1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/host.h>
29 #include <linux/mmc/mmc.h>
30 #include <linux/mmc/sd.h>
31 
32 #include "core.h"
33 #include "bus.h"
34 #include "host.h"
35 #include "sdio_bus.h"
36 
37 #include "mmc_ops.h"
38 #include "sd_ops.h"
39 #include "sdio_ops.h"
40 
41 static struct workqueue_struct *workqueue;
42 
43 /*
44  * Enabling software CRCs on the data blocks can be a significant (30%)
45  * performance cost, and for other reasons may not always be desired.
46  * So we allow it it to be disabled.
47  */
48 int use_spi_crc = 1;
49 module_param(use_spi_crc, bool, 0);
50 
51 /*
52  * We normally treat cards as removed during suspend if they are not
53  * known to be on a non-removable bus, to avoid the risk of writing
54  * back data to a different card after resume.  Allow this to be
55  * overridden if necessary.
56  */
57 #ifdef CONFIG_MMC_UNSAFE_RESUME
58 int mmc_assume_removable;
59 #else
60 int mmc_assume_removable = 1;
61 #endif
62 EXPORT_SYMBOL(mmc_assume_removable);
63 module_param_named(removable, mmc_assume_removable, bool, 0644);
64 MODULE_PARM_DESC(
65 	removable,
66 	"MMC/SD cards are removable and may be removed during suspend");
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
mmc_flush_scheduled_work(void)80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 /**
86  *	mmc_request_done - finish processing an MMC request
87  *	@host: MMC host which completed request
88  *	@mrq: MMC request which request
89  *
90  *	MMC drivers should call this function when they have completed
91  *	their processing of a request.
92  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	int err = cmd->error;
97 
98 	if (err && cmd->retries && mmc_host_is_spi(host)) {
99 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 			cmd->retries = 0;
101 	}
102 
103 	if (err && cmd->retries) {
104 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 			mmc_hostname(host), cmd->opcode, err);
106 
107 		cmd->retries--;
108 		cmd->error = 0;
109 		host->ops->request(host, mrq);
110 	} else {
111 		led_trigger_event(host->led, LED_OFF);
112 
113 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 			mmc_hostname(host), cmd->opcode, err,
115 			cmd->resp[0], cmd->resp[1],
116 			cmd->resp[2], cmd->resp[3]);
117 
118 		if (mrq->data) {
119 			pr_debug("%s:     %d bytes transferred: %d\n",
120 				mmc_hostname(host),
121 				mrq->data->bytes_xfered, mrq->data->error);
122 		}
123 
124 		if (mrq->stop) {
125 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
126 				mmc_hostname(host), mrq->stop->opcode,
127 				mrq->stop->error,
128 				mrq->stop->resp[0], mrq->stop->resp[1],
129 				mrq->stop->resp[2], mrq->stop->resp[3]);
130 		}
131 
132 		if (mrq->done)
133 			mrq->done(mrq);
134 
135 		mmc_host_clk_gate(host);
136 	}
137 }
138 
139 EXPORT_SYMBOL(mmc_request_done);
140 
141 static void
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
143 {
144 #ifdef CONFIG_MMC_DEBUG
145 	unsigned int i, sz;
146 	struct scatterlist *sg;
147 #endif
148 
149 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 		 mmc_hostname(host), mrq->cmd->opcode,
151 		 mrq->cmd->arg, mrq->cmd->flags);
152 
153 	if (mrq->data) {
154 		pr_debug("%s:     blksz %d blocks %d flags %08x "
155 			"tsac %d ms nsac %d\n",
156 			mmc_hostname(host), mrq->data->blksz,
157 			mrq->data->blocks, mrq->data->flags,
158 			mrq->data->timeout_ns / 1000000,
159 			mrq->data->timeout_clks);
160 	}
161 
162 	if (mrq->stop) {
163 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
164 			 mmc_hostname(host), mrq->stop->opcode,
165 			 mrq->stop->arg, mrq->stop->flags);
166 	}
167 
168 	WARN_ON(!host->claimed);
169 
170 	mrq->cmd->error = 0;
171 	mrq->cmd->mrq = mrq;
172 	if (mrq->data) {
173 		BUG_ON(mrq->data->blksz > host->max_blk_size);
174 		BUG_ON(mrq->data->blocks > host->max_blk_count);
175 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
176 			host->max_req_size);
177 
178 #ifdef CONFIG_MMC_DEBUG
179 		sz = 0;
180 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
181 			sz += sg->length;
182 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
183 #endif
184 
185 		mrq->cmd->data = mrq->data;
186 		mrq->data->error = 0;
187 		mrq->data->mrq = mrq;
188 		if (mrq->stop) {
189 			mrq->data->stop = mrq->stop;
190 			mrq->stop->error = 0;
191 			mrq->stop->mrq = mrq;
192 		}
193 	}
194 	mmc_host_clk_ungate(host);
195 	led_trigger_event(host->led, LED_FULL);
196 	host->ops->request(host, mrq);
197 }
198 
mmc_wait_done(struct mmc_request * mrq)199 static void mmc_wait_done(struct mmc_request *mrq)
200 {
201 	complete(mrq->done_data);
202 }
203 
204 /**
205  *	mmc_wait_for_req - start a request and wait for completion
206  *	@host: MMC host to start command
207  *	@mrq: MMC request to start
208  *
209  *	Start a new MMC custom command request for a host, and wait
210  *	for the command to complete. Does not attempt to parse the
211  *	response.
212  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)213 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
214 {
215 	DECLARE_COMPLETION_ONSTACK(complete);
216 
217 	mrq->done_data = &complete;
218 	mrq->done = mmc_wait_done;
219 
220 	mmc_start_request(host, mrq);
221 
222 	wait_for_completion(&complete);
223 }
224 
225 EXPORT_SYMBOL(mmc_wait_for_req);
226 
227 /**
228  *	mmc_wait_for_cmd - start a command and wait for completion
229  *	@host: MMC host to start command
230  *	@cmd: MMC command to start
231  *	@retries: maximum number of retries
232  *
233  *	Start a new MMC command for a host, and wait for the command
234  *	to complete.  Return any error that occurred while the command
235  *	was executing.  Do not attempt to parse the response.
236  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)237 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
238 {
239 	struct mmc_request mrq;
240 
241 	WARN_ON(!host->claimed);
242 
243 	memset(&mrq, 0, sizeof(struct mmc_request));
244 
245 	memset(cmd->resp, 0, sizeof(cmd->resp));
246 	cmd->retries = retries;
247 
248 	mrq.cmd = cmd;
249 	cmd->data = NULL;
250 
251 	mmc_wait_for_req(host, &mrq);
252 
253 	return cmd->error;
254 }
255 
256 EXPORT_SYMBOL(mmc_wait_for_cmd);
257 
258 /**
259  *	mmc_set_data_timeout - set the timeout for a data command
260  *	@data: data phase for command
261  *	@card: the MMC card associated with the data transfer
262  *
263  *	Computes the data timeout parameters according to the
264  *	correct algorithm given the card type.
265  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)266 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
267 {
268 	unsigned int mult;
269 
270 	/*
271 	 * SDIO cards only define an upper 1 s limit on access.
272 	 */
273 	if (mmc_card_sdio(card)) {
274 		data->timeout_ns = 1000000000;
275 		data->timeout_clks = 0;
276 		return;
277 	}
278 
279 	/*
280 	 * SD cards use a 100 multiplier rather than 10
281 	 */
282 	mult = mmc_card_sd(card) ? 100 : 10;
283 
284 	/*
285 	 * Scale up the multiplier (and therefore the timeout) by
286 	 * the r2w factor for writes.
287 	 */
288 	if (data->flags & MMC_DATA_WRITE)
289 		mult <<= card->csd.r2w_factor;
290 
291 	data->timeout_ns = card->csd.tacc_ns * mult;
292 	data->timeout_clks = card->csd.tacc_clks * mult;
293 
294 	/*
295 	 * SD cards also have an upper limit on the timeout.
296 	 */
297 	if (mmc_card_sd(card)) {
298 		unsigned int timeout_us, limit_us;
299 
300 		timeout_us = data->timeout_ns / 1000;
301 		if (mmc_host_clk_rate(card->host))
302 			timeout_us += data->timeout_clks * 1000 /
303 				(mmc_host_clk_rate(card->host) / 1000);
304 
305 		if (data->flags & MMC_DATA_WRITE)
306 			/*
307 			 * The limit is really 250 ms, but that is
308 			 * insufficient for some crappy cards.
309 			 */
310 			limit_us = 300000;
311 		else
312 			limit_us = 100000;
313 
314 		/*
315 		 * SDHC cards always use these fixed values.
316 		 */
317 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
318 			data->timeout_ns = limit_us * 1000;
319 			data->timeout_clks = 0;
320 		}
321 	}
322 	/*
323 	 * Some cards need very high timeouts if driven in SPI mode.
324 	 * The worst observed timeout was 900ms after writing a
325 	 * continuous stream of data until the internal logic
326 	 * overflowed.
327 	 */
328 	if (mmc_host_is_spi(card->host)) {
329 		if (data->flags & MMC_DATA_WRITE) {
330 			if (data->timeout_ns < 1000000000)
331 				data->timeout_ns = 1000000000;	/* 1s */
332 		} else {
333 			if (data->timeout_ns < 100000000)
334 				data->timeout_ns =  100000000;	/* 100ms */
335 		}
336 	}
337 }
338 EXPORT_SYMBOL(mmc_set_data_timeout);
339 
340 /**
341  *	mmc_align_data_size - pads a transfer size to a more optimal value
342  *	@card: the MMC card associated with the data transfer
343  *	@sz: original transfer size
344  *
345  *	Pads the original data size with a number of extra bytes in
346  *	order to avoid controller bugs and/or performance hits
347  *	(e.g. some controllers revert to PIO for certain sizes).
348  *
349  *	Returns the improved size, which might be unmodified.
350  *
351  *	Note that this function is only relevant when issuing a
352  *	single scatter gather entry.
353  */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)354 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
355 {
356 	/*
357 	 * FIXME: We don't have a system for the controller to tell
358 	 * the core about its problems yet, so for now we just 32-bit
359 	 * align the size.
360 	 */
361 	sz = ((sz + 3) / 4) * 4;
362 
363 	return sz;
364 }
365 EXPORT_SYMBOL(mmc_align_data_size);
366 
367 /**
368  *	mmc_host_enable - enable a host.
369  *	@host: mmc host to enable
370  *
371  *	Hosts that support power saving can use the 'enable' and 'disable'
372  *	methods to exit and enter power saving states. For more information
373  *	see comments for struct mmc_host_ops.
374  */
mmc_host_enable(struct mmc_host * host)375 int mmc_host_enable(struct mmc_host *host)
376 {
377 	if (!(host->caps & MMC_CAP_DISABLE))
378 		return 0;
379 
380 	if (host->en_dis_recurs)
381 		return 0;
382 
383 	if (host->nesting_cnt++)
384 		return 0;
385 
386 	cancel_delayed_work_sync(&host->disable);
387 
388 	if (host->enabled)
389 		return 0;
390 
391 	if (host->ops->enable) {
392 		int err;
393 
394 		host->en_dis_recurs = 1;
395 		err = host->ops->enable(host);
396 		host->en_dis_recurs = 0;
397 
398 		if (err) {
399 			pr_debug("%s: enable error %d\n",
400 				 mmc_hostname(host), err);
401 			return err;
402 		}
403 	}
404 	host->enabled = 1;
405 	return 0;
406 }
407 EXPORT_SYMBOL(mmc_host_enable);
408 
mmc_host_do_disable(struct mmc_host * host,int lazy)409 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
410 {
411 	if (host->ops->disable) {
412 		int err;
413 
414 		host->en_dis_recurs = 1;
415 		err = host->ops->disable(host, lazy);
416 		host->en_dis_recurs = 0;
417 
418 		if (err < 0) {
419 			pr_debug("%s: disable error %d\n",
420 				 mmc_hostname(host), err);
421 			return err;
422 		}
423 		if (err > 0) {
424 			unsigned long delay = msecs_to_jiffies(err);
425 
426 			mmc_schedule_delayed_work(&host->disable, delay);
427 		}
428 	}
429 	host->enabled = 0;
430 	return 0;
431 }
432 
433 /**
434  *	mmc_host_disable - disable a host.
435  *	@host: mmc host to disable
436  *
437  *	Hosts that support power saving can use the 'enable' and 'disable'
438  *	methods to exit and enter power saving states. For more information
439  *	see comments for struct mmc_host_ops.
440  */
mmc_host_disable(struct mmc_host * host)441 int mmc_host_disable(struct mmc_host *host)
442 {
443 	int err;
444 
445 	if (!(host->caps & MMC_CAP_DISABLE))
446 		return 0;
447 
448 	if (host->en_dis_recurs)
449 		return 0;
450 
451 	if (--host->nesting_cnt)
452 		return 0;
453 
454 	if (!host->enabled)
455 		return 0;
456 
457 	err = mmc_host_do_disable(host, 0);
458 	return err;
459 }
460 EXPORT_SYMBOL(mmc_host_disable);
461 
462 /**
463  *	__mmc_claim_host - exclusively claim a host
464  *	@host: mmc host to claim
465  *	@abort: whether or not the operation should be aborted
466  *
467  *	Claim a host for a set of operations.  If @abort is non null and
468  *	dereference a non-zero value then this will return prematurely with
469  *	that non-zero value without acquiring the lock.  Returns zero
470  *	with the lock held otherwise.
471  */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)472 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
473 {
474 	DECLARE_WAITQUEUE(wait, current);
475 	unsigned long flags;
476 	int stop;
477 
478 	might_sleep();
479 
480 	add_wait_queue(&host->wq, &wait);
481 	spin_lock_irqsave(&host->lock, flags);
482 	while (1) {
483 		set_current_state(TASK_UNINTERRUPTIBLE);
484 		stop = abort ? atomic_read(abort) : 0;
485 		if (stop || !host->claimed || host->claimer == current)
486 			break;
487 		spin_unlock_irqrestore(&host->lock, flags);
488 		schedule();
489 		spin_lock_irqsave(&host->lock, flags);
490 	}
491 	set_current_state(TASK_RUNNING);
492 	if (!stop) {
493 		host->claimed = 1;
494 		host->claimer = current;
495 		host->claim_cnt += 1;
496 	} else
497 		wake_up(&host->wq);
498 	spin_unlock_irqrestore(&host->lock, flags);
499 	remove_wait_queue(&host->wq, &wait);
500 	if (!stop)
501 		mmc_host_enable(host);
502 	return stop;
503 }
504 
505 EXPORT_SYMBOL(__mmc_claim_host);
506 
507 /**
508  *	mmc_try_claim_host - try exclusively to claim a host
509  *	@host: mmc host to claim
510  *
511  *	Returns %1 if the host is claimed, %0 otherwise.
512  */
mmc_try_claim_host(struct mmc_host * host)513 int mmc_try_claim_host(struct mmc_host *host)
514 {
515 	int claimed_host = 0;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&host->lock, flags);
519 	if (!host->claimed || host->claimer == current) {
520 		host->claimed = 1;
521 		host->claimer = current;
522 		host->claim_cnt += 1;
523 		claimed_host = 1;
524 	}
525 	spin_unlock_irqrestore(&host->lock, flags);
526 	return claimed_host;
527 }
528 EXPORT_SYMBOL(mmc_try_claim_host);
529 
530 /**
531  *	mmc_do_release_host - release a claimed host
532  *	@host: mmc host to release
533  *
534  *	If you successfully claimed a host, this function will
535  *	release it again.
536  */
mmc_do_release_host(struct mmc_host * host)537 void mmc_do_release_host(struct mmc_host *host)
538 {
539 	unsigned long flags;
540 
541 	spin_lock_irqsave(&host->lock, flags);
542 	if (--host->claim_cnt) {
543 		/* Release for nested claim */
544 		spin_unlock_irqrestore(&host->lock, flags);
545 	} else {
546 		host->claimed = 0;
547 		host->claimer = NULL;
548 		spin_unlock_irqrestore(&host->lock, flags);
549 		wake_up(&host->wq);
550 	}
551 }
552 EXPORT_SYMBOL(mmc_do_release_host);
553 
mmc_host_deeper_disable(struct work_struct * work)554 void mmc_host_deeper_disable(struct work_struct *work)
555 {
556 	struct mmc_host *host =
557 		container_of(work, struct mmc_host, disable.work);
558 
559 	/* If the host is claimed then we do not want to disable it anymore */
560 	if (!mmc_try_claim_host(host))
561 		return;
562 	mmc_host_do_disable(host, 1);
563 	mmc_do_release_host(host);
564 }
565 
566 /**
567  *	mmc_host_lazy_disable - lazily disable a host.
568  *	@host: mmc host to disable
569  *
570  *	Hosts that support power saving can use the 'enable' and 'disable'
571  *	methods to exit and enter power saving states. For more information
572  *	see comments for struct mmc_host_ops.
573  */
mmc_host_lazy_disable(struct mmc_host * host)574 int mmc_host_lazy_disable(struct mmc_host *host)
575 {
576 	if (!(host->caps & MMC_CAP_DISABLE))
577 		return 0;
578 
579 	if (host->en_dis_recurs)
580 		return 0;
581 
582 	if (--host->nesting_cnt)
583 		return 0;
584 
585 	if (!host->enabled)
586 		return 0;
587 
588 	if (host->disable_delay) {
589 		mmc_schedule_delayed_work(&host->disable,
590 				msecs_to_jiffies(host->disable_delay));
591 		return 0;
592 	} else
593 		return mmc_host_do_disable(host, 1);
594 }
595 EXPORT_SYMBOL(mmc_host_lazy_disable);
596 
597 /**
598  *	mmc_release_host - release a host
599  *	@host: mmc host to release
600  *
601  *	Release a MMC host, allowing others to claim the host
602  *	for their operations.
603  */
mmc_release_host(struct mmc_host * host)604 void mmc_release_host(struct mmc_host *host)
605 {
606 	WARN_ON(!host->claimed);
607 
608 	mmc_host_lazy_disable(host);
609 
610 	mmc_do_release_host(host);
611 }
612 
613 EXPORT_SYMBOL(mmc_release_host);
614 
615 /*
616  * Internal function that does the actual ios call to the host driver,
617  * optionally printing some debug output.
618  */
mmc_set_ios(struct mmc_host * host)619 static inline void mmc_set_ios(struct mmc_host *host)
620 {
621 	struct mmc_ios *ios = &host->ios;
622 
623 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
624 		"width %u timing %u\n",
625 		 mmc_hostname(host), ios->clock, ios->bus_mode,
626 		 ios->power_mode, ios->chip_select, ios->vdd,
627 		 ios->bus_width, ios->timing);
628 
629 	if (ios->clock > 0)
630 		mmc_set_ungated(host);
631 	host->ops->set_ios(host, ios);
632 }
633 
634 /*
635  * Control chip select pin on a host.
636  */
mmc_set_chip_select(struct mmc_host * host,int mode)637 void mmc_set_chip_select(struct mmc_host *host, int mode)
638 {
639 	host->ios.chip_select = mode;
640 	mmc_set_ios(host);
641 }
642 
643 /*
644  * Sets the host clock to the highest possible frequency that
645  * is below "hz".
646  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)647 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
648 {
649 	WARN_ON(hz < host->f_min);
650 
651 	if (hz > host->f_max)
652 		hz = host->f_max;
653 
654 	host->ios.clock = hz;
655 	mmc_set_ios(host);
656 }
657 
658 #ifdef CONFIG_MMC_CLKGATE
659 /*
660  * This gates the clock by setting it to 0 Hz.
661  */
mmc_gate_clock(struct mmc_host * host)662 void mmc_gate_clock(struct mmc_host *host)
663 {
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&host->clk_lock, flags);
667 	host->clk_old = host->ios.clock;
668 	host->ios.clock = 0;
669 	host->clk_gated = true;
670 	spin_unlock_irqrestore(&host->clk_lock, flags);
671 	mmc_set_ios(host);
672 }
673 
674 /*
675  * This restores the clock from gating by using the cached
676  * clock value.
677  */
mmc_ungate_clock(struct mmc_host * host)678 void mmc_ungate_clock(struct mmc_host *host)
679 {
680 	/*
681 	 * We should previously have gated the clock, so the clock shall
682 	 * be 0 here! The clock may however be 0 during initialization,
683 	 * when some request operations are performed before setting
684 	 * the frequency. When ungate is requested in that situation
685 	 * we just ignore the call.
686 	 */
687 	if (host->clk_old) {
688 		BUG_ON(host->ios.clock);
689 		/* This call will also set host->clk_gated to false */
690 		mmc_set_clock(host, host->clk_old);
691 	}
692 }
693 
mmc_set_ungated(struct mmc_host * host)694 void mmc_set_ungated(struct mmc_host *host)
695 {
696 	unsigned long flags;
697 
698 	/*
699 	 * We've been given a new frequency while the clock is gated,
700 	 * so make sure we regard this as ungating it.
701 	 */
702 	spin_lock_irqsave(&host->clk_lock, flags);
703 	host->clk_gated = false;
704 	spin_unlock_irqrestore(&host->clk_lock, flags);
705 }
706 
707 #else
mmc_set_ungated(struct mmc_host * host)708 void mmc_set_ungated(struct mmc_host *host)
709 {
710 }
711 #endif
712 
713 /*
714  * Change the bus mode (open drain/push-pull) of a host.
715  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)716 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
717 {
718 	host->ios.bus_mode = mode;
719 	mmc_set_ios(host);
720 }
721 
722 /*
723  * Change data bus width and DDR mode of a host.
724  */
mmc_set_bus_width_ddr(struct mmc_host * host,unsigned int width,unsigned int ddr)725 void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
726 			   unsigned int ddr)
727 {
728 	host->ios.bus_width = width;
729 	host->ios.ddr = ddr;
730 	mmc_set_ios(host);
731 }
732 
733 /*
734  * Change data bus width of a host.
735  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)736 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
737 {
738 	mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
739 }
740 
741 /**
742  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
743  * @vdd:	voltage (mV)
744  * @low_bits:	prefer low bits in boundary cases
745  *
746  * This function returns the OCR bit number according to the provided @vdd
747  * value. If conversion is not possible a negative errno value returned.
748  *
749  * Depending on the @low_bits flag the function prefers low or high OCR bits
750  * on boundary voltages. For example,
751  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
752  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
753  *
754  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
755  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)756 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
757 {
758 	const int max_bit = ilog2(MMC_VDD_35_36);
759 	int bit;
760 
761 	if (vdd < 1650 || vdd > 3600)
762 		return -EINVAL;
763 
764 	if (vdd >= 1650 && vdd <= 1950)
765 		return ilog2(MMC_VDD_165_195);
766 
767 	if (low_bits)
768 		vdd -= 1;
769 
770 	/* Base 2000 mV, step 100 mV, bit's base 8. */
771 	bit = (vdd - 2000) / 100 + 8;
772 	if (bit > max_bit)
773 		return max_bit;
774 	return bit;
775 }
776 
777 /**
778  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
779  * @vdd_min:	minimum voltage value (mV)
780  * @vdd_max:	maximum voltage value (mV)
781  *
782  * This function returns the OCR mask bits according to the provided @vdd_min
783  * and @vdd_max values. If conversion is not possible the function returns 0.
784  *
785  * Notes wrt boundary cases:
786  * This function sets the OCR bits for all boundary voltages, for example
787  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
788  * MMC_VDD_34_35 mask.
789  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)790 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
791 {
792 	u32 mask = 0;
793 
794 	if (vdd_max < vdd_min)
795 		return 0;
796 
797 	/* Prefer high bits for the boundary vdd_max values. */
798 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
799 	if (vdd_max < 0)
800 		return 0;
801 
802 	/* Prefer low bits for the boundary vdd_min values. */
803 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
804 	if (vdd_min < 0)
805 		return 0;
806 
807 	/* Fill the mask, from max bit to min bit. */
808 	while (vdd_max >= vdd_min)
809 		mask |= 1 << vdd_max--;
810 
811 	return mask;
812 }
813 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
814 
815 #ifdef CONFIG_REGULATOR
816 
817 /**
818  * mmc_regulator_get_ocrmask - return mask of supported voltages
819  * @supply: regulator to use
820  *
821  * This returns either a negative errno, or a mask of voltages that
822  * can be provided to MMC/SD/SDIO devices using the specified voltage
823  * regulator.  This would normally be called before registering the
824  * MMC host adapter.
825  */
mmc_regulator_get_ocrmask(struct regulator * supply)826 int mmc_regulator_get_ocrmask(struct regulator *supply)
827 {
828 	int			result = 0;
829 	int			count;
830 	int			i;
831 
832 	count = regulator_count_voltages(supply);
833 	if (count < 0)
834 		return count;
835 
836 	for (i = 0; i < count; i++) {
837 		int		vdd_uV;
838 		int		vdd_mV;
839 
840 		vdd_uV = regulator_list_voltage(supply, i);
841 		if (vdd_uV <= 0)
842 			continue;
843 
844 		vdd_mV = vdd_uV / 1000;
845 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
846 	}
847 
848 	return result;
849 }
850 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
851 
852 /**
853  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
854  * @mmc: the host to regulate
855  * @supply: regulator to use
856  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
857  *
858  * Returns zero on success, else negative errno.
859  *
860  * MMC host drivers may use this to enable or disable a regulator using
861  * a particular supply voltage.  This would normally be called from the
862  * set_ios() method.
863  */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)864 int mmc_regulator_set_ocr(struct mmc_host *mmc,
865 			struct regulator *supply,
866 			unsigned short vdd_bit)
867 {
868 	int			result = 0;
869 	int			min_uV, max_uV;
870 
871 	if (vdd_bit) {
872 		int		tmp;
873 		int		voltage;
874 
875 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
876 		 * bits this regulator doesn't quite support ... don't
877 		 * be too picky, most cards and regulators are OK with
878 		 * a 0.1V range goof (it's a small error percentage).
879 		 */
880 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
881 		if (tmp == 0) {
882 			min_uV = 1650 * 1000;
883 			max_uV = 1950 * 1000;
884 		} else {
885 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
886 			max_uV = min_uV + 100 * 1000;
887 		}
888 
889 		/* avoid needless changes to this voltage; the regulator
890 		 * might not allow this operation
891 		 */
892 		voltage = regulator_get_voltage(supply);
893 		if (voltage < 0)
894 			result = voltage;
895 		else if (voltage < min_uV || voltage > max_uV)
896 			result = regulator_set_voltage(supply, min_uV, max_uV);
897 		else
898 			result = 0;
899 
900 		if (result == 0 && !mmc->regulator_enabled) {
901 			result = regulator_enable(supply);
902 			if (!result)
903 				mmc->regulator_enabled = true;
904 		}
905 	} else if (mmc->regulator_enabled) {
906 		result = regulator_disable(supply);
907 		if (result == 0)
908 			mmc->regulator_enabled = false;
909 	}
910 
911 	if (result)
912 		dev_err(mmc_dev(mmc),
913 			"could not set regulator OCR (%d)\n", result);
914 	return result;
915 }
916 EXPORT_SYMBOL(mmc_regulator_set_ocr);
917 
918 #endif /* CONFIG_REGULATOR */
919 
920 /*
921  * Mask off any voltages we don't support and select
922  * the lowest voltage
923  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)924 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
925 {
926 	int bit;
927 
928 	ocr &= host->ocr_avail;
929 
930 	bit = ffs(ocr);
931 	if (bit) {
932 		bit -= 1;
933 
934 		ocr &= 3 << bit;
935 
936 		host->ios.vdd = bit;
937 		mmc_set_ios(host);
938 	} else {
939 		pr_warning("%s: host doesn't support card's voltages\n",
940 				mmc_hostname(host));
941 		ocr = 0;
942 	}
943 
944 	return ocr;
945 }
946 
947 /*
948  * Select timing parameters for host.
949  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)950 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
951 {
952 	host->ios.timing = timing;
953 	mmc_set_ios(host);
954 }
955 
956 /*
957  * Apply power to the MMC stack.  This is a two-stage process.
958  * First, we enable power to the card without the clock running.
959  * We then wait a bit for the power to stabilise.  Finally,
960  * enable the bus drivers and clock to the card.
961  *
962  * We must _NOT_ enable the clock prior to power stablising.
963  *
964  * If a host does all the power sequencing itself, ignore the
965  * initial MMC_POWER_UP stage.
966  */
mmc_power_up(struct mmc_host * host)967 static void mmc_power_up(struct mmc_host *host)
968 {
969 	int bit;
970 
971 	/* If ocr is set, we use it */
972 	if (host->ocr)
973 		bit = ffs(host->ocr) - 1;
974 	else
975 		bit = fls(host->ocr_avail) - 1;
976 
977 	host->ios.vdd = bit;
978 	if (mmc_host_is_spi(host)) {
979 		host->ios.chip_select = MMC_CS_HIGH;
980 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
981 	} else {
982 		host->ios.chip_select = MMC_CS_DONTCARE;
983 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
984 	}
985 	host->ios.power_mode = MMC_POWER_UP;
986 	host->ios.bus_width = MMC_BUS_WIDTH_1;
987 	host->ios.timing = MMC_TIMING_LEGACY;
988 	mmc_set_ios(host);
989 
990 	/*
991 	 * This delay should be sufficient to allow the power supply
992 	 * to reach the minimum voltage.
993 	 */
994 	mmc_delay(10);
995 
996 	host->ios.clock = host->f_init;
997 
998 	host->ios.power_mode = MMC_POWER_ON;
999 	mmc_set_ios(host);
1000 
1001 	/*
1002 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1003 	 * time required to reach a stable voltage.
1004 	 */
1005 	mmc_delay(10);
1006 }
1007 
mmc_power_off(struct mmc_host * host)1008 static void mmc_power_off(struct mmc_host *host)
1009 {
1010 	host->ios.clock = 0;
1011 	host->ios.vdd = 0;
1012 
1013 	/*
1014 	 * Reset ocr mask to be the highest possible voltage supported for
1015 	 * this mmc host. This value will be used at next power up.
1016 	 */
1017 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1018 
1019 	if (!mmc_host_is_spi(host)) {
1020 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1021 		host->ios.chip_select = MMC_CS_DONTCARE;
1022 	}
1023 	host->ios.power_mode = MMC_POWER_OFF;
1024 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1025 	host->ios.timing = MMC_TIMING_LEGACY;
1026 	mmc_set_ios(host);
1027 }
1028 
1029 /*
1030  * Cleanup when the last reference to the bus operator is dropped.
1031  */
__mmc_release_bus(struct mmc_host * host)1032 static void __mmc_release_bus(struct mmc_host *host)
1033 {
1034 	BUG_ON(!host);
1035 	BUG_ON(host->bus_refs);
1036 	BUG_ON(!host->bus_dead);
1037 
1038 	host->bus_ops = NULL;
1039 }
1040 
1041 /*
1042  * Increase reference count of bus operator
1043  */
mmc_bus_get(struct mmc_host * host)1044 static inline void mmc_bus_get(struct mmc_host *host)
1045 {
1046 	unsigned long flags;
1047 
1048 	spin_lock_irqsave(&host->lock, flags);
1049 	host->bus_refs++;
1050 	spin_unlock_irqrestore(&host->lock, flags);
1051 }
1052 
1053 /*
1054  * Decrease reference count of bus operator and free it if
1055  * it is the last reference.
1056  */
mmc_bus_put(struct mmc_host * host)1057 static inline void mmc_bus_put(struct mmc_host *host)
1058 {
1059 	unsigned long flags;
1060 
1061 	spin_lock_irqsave(&host->lock, flags);
1062 	host->bus_refs--;
1063 	if ((host->bus_refs == 0) && host->bus_ops)
1064 		__mmc_release_bus(host);
1065 	spin_unlock_irqrestore(&host->lock, flags);
1066 }
1067 
1068 /*
1069  * Assign a mmc bus handler to a host. Only one bus handler may control a
1070  * host at any given time.
1071  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1072 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1073 {
1074 	unsigned long flags;
1075 
1076 	BUG_ON(!host);
1077 	BUG_ON(!ops);
1078 
1079 	WARN_ON(!host->claimed);
1080 
1081 	spin_lock_irqsave(&host->lock, flags);
1082 
1083 	BUG_ON(host->bus_ops);
1084 	BUG_ON(host->bus_refs);
1085 
1086 	host->bus_ops = ops;
1087 	host->bus_refs = 1;
1088 	host->bus_dead = 0;
1089 
1090 	spin_unlock_irqrestore(&host->lock, flags);
1091 }
1092 
1093 /*
1094  * Remove the current bus handler from a host. Assumes that there are
1095  * no interesting cards left, so the bus is powered down.
1096  */
mmc_detach_bus(struct mmc_host * host)1097 void mmc_detach_bus(struct mmc_host *host)
1098 {
1099 	unsigned long flags;
1100 
1101 	BUG_ON(!host);
1102 
1103 	WARN_ON(!host->claimed);
1104 	WARN_ON(!host->bus_ops);
1105 
1106 	spin_lock_irqsave(&host->lock, flags);
1107 
1108 	host->bus_dead = 1;
1109 
1110 	spin_unlock_irqrestore(&host->lock, flags);
1111 
1112 	mmc_power_off(host);
1113 
1114 	mmc_bus_put(host);
1115 }
1116 
1117 /**
1118  *	mmc_detect_change - process change of state on a MMC socket
1119  *	@host: host which changed state.
1120  *	@delay: optional delay to wait before detection (jiffies)
1121  *
1122  *	MMC drivers should call this when they detect a card has been
1123  *	inserted or removed. The MMC layer will confirm that any
1124  *	present card is still functional, and initialize any newly
1125  *	inserted.
1126  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1127 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1128 {
1129 #ifdef CONFIG_MMC_DEBUG
1130 	unsigned long flags;
1131 	spin_lock_irqsave(&host->lock, flags);
1132 	WARN_ON(host->removed);
1133 	spin_unlock_irqrestore(&host->lock, flags);
1134 #endif
1135 
1136 	mmc_schedule_delayed_work(&host->detect, delay);
1137 }
1138 
1139 EXPORT_SYMBOL(mmc_detect_change);
1140 
mmc_init_erase(struct mmc_card * card)1141 void mmc_init_erase(struct mmc_card *card)
1142 {
1143 	unsigned int sz;
1144 
1145 	if (is_power_of_2(card->erase_size))
1146 		card->erase_shift = ffs(card->erase_size) - 1;
1147 	else
1148 		card->erase_shift = 0;
1149 
1150 	/*
1151 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1152 	 * card.  That is not desirable because it can take a long time
1153 	 * (minutes) potentially delaying more important I/O, and also the
1154 	 * timeout calculations become increasingly hugely over-estimated.
1155 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1156 	 * to that size and alignment.
1157 	 *
1158 	 * For SD cards that define Allocation Unit size, limit erases to one
1159 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1160 	 * Erase Size, whether it is switched on or not, limit to that size.
1161 	 * Otherwise just have a stab at a good value.  For modern cards it
1162 	 * will end up being 4MiB.  Note that if the value is too small, it
1163 	 * can end up taking longer to erase.
1164 	 */
1165 	if (mmc_card_sd(card) && card->ssr.au) {
1166 		card->pref_erase = card->ssr.au;
1167 		card->erase_shift = ffs(card->ssr.au) - 1;
1168 	} else if (card->ext_csd.hc_erase_size) {
1169 		card->pref_erase = card->ext_csd.hc_erase_size;
1170 	} else {
1171 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1172 		if (sz < 128)
1173 			card->pref_erase = 512 * 1024 / 512;
1174 		else if (sz < 512)
1175 			card->pref_erase = 1024 * 1024 / 512;
1176 		else if (sz < 1024)
1177 			card->pref_erase = 2 * 1024 * 1024 / 512;
1178 		else
1179 			card->pref_erase = 4 * 1024 * 1024 / 512;
1180 		if (card->pref_erase < card->erase_size)
1181 			card->pref_erase = card->erase_size;
1182 		else {
1183 			sz = card->pref_erase % card->erase_size;
1184 			if (sz)
1185 				card->pref_erase += card->erase_size - sz;
1186 		}
1187 	}
1188 }
1189 
mmc_set_mmc_erase_timeout(struct mmc_card * card,struct mmc_command * cmd,unsigned int arg,unsigned int qty)1190 static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1191 				      struct mmc_command *cmd,
1192 				      unsigned int arg, unsigned int qty)
1193 {
1194 	unsigned int erase_timeout;
1195 
1196 	if (card->ext_csd.erase_group_def & 1) {
1197 		/* High Capacity Erase Group Size uses HC timeouts */
1198 		if (arg == MMC_TRIM_ARG)
1199 			erase_timeout = card->ext_csd.trim_timeout;
1200 		else
1201 			erase_timeout = card->ext_csd.hc_erase_timeout;
1202 	} else {
1203 		/* CSD Erase Group Size uses write timeout */
1204 		unsigned int mult = (10 << card->csd.r2w_factor);
1205 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1206 		unsigned int timeout_us;
1207 
1208 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1209 		if (card->csd.tacc_ns < 1000000)
1210 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1211 		else
1212 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1213 
1214 		/*
1215 		 * ios.clock is only a target.  The real clock rate might be
1216 		 * less but not that much less, so fudge it by multiplying by 2.
1217 		 */
1218 		timeout_clks <<= 1;
1219 		timeout_us += (timeout_clks * 1000) /
1220 			      (card->host->ios.clock / 1000);
1221 
1222 		erase_timeout = timeout_us / 1000;
1223 
1224 		/*
1225 		 * Theoretically, the calculation could underflow so round up
1226 		 * to 1ms in that case.
1227 		 */
1228 		if (!erase_timeout)
1229 			erase_timeout = 1;
1230 	}
1231 
1232 	/* Multiplier for secure operations */
1233 	if (arg & MMC_SECURE_ARGS) {
1234 		if (arg == MMC_SECURE_ERASE_ARG)
1235 			erase_timeout *= card->ext_csd.sec_erase_mult;
1236 		else
1237 			erase_timeout *= card->ext_csd.sec_trim_mult;
1238 	}
1239 
1240 	erase_timeout *= qty;
1241 
1242 	/*
1243 	 * Ensure at least a 1 second timeout for SPI as per
1244 	 * 'mmc_set_data_timeout()'
1245 	 */
1246 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1247 		erase_timeout = 1000;
1248 
1249 	cmd->erase_timeout = erase_timeout;
1250 }
1251 
mmc_set_sd_erase_timeout(struct mmc_card * card,struct mmc_command * cmd,unsigned int arg,unsigned int qty)1252 static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1253 				     struct mmc_command *cmd, unsigned int arg,
1254 				     unsigned int qty)
1255 {
1256 	if (card->ssr.erase_timeout) {
1257 		/* Erase timeout specified in SD Status Register (SSR) */
1258 		cmd->erase_timeout = card->ssr.erase_timeout * qty +
1259 				     card->ssr.erase_offset;
1260 	} else {
1261 		/*
1262 		 * Erase timeout not specified in SD Status Register (SSR) so
1263 		 * use 250ms per write block.
1264 		 */
1265 		cmd->erase_timeout = 250 * qty;
1266 	}
1267 
1268 	/* Must not be less than 1 second */
1269 	if (cmd->erase_timeout < 1000)
1270 		cmd->erase_timeout = 1000;
1271 }
1272 
mmc_set_erase_timeout(struct mmc_card * card,struct mmc_command * cmd,unsigned int arg,unsigned int qty)1273 static void mmc_set_erase_timeout(struct mmc_card *card,
1274 				  struct mmc_command *cmd, unsigned int arg,
1275 				  unsigned int qty)
1276 {
1277 	if (mmc_card_sd(card))
1278 		mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1279 	else
1280 		mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1281 }
1282 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1283 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1284 			unsigned int to, unsigned int arg)
1285 {
1286 	struct mmc_command cmd;
1287 	unsigned int qty = 0;
1288 	int err;
1289 
1290 	/*
1291 	 * qty is used to calculate the erase timeout which depends on how many
1292 	 * erase groups (or allocation units in SD terminology) are affected.
1293 	 * We count erasing part of an erase group as one erase group.
1294 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1295 	 * erase group size is almost certainly also power of 2, but it does not
1296 	 * seem to insist on that in the JEDEC standard, so we fall back to
1297 	 * division in that case.  SD may not specify an allocation unit size,
1298 	 * in which case the timeout is based on the number of write blocks.
1299 	 *
1300 	 * Note that the timeout for secure trim 2 will only be correct if the
1301 	 * number of erase groups specified is the same as the total of all
1302 	 * preceding secure trim 1 commands.  Since the power may have been
1303 	 * lost since the secure trim 1 commands occurred, it is generally
1304 	 * impossible to calculate the secure trim 2 timeout correctly.
1305 	 */
1306 	if (card->erase_shift)
1307 		qty += ((to >> card->erase_shift) -
1308 			(from >> card->erase_shift)) + 1;
1309 	else if (mmc_card_sd(card))
1310 		qty += to - from + 1;
1311 	else
1312 		qty += ((to / card->erase_size) -
1313 			(from / card->erase_size)) + 1;
1314 
1315 	if (!mmc_card_blockaddr(card)) {
1316 		from <<= 9;
1317 		to <<= 9;
1318 	}
1319 
1320 	memset(&cmd, 0, sizeof(struct mmc_command));
1321 	if (mmc_card_sd(card))
1322 		cmd.opcode = SD_ERASE_WR_BLK_START;
1323 	else
1324 		cmd.opcode = MMC_ERASE_GROUP_START;
1325 	cmd.arg = from;
1326 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1327 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1328 	if (err) {
1329 		printk(KERN_ERR "mmc_erase: group start error %d, "
1330 		       "status %#x\n", err, cmd.resp[0]);
1331 		err = -EINVAL;
1332 		goto out;
1333 	}
1334 
1335 	memset(&cmd, 0, sizeof(struct mmc_command));
1336 	if (mmc_card_sd(card))
1337 		cmd.opcode = SD_ERASE_WR_BLK_END;
1338 	else
1339 		cmd.opcode = MMC_ERASE_GROUP_END;
1340 	cmd.arg = to;
1341 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1342 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1343 	if (err) {
1344 		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1345 		       err, cmd.resp[0]);
1346 		err = -EINVAL;
1347 		goto out;
1348 	}
1349 
1350 	memset(&cmd, 0, sizeof(struct mmc_command));
1351 	cmd.opcode = MMC_ERASE;
1352 	cmd.arg = arg;
1353 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1354 	mmc_set_erase_timeout(card, &cmd, arg, qty);
1355 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1356 	if (err) {
1357 		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1358 		       err, cmd.resp[0]);
1359 		err = -EIO;
1360 		goto out;
1361 	}
1362 
1363 	if (mmc_host_is_spi(card->host))
1364 		goto out;
1365 
1366 	do {
1367 		memset(&cmd, 0, sizeof(struct mmc_command));
1368 		cmd.opcode = MMC_SEND_STATUS;
1369 		cmd.arg = card->rca << 16;
1370 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1371 		/* Do not retry else we can't see errors */
1372 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1373 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1374 			printk(KERN_ERR "error %d requesting status %#x\n",
1375 				err, cmd.resp[0]);
1376 			err = -EIO;
1377 			goto out;
1378 		}
1379 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1380 		 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1381 out:
1382 	return err;
1383 }
1384 
1385 /**
1386  * mmc_erase - erase sectors.
1387  * @card: card to erase
1388  * @from: first sector to erase
1389  * @nr: number of sectors to erase
1390  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1391  *
1392  * Caller must claim host before calling this function.
1393  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1394 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1395 	      unsigned int arg)
1396 {
1397 	unsigned int rem, to = from + nr;
1398 
1399 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1400 	    !(card->csd.cmdclass & CCC_ERASE))
1401 		return -EOPNOTSUPP;
1402 
1403 	if (!card->erase_size)
1404 		return -EOPNOTSUPP;
1405 
1406 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1407 		return -EOPNOTSUPP;
1408 
1409 	if ((arg & MMC_SECURE_ARGS) &&
1410 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1411 		return -EOPNOTSUPP;
1412 
1413 	if ((arg & MMC_TRIM_ARGS) &&
1414 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1415 		return -EOPNOTSUPP;
1416 
1417 	if (arg == MMC_SECURE_ERASE_ARG) {
1418 		if (from % card->erase_size || nr % card->erase_size)
1419 			return -EINVAL;
1420 	}
1421 
1422 	if (arg == MMC_ERASE_ARG) {
1423 		rem = from % card->erase_size;
1424 		if (rem) {
1425 			rem = card->erase_size - rem;
1426 			from += rem;
1427 			if (nr > rem)
1428 				nr -= rem;
1429 			else
1430 				return 0;
1431 		}
1432 		rem = nr % card->erase_size;
1433 		if (rem)
1434 			nr -= rem;
1435 	}
1436 
1437 	if (nr == 0)
1438 		return 0;
1439 
1440 	to = from + nr;
1441 
1442 	if (to <= from)
1443 		return -EINVAL;
1444 
1445 	/* 'from' and 'to' are inclusive */
1446 	to -= 1;
1447 
1448 	return mmc_do_erase(card, from, to, arg);
1449 }
1450 EXPORT_SYMBOL(mmc_erase);
1451 
mmc_can_erase(struct mmc_card * card)1452 int mmc_can_erase(struct mmc_card *card)
1453 {
1454 	if ((card->host->caps & MMC_CAP_ERASE) &&
1455 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1456 		return 1;
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(mmc_can_erase);
1460 
mmc_can_trim(struct mmc_card * card)1461 int mmc_can_trim(struct mmc_card *card)
1462 {
1463 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1464 		return 1;
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL(mmc_can_trim);
1468 
mmc_can_secure_erase_trim(struct mmc_card * card)1469 int mmc_can_secure_erase_trim(struct mmc_card *card)
1470 {
1471 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1472 		return 1;
1473 	return 0;
1474 }
1475 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1476 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1477 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1478 			    unsigned int nr)
1479 {
1480 	if (!card->erase_size)
1481 		return 0;
1482 	if (from % card->erase_size || nr % card->erase_size)
1483 		return 0;
1484 	return 1;
1485 }
1486 EXPORT_SYMBOL(mmc_erase_group_aligned);
1487 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1488 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1489 {
1490 	struct mmc_command cmd;
1491 
1492 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1493 		return 0;
1494 
1495 	memset(&cmd, 0, sizeof(struct mmc_command));
1496 	cmd.opcode = MMC_SET_BLOCKLEN;
1497 	cmd.arg = blocklen;
1498 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1499 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1500 }
1501 EXPORT_SYMBOL(mmc_set_blocklen);
1502 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)1503 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1504 {
1505 	host->f_init = freq;
1506 
1507 #ifdef CONFIG_MMC_DEBUG
1508 	pr_info("%s: %s: trying to init card at %u Hz\n",
1509 		mmc_hostname(host), __func__, host->f_init);
1510 #endif
1511 	mmc_power_up(host);
1512 
1513 	/*
1514 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1515 	 * if the card is being re-initialized, just send it.  CMD52
1516 	 * should be ignored by SD/eMMC cards.
1517 	 */
1518 	sdio_reset(host);
1519 	mmc_go_idle(host);
1520 
1521 	mmc_send_if_cond(host, host->ocr_avail);
1522 
1523 	/* Order's important: probe SDIO, then SD, then MMC */
1524 	if (!mmc_attach_sdio(host))
1525 		return 0;
1526 	if (!mmc_attach_sd(host))
1527 		return 0;
1528 	if (!mmc_attach_mmc(host))
1529 		return 0;
1530 
1531 	mmc_power_off(host);
1532 	return -EIO;
1533 }
1534 
mmc_rescan(struct work_struct * work)1535 void mmc_rescan(struct work_struct *work)
1536 {
1537 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1538 	struct mmc_host *host =
1539 		container_of(work, struct mmc_host, detect.work);
1540 	int i;
1541 
1542 	if (host->rescan_disable)
1543 		return;
1544 
1545 	mmc_bus_get(host);
1546 
1547 	/*
1548 	 * if there is a _removable_ card registered, check whether it is
1549 	 * still present
1550 	 */
1551 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1552 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1553 		host->bus_ops->detect(host);
1554 
1555 	/*
1556 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1557 	 * the card is no longer present.
1558 	 */
1559 	mmc_bus_put(host);
1560 	mmc_bus_get(host);
1561 
1562 	/* if there still is a card present, stop here */
1563 	if (host->bus_ops != NULL) {
1564 		mmc_bus_put(host);
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * Only we can add a new handler, so it's safe to
1570 	 * release the lock here.
1571 	 */
1572 	mmc_bus_put(host);
1573 
1574 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1575 		goto out;
1576 
1577 	mmc_claim_host(host);
1578 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1579 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1580 			break;
1581 		if (freqs[i] < host->f_min)
1582 			break;
1583 	}
1584 	mmc_release_host(host);
1585 
1586  out:
1587 	if (host->caps & MMC_CAP_NEEDS_POLL)
1588 		mmc_schedule_delayed_work(&host->detect, HZ);
1589 }
1590 
mmc_start_host(struct mmc_host * host)1591 void mmc_start_host(struct mmc_host *host)
1592 {
1593 	mmc_power_off(host);
1594 	mmc_detect_change(host, 0);
1595 }
1596 
mmc_stop_host(struct mmc_host * host)1597 void mmc_stop_host(struct mmc_host *host)
1598 {
1599 #ifdef CONFIG_MMC_DEBUG
1600 	unsigned long flags;
1601 	spin_lock_irqsave(&host->lock, flags);
1602 	host->removed = 1;
1603 	spin_unlock_irqrestore(&host->lock, flags);
1604 #endif
1605 
1606 	if (host->caps & MMC_CAP_DISABLE)
1607 		cancel_delayed_work(&host->disable);
1608 	cancel_delayed_work_sync(&host->detect);
1609 	mmc_flush_scheduled_work();
1610 
1611 	/* clear pm flags now and let card drivers set them as needed */
1612 	host->pm_flags = 0;
1613 
1614 	mmc_bus_get(host);
1615 	if (host->bus_ops && !host->bus_dead) {
1616 		if (host->bus_ops->remove)
1617 			host->bus_ops->remove(host);
1618 
1619 		mmc_claim_host(host);
1620 		mmc_detach_bus(host);
1621 		mmc_release_host(host);
1622 		mmc_bus_put(host);
1623 		return;
1624 	}
1625 	mmc_bus_put(host);
1626 
1627 	BUG_ON(host->card);
1628 
1629 	mmc_power_off(host);
1630 }
1631 
mmc_power_save_host(struct mmc_host * host)1632 int mmc_power_save_host(struct mmc_host *host)
1633 {
1634 	int ret = 0;
1635 
1636 	mmc_bus_get(host);
1637 
1638 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1639 		mmc_bus_put(host);
1640 		return -EINVAL;
1641 	}
1642 
1643 	if (host->bus_ops->power_save)
1644 		ret = host->bus_ops->power_save(host);
1645 
1646 	mmc_bus_put(host);
1647 
1648 	mmc_power_off(host);
1649 
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL(mmc_power_save_host);
1653 
mmc_power_restore_host(struct mmc_host * host)1654 int mmc_power_restore_host(struct mmc_host *host)
1655 {
1656 	int ret;
1657 
1658 	mmc_bus_get(host);
1659 
1660 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1661 		mmc_bus_put(host);
1662 		return -EINVAL;
1663 	}
1664 
1665 	mmc_power_up(host);
1666 	ret = host->bus_ops->power_restore(host);
1667 
1668 	mmc_bus_put(host);
1669 
1670 	return ret;
1671 }
1672 EXPORT_SYMBOL(mmc_power_restore_host);
1673 
mmc_card_awake(struct mmc_host * host)1674 int mmc_card_awake(struct mmc_host *host)
1675 {
1676 	int err = -ENOSYS;
1677 
1678 	mmc_bus_get(host);
1679 
1680 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1681 		err = host->bus_ops->awake(host);
1682 
1683 	mmc_bus_put(host);
1684 
1685 	return err;
1686 }
1687 EXPORT_SYMBOL(mmc_card_awake);
1688 
mmc_card_sleep(struct mmc_host * host)1689 int mmc_card_sleep(struct mmc_host *host)
1690 {
1691 	int err = -ENOSYS;
1692 
1693 	mmc_bus_get(host);
1694 
1695 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1696 		err = host->bus_ops->sleep(host);
1697 
1698 	mmc_bus_put(host);
1699 
1700 	return err;
1701 }
1702 EXPORT_SYMBOL(mmc_card_sleep);
1703 
mmc_card_can_sleep(struct mmc_host * host)1704 int mmc_card_can_sleep(struct mmc_host *host)
1705 {
1706 	struct mmc_card *card = host->card;
1707 
1708 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1709 		return 1;
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL(mmc_card_can_sleep);
1713 
1714 #ifdef CONFIG_PM
1715 
1716 /**
1717  *	mmc_suspend_host - suspend a host
1718  *	@host: mmc host
1719  */
mmc_suspend_host(struct mmc_host * host)1720 int mmc_suspend_host(struct mmc_host *host)
1721 {
1722 	int err = 0;
1723 
1724 	if (host->caps & MMC_CAP_DISABLE)
1725 		cancel_delayed_work(&host->disable);
1726 	cancel_delayed_work(&host->detect);
1727 	mmc_flush_scheduled_work();
1728 
1729 	mmc_bus_get(host);
1730 	if (host->bus_ops && !host->bus_dead) {
1731 		if (host->bus_ops->suspend)
1732 			err = host->bus_ops->suspend(host);
1733 		if (err == -ENOSYS || !host->bus_ops->resume) {
1734 			/*
1735 			 * We simply "remove" the card in this case.
1736 			 * It will be redetected on resume.
1737 			 */
1738 			if (host->bus_ops->remove)
1739 				host->bus_ops->remove(host);
1740 			mmc_claim_host(host);
1741 			mmc_detach_bus(host);
1742 			mmc_release_host(host);
1743 			host->pm_flags = 0;
1744 			err = 0;
1745 		}
1746 	}
1747 	mmc_bus_put(host);
1748 
1749 	if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1750 		mmc_power_off(host);
1751 
1752 	return err;
1753 }
1754 
1755 EXPORT_SYMBOL(mmc_suspend_host);
1756 
1757 /**
1758  *	mmc_resume_host - resume a previously suspended host
1759  *	@host: mmc host
1760  */
mmc_resume_host(struct mmc_host * host)1761 int mmc_resume_host(struct mmc_host *host)
1762 {
1763 	int err = 0;
1764 
1765 	mmc_bus_get(host);
1766 	if (host->bus_ops && !host->bus_dead) {
1767 		if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1768 			mmc_power_up(host);
1769 			mmc_select_voltage(host, host->ocr);
1770 			/*
1771 			 * Tell runtime PM core we just powered up the card,
1772 			 * since it still believes the card is powered off.
1773 			 * Note that currently runtime PM is only enabled
1774 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1775 			 */
1776 			if (mmc_card_sdio(host->card) &&
1777 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1778 				pm_runtime_disable(&host->card->dev);
1779 				pm_runtime_set_active(&host->card->dev);
1780 				pm_runtime_enable(&host->card->dev);
1781 			}
1782 		}
1783 		BUG_ON(!host->bus_ops->resume);
1784 		err = host->bus_ops->resume(host);
1785 		if (err) {
1786 			printk(KERN_WARNING "%s: error %d during resume "
1787 					    "(card was removed?)\n",
1788 					    mmc_hostname(host), err);
1789 			err = 0;
1790 		}
1791 	}
1792 	mmc_bus_put(host);
1793 
1794 	return err;
1795 }
1796 EXPORT_SYMBOL(mmc_resume_host);
1797 
1798 /* Do the card removal on suspend if card is assumed removeable
1799  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1800    to sync the card.
1801 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1802 int mmc_pm_notify(struct notifier_block *notify_block,
1803 					unsigned long mode, void *unused)
1804 {
1805 	struct mmc_host *host = container_of(
1806 		notify_block, struct mmc_host, pm_notify);
1807 	unsigned long flags;
1808 
1809 
1810 	switch (mode) {
1811 	case PM_HIBERNATION_PREPARE:
1812 	case PM_SUSPEND_PREPARE:
1813 
1814 		spin_lock_irqsave(&host->lock, flags);
1815 		host->rescan_disable = 1;
1816 		spin_unlock_irqrestore(&host->lock, flags);
1817 		cancel_delayed_work_sync(&host->detect);
1818 
1819 		if (!host->bus_ops || host->bus_ops->suspend)
1820 			break;
1821 
1822 		mmc_claim_host(host);
1823 
1824 		if (host->bus_ops->remove)
1825 			host->bus_ops->remove(host);
1826 
1827 		mmc_detach_bus(host);
1828 		mmc_release_host(host);
1829 		host->pm_flags = 0;
1830 		break;
1831 
1832 	case PM_POST_SUSPEND:
1833 	case PM_POST_HIBERNATION:
1834 	case PM_POST_RESTORE:
1835 
1836 		spin_lock_irqsave(&host->lock, flags);
1837 		host->rescan_disable = 0;
1838 		spin_unlock_irqrestore(&host->lock, flags);
1839 		mmc_detect_change(host, 0);
1840 
1841 	}
1842 
1843 	return 0;
1844 }
1845 #endif
1846 
mmc_init(void)1847 static int __init mmc_init(void)
1848 {
1849 	int ret;
1850 
1851 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
1852 	if (!workqueue)
1853 		return -ENOMEM;
1854 
1855 	ret = mmc_register_bus();
1856 	if (ret)
1857 		goto destroy_workqueue;
1858 
1859 	ret = mmc_register_host_class();
1860 	if (ret)
1861 		goto unregister_bus;
1862 
1863 	ret = sdio_register_bus();
1864 	if (ret)
1865 		goto unregister_host_class;
1866 
1867 	return 0;
1868 
1869 unregister_host_class:
1870 	mmc_unregister_host_class();
1871 unregister_bus:
1872 	mmc_unregister_bus();
1873 destroy_workqueue:
1874 	destroy_workqueue(workqueue);
1875 
1876 	return ret;
1877 }
1878 
mmc_exit(void)1879 static void __exit mmc_exit(void)
1880 {
1881 	sdio_unregister_bus();
1882 	mmc_unregister_host_class();
1883 	mmc_unregister_bus();
1884 	destroy_workqueue(workqueue);
1885 }
1886 
1887 subsys_initcall(mmc_init);
1888 module_exit(mmc_exit);
1889 
1890 MODULE_LICENSE("GPL");
1891