvbo->force_coherent = true;
234 }
235
236 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
237 if (!nouveau_cli_uvmm(cli) || internal) {
238 /* for BO noVM allocs, don't assign kinds */
239 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
240 nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
241 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
242 kfree(nvbo);
243 return ERR_PTR(-EINVAL);
244 }
245
246 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
247 } else if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
248 nvbo->kind = (tile_flags & 0x00007f00) >> 8;
249 nvbo->comp = (tile_flags & 0x00030000) >> 16;
250 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
251 kfree(nvbo);
252 return ERR_PTR(-EINVAL);
253 }
254 } else {
255 nvbo->zeta = (tile_flags & 0x00000007);
256 }
257 nvbo->mode = tile_mode;
258
259 /* Determine the desirable target GPU page size for the buffer. */
260 for (i = 0; i < vmm->page_nr; i++) {
261 /* Because we cannot currently allow VMM maps to fail
262 * during buffer migration, we need to determine page
263 * size for the buffer up-front, and pre-allocate its
264 * page tables.
265 *
266 * Skip page sizes that can't support needed domains.
267 */
268 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
269 (domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
270 continue;
271 if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
272 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
273 continue;
274
275 /* Select this page size if it's the first that supports
276 * the potential memory domains, or when it's compatible
277 * with the requested compression settings.
278 */
279 if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
280 pi = i;
281
282 /* Stop once the buffer is larger than the current page size. */
283 if (*size >= 1ULL << vmm->page[i].shift)
284 break;
285 }
286
287 if (WARN_ON(pi < 0)) {
288 kfree(nvbo);
289 return ERR_PTR(-EINVAL);
290 }
291
292 /* Disable compression if suitable settings couldn't be found. */
293 if (nvbo->comp && !vmm->page[pi].comp) {
294 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
295 nvbo->kind = mmu->kind[nvbo->kind];
296 nvbo->comp = 0;
297 }
298 nvbo->page = vmm->page[pi].shift;
299 } else {
300 /* reject other tile flags when in VM mode. */
301 if (tile_mode)
302 return ERR_PTR(-EINVAL);
303 if (tile_flags & ~NOUVEAU_GEM_TILE_NONCONTIG)
304 return ERR_PTR(-EINVAL);
305
306 /* Determine the desirable target GPU page size for the buffer. */
307 for (i = 0; i < vmm->page_nr; i++) {
308 /* Because we cannot currently allow VMM maps to fail
309 * during buffer migration, we need to determine page
310 * size for the buffer up-front, and pre-allocate its
311 * page tables.
312 *
313 * Skip page sizes that can't support needed domains.
314 */
315 if ((domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
316 continue;
317 if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
318 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
319 continue;
320
321 /* pick the last one as it will be smallest. */
322 pi = i;
323
324 /* Stop once the buffer is larger than the current page size. */
325 if (*size >= 1ULL << vmm->page[i].shift)
326 break;
327 }
328 if (WARN_ON(pi < 0)) {
329 kfree(nvbo);
330 return ERR_PTR(-EINVAL);
331 }
332 nvbo->page = vmm->page[pi].shift;
333 }
334
335 nouveau_bo_fixup_align(nvbo, align, size);
336
337 return nvbo;
338 }
339
340 int
nouveau_bo_init(struct nouveau_bo * nvbo,u64 size,int align,u32 domain,struct sg_table * sg,struct dma_resv * robj)341 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
342 struct sg_table *sg, struct dma_resv *robj)
343 {
344 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
345 int ret;
346 struct ttm_operation_ctx ctx = {
347 .interruptible = false,
348 .no_wait_gpu = false,
349 .resv = robj,
350 };
351
352 nouveau_bo_placement_set(nvbo, domain, 0);
353 INIT_LIST_HEAD(&nvbo->io_reserve_lru);
354
355 ret = ttm_bo_init_reserved(nvbo->bo.bdev, &nvbo->bo, type,
356 &nvbo->placement, align >> PAGE_SHIFT, &ctx,
357 sg, robj, nouveau_bo_del_ttm);
358 if (ret) {
359 /* ttm will call nouveau_bo_del_ttm if it fails.. */
360 return ret;
361 }
362
363 if (!robj)
364 ttm_bo_unreserve(&nvbo->bo);
365
366 return 0;
367 }
368
369 int
nouveau_bo_new(struct nouveau_cli * cli,u64 size,int align,uint32_t domain,uint32_t tile_mode,uint32_t tile_flags,struct sg_table * sg,struct dma_resv * robj,struct nouveau_bo ** pnvbo)370 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
371 uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
372 struct sg_table *sg, struct dma_resv *robj,
373 struct nouveau_bo **pnvbo)
374 {
375 struct nouveau_bo *nvbo;
376 int ret;
377
378 nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
379 tile_flags, true);
380 if (IS_ERR(nvbo))
381 return PTR_ERR(nvbo);
382
383 nvbo->bo.base.size = size;
384 dma_resv_init(&nvbo->bo.base._resv);
385 drm_vma_node_reset(&nvbo->bo.base.vma_node);
386
387 /* This must be called before ttm_bo_init_reserved(). Subsequent
388 * bo_move() callbacks might already iterate the GEMs GPUVA list.
389 */
390 drm_gem_gpuva_init(&nvbo->bo.base);
391
392 ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
393 if (ret)
394 return ret;
395
396 *pnvbo = nvbo;
397 return 0;
398 }
399
400 static void
set_placement_list(struct ttm_place * pl,unsigned * n,uint32_t domain)401 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
402 {
403 *n = 0;
404
405 if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
406 pl[*n].mem_type = TTM_PL_VRAM;
407 pl[*n].flags = 0;
408 (*n)++;
409 }
410 if (domain & NOUVEAU_GEM_DOMAIN_GART) {
411 pl[*n].mem_type = TTM_PL_TT;
412 pl[*n].flags = 0;
413 (*n)++;
414 }
415 if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
416 pl[*n].mem_type = TTM_PL_SYSTEM;
417 pl[(*n)++].flags = 0;
418 }
419 }
420
421 static void
set_placement_range(struct nouveau_bo * nvbo,uint32_t domain)422 set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
423 {
424 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
425 u64 vram_size = drm->client.device.info.ram_size;
426 unsigned i, fpfn, lpfn;
427
428 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
429 nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
430 nvbo->bo.base.size < vram_size / 4) {
431 /*
432 * Make sure that the color and depth buffers are handled
433 * by independent memory controller units. Up to a 9x
434 * speed up when alpha-blending and depth-test are enabled
435 * at the same time.
436 */
437 if (nvbo->zeta) {
438 fpfn = (vram_size / 2) >> PAGE_SHIFT;
439 lpfn = ~0;
440 } else {
441 fpfn = 0;
442 lpfn = (vram_size / 2) >> PAGE_SHIFT;
443 }
444 for (i = 0; i < nvbo->placement.num_placement; ++i) {
445 nvbo->placements[i].fpfn = fpfn;
446 nvbo->placements[i].lpfn = lpfn;
447 }
448 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
449 nvbo->busy_placements[i].fpfn = fpfn;
450 nvbo->busy_placements[i].lpfn = lpfn;
451 }
452 }
453 }
454
455 void
nouveau_bo_placement_set(struct nouveau_bo * nvbo,uint32_t domain,uint32_t busy)456 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
457 uint32_t busy)
458 {
459 struct ttm_placement *pl = &nvbo->placement;
460
461 pl->placement = nvbo->placements;
462 set_placement_list(nvbo->placements, &pl->num_placement, domain);
463
464 pl->busy_placement = nvbo->busy_placements;
465 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
466 domain | busy);
467
468 set_placement_range(nvbo, domain);
469 }
470
471 int
nouveau_bo_pin(struct nouveau_bo * nvbo,uint32_t domain,bool contig)472 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
473 {
474 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
475 struct ttm_buffer_object *bo = &nvbo->bo;
476 bool force = false, evict = false;
477 int ret;
478
479 ret = ttm_bo_reserve(bo, false, false, NULL);
480 if (ret)
481 return ret;
482
483 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
484 domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
485 if (!nvbo->contig) {
486 nvbo->contig = true;
487 force = true;
488 evict = true;
489 }
490 }
491
492 if (nvbo->bo.pin_count) {
493 bool error = evict;
494
495 switch (bo->resource->mem_type) {
496 case TTM_PL_VRAM:
497 error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
498 break;
499 case TTM_PL_TT:
500 error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
501 break;
502 default:
503 break;
504 }
505
506 if (error) {
507 NV_ERROR(drm, "bo %p pinned elsewhere: "
508 "0x%08x vs 0x%08x\n", bo,
509 bo->resource->mem_type, domain);
510 ret = -EBUSY;
511 }
512 ttm_bo_pin(&nvbo->bo);
513 goto out;
514 }
515
516 if (evict) {
517 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
518 ret = nouveau_bo_validate(nvbo, false, false);
519 if (ret)
520 goto out;
521 }
522
523 nouveau_bo_placement_set(nvbo, domain, 0);
524 ret = nouveau_bo_validate(nvbo, false, false);
525 if (ret)
526 goto out;
527
528 ttm_bo_pin(&nvbo->bo);
529
530 switch (bo->resource->mem_type) {
531 case TTM_PL_VRAM:
532 drm->gem.vram_available -= bo->base.size;
533 break;
534 case TTM_PL_TT:
535 drm->gem.gart_available -= bo->base.size;
536 break;
537 default:
538 break;
539 }
540
541 out:
542 if (force && ret)
543 nvbo->contig = false;
544 ttm_bo_unreserve(bo);
545 return ret;
546 }
547
548 int
nouveau_bo_unpin(struct nouveau_bo * nvbo)549 nouveau_bo_unpin(struct nouveau_bo *nvbo)
550 {
551 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
552 struct ttm_buffer_object *bo = &nvbo->bo;
553 int ret;
554
555 ret = ttm_bo_reserve(bo, false, false, NULL);
556 if (ret)
557 return ret;
558
559 ttm_bo_unpin(&nvbo->bo);
560 if (!nvbo->bo.pin_count) {
561 switch (bo->resource->mem_type) {
562 case TTM_PL_VRAM:
563 drm->gem.vram_available += bo->base.size;
564 break;
565 case TTM_PL_TT:
566 drm->gem.gart_available += bo->base.size;
567 break;
568 default:
569 break;
570 }
571 }
572
573 ttm_bo_unreserve(bo);
574 return 0;
575 }
576
577 int
nouveau_bo_map(struct nouveau_bo * nvbo)578 nouveau_bo_map(struct nouveau_bo *nvbo)
579 {
580 int ret;
581
582 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
583 if (ret)
584 return ret;
585
586 ret = ttm_bo_kmap(&nvbo->bo, 0, PFN_UP(nvbo->bo.base.size), &nvbo->kmap);
587
588 ttm_bo_unreserve(&nvbo->bo);
589 return ret;
590 }
591
592 void
nouveau_bo_unmap(struct nouveau_bo * nvbo)593 nouveau_bo_unmap(struct nouveau_bo *nvbo)
594 {
595 if (!nvbo)
596 return;
597
598 ttm_bo_kunmap(&nvbo->kmap);
599 }
600
601 void
nouveau_bo_sync_for_device(struct nouveau_bo * nvbo)602 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
603 {
604 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
605 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
606 int i, j;
607
608 if (!ttm_dma || !ttm_dma->dma_address)
609 return;
610 if (!ttm_dma->pages) {
611 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
612 return;
613 }
614
615 /* Don't waste time looping if the object is coherent */
616 if (nvbo->force_coherent)
617 return;
618
619 i = 0;
620 while (i < ttm_dma->num_pages) {
621 struct page *p = ttm_dma->pages[i];
622 size_t num_pages = 1;
623
624 for (j = i + 1; j < ttm_dma->num_pages; ++j) {
625 if (++p != ttm_dma->pages[j])
626 break;
627
628 ++num_pages;
629 }
630 dma_sync_single_for_device(drm->dev->dev,
631 ttm_dma->dma_address[i],
632 num_pages * PAGE_SIZE, DMA_TO_DEVICE);
633 i += num_pages;
634 }
635 }
636
637 void
nouveau_bo_sync_for_cpu(struct nouveau_bo * nvbo)638 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
639 {
640 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
641 struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
642 int i, j;
643
644 if (!ttm_dma || !ttm_dma->dma_address)
645 return;
646 if (!ttm_dma->pages) {
647 NV_DEBUG(drm, "ttm_dma 0x%p: pages NULL\n", ttm_dma);
648 return;
649 }
650
651 /* Don't waste time looping if the object is coherent */
652 if (nvbo->force_coherent)
653 return;
654
655 i = 0;
656 while (i < ttm_dma->num_pages) {
657 struct page *p = ttm_dma->pages[i];
658 size_t num_pages = 1;
659
660 for (j = i + 1; j < ttm_dma->num_pages; ++j) {
661 if (++p != ttm_dma->pages[j])
662 break;
663
664 ++num_pages;
665 }
666
667 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
668 num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
669 i += num_pages;
670 }
671 }
672
nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object * bo)673 void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
674 {
675 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
676 struct nouveau_bo *nvbo = nouveau_bo(bo);
677
678 mutex_lock(&drm->ttm.io_reserve_mutex);
679 list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
680 mutex_unlock(&drm->ttm.io_reserve_mutex);
681 }
682
nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object * bo)683 void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
684 {
685 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
686 struct nouveau_bo *nvbo = nouveau_bo(bo);
687
688 mutex_lock(&drm->ttm.io_reserve_mutex);
689 list_del_init(&nvbo->io_reserve_lru);
690 mutex_unlock(&drm->ttm.io_reserve_mutex);
691 }
692
693 int
nouveau_bo_validate(struct nouveau_bo * nvbo,bool interruptible,bool no_wait_gpu)694 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
695 bool no_wait_gpu)
696 {
697 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
698 int ret;
699
700 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
701 if (ret)
702 return ret;
703
704 nouveau_bo_sync_for_device(nvbo);
705
706 return 0;
707 }
708
709 void
nouveau_bo_wr16(struct nouveau_bo * nvbo,unsigned index,u16 val)710 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
711 {
712 bool is_iomem;
713 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
714
715 mem += index;
716
717 if (is_iomem)
718 iowrite16_native(val, (void __force __iomem *)mem);
719 else
720 *mem = val;
721 }
722
723 u32
nouveau_bo_rd32(struct nouveau_bo * nvbo,unsigned index)724 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
725 {
726 bool is_iomem;
727 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
728
729 mem += index;
730
731 if (is_iomem)
732 return ioread32_native((void __force __iomem *)mem);
733 else
734 return *mem;
735 }
736
737 void
nouveau_bo_wr32(struct nouveau_bo * nvbo,unsigned index,u32 val)738 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
739 {
740 bool is_iomem;
741 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
742
743 mem += index;
744
745 if (is_iomem)
746 iowrite32_native(val, (void __force __iomem *)mem);
747 else
748 *mem = val;
749 }
750
751 static struct ttm_tt *
nouveau_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)752 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
753 {
754 #if IS_ENABLED(CONFIG_AGP)
755 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
756
757 if (drm->agp.bridge) {
758 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
759 }
760 #endif
761
762 return nouveau_sgdma_create_ttm(bo, page_flags);
763 }
764
765 static int
nouveau_ttm_tt_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * reg)766 nouveau_ttm_tt_bind(struct ttm_device *bdev, struct ttm_tt *ttm,
767 struct ttm_resource *reg)
768 {
769 #if IS_ENABLED(CONFIG_AGP)
770 struct nouveau_drm *drm = nouveau_bdev(bdev);
771 #endif
772 if (!reg)
773 return -EINVAL;
774 #if IS_ENABLED(CONFIG_AGP)
775 if (drm->agp.bridge)
776 return ttm_agp_bind(ttm, reg);
777 #endif
778 return nouveau_sgdma_bind(bdev, ttm, reg);
779 }
780
781 static void
nouveau_ttm_tt_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)782 nouveau_ttm_tt_unbind(struct ttm_device *bdev, struct ttm_tt *ttm)
783 {
784 #if IS_ENABLED(CONFIG_AGP)
785 struct nouveau_drm *drm = nouveau_bdev(bdev);
786
787 if (drm->agp.bridge) {
788 ttm_agp_unbind(ttm);
789 return;
790 }
791 #endif
792 nouveau_sgdma_unbind(bdev, ttm);
793 }
794
795 static void
nouveau_bo_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * pl)796 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
797 {
798 struct nouveau_bo *nvbo = nouveau_bo(bo);
799
800 switch (bo->resource->mem_type) {
801 case TTM_PL_VRAM:
802 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
803 NOUVEAU_GEM_DOMAIN_CPU);
804 break;
805 default:
806 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
807 break;
808 }
809
810 *pl = nvbo->placement;
811 }
812
813 static int
nouveau_bo_move_prep(struct nouveau_drm * drm,struct ttm_buffer_object * bo,struct ttm_resource * reg)814 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
815 struct ttm_resource *reg)
816 {
817 struct nouveau_mem *old_mem = nouveau_mem(bo->resource);
818 struct nouveau_mem *new_mem = nouveau_mem(reg);
819 struct nvif_vmm *vmm = &drm->client.vmm.vmm;
820 int ret;
821
822 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
823 old_mem->mem.size, &old_mem->vma[0]);
824 if (ret)
825 return ret;
826
827 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
828 new_mem->mem.size, &old_mem->vma[1]);
829 if (ret)
830 goto done;
831
832 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
833 if (ret)
834 goto done;
835
836 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
837 done:
838 if (ret) {
839 nvif_vmm_put(vmm, &old_mem->vma[1]);
840 nvif_vmm_put(vmm, &old_mem->vma[0]);
841 }
842 return 0;
843 }
844
845 static int
nouveau_bo_move_m2mf(struct ttm_buffer_object * bo,int evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_reg)846 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
847 struct ttm_operation_ctx *ctx,
848 struct ttm_resource *new_reg)
849 {
850 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
851 struct nouveau_channel *chan = drm->ttm.chan;
852 struct nouveau_cli *cli = (void *)chan->user.client;
853 struct nouveau_fence *fence;
854 int ret;
855
856 /* create temporary vmas for the transfer and attach them to the
857 * old nvkm_mem node, these will get cleaned up after ttm has
858 * destroyed the ttm_resource
859 */
860 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
861 ret = nouveau_bo_move_prep(drm, bo, new_reg);
862 if (ret)
863 return ret;
864 }
865
866 if (drm_drv_uses_atomic_modeset(drm->dev))
867 mutex_lock(&cli->mutex);
868 else
869 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
870
871 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
872 if (ret)
873 goto out_unlock;
874
875 ret = drm->ttm.move(chan, bo, bo->resource, new_reg);
876 if (ret)
877 goto out_unlock;
878
879 ret = nouveau_fence_new(&fence, chan);
880 if (ret)
881 goto out_unlock;
882
883 /* TODO: figure out a better solution here
884 *
885 * wait on the fence here explicitly as going through
886 * ttm_bo_move_accel_cleanup somehow doesn't seem to do it.
887 *
888 * Without this the operation can timeout and we'll fallback to a
889 * software copy, which might take several minutes to finish.
890 */
891 nouveau_fence_wait(fence, false, false);
892 ret = ttm_bo_move_accel_cleanup(bo, &fence->base, evict, false,
893 new_reg);
894 nouveau_fence_unref(&fence);
895
896 out_unlock:
897 mutex_unlock(&cli->mutex);
898 return ret;
899 }
900
901 void
nouveau_bo_move_init(struct nouveau_drm * drm)902 nouveau_bo_move_init(struct nouveau_drm *drm)
903 {
904 static const struct _method_table {
905 const char *name;
906 int engine;
907 s32 oclass;
908 int (*exec)(struct nouveau_channel *,
909 struct ttm_buffer_object *,
910 struct ttm_resource *, struct ttm_resource *);
911 int (*init)(struct nouveau_channel *, u32 handle);
912 } _methods[] = {
913 { "COPY", 4, 0xc7b5, nve0_bo_move_copy, nve0_bo_move_init },
914 { "GRCE", 0, 0xc7b5, nve0_bo_move_copy, nvc0_bo_move_init },
915 { "COPY", 4, 0xc6b5, nve0_bo_move_copy, nve0_bo_move_init },
916 { "GRCE", 0, 0xc6b5, nve0_bo_move_copy, nvc0_bo_move_init },
917 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
918 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
919 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
920 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
921 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
922 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
923 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
924 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
925 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
926 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
927 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
928 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
929 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
930 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
931 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
932 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
933 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
934 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
935 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
936 {},
937 };
938 const struct _method_table *mthd = _methods;
939 const char *name = "CPU";
940 int ret;
941
942 do {
943 struct nouveau_channel *chan;
944
945 if (mthd->engine)
946 chan = drm->cechan;
947 else
948 chan = drm->channel;
949 if (chan == NULL)
950 continue;
951
952 ret = nvif_object_ctor(&chan->user, "ttmBoMove",
953 mthd->oclass | (mthd->engine << 16),
954 mthd->oclass, NULL, 0,
955 &drm->ttm.copy);
956 if (ret == 0) {
957 ret = mthd->init(chan, drm->ttm.copy.handle);
958 if (ret) {
959 nvif_object_dtor(&drm->ttm.copy);
960 continue;
961 }
962
963 drm->ttm.move = mthd->exec;
964 drm->ttm.chan = chan;
965 name = mthd->name;
966 break;
967 }
968 } while ((++mthd)->exec);
969
970 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
971 }
972
nouveau_bo_move_ntfy(struct ttm_buffer_object * bo,struct ttm_resource * new_reg)973 static void nouveau_bo_move_ntfy(struct ttm_buffer_object *bo,
974 struct ttm_resource *new_reg)
975 {
976 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
977 struct nouveau_bo *nvbo = nouveau_bo(bo);
978 struct nouveau_vma *vma;
979 long ret;
980
981 /* ttm can now (stupidly) pass the driver bos it didn't create... */
982 if (bo->destroy != nouveau_bo_del_ttm)
983 return;
984
985 nouveau_bo_del_io_reserve_lru(bo);
986
987 if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
988 mem->mem.page == nvbo->page) {
989 list_for_each_entry(vma, &nvbo->vma_list, head) {
990 nouveau_vma_map(vma, mem);
991 }
992 nouveau_uvmm_bo_map_all(nvbo, mem);
993 } else {
994 list_for_each_entry(vma, &nvbo->vma_list, head) {
995 ret = dma_resv_wait_timeout(bo->base.resv,
996 DMA_RESV_USAGE_BOOKKEEP,
997 false, 15 * HZ);
998 WARN_ON(ret <= 0);
999 nouveau_vma_unmap(vma);
1000 }
1001 nouveau_uvmm_bo_unmap_all(nvbo);
1002 }
1003
1004 if (new_reg)
1005 nvbo->offset = (new_reg->start << PAGE_SHIFT);
1006
1007 }
1008
1009 static int
nouveau_bo_vm_bind(struct ttm_buffer_object * bo,struct ttm_resource * new_reg,struct nouveau_drm_tile ** new_tile)1010 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
1011 struct nouveau_drm_tile **new_tile)
1012 {
1013 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1014 struct drm_device *dev = drm->dev;
1015 struct nouveau_bo *nvbo = nouveau_bo(bo);
1016 u64 offset = new_reg->start << PAGE_SHIFT;
1017
1018 *new_tile = NULL;
1019 if (new_reg->mem_type != TTM_PL_VRAM)
1020 return 0;
1021
1022 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1023 *new_tile = nv10_bo_set_tiling(dev, offset, bo->base.size,
1024 nvbo->mode, nvbo->zeta);
1025 }
1026
1027 return 0;
1028 }
1029
1030 static void
nouveau_bo_vm_cleanup(struct ttm_buffer_object * bo,struct nouveau_drm_tile * new_tile,struct nouveau_drm_tile ** old_tile)1031 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1032 struct nouveau_drm_tile *new_tile,
1033 struct nouveau_drm_tile **old_tile)
1034 {
1035 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1036 struct drm_device *dev = drm->dev;
1037 struct dma_fence *fence;
1038 int ret;
1039
1040 ret = dma_resv_get_singleton(bo->base.resv, DMA_RESV_USAGE_WRITE,
1041 &fence);
1042 if (ret)
1043 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_WRITE,
1044 false, MAX_SCHEDULE_TIMEOUT);
1045
1046 nv10_bo_put_tile_region(dev, *old_tile, fence);
1047 *old_tile = new_tile;
1048 }
1049
1050 static int
nouveau_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_reg,struct ttm_place * hop)1051 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1052 struct ttm_operation_ctx *ctx,
1053 struct ttm_resource *new_reg,
1054 struct ttm_place *hop)
1055 {
1056 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1057 struct nouveau_bo *nvbo = nouveau_bo(bo);
1058 struct ttm_resource *old_reg = bo->resource;
1059 struct nouveau_drm_tile *new_tile = NULL;
1060 int ret = 0;
1061
1062
1063 if (new_reg->mem_type == TTM_PL_TT) {
1064 ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
1065 if (ret)
1066 return ret;
1067 }
1068
1069 nouveau_bo_move_ntfy(bo, new_reg);
1070 ret = ttm_bo_wait_ctx(bo, ctx);
1071 if (ret)
1072 goto out_ntfy;
1073
1074 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1075 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1076 if (ret)
1077 goto out_ntfy;
1078 }
1079
1080 /* Fake bo copy. */
1081 if (!old_reg || (old_reg->mem_type == TTM_PL_SYSTEM &&
1082 !bo->ttm)) {
1083 ttm_bo_move_null(bo, new_reg);
1084 goto out;
1085 }
1086
1087 if (old_reg->mem_type == TTM_PL_SYSTEM &&
1088 new_reg->mem_type == TTM_PL_TT) {
1089 ttm_bo_move_null(bo, new_reg);
1090 goto out;
1091 }
1092
1093 if (old_reg->mem_type == TTM_PL_TT &&
1094 new_reg->mem_type == TTM_PL_SYSTEM) {
1095 nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
1096 ttm_resource_free(bo, &bo->resource);
1097 ttm_bo_assign_mem(bo, new_reg);
1098 goto out;
1099 }
1100
1101 /* Hardware assisted copy. */
1102 if (drm->ttm.move) {
1103 if ((old_reg->mem_type == TTM_PL_SYSTEM &&
1104 new_reg->mem_type == TTM_PL_VRAM) ||
1105 (old_reg->mem_type == TTM_PL_VRAM &&
1106 new_reg->mem_type == TTM_PL_SYSTEM)) {
1107 hop->fpfn = 0;
1108 hop->lpfn = 0;
1109 hop->mem_type = TTM_PL_TT;
1110 hop->flags = 0;
1111 return -EMULTIHOP;
1112 }
1113 ret = nouveau_bo_move_m2mf(bo, evict, ctx,
1114 new_reg);
1115 } else
1116 ret = -ENODEV;
1117
1118 if (ret) {
1119 /* Fallback to software copy. */
1120 ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1121 }
1122
1123 out:
1124 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1125 if (ret)
1126 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1127 else
1128 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1129 }
1130 out_ntfy:
1131 if (ret) {
1132 nouveau_bo_move_ntfy(bo, bo->resource);
1133 }
1134 return ret;
1135 }
1136
1137 static void
nouveau_ttm_io_mem_free_locked(struct nouveau_drm * drm,struct ttm_resource * reg)1138 nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
1139 struct ttm_resource *reg)
1140 {
1141 struct nouveau_mem *mem = nouveau_mem(reg);
1142
1143 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1144 switch (reg->mem_type) {
1145 case TTM_PL_TT:
1146 if (mem->kind)
1147 nvif_object_unmap_handle(&mem->mem.object);
1148 break;
1149 case TTM_PL_VRAM:
1150 nvif_object_unmap_handle(&mem->mem.object);
1151 break;
1152 default:
1153 break;
1154 }
1155 }
1156 }
1157
1158 static int
nouveau_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * reg)1159 nouveau_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *reg)
1160 {
1161 struct nouveau_drm *drm = nouveau_bdev(bdev);
1162 struct nvkm_device *device = nvxx_device(&drm->client.device);
1163 struct nouveau_mem *mem = nouveau_mem(reg);
1164 struct nvif_mmu *mmu = &drm->client.mmu;
1165 int ret;
1166
1167 mutex_lock(&drm->ttm.io_reserve_mutex);
1168 retry:
1169 switch (reg->mem_type) {
1170 case TTM_PL_SYSTEM:
1171 /* System memory */
1172 ret = 0;
1173 goto out;
1174 case TTM_PL_TT:
1175 #if IS_ENABLED(CONFIG_AGP)
1176 if (drm->agp.bridge) {
1177 reg->bus.offset = (reg->start << PAGE_SHIFT) +
1178 drm->agp.base;
1179 reg->bus.is_iomem = !drm->agp.cma;
1180 reg->bus.caching = ttm_write_combined;
1181 }
1182 #endif
1183 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
1184 !mem->kind) {
1185 /* untiled */
1186 ret = 0;
1187 break;
1188 }
1189 fallthrough; /* tiled memory */
1190 case TTM_PL_VRAM:
1191 reg->bus.offset = (reg->start << PAGE_SHIFT) +
1192 device->func->resource_addr(device, 1);
1193 reg->bus.is_iomem = true;
1194
1195 /* Some BARs do not support being ioremapped WC */
1196 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
1197 mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
1198 reg->bus.caching = ttm_uncached;
1199 else
1200 reg->bus.caching = ttm_write_combined;
1201
1202 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1203 union {
1204 struct nv50_mem_map_v0 nv50;
1205 struct gf100_mem_map_v0 gf100;
1206 } args;
1207 u64 handle, length;
1208 u32 argc = 0;
1209
1210 switch (mem->mem.object.oclass) {
1211 case NVIF_CLASS_MEM_NV50:
1212 args.nv50.version = 0;
1213 args.nv50.ro = 0;
1214 args.nv50.kind = mem->kind;
1215 args.nv50.comp = mem->comp;
1216 argc = sizeof(args.nv50);
1217 break;
1218 case NVIF_CLASS_MEM_GF100:
1219 args.gf100.version = 0;
1220 args.gf100.ro = 0;
1221 args.gf100.kind = mem->kind;
1222 argc = sizeof(args.gf100);
1223 break;
1224 default:
1225 WARN_ON(1);
1226 break;
1227 }
1228
1229 ret = nvif_object_map_handle(&mem->mem.object,
1230 &args, argc,
1231 &handle, &length);
1232 if (ret != 1) {
1233 if (WARN_ON(ret == 0))
1234 ret = -EINVAL;
1235 goto out;
1236 }
1237
1238 reg->bus.offset = handle;
1239 }
1240 ret = 0;
1241 break;
1242 default:
1243 ret = -EINVAL;
1244 }
1245
1246 out:
1247 if (ret == -ENOSPC) {
1248 struct nouveau_bo *nvbo;
1249
1250 nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
1251 typeof(*nvbo),
1252 io_reserve_lru);
1253 if (nvbo) {
1254 list_del_init(&nvbo->io_reserve_lru);
1255 drm_vma_node_unmap(&nvbo->bo.base.vma_node,
1256 bdev->dev_mapping);
1257 nouveau_ttm_io_mem_free_locked(drm, nvbo->bo.resource);
1258 goto retry;
1259 }
1260
1261 }
1262 mutex_unlock(&drm->ttm.io_reserve_mutex);
1263 return ret;
1264 }
1265
1266 static void
nouveau_ttm_io_mem_free(struct ttm_device * bdev,struct ttm_resource * reg)1267 nouveau_ttm_io_mem_free(struct ttm_device *bdev, struct ttm_resource *reg)
1268 {
1269 struct nouveau_drm *drm = nouveau_bdev(bdev);
1270
1271 mutex_lock(&drm->ttm.io_reserve_mutex);
1272 nouveau_ttm_io_mem_free_locked(drm, reg);
1273 mutex_unlock(&drm->ttm.io_reserve_mutex);
1274 }
1275
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object * bo)1276 vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1277 {
1278 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1279 struct nouveau_bo *nvbo = nouveau_bo(bo);
1280 struct nvkm_device *device = nvxx_device(&drm->client.device);
1281 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1282 int i, ret;
1283
1284 /* as long as the bo isn't in vram, and isn't tiled, we've got
1285 * nothing to do here.
1286 */
1287 if (bo->resource->mem_type != TTM_PL_VRAM) {
1288 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1289 !nvbo->kind)
1290 return 0;
1291
1292 if (bo->resource->mem_type != TTM_PL_SYSTEM)
1293 return 0;
1294
1295 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
1296
1297 } else {
1298 /* make sure bo is in mappable vram */
1299 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1300 bo->resource->start + PFN_UP(bo->resource->size) < mappable)
1301 return 0;
1302
1303 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1304 nvbo->placements[i].fpfn = 0;
1305 nvbo->placements[i].lpfn = mappable;
1306 }
1307
1308 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1309 nvbo->busy_placements[i].fpfn = 0;
1310 nvbo->busy_placements[i].lpfn = mappable;
1311 }
1312
1313 nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
1314 }
1315
1316 ret = nouveau_bo_validate(nvbo, false, false);
1317 if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
1318 return VM_FAULT_NOPAGE;
1319 else if (unlikely(ret))
1320 return VM_FAULT_SIGBUS;
1321
1322 ttm_bo_move_to_lru_tail_unlocked(bo);
1323 return 0;
1324 }
1325
1326 static int
nouveau_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1327 nouveau_ttm_tt_populate(struct ttm_device *bdev,
1328 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1329 {
1330 struct ttm_tt *ttm_dma = (void *)ttm;
1331 struct nouveau_drm *drm;
1332 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1333
1334 if (ttm_tt_is_populated(ttm))
1335 return 0;
1336
1337 if (slave && ttm->sg) {
1338 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm_dma->dma_address,
1339 ttm->num_pages);
1340 return 0;
1341 }
1342
1343 drm = nouveau_bdev(bdev);
1344
1345 return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
1346 }
1347
1348 static void
nouveau_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1349 nouveau_ttm_tt_unpopulate(struct ttm_device *bdev,
1350 struct ttm_tt *ttm)
1351 {
1352 struct nouveau_drm *drm;
1353 bool slave = !!(ttm->page_flags & TTM_TT_FLAG_EXTERNAL);
1354
1355 if (slave)
1356 return;
1357
1358 nouveau_ttm_tt_unbind(bdev, ttm);
1359
1360 drm = nouveau_bdev(bdev);
1361
1362 return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
1363 }
1364
1365 static void
nouveau_ttm_tt_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1366 nouveau_ttm_tt_destroy(struct ttm_device *bdev,
1367 struct ttm_tt *ttm)
1368 {
1369 #if IS_ENABLED(CONFIG_AGP)
1370 struct nouveau_drm *drm = nouveau_bdev(bdev);
1371 if (drm->agp.bridge) {
1372 ttm_agp_destroy(ttm);
1373 return;
1374 }
1375 #endif
1376 nouveau_sgdma_destroy(bdev, ttm);
1377 }
1378
1379 void
nouveau_bo_fence(struct nouveau_bo * nvbo,struct nouveau_fence * fence,bool exclusive)1380 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1381 {
1382 struct dma_resv *resv = nvbo->bo.base.resv;
1383
1384 if (!fence)
1385 return;
1386
1387 dma_resv_add_fence(resv, &fence->base, exclusive ?
1388 DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1389 }
1390
1391 static void
nouveau_bo_delete_mem_notify(struct ttm_buffer_object * bo)1392 nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1393 {
1394 nouveau_bo_move_ntfy(bo, NULL);
1395 }
1396
1397 struct ttm_device_funcs nouveau_bo_driver = {
1398 .ttm_tt_create = &nouveau_ttm_tt_create,
1399 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1400 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1401 .ttm_tt_destroy = &nouveau_ttm_tt_destroy,
1402 .eviction_valuable = ttm_bo_eviction_valuable,
1403 .evict_flags = nouveau_bo_evict_flags,
1404 .delete_mem_notify = nouveau_bo_delete_mem_notify,
1405 .move = nouveau_bo_move,
1406 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1407 .io_mem_free = &nouveau_ttm_io_mem_free,
1408 };
1409