1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/host.h>
29 #include <linux/mmc/mmc.h>
30 #include <linux/mmc/sd.h>
31
32 #include "core.h"
33 #include "bus.h"
34 #include "host.h"
35 #include "sdio_bus.h"
36
37 #include "mmc_ops.h"
38 #include "sd_ops.h"
39 #include "sdio_ops.h"
40
41 static struct workqueue_struct *workqueue;
42
43 /*
44 * Enabling software CRCs on the data blocks can be a significant (30%)
45 * performance cost, and for other reasons may not always be desired.
46 * So we allow it it to be disabled.
47 */
48 int use_spi_crc = 1;
49 module_param(use_spi_crc, bool, 0);
50
51 /*
52 * We normally treat cards as removed during suspend if they are not
53 * known to be on a non-removable bus, to avoid the risk of writing
54 * back data to a different card after resume. Allow this to be
55 * overridden if necessary.
56 */
57 #ifdef CONFIG_MMC_UNSAFE_RESUME
58 int mmc_assume_removable;
59 #else
60 int mmc_assume_removable = 1;
61 #endif
62 EXPORT_SYMBOL(mmc_assume_removable);
63 module_param_named(removable, mmc_assume_removable, bool, 0644);
64 MODULE_PARM_DESC(
65 removable,
66 "MMC/SD cards are removable and may be removed during suspend");
67
68 /*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73 {
74 return queue_delayed_work(workqueue, work, delay);
75 }
76
77 /*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
mmc_flush_scheduled_work(void)80 static void mmc_flush_scheduled_work(void)
81 {
82 flush_workqueue(workqueue);
83 }
84
85 /**
86 * mmc_request_done - finish processing an MMC request
87 * @host: MMC host which completed request
88 * @mrq: MMC request which request
89 *
90 * MMC drivers should call this function when they have completed
91 * their processing of a request.
92 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
94 {
95 struct mmc_command *cmd = mrq->cmd;
96 int err = cmd->error;
97
98 if (err && cmd->retries && mmc_host_is_spi(host)) {
99 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 cmd->retries = 0;
101 }
102
103 if (err && cmd->retries) {
104 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 mmc_hostname(host), cmd->opcode, err);
106
107 cmd->retries--;
108 cmd->error = 0;
109 host->ops->request(host, mrq);
110 } else {
111 led_trigger_event(host->led, LED_OFF);
112
113 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 mmc_hostname(host), cmd->opcode, err,
115 cmd->resp[0], cmd->resp[1],
116 cmd->resp[2], cmd->resp[3]);
117
118 if (mrq->data) {
119 pr_debug("%s: %d bytes transferred: %d\n",
120 mmc_hostname(host),
121 mrq->data->bytes_xfered, mrq->data->error);
122 }
123
124 if (mrq->stop) {
125 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
126 mmc_hostname(host), mrq->stop->opcode,
127 mrq->stop->error,
128 mrq->stop->resp[0], mrq->stop->resp[1],
129 mrq->stop->resp[2], mrq->stop->resp[3]);
130 }
131
132 if (mrq->done)
133 mrq->done(mrq);
134
135 mmc_host_clk_gate(host);
136 }
137 }
138
139 EXPORT_SYMBOL(mmc_request_done);
140
141 static void
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
143 {
144 #ifdef CONFIG_MMC_DEBUG
145 unsigned int i, sz;
146 struct scatterlist *sg;
147 #endif
148
149 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 mmc_hostname(host), mrq->cmd->opcode,
151 mrq->cmd->arg, mrq->cmd->flags);
152
153 if (mrq->data) {
154 pr_debug("%s: blksz %d blocks %d flags %08x "
155 "tsac %d ms nsac %d\n",
156 mmc_hostname(host), mrq->data->blksz,
157 mrq->data->blocks, mrq->data->flags,
158 mrq->data->timeout_ns / 1000000,
159 mrq->data->timeout_clks);
160 }
161
162 if (mrq->stop) {
163 pr_debug("%s: CMD%u arg %08x flags %08x\n",
164 mmc_hostname(host), mrq->stop->opcode,
165 mrq->stop->arg, mrq->stop->flags);
166 }
167
168 WARN_ON(!host->claimed);
169
170 mrq->cmd->error = 0;
171 mrq->cmd->mrq = mrq;
172 if (mrq->data) {
173 BUG_ON(mrq->data->blksz > host->max_blk_size);
174 BUG_ON(mrq->data->blocks > host->max_blk_count);
175 BUG_ON(mrq->data->blocks * mrq->data->blksz >
176 host->max_req_size);
177
178 #ifdef CONFIG_MMC_DEBUG
179 sz = 0;
180 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
181 sz += sg->length;
182 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
183 #endif
184
185 mrq->cmd->data = mrq->data;
186 mrq->data->error = 0;
187 mrq->data->mrq = mrq;
188 if (mrq->stop) {
189 mrq->data->stop = mrq->stop;
190 mrq->stop->error = 0;
191 mrq->stop->mrq = mrq;
192 }
193 }
194 mmc_host_clk_ungate(host);
195 led_trigger_event(host->led, LED_FULL);
196 host->ops->request(host, mrq);
197 }
198
mmc_wait_done(struct mmc_request * mrq)199 static void mmc_wait_done(struct mmc_request *mrq)
200 {
201 complete(mrq->done_data);
202 }
203
204 /**
205 * mmc_wait_for_req - start a request and wait for completion
206 * @host: MMC host to start command
207 * @mrq: MMC request to start
208 *
209 * Start a new MMC custom command request for a host, and wait
210 * for the command to complete. Does not attempt to parse the
211 * response.
212 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)213 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
214 {
215 DECLARE_COMPLETION_ONSTACK(complete);
216
217 mrq->done_data = &complete;
218 mrq->done = mmc_wait_done;
219
220 mmc_start_request(host, mrq);
221
222 wait_for_completion(&complete);
223 }
224
225 EXPORT_SYMBOL(mmc_wait_for_req);
226
227 /**
228 * mmc_wait_for_cmd - start a command and wait for completion
229 * @host: MMC host to start command
230 * @cmd: MMC command to start
231 * @retries: maximum number of retries
232 *
233 * Start a new MMC command for a host, and wait for the command
234 * to complete. Return any error that occurred while the command
235 * was executing. Do not attempt to parse the response.
236 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)237 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
238 {
239 struct mmc_request mrq;
240
241 WARN_ON(!host->claimed);
242
243 memset(&mrq, 0, sizeof(struct mmc_request));
244
245 memset(cmd->resp, 0, sizeof(cmd->resp));
246 cmd->retries = retries;
247
248 mrq.cmd = cmd;
249 cmd->data = NULL;
250
251 mmc_wait_for_req(host, &mrq);
252
253 return cmd->error;
254 }
255
256 EXPORT_SYMBOL(mmc_wait_for_cmd);
257
258 /**
259 * mmc_set_data_timeout - set the timeout for a data command
260 * @data: data phase for command
261 * @card: the MMC card associated with the data transfer
262 *
263 * Computes the data timeout parameters according to the
264 * correct algorithm given the card type.
265 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)266 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
267 {
268 unsigned int mult;
269
270 /*
271 * SDIO cards only define an upper 1 s limit on access.
272 */
273 if (mmc_card_sdio(card)) {
274 data->timeout_ns = 1000000000;
275 data->timeout_clks = 0;
276 return;
277 }
278
279 /*
280 * SD cards use a 100 multiplier rather than 10
281 */
282 mult = mmc_card_sd(card) ? 100 : 10;
283
284 /*
285 * Scale up the multiplier (and therefore the timeout) by
286 * the r2w factor for writes.
287 */
288 if (data->flags & MMC_DATA_WRITE)
289 mult <<= card->csd.r2w_factor;
290
291 data->timeout_ns = card->csd.tacc_ns * mult;
292 data->timeout_clks = card->csd.tacc_clks * mult;
293
294 /*
295 * SD cards also have an upper limit on the timeout.
296 */
297 if (mmc_card_sd(card)) {
298 unsigned int timeout_us, limit_us;
299
300 timeout_us = data->timeout_ns / 1000;
301 if (mmc_host_clk_rate(card->host))
302 timeout_us += data->timeout_clks * 1000 /
303 (mmc_host_clk_rate(card->host) / 1000);
304
305 if (data->flags & MMC_DATA_WRITE)
306 /*
307 * The limit is really 250 ms, but that is
308 * insufficient for some crappy cards.
309 */
310 limit_us = 300000;
311 else
312 limit_us = 100000;
313
314 /*
315 * SDHC cards always use these fixed values.
316 */
317 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
318 data->timeout_ns = limit_us * 1000;
319 data->timeout_clks = 0;
320 }
321 }
322 /*
323 * Some cards need very high timeouts if driven in SPI mode.
324 * The worst observed timeout was 900ms after writing a
325 * continuous stream of data until the internal logic
326 * overflowed.
327 */
328 if (mmc_host_is_spi(card->host)) {
329 if (data->flags & MMC_DATA_WRITE) {
330 if (data->timeout_ns < 1000000000)
331 data->timeout_ns = 1000000000; /* 1s */
332 } else {
333 if (data->timeout_ns < 100000000)
334 data->timeout_ns = 100000000; /* 100ms */
335 }
336 }
337 }
338 EXPORT_SYMBOL(mmc_set_data_timeout);
339
340 /**
341 * mmc_align_data_size - pads a transfer size to a more optimal value
342 * @card: the MMC card associated with the data transfer
343 * @sz: original transfer size
344 *
345 * Pads the original data size with a number of extra bytes in
346 * order to avoid controller bugs and/or performance hits
347 * (e.g. some controllers revert to PIO for certain sizes).
348 *
349 * Returns the improved size, which might be unmodified.
350 *
351 * Note that this function is only relevant when issuing a
352 * single scatter gather entry.
353 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)354 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
355 {
356 /*
357 * FIXME: We don't have a system for the controller to tell
358 * the core about its problems yet, so for now we just 32-bit
359 * align the size.
360 */
361 sz = ((sz + 3) / 4) * 4;
362
363 return sz;
364 }
365 EXPORT_SYMBOL(mmc_align_data_size);
366
367 /**
368 * mmc_host_enable - enable a host.
369 * @host: mmc host to enable
370 *
371 * Hosts that support power saving can use the 'enable' and 'disable'
372 * methods to exit and enter power saving states. For more information
373 * see comments for struct mmc_host_ops.
374 */
mmc_host_enable(struct mmc_host * host)375 int mmc_host_enable(struct mmc_host *host)
376 {
377 if (!(host->caps & MMC_CAP_DISABLE))
378 return 0;
379
380 if (host->en_dis_recurs)
381 return 0;
382
383 if (host->nesting_cnt++)
384 return 0;
385
386 cancel_delayed_work_sync(&host->disable);
387
388 if (host->enabled)
389 return 0;
390
391 if (host->ops->enable) {
392 int err;
393
394 host->en_dis_recurs = 1;
395 err = host->ops->enable(host);
396 host->en_dis_recurs = 0;
397
398 if (err) {
399 pr_debug("%s: enable error %d\n",
400 mmc_hostname(host), err);
401 return err;
402 }
403 }
404 host->enabled = 1;
405 return 0;
406 }
407 EXPORT_SYMBOL(mmc_host_enable);
408
mmc_host_do_disable(struct mmc_host * host,int lazy)409 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
410 {
411 if (host->ops->disable) {
412 int err;
413
414 host->en_dis_recurs = 1;
415 err = host->ops->disable(host, lazy);
416 host->en_dis_recurs = 0;
417
418 if (err < 0) {
419 pr_debug("%s: disable error %d\n",
420 mmc_hostname(host), err);
421 return err;
422 }
423 if (err > 0) {
424 unsigned long delay = msecs_to_jiffies(err);
425
426 mmc_schedule_delayed_work(&host->disable, delay);
427 }
428 }
429 host->enabled = 0;
430 return 0;
431 }
432
433 /**
434 * mmc_host_disable - disable a host.
435 * @host: mmc host to disable
436 *
437 * Hosts that support power saving can use the 'enable' and 'disable'
438 * methods to exit and enter power saving states. For more information
439 * see comments for struct mmc_host_ops.
440 */
mmc_host_disable(struct mmc_host * host)441 int mmc_host_disable(struct mmc_host *host)
442 {
443 int err;
444
445 if (!(host->caps & MMC_CAP_DISABLE))
446 return 0;
447
448 if (host->en_dis_recurs)
449 return 0;
450
451 if (--host->nesting_cnt)
452 return 0;
453
454 if (!host->enabled)
455 return 0;
456
457 err = mmc_host_do_disable(host, 0);
458 return err;
459 }
460 EXPORT_SYMBOL(mmc_host_disable);
461
462 /**
463 * __mmc_claim_host - exclusively claim a host
464 * @host: mmc host to claim
465 * @abort: whether or not the operation should be aborted
466 *
467 * Claim a host for a set of operations. If @abort is non null and
468 * dereference a non-zero value then this will return prematurely with
469 * that non-zero value without acquiring the lock. Returns zero
470 * with the lock held otherwise.
471 */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)472 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
473 {
474 DECLARE_WAITQUEUE(wait, current);
475 unsigned long flags;
476 int stop;
477
478 might_sleep();
479
480 add_wait_queue(&host->wq, &wait);
481 spin_lock_irqsave(&host->lock, flags);
482 while (1) {
483 set_current_state(TASK_UNINTERRUPTIBLE);
484 stop = abort ? atomic_read(abort) : 0;
485 if (stop || !host->claimed || host->claimer == current)
486 break;
487 spin_unlock_irqrestore(&host->lock, flags);
488 schedule();
489 spin_lock_irqsave(&host->lock, flags);
490 }
491 set_current_state(TASK_RUNNING);
492 if (!stop) {
493 host->claimed = 1;
494 host->claimer = current;
495 host->claim_cnt += 1;
496 } else
497 wake_up(&host->wq);
498 spin_unlock_irqrestore(&host->lock, flags);
499 remove_wait_queue(&host->wq, &wait);
500 if (!stop)
501 mmc_host_enable(host);
502 return stop;
503 }
504
505 EXPORT_SYMBOL(__mmc_claim_host);
506
507 /**
508 * mmc_try_claim_host - try exclusively to claim a host
509 * @host: mmc host to claim
510 *
511 * Returns %1 if the host is claimed, %0 otherwise.
512 */
mmc_try_claim_host(struct mmc_host * host)513 int mmc_try_claim_host(struct mmc_host *host)
514 {
515 int claimed_host = 0;
516 unsigned long flags;
517
518 spin_lock_irqsave(&host->lock, flags);
519 if (!host->claimed || host->claimer == current) {
520 host->claimed = 1;
521 host->claimer = current;
522 host->claim_cnt += 1;
523 claimed_host = 1;
524 }
525 spin_unlock_irqrestore(&host->lock, flags);
526 return claimed_host;
527 }
528 EXPORT_SYMBOL(mmc_try_claim_host);
529
530 /**
531 * mmc_do_release_host - release a claimed host
532 * @host: mmc host to release
533 *
534 * If you successfully claimed a host, this function will
535 * release it again.
536 */
mmc_do_release_host(struct mmc_host * host)537 void mmc_do_release_host(struct mmc_host *host)
538 {
539 unsigned long flags;
540
541 spin_lock_irqsave(&host->lock, flags);
542 if (--host->claim_cnt) {
543 /* Release for nested claim */
544 spin_unlock_irqrestore(&host->lock, flags);
545 } else {
546 host->claimed = 0;
547 host->claimer = NULL;
548 spin_unlock_irqrestore(&host->lock, flags);
549 wake_up(&host->wq);
550 }
551 }
552 EXPORT_SYMBOL(mmc_do_release_host);
553
mmc_host_deeper_disable(struct work_struct * work)554 void mmc_host_deeper_disable(struct work_struct *work)
555 {
556 struct mmc_host *host =
557 container_of(work, struct mmc_host, disable.work);
558
559 /* If the host is claimed then we do not want to disable it anymore */
560 if (!mmc_try_claim_host(host))
561 return;
562 mmc_host_do_disable(host, 1);
563 mmc_do_release_host(host);
564 }
565
566 /**
567 * mmc_host_lazy_disable - lazily disable a host.
568 * @host: mmc host to disable
569 *
570 * Hosts that support power saving can use the 'enable' and 'disable'
571 * methods to exit and enter power saving states. For more information
572 * see comments for struct mmc_host_ops.
573 */
mmc_host_lazy_disable(struct mmc_host * host)574 int mmc_host_lazy_disable(struct mmc_host *host)
575 {
576 if (!(host->caps & MMC_CAP_DISABLE))
577 return 0;
578
579 if (host->en_dis_recurs)
580 return 0;
581
582 if (--host->nesting_cnt)
583 return 0;
584
585 if (!host->enabled)
586 return 0;
587
588 if (host->disable_delay) {
589 mmc_schedule_delayed_work(&host->disable,
590 msecs_to_jiffies(host->disable_delay));
591 return 0;
592 } else
593 return mmc_host_do_disable(host, 1);
594 }
595 EXPORT_SYMBOL(mmc_host_lazy_disable);
596
597 /**
598 * mmc_release_host - release a host
599 * @host: mmc host to release
600 *
601 * Release a MMC host, allowing others to claim the host
602 * for their operations.
603 */
mmc_release_host(struct mmc_host * host)604 void mmc_release_host(struct mmc_host *host)
605 {
606 WARN_ON(!host->claimed);
607
608 mmc_host_lazy_disable(host);
609
610 mmc_do_release_host(host);
611 }
612
613 EXPORT_SYMBOL(mmc_release_host);
614
615 /*
616 * Internal function that does the actual ios call to the host driver,
617 * optionally printing some debug output.
618 */
mmc_set_ios(struct mmc_host * host)619 static inline void mmc_set_ios(struct mmc_host *host)
620 {
621 struct mmc_ios *ios = &host->ios;
622
623 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
624 "width %u timing %u\n",
625 mmc_hostname(host), ios->clock, ios->bus_mode,
626 ios->power_mode, ios->chip_select, ios->vdd,
627 ios->bus_width, ios->timing);
628
629 if (ios->clock > 0)
630 mmc_set_ungated(host);
631 host->ops->set_ios(host, ios);
632 }
633
634 /*
635 * Control chip select pin on a host.
636 */
mmc_set_chip_select(struct mmc_host * host,int mode)637 void mmc_set_chip_select(struct mmc_host *host, int mode)
638 {
639 host->ios.chip_select = mode;
640 mmc_set_ios(host);
641 }
642
643 /*
644 * Sets the host clock to the highest possible frequency that
645 * is below "hz".
646 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)647 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
648 {
649 WARN_ON(hz < host->f_min);
650
651 if (hz > host->f_max)
652 hz = host->f_max;
653
654 host->ios.clock = hz;
655 mmc_set_ios(host);
656 }
657
658 #ifdef CONFIG_MMC_CLKGATE
659 /*
660 * This gates the clock by setting it to 0 Hz.
661 */
mmc_gate_clock(struct mmc_host * host)662 void mmc_gate_clock(struct mmc_host *host)
663 {
664 unsigned long flags;
665
666 spin_lock_irqsave(&host->clk_lock, flags);
667 host->clk_old = host->ios.clock;
668 host->ios.clock = 0;
669 host->clk_gated = true;
670 spin_unlock_irqrestore(&host->clk_lock, flags);
671 mmc_set_ios(host);
672 }
673
674 /*
675 * This restores the clock from gating by using the cached
676 * clock value.
677 */
mmc_ungate_clock(struct mmc_host * host)678 void mmc_ungate_clock(struct mmc_host *host)
679 {
680 /*
681 * We should previously have gated the clock, so the clock shall
682 * be 0 here! The clock may however be 0 during initialization,
683 * when some request operations are performed before setting
684 * the frequency. When ungate is requested in that situation
685 * we just ignore the call.
686 */
687 if (host->clk_old) {
688 BUG_ON(host->ios.clock);
689 /* This call will also set host->clk_gated to false */
690 mmc_set_clock(host, host->clk_old);
691 }
692 }
693
mmc_set_ungated(struct mmc_host * host)694 void mmc_set_ungated(struct mmc_host *host)
695 {
696 unsigned long flags;
697
698 /*
699 * We've been given a new frequency while the clock is gated,
700 * so make sure we regard this as ungating it.
701 */
702 spin_lock_irqsave(&host->clk_lock, flags);
703 host->clk_gated = false;
704 spin_unlock_irqrestore(&host->clk_lock, flags);
705 }
706
707 #else
mmc_set_ungated(struct mmc_host * host)708 void mmc_set_ungated(struct mmc_host *host)
709 {
710 }
711 #endif
712
713 /*
714 * Change the bus mode (open drain/push-pull) of a host.
715 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)716 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
717 {
718 host->ios.bus_mode = mode;
719 mmc_set_ios(host);
720 }
721
722 /*
723 * Change data bus width and DDR mode of a host.
724 */
mmc_set_bus_width_ddr(struct mmc_host * host,unsigned int width,unsigned int ddr)725 void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
726 unsigned int ddr)
727 {
728 host->ios.bus_width = width;
729 host->ios.ddr = ddr;
730 mmc_set_ios(host);
731 }
732
733 /*
734 * Change data bus width of a host.
735 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)736 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
737 {
738 mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
739 }
740
741 /**
742 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
743 * @vdd: voltage (mV)
744 * @low_bits: prefer low bits in boundary cases
745 *
746 * This function returns the OCR bit number according to the provided @vdd
747 * value. If conversion is not possible a negative errno value returned.
748 *
749 * Depending on the @low_bits flag the function prefers low or high OCR bits
750 * on boundary voltages. For example,
751 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
752 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
753 *
754 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
755 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)756 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
757 {
758 const int max_bit = ilog2(MMC_VDD_35_36);
759 int bit;
760
761 if (vdd < 1650 || vdd > 3600)
762 return -EINVAL;
763
764 if (vdd >= 1650 && vdd <= 1950)
765 return ilog2(MMC_VDD_165_195);
766
767 if (low_bits)
768 vdd -= 1;
769
770 /* Base 2000 mV, step 100 mV, bit's base 8. */
771 bit = (vdd - 2000) / 100 + 8;
772 if (bit > max_bit)
773 return max_bit;
774 return bit;
775 }
776
777 /**
778 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
779 * @vdd_min: minimum voltage value (mV)
780 * @vdd_max: maximum voltage value (mV)
781 *
782 * This function returns the OCR mask bits according to the provided @vdd_min
783 * and @vdd_max values. If conversion is not possible the function returns 0.
784 *
785 * Notes wrt boundary cases:
786 * This function sets the OCR bits for all boundary voltages, for example
787 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
788 * MMC_VDD_34_35 mask.
789 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)790 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
791 {
792 u32 mask = 0;
793
794 if (vdd_max < vdd_min)
795 return 0;
796
797 /* Prefer high bits for the boundary vdd_max values. */
798 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
799 if (vdd_max < 0)
800 return 0;
801
802 /* Prefer low bits for the boundary vdd_min values. */
803 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
804 if (vdd_min < 0)
805 return 0;
806
807 /* Fill the mask, from max bit to min bit. */
808 while (vdd_max >= vdd_min)
809 mask |= 1 << vdd_max--;
810
811 return mask;
812 }
813 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
814
815 #ifdef CONFIG_REGULATOR
816
817 /**
818 * mmc_regulator_get_ocrmask - return mask of supported voltages
819 * @supply: regulator to use
820 *
821 * This returns either a negative errno, or a mask of voltages that
822 * can be provided to MMC/SD/SDIO devices using the specified voltage
823 * regulator. This would normally be called before registering the
824 * MMC host adapter.
825 */
mmc_regulator_get_ocrmask(struct regulator * supply)826 int mmc_regulator_get_ocrmask(struct regulator *supply)
827 {
828 int result = 0;
829 int count;
830 int i;
831
832 count = regulator_count_voltages(supply);
833 if (count < 0)
834 return count;
835
836 for (i = 0; i < count; i++) {
837 int vdd_uV;
838 int vdd_mV;
839
840 vdd_uV = regulator_list_voltage(supply, i);
841 if (vdd_uV <= 0)
842 continue;
843
844 vdd_mV = vdd_uV / 1000;
845 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
846 }
847
848 return result;
849 }
850 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
851
852 /**
853 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
854 * @mmc: the host to regulate
855 * @supply: regulator to use
856 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
857 *
858 * Returns zero on success, else negative errno.
859 *
860 * MMC host drivers may use this to enable or disable a regulator using
861 * a particular supply voltage. This would normally be called from the
862 * set_ios() method.
863 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)864 int mmc_regulator_set_ocr(struct mmc_host *mmc,
865 struct regulator *supply,
866 unsigned short vdd_bit)
867 {
868 int result = 0;
869 int min_uV, max_uV;
870
871 if (vdd_bit) {
872 int tmp;
873 int voltage;
874
875 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
876 * bits this regulator doesn't quite support ... don't
877 * be too picky, most cards and regulators are OK with
878 * a 0.1V range goof (it's a small error percentage).
879 */
880 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
881 if (tmp == 0) {
882 min_uV = 1650 * 1000;
883 max_uV = 1950 * 1000;
884 } else {
885 min_uV = 1900 * 1000 + tmp * 100 * 1000;
886 max_uV = min_uV + 100 * 1000;
887 }
888
889 /* avoid needless changes to this voltage; the regulator
890 * might not allow this operation
891 */
892 voltage = regulator_get_voltage(supply);
893 if (voltage < 0)
894 result = voltage;
895 else if (voltage < min_uV || voltage > max_uV)
896 result = regulator_set_voltage(supply, min_uV, max_uV);
897 else
898 result = 0;
899
900 if (result == 0 && !mmc->regulator_enabled) {
901 result = regulator_enable(supply);
902 if (!result)
903 mmc->regulator_enabled = true;
904 }
905 } else if (mmc->regulator_enabled) {
906 result = regulator_disable(supply);
907 if (result == 0)
908 mmc->regulator_enabled = false;
909 }
910
911 if (result)
912 dev_err(mmc_dev(mmc),
913 "could not set regulator OCR (%d)\n", result);
914 return result;
915 }
916 EXPORT_SYMBOL(mmc_regulator_set_ocr);
917
918 #endif /* CONFIG_REGULATOR */
919
920 /*
921 * Mask off any voltages we don't support and select
922 * the lowest voltage
923 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)924 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
925 {
926 int bit;
927
928 ocr &= host->ocr_avail;
929
930 bit = ffs(ocr);
931 if (bit) {
932 bit -= 1;
933
934 ocr &= 3 << bit;
935
936 host->ios.vdd = bit;
937 mmc_set_ios(host);
938 } else {
939 pr_warning("%s: host doesn't support card's voltages\n",
940 mmc_hostname(host));
941 ocr = 0;
942 }
943
944 return ocr;
945 }
946
947 /*
948 * Select timing parameters for host.
949 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)950 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
951 {
952 host->ios.timing = timing;
953 mmc_set_ios(host);
954 }
955
956 /*
957 * Apply power to the MMC stack. This is a two-stage process.
958 * First, we enable power to the card without the clock running.
959 * We then wait a bit for the power to stabilise. Finally,
960 * enable the bus drivers and clock to the card.
961 *
962 * We must _NOT_ enable the clock prior to power stablising.
963 *
964 * If a host does all the power sequencing itself, ignore the
965 * initial MMC_POWER_UP stage.
966 */
mmc_power_up(struct mmc_host * host)967 static void mmc_power_up(struct mmc_host *host)
968 {
969 int bit;
970
971 /* If ocr is set, we use it */
972 if (host->ocr)
973 bit = ffs(host->ocr) - 1;
974 else
975 bit = fls(host->ocr_avail) - 1;
976
977 host->ios.vdd = bit;
978 if (mmc_host_is_spi(host)) {
979 host->ios.chip_select = MMC_CS_HIGH;
980 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
981 } else {
982 host->ios.chip_select = MMC_CS_DONTCARE;
983 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
984 }
985 host->ios.power_mode = MMC_POWER_UP;
986 host->ios.bus_width = MMC_BUS_WIDTH_1;
987 host->ios.timing = MMC_TIMING_LEGACY;
988 mmc_set_ios(host);
989
990 /*
991 * This delay should be sufficient to allow the power supply
992 * to reach the minimum voltage.
993 */
994 mmc_delay(10);
995
996 host->ios.clock = host->f_init;
997
998 host->ios.power_mode = MMC_POWER_ON;
999 mmc_set_ios(host);
1000
1001 /*
1002 * This delay must be at least 74 clock sizes, or 1 ms, or the
1003 * time required to reach a stable voltage.
1004 */
1005 mmc_delay(10);
1006 }
1007
mmc_power_off(struct mmc_host * host)1008 static void mmc_power_off(struct mmc_host *host)
1009 {
1010 host->ios.clock = 0;
1011 host->ios.vdd = 0;
1012
1013 /*
1014 * Reset ocr mask to be the highest possible voltage supported for
1015 * this mmc host. This value will be used at next power up.
1016 */
1017 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1018
1019 if (!mmc_host_is_spi(host)) {
1020 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1021 host->ios.chip_select = MMC_CS_DONTCARE;
1022 }
1023 host->ios.power_mode = MMC_POWER_OFF;
1024 host->ios.bus_width = MMC_BUS_WIDTH_1;
1025 host->ios.timing = MMC_TIMING_LEGACY;
1026 mmc_set_ios(host);
1027 }
1028
1029 /*
1030 * Cleanup when the last reference to the bus operator is dropped.
1031 */
__mmc_release_bus(struct mmc_host * host)1032 static void __mmc_release_bus(struct mmc_host *host)
1033 {
1034 BUG_ON(!host);
1035 BUG_ON(host->bus_refs);
1036 BUG_ON(!host->bus_dead);
1037
1038 host->bus_ops = NULL;
1039 }
1040
1041 /*
1042 * Increase reference count of bus operator
1043 */
mmc_bus_get(struct mmc_host * host)1044 static inline void mmc_bus_get(struct mmc_host *host)
1045 {
1046 unsigned long flags;
1047
1048 spin_lock_irqsave(&host->lock, flags);
1049 host->bus_refs++;
1050 spin_unlock_irqrestore(&host->lock, flags);
1051 }
1052
1053 /*
1054 * Decrease reference count of bus operator and free it if
1055 * it is the last reference.
1056 */
mmc_bus_put(struct mmc_host * host)1057 static inline void mmc_bus_put(struct mmc_host *host)
1058 {
1059 unsigned long flags;
1060
1061 spin_lock_irqsave(&host->lock, flags);
1062 host->bus_refs--;
1063 if ((host->bus_refs == 0) && host->bus_ops)
1064 __mmc_release_bus(host);
1065 spin_unlock_irqrestore(&host->lock, flags);
1066 }
1067
1068 /*
1069 * Assign a mmc bus handler to a host. Only one bus handler may control a
1070 * host at any given time.
1071 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1072 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1073 {
1074 unsigned long flags;
1075
1076 BUG_ON(!host);
1077 BUG_ON(!ops);
1078
1079 WARN_ON(!host->claimed);
1080
1081 spin_lock_irqsave(&host->lock, flags);
1082
1083 BUG_ON(host->bus_ops);
1084 BUG_ON(host->bus_refs);
1085
1086 host->bus_ops = ops;
1087 host->bus_refs = 1;
1088 host->bus_dead = 0;
1089
1090 spin_unlock_irqrestore(&host->lock, flags);
1091 }
1092
1093 /*
1094 * Remove the current bus handler from a host. Assumes that there are
1095 * no interesting cards left, so the bus is powered down.
1096 */
mmc_detach_bus(struct mmc_host * host)1097 void mmc_detach_bus(struct mmc_host *host)
1098 {
1099 unsigned long flags;
1100
1101 BUG_ON(!host);
1102
1103 WARN_ON(!host->claimed);
1104 WARN_ON(!host->bus_ops);
1105
1106 spin_lock_irqsave(&host->lock, flags);
1107
1108 host->bus_dead = 1;
1109
1110 spin_unlock_irqrestore(&host->lock, flags);
1111
1112 mmc_power_off(host);
1113
1114 mmc_bus_put(host);
1115 }
1116
1117 /**
1118 * mmc_detect_change - process change of state on a MMC socket
1119 * @host: host which changed state.
1120 * @delay: optional delay to wait before detection (jiffies)
1121 *
1122 * MMC drivers should call this when they detect a card has been
1123 * inserted or removed. The MMC layer will confirm that any
1124 * present card is still functional, and initialize any newly
1125 * inserted.
1126 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1127 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1128 {
1129 #ifdef CONFIG_MMC_DEBUG
1130 unsigned long flags;
1131 spin_lock_irqsave(&host->lock, flags);
1132 WARN_ON(host->removed);
1133 spin_unlock_irqrestore(&host->lock, flags);
1134 #endif
1135
1136 mmc_schedule_delayed_work(&host->detect, delay);
1137 }
1138
1139 EXPORT_SYMBOL(mmc_detect_change);
1140
mmc_init_erase(struct mmc_card * card)1141 void mmc_init_erase(struct mmc_card *card)
1142 {
1143 unsigned int sz;
1144
1145 if (is_power_of_2(card->erase_size))
1146 card->erase_shift = ffs(card->erase_size) - 1;
1147 else
1148 card->erase_shift = 0;
1149
1150 /*
1151 * It is possible to erase an arbitrarily large area of an SD or MMC
1152 * card. That is not desirable because it can take a long time
1153 * (minutes) potentially delaying more important I/O, and also the
1154 * timeout calculations become increasingly hugely over-estimated.
1155 * Consequently, 'pref_erase' is defined as a guide to limit erases
1156 * to that size and alignment.
1157 *
1158 * For SD cards that define Allocation Unit size, limit erases to one
1159 * Allocation Unit at a time. For MMC cards that define High Capacity
1160 * Erase Size, whether it is switched on or not, limit to that size.
1161 * Otherwise just have a stab at a good value. For modern cards it
1162 * will end up being 4MiB. Note that if the value is too small, it
1163 * can end up taking longer to erase.
1164 */
1165 if (mmc_card_sd(card) && card->ssr.au) {
1166 card->pref_erase = card->ssr.au;
1167 card->erase_shift = ffs(card->ssr.au) - 1;
1168 } else if (card->ext_csd.hc_erase_size) {
1169 card->pref_erase = card->ext_csd.hc_erase_size;
1170 } else {
1171 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1172 if (sz < 128)
1173 card->pref_erase = 512 * 1024 / 512;
1174 else if (sz < 512)
1175 card->pref_erase = 1024 * 1024 / 512;
1176 else if (sz < 1024)
1177 card->pref_erase = 2 * 1024 * 1024 / 512;
1178 else
1179 card->pref_erase = 4 * 1024 * 1024 / 512;
1180 if (card->pref_erase < card->erase_size)
1181 card->pref_erase = card->erase_size;
1182 else {
1183 sz = card->pref_erase % card->erase_size;
1184 if (sz)
1185 card->pref_erase += card->erase_size - sz;
1186 }
1187 }
1188 }
1189
mmc_set_mmc_erase_timeout(struct mmc_card * card,struct mmc_command * cmd,unsigned int arg,unsigned int qty)1190 static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1191 struct mmc_command *cmd,
1192 unsigned int arg, unsigned int qty)
1193 {
1194 unsigned int erase_timeout;
1195
1196 if (card->ext_csd.erase_group_def & 1) {
1197 /* High Capacity Erase Group Size uses HC timeouts */
1198 if (arg == MMC_TRIM_ARG)
1199 erase_timeout = card->ext_csd.trim_timeout;
1200 else
1201 erase_timeout = card->ext_csd.hc_erase_timeout;
1202 } else {
1203 /* CSD Erase Group Size uses write timeout */
1204 unsigned int mult = (10 << card->csd.r2w_factor);
1205 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1206 unsigned int timeout_us;
1207
1208 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1209 if (card->csd.tacc_ns < 1000000)
1210 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1211 else
1212 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1213
1214 /*
1215 * ios.clock is only a target. The real clock rate might be
1216 * less but not that much less, so fudge it by multiplying by 2.
1217 */
1218 timeout_clks <<= 1;
1219 timeout_us += (timeout_clks * 1000) /
1220 (card->host->ios.clock / 1000);
1221
1222 erase_timeout = timeout_us / 1000;
1223
1224 /*
1225 * Theoretically, the calculation could underflow so round up
1226 * to 1ms in that case.
1227 */
1228 if (!erase_timeout)
1229 erase_timeout = 1;
1230 }
1231
1232 /* Multiplier for secure operations */
1233 if (arg & MMC_SECURE_ARGS) {
1234 if (arg == MMC_SECURE_ERASE_ARG)
1235 erase_timeout *= card->ext_csd.sec_erase_mult;
1236 else
1237 erase_timeout *= card->ext_csd.sec_trim_mult;
1238 }
1239
1240 erase_timeout *= qty;
1241
1242 /*
1243 * Ensure at least a 1 second timeout for SPI as per
1244 * 'mmc_set_data_timeout()'
1245 */
1246 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1247 erase_timeout = 1000;
1248
1249 cmd->erase_timeout = erase_timeout;
1250 }
1251
mmc_set_sd_erase_timeout(struct mmc_card * card,struct mmc_command * cmd,unsigned int arg,unsigned int qty)1252 static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1253 struct mmc_command *cmd, unsigned int arg,
1254 unsigned int qty)
1255 {
1256 if (card->ssr.erase_timeout) {
1257 /* Erase timeout specified in SD Status Register (SSR) */
1258 cmd->erase_timeout = card->ssr.erase_timeout * qty +
1259 card->ssr.erase_offset;
1260 } else {
1261 /*
1262 * Erase timeout not specified in SD Status Register (SSR) so
1263 * use 250ms per write block.
1264 */
1265 cmd->erase_timeout = 250 * qty;
1266 }
1267
1268 /* Must not be less than 1 second */
1269 if (cmd->erase_timeout < 1000)
1270 cmd->erase_timeout = 1000;
1271 }
1272
mmc_set_erase_timeout(struct mmc_card * card,struct mmc_command * cmd,unsigned int arg,unsigned int qty)1273 static void mmc_set_erase_timeout(struct mmc_card *card,
1274 struct mmc_command *cmd, unsigned int arg,
1275 unsigned int qty)
1276 {
1277 if (mmc_card_sd(card))
1278 mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1279 else
1280 mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1281 }
1282
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1283 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1284 unsigned int to, unsigned int arg)
1285 {
1286 struct mmc_command cmd;
1287 unsigned int qty = 0;
1288 int err;
1289
1290 /*
1291 * qty is used to calculate the erase timeout which depends on how many
1292 * erase groups (or allocation units in SD terminology) are affected.
1293 * We count erasing part of an erase group as one erase group.
1294 * For SD, the allocation units are always a power of 2. For MMC, the
1295 * erase group size is almost certainly also power of 2, but it does not
1296 * seem to insist on that in the JEDEC standard, so we fall back to
1297 * division in that case. SD may not specify an allocation unit size,
1298 * in which case the timeout is based on the number of write blocks.
1299 *
1300 * Note that the timeout for secure trim 2 will only be correct if the
1301 * number of erase groups specified is the same as the total of all
1302 * preceding secure trim 1 commands. Since the power may have been
1303 * lost since the secure trim 1 commands occurred, it is generally
1304 * impossible to calculate the secure trim 2 timeout correctly.
1305 */
1306 if (card->erase_shift)
1307 qty += ((to >> card->erase_shift) -
1308 (from >> card->erase_shift)) + 1;
1309 else if (mmc_card_sd(card))
1310 qty += to - from + 1;
1311 else
1312 qty += ((to / card->erase_size) -
1313 (from / card->erase_size)) + 1;
1314
1315 if (!mmc_card_blockaddr(card)) {
1316 from <<= 9;
1317 to <<= 9;
1318 }
1319
1320 memset(&cmd, 0, sizeof(struct mmc_command));
1321 if (mmc_card_sd(card))
1322 cmd.opcode = SD_ERASE_WR_BLK_START;
1323 else
1324 cmd.opcode = MMC_ERASE_GROUP_START;
1325 cmd.arg = from;
1326 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1327 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1328 if (err) {
1329 printk(KERN_ERR "mmc_erase: group start error %d, "
1330 "status %#x\n", err, cmd.resp[0]);
1331 err = -EINVAL;
1332 goto out;
1333 }
1334
1335 memset(&cmd, 0, sizeof(struct mmc_command));
1336 if (mmc_card_sd(card))
1337 cmd.opcode = SD_ERASE_WR_BLK_END;
1338 else
1339 cmd.opcode = MMC_ERASE_GROUP_END;
1340 cmd.arg = to;
1341 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1342 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1343 if (err) {
1344 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1345 err, cmd.resp[0]);
1346 err = -EINVAL;
1347 goto out;
1348 }
1349
1350 memset(&cmd, 0, sizeof(struct mmc_command));
1351 cmd.opcode = MMC_ERASE;
1352 cmd.arg = arg;
1353 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1354 mmc_set_erase_timeout(card, &cmd, arg, qty);
1355 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1356 if (err) {
1357 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1358 err, cmd.resp[0]);
1359 err = -EIO;
1360 goto out;
1361 }
1362
1363 if (mmc_host_is_spi(card->host))
1364 goto out;
1365
1366 do {
1367 memset(&cmd, 0, sizeof(struct mmc_command));
1368 cmd.opcode = MMC_SEND_STATUS;
1369 cmd.arg = card->rca << 16;
1370 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1371 /* Do not retry else we can't see errors */
1372 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1373 if (err || (cmd.resp[0] & 0xFDF92000)) {
1374 printk(KERN_ERR "error %d requesting status %#x\n",
1375 err, cmd.resp[0]);
1376 err = -EIO;
1377 goto out;
1378 }
1379 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1380 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1381 out:
1382 return err;
1383 }
1384
1385 /**
1386 * mmc_erase - erase sectors.
1387 * @card: card to erase
1388 * @from: first sector to erase
1389 * @nr: number of sectors to erase
1390 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1391 *
1392 * Caller must claim host before calling this function.
1393 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1394 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1395 unsigned int arg)
1396 {
1397 unsigned int rem, to = from + nr;
1398
1399 if (!(card->host->caps & MMC_CAP_ERASE) ||
1400 !(card->csd.cmdclass & CCC_ERASE))
1401 return -EOPNOTSUPP;
1402
1403 if (!card->erase_size)
1404 return -EOPNOTSUPP;
1405
1406 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1407 return -EOPNOTSUPP;
1408
1409 if ((arg & MMC_SECURE_ARGS) &&
1410 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1411 return -EOPNOTSUPP;
1412
1413 if ((arg & MMC_TRIM_ARGS) &&
1414 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1415 return -EOPNOTSUPP;
1416
1417 if (arg == MMC_SECURE_ERASE_ARG) {
1418 if (from % card->erase_size || nr % card->erase_size)
1419 return -EINVAL;
1420 }
1421
1422 if (arg == MMC_ERASE_ARG) {
1423 rem = from % card->erase_size;
1424 if (rem) {
1425 rem = card->erase_size - rem;
1426 from += rem;
1427 if (nr > rem)
1428 nr -= rem;
1429 else
1430 return 0;
1431 }
1432 rem = nr % card->erase_size;
1433 if (rem)
1434 nr -= rem;
1435 }
1436
1437 if (nr == 0)
1438 return 0;
1439
1440 to = from + nr;
1441
1442 if (to <= from)
1443 return -EINVAL;
1444
1445 /* 'from' and 'to' are inclusive */
1446 to -= 1;
1447
1448 return mmc_do_erase(card, from, to, arg);
1449 }
1450 EXPORT_SYMBOL(mmc_erase);
1451
mmc_can_erase(struct mmc_card * card)1452 int mmc_can_erase(struct mmc_card *card)
1453 {
1454 if ((card->host->caps & MMC_CAP_ERASE) &&
1455 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1456 return 1;
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(mmc_can_erase);
1460
mmc_can_trim(struct mmc_card * card)1461 int mmc_can_trim(struct mmc_card *card)
1462 {
1463 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1464 return 1;
1465 return 0;
1466 }
1467 EXPORT_SYMBOL(mmc_can_trim);
1468
mmc_can_secure_erase_trim(struct mmc_card * card)1469 int mmc_can_secure_erase_trim(struct mmc_card *card)
1470 {
1471 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1472 return 1;
1473 return 0;
1474 }
1475 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1476
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1477 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1478 unsigned int nr)
1479 {
1480 if (!card->erase_size)
1481 return 0;
1482 if (from % card->erase_size || nr % card->erase_size)
1483 return 0;
1484 return 1;
1485 }
1486 EXPORT_SYMBOL(mmc_erase_group_aligned);
1487
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1488 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1489 {
1490 struct mmc_command cmd;
1491
1492 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1493 return 0;
1494
1495 memset(&cmd, 0, sizeof(struct mmc_command));
1496 cmd.opcode = MMC_SET_BLOCKLEN;
1497 cmd.arg = blocklen;
1498 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1499 return mmc_wait_for_cmd(card->host, &cmd, 5);
1500 }
1501 EXPORT_SYMBOL(mmc_set_blocklen);
1502
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)1503 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1504 {
1505 host->f_init = freq;
1506
1507 #ifdef CONFIG_MMC_DEBUG
1508 pr_info("%s: %s: trying to init card at %u Hz\n",
1509 mmc_hostname(host), __func__, host->f_init);
1510 #endif
1511 mmc_power_up(host);
1512
1513 /*
1514 * sdio_reset sends CMD52 to reset card. Since we do not know
1515 * if the card is being re-initialized, just send it. CMD52
1516 * should be ignored by SD/eMMC cards.
1517 */
1518 sdio_reset(host);
1519 mmc_go_idle(host);
1520
1521 mmc_send_if_cond(host, host->ocr_avail);
1522
1523 /* Order's important: probe SDIO, then SD, then MMC */
1524 if (!mmc_attach_sdio(host))
1525 return 0;
1526 if (!mmc_attach_sd(host))
1527 return 0;
1528 if (!mmc_attach_mmc(host))
1529 return 0;
1530
1531 mmc_power_off(host);
1532 return -EIO;
1533 }
1534
mmc_rescan(struct work_struct * work)1535 void mmc_rescan(struct work_struct *work)
1536 {
1537 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1538 struct mmc_host *host =
1539 container_of(work, struct mmc_host, detect.work);
1540 int i;
1541
1542 if (host->rescan_disable)
1543 return;
1544
1545 mmc_bus_get(host);
1546
1547 /*
1548 * if there is a _removable_ card registered, check whether it is
1549 * still present
1550 */
1551 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1552 && !(host->caps & MMC_CAP_NONREMOVABLE))
1553 host->bus_ops->detect(host);
1554
1555 /*
1556 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1557 * the card is no longer present.
1558 */
1559 mmc_bus_put(host);
1560 mmc_bus_get(host);
1561
1562 /* if there still is a card present, stop here */
1563 if (host->bus_ops != NULL) {
1564 mmc_bus_put(host);
1565 goto out;
1566 }
1567
1568 /*
1569 * Only we can add a new handler, so it's safe to
1570 * release the lock here.
1571 */
1572 mmc_bus_put(host);
1573
1574 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1575 goto out;
1576
1577 mmc_claim_host(host);
1578 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1579 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1580 break;
1581 if (freqs[i] < host->f_min)
1582 break;
1583 }
1584 mmc_release_host(host);
1585
1586 out:
1587 if (host->caps & MMC_CAP_NEEDS_POLL)
1588 mmc_schedule_delayed_work(&host->detect, HZ);
1589 }
1590
mmc_start_host(struct mmc_host * host)1591 void mmc_start_host(struct mmc_host *host)
1592 {
1593 mmc_power_off(host);
1594 mmc_detect_change(host, 0);
1595 }
1596
mmc_stop_host(struct mmc_host * host)1597 void mmc_stop_host(struct mmc_host *host)
1598 {
1599 #ifdef CONFIG_MMC_DEBUG
1600 unsigned long flags;
1601 spin_lock_irqsave(&host->lock, flags);
1602 host->removed = 1;
1603 spin_unlock_irqrestore(&host->lock, flags);
1604 #endif
1605
1606 if (host->caps & MMC_CAP_DISABLE)
1607 cancel_delayed_work(&host->disable);
1608 cancel_delayed_work_sync(&host->detect);
1609 mmc_flush_scheduled_work();
1610
1611 /* clear pm flags now and let card drivers set them as needed */
1612 host->pm_flags = 0;
1613
1614 mmc_bus_get(host);
1615 if (host->bus_ops && !host->bus_dead) {
1616 if (host->bus_ops->remove)
1617 host->bus_ops->remove(host);
1618
1619 mmc_claim_host(host);
1620 mmc_detach_bus(host);
1621 mmc_release_host(host);
1622 mmc_bus_put(host);
1623 return;
1624 }
1625 mmc_bus_put(host);
1626
1627 BUG_ON(host->card);
1628
1629 mmc_power_off(host);
1630 }
1631
mmc_power_save_host(struct mmc_host * host)1632 int mmc_power_save_host(struct mmc_host *host)
1633 {
1634 int ret = 0;
1635
1636 mmc_bus_get(host);
1637
1638 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1639 mmc_bus_put(host);
1640 return -EINVAL;
1641 }
1642
1643 if (host->bus_ops->power_save)
1644 ret = host->bus_ops->power_save(host);
1645
1646 mmc_bus_put(host);
1647
1648 mmc_power_off(host);
1649
1650 return ret;
1651 }
1652 EXPORT_SYMBOL(mmc_power_save_host);
1653
mmc_power_restore_host(struct mmc_host * host)1654 int mmc_power_restore_host(struct mmc_host *host)
1655 {
1656 int ret;
1657
1658 mmc_bus_get(host);
1659
1660 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1661 mmc_bus_put(host);
1662 return -EINVAL;
1663 }
1664
1665 mmc_power_up(host);
1666 ret = host->bus_ops->power_restore(host);
1667
1668 mmc_bus_put(host);
1669
1670 return ret;
1671 }
1672 EXPORT_SYMBOL(mmc_power_restore_host);
1673
mmc_card_awake(struct mmc_host * host)1674 int mmc_card_awake(struct mmc_host *host)
1675 {
1676 int err = -ENOSYS;
1677
1678 mmc_bus_get(host);
1679
1680 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1681 err = host->bus_ops->awake(host);
1682
1683 mmc_bus_put(host);
1684
1685 return err;
1686 }
1687 EXPORT_SYMBOL(mmc_card_awake);
1688
mmc_card_sleep(struct mmc_host * host)1689 int mmc_card_sleep(struct mmc_host *host)
1690 {
1691 int err = -ENOSYS;
1692
1693 mmc_bus_get(host);
1694
1695 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1696 err = host->bus_ops->sleep(host);
1697
1698 mmc_bus_put(host);
1699
1700 return err;
1701 }
1702 EXPORT_SYMBOL(mmc_card_sleep);
1703
mmc_card_can_sleep(struct mmc_host * host)1704 int mmc_card_can_sleep(struct mmc_host *host)
1705 {
1706 struct mmc_card *card = host->card;
1707
1708 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1709 return 1;
1710 return 0;
1711 }
1712 EXPORT_SYMBOL(mmc_card_can_sleep);
1713
1714 #ifdef CONFIG_PM
1715
1716 /**
1717 * mmc_suspend_host - suspend a host
1718 * @host: mmc host
1719 */
mmc_suspend_host(struct mmc_host * host)1720 int mmc_suspend_host(struct mmc_host *host)
1721 {
1722 int err = 0;
1723
1724 if (host->caps & MMC_CAP_DISABLE)
1725 cancel_delayed_work(&host->disable);
1726 cancel_delayed_work(&host->detect);
1727 mmc_flush_scheduled_work();
1728
1729 mmc_bus_get(host);
1730 if (host->bus_ops && !host->bus_dead) {
1731 if (host->bus_ops->suspend)
1732 err = host->bus_ops->suspend(host);
1733 if (err == -ENOSYS || !host->bus_ops->resume) {
1734 /*
1735 * We simply "remove" the card in this case.
1736 * It will be redetected on resume.
1737 */
1738 if (host->bus_ops->remove)
1739 host->bus_ops->remove(host);
1740 mmc_claim_host(host);
1741 mmc_detach_bus(host);
1742 mmc_release_host(host);
1743 host->pm_flags = 0;
1744 err = 0;
1745 }
1746 }
1747 mmc_bus_put(host);
1748
1749 if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1750 mmc_power_off(host);
1751
1752 return err;
1753 }
1754
1755 EXPORT_SYMBOL(mmc_suspend_host);
1756
1757 /**
1758 * mmc_resume_host - resume a previously suspended host
1759 * @host: mmc host
1760 */
mmc_resume_host(struct mmc_host * host)1761 int mmc_resume_host(struct mmc_host *host)
1762 {
1763 int err = 0;
1764
1765 mmc_bus_get(host);
1766 if (host->bus_ops && !host->bus_dead) {
1767 if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1768 mmc_power_up(host);
1769 mmc_select_voltage(host, host->ocr);
1770 /*
1771 * Tell runtime PM core we just powered up the card,
1772 * since it still believes the card is powered off.
1773 * Note that currently runtime PM is only enabled
1774 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1775 */
1776 if (mmc_card_sdio(host->card) &&
1777 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1778 pm_runtime_disable(&host->card->dev);
1779 pm_runtime_set_active(&host->card->dev);
1780 pm_runtime_enable(&host->card->dev);
1781 }
1782 }
1783 BUG_ON(!host->bus_ops->resume);
1784 err = host->bus_ops->resume(host);
1785 if (err) {
1786 printk(KERN_WARNING "%s: error %d during resume "
1787 "(card was removed?)\n",
1788 mmc_hostname(host), err);
1789 err = 0;
1790 }
1791 }
1792 mmc_bus_put(host);
1793
1794 return err;
1795 }
1796 EXPORT_SYMBOL(mmc_resume_host);
1797
1798 /* Do the card removal on suspend if card is assumed removeable
1799 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1800 to sync the card.
1801 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1802 int mmc_pm_notify(struct notifier_block *notify_block,
1803 unsigned long mode, void *unused)
1804 {
1805 struct mmc_host *host = container_of(
1806 notify_block, struct mmc_host, pm_notify);
1807 unsigned long flags;
1808
1809
1810 switch (mode) {
1811 case PM_HIBERNATION_PREPARE:
1812 case PM_SUSPEND_PREPARE:
1813
1814 spin_lock_irqsave(&host->lock, flags);
1815 host->rescan_disable = 1;
1816 spin_unlock_irqrestore(&host->lock, flags);
1817 cancel_delayed_work_sync(&host->detect);
1818
1819 if (!host->bus_ops || host->bus_ops->suspend)
1820 break;
1821
1822 mmc_claim_host(host);
1823
1824 if (host->bus_ops->remove)
1825 host->bus_ops->remove(host);
1826
1827 mmc_detach_bus(host);
1828 mmc_release_host(host);
1829 host->pm_flags = 0;
1830 break;
1831
1832 case PM_POST_SUSPEND:
1833 case PM_POST_HIBERNATION:
1834 case PM_POST_RESTORE:
1835
1836 spin_lock_irqsave(&host->lock, flags);
1837 host->rescan_disable = 0;
1838 spin_unlock_irqrestore(&host->lock, flags);
1839 mmc_detect_change(host, 0);
1840
1841 }
1842
1843 return 0;
1844 }
1845 #endif
1846
mmc_init(void)1847 static int __init mmc_init(void)
1848 {
1849 int ret;
1850
1851 workqueue = alloc_ordered_workqueue("kmmcd", 0);
1852 if (!workqueue)
1853 return -ENOMEM;
1854
1855 ret = mmc_register_bus();
1856 if (ret)
1857 goto destroy_workqueue;
1858
1859 ret = mmc_register_host_class();
1860 if (ret)
1861 goto unregister_bus;
1862
1863 ret = sdio_register_bus();
1864 if (ret)
1865 goto unregister_host_class;
1866
1867 return 0;
1868
1869 unregister_host_class:
1870 mmc_unregister_host_class();
1871 unregister_bus:
1872 mmc_unregister_bus();
1873 destroy_workqueue:
1874 destroy_workqueue(workqueue);
1875
1876 return ret;
1877 }
1878
mmc_exit(void)1879 static void __exit mmc_exit(void)
1880 {
1881 sdio_unregister_bus();
1882 mmc_unregister_host_class();
1883 mmc_unregister_bus();
1884 destroy_workqueue(workqueue);
1885 }
1886
1887 subsys_initcall(mmc_init);
1888 module_exit(mmc_exit);
1889
1890 MODULE_LICENSE("GPL");
1891