1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/sch_generic.c Generic packet scheduler routines.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7 * - Ingress support
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <trace/events/qdisc.h>
31 #include <trace/events/net.h>
32 #include <net/xfrm.h>
33
34 /* Qdisc to use by default */
35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
36 EXPORT_SYMBOL(default_qdisc_ops);
37
qdisc_maybe_clear_missed(struct Qdisc * q,const struct netdev_queue * txq)38 static void qdisc_maybe_clear_missed(struct Qdisc *q,
39 const struct netdev_queue *txq)
40 {
41 clear_bit(__QDISC_STATE_MISSED, &q->state);
42
43 /* Make sure the below netif_xmit_frozen_or_stopped()
44 * checking happens after clearing STATE_MISSED.
45 */
46 smp_mb__after_atomic();
47
48 /* Checking netif_xmit_frozen_or_stopped() again to
49 * make sure STATE_MISSED is set if the STATE_MISSED
50 * set by netif_tx_wake_queue()'s rescheduling of
51 * net_tx_action() is cleared by the above clear_bit().
52 */
53 if (!netif_xmit_frozen_or_stopped(txq))
54 set_bit(__QDISC_STATE_MISSED, &q->state);
55 else
56 set_bit(__QDISC_STATE_DRAINING, &q->state);
57 }
58
59 /* Main transmission queue. */
60
61 /* Modifications to data participating in scheduling must be protected with
62 * qdisc_lock(qdisc) spinlock.
63 *
64 * The idea is the following:
65 * - enqueue, dequeue are serialized via qdisc root lock
66 * - ingress filtering is also serialized via qdisc root lock
67 * - updates to tree and tree walking are only done under the rtnl mutex.
68 */
69
70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
71
__skb_dequeue_bad_txq(struct Qdisc * q)72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
73 {
74 const struct netdev_queue *txq = q->dev_queue;
75 spinlock_t *lock = NULL;
76 struct sk_buff *skb;
77
78 if (q->flags & TCQ_F_NOLOCK) {
79 lock = qdisc_lock(q);
80 spin_lock(lock);
81 }
82
83 skb = skb_peek(&q->skb_bad_txq);
84 if (skb) {
85 /* check the reason of requeuing without tx lock first */
86 txq = skb_get_tx_queue(txq->dev, skb);
87 if (!netif_xmit_frozen_or_stopped(txq)) {
88 skb = __skb_dequeue(&q->skb_bad_txq);
89 if (qdisc_is_percpu_stats(q)) {
90 qdisc_qstats_cpu_backlog_dec(q, skb);
91 qdisc_qstats_cpu_qlen_dec(q);
92 } else {
93 qdisc_qstats_backlog_dec(q, skb);
94 q->q.qlen--;
95 }
96 } else {
97 skb = SKB_XOFF_MAGIC;
98 qdisc_maybe_clear_missed(q, txq);
99 }
100 }
101
102 if (lock)
103 spin_unlock(lock);
104
105 return skb;
106 }
107
qdisc_dequeue_skb_bad_txq(struct Qdisc * q)108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
109 {
110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
111
112 if (unlikely(skb))
113 skb = __skb_dequeue_bad_txq(q);
114
115 return skb;
116 }
117
qdisc_enqueue_skb_bad_txq(struct Qdisc * q,struct sk_buff * skb)118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
119 struct sk_buff *skb)
120 {
121 spinlock_t *lock = NULL;
122
123 if (q->flags & TCQ_F_NOLOCK) {
124 lock = qdisc_lock(q);
125 spin_lock(lock);
126 }
127
128 __skb_queue_tail(&q->skb_bad_txq, skb);
129
130 if (qdisc_is_percpu_stats(q)) {
131 qdisc_qstats_cpu_backlog_inc(q, skb);
132 qdisc_qstats_cpu_qlen_inc(q);
133 } else {
134 qdisc_qstats_backlog_inc(q, skb);
135 q->q.qlen++;
136 }
137
138 if (lock)
139 spin_unlock(lock);
140 }
141
dev_requeue_skb(struct sk_buff * skb,struct Qdisc * q)142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
143 {
144 spinlock_t *lock = NULL;
145
146 if (q->flags & TCQ_F_NOLOCK) {
147 lock = qdisc_lock(q);
148 spin_lock(lock);
149 }
150
151 while (skb) {
152 struct sk_buff *next = skb->next;
153
154 __skb_queue_tail(&q->gso_skb, skb);
155
156 /* it's still part of the queue */
157 if (qdisc_is_percpu_stats(q)) {
158 qdisc_qstats_cpu_requeues_inc(q);
159 qdisc_qstats_cpu_backlog_inc(q, skb);
160 qdisc_qstats_cpu_qlen_inc(q);
161 } else {
162 q->qstats.requeues++;
163 qdisc_qstats_backlog_inc(q, skb);
164 q->q.qlen++;
165 }
166
167 skb = next;
168 }
169
170 if (lock) {
171 spin_unlock(lock);
172 set_bit(__QDISC_STATE_MISSED, &q->state);
173 } else {
174 __netif_schedule(q);
175 }
176 }
177
try_bulk_dequeue_skb(struct Qdisc * q,struct sk_buff * skb,const struct netdev_queue * txq,int * packets)178 static void try_bulk_dequeue_skb(struct Qdisc *q,
179 struct sk_buff *skb,
180 const struct netdev_queue *txq,
181 int *packets)
182 {
183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
184
185 while (bytelimit > 0) {
186 struct sk_buff *nskb = q->dequeue(q);
187
188 if (!nskb)
189 break;
190
191 bytelimit -= nskb->len; /* covers GSO len */
192 skb->next = nskb;
193 skb = nskb;
194 (*packets)++; /* GSO counts as one pkt */
195 }
196 skb_mark_not_on_list(skb);
197 }
198
199 /* This variant of try_bulk_dequeue_skb() makes sure
200 * all skbs in the chain are for the same txq
201 */
try_bulk_dequeue_skb_slow(struct Qdisc * q,struct sk_buff * skb,int * packets)202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
203 struct sk_buff *skb,
204 int *packets)
205 {
206 int mapping = skb_get_queue_mapping(skb);
207 struct sk_buff *nskb;
208 int cnt = 0;
209
210 do {
211 nskb = q->dequeue(q);
212 if (!nskb)
213 break;
214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
215 qdisc_enqueue_skb_bad_txq(q, nskb);
216 break;
217 }
218 skb->next = nskb;
219 skb = nskb;
220 } while (++cnt < 8);
221 (*packets) += cnt;
222 skb_mark_not_on_list(skb);
223 }
224
225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
226 * A requeued skb (via q->gso_skb) can also be a SKB list.
227 */
dequeue_skb(struct Qdisc * q,bool * validate,int * packets)228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
229 int *packets)
230 {
231 const struct netdev_queue *txq = q->dev_queue;
232 struct sk_buff *skb = NULL;
233
234 *packets = 1;
235 if (unlikely(!skb_queue_empty(&q->gso_skb))) {
236 spinlock_t *lock = NULL;
237
238 if (q->flags & TCQ_F_NOLOCK) {
239 lock = qdisc_lock(q);
240 spin_lock(lock);
241 }
242
243 skb = skb_peek(&q->gso_skb);
244
245 /* skb may be null if another cpu pulls gso_skb off in between
246 * empty check and lock.
247 */
248 if (!skb) {
249 if (lock)
250 spin_unlock(lock);
251 goto validate;
252 }
253
254 /* skb in gso_skb were already validated */
255 *validate = false;
256 if (xfrm_offload(skb))
257 *validate = true;
258 /* check the reason of requeuing without tx lock first */
259 txq = skb_get_tx_queue(txq->dev, skb);
260 if (!netif_xmit_frozen_or_stopped(txq)) {
261 skb = __skb_dequeue(&q->gso_skb);
262 if (qdisc_is_percpu_stats(q)) {
263 qdisc_qstats_cpu_backlog_dec(q, skb);
264 qdisc_qstats_cpu_qlen_dec(q);
265 } else {
266 qdisc_qstats_backlog_dec(q, skb);
267 q->q.qlen--;
268 }
269 } else {
270 skb = NULL;
271 qdisc_maybe_clear_missed(q, txq);
272 }
273 if (lock)
274 spin_unlock(lock);
275 goto trace;
276 }
277 validate:
278 *validate = true;
279
280 if ((q->flags & TCQ_F_ONETXQUEUE) &&
281 netif_xmit_frozen_or_stopped(txq)) {
282 qdisc_maybe_clear_missed(q, txq);
283 return skb;
284 }
285
286 skb = qdisc_dequeue_skb_bad_txq(q);
287 if (unlikely(skb)) {
288 if (skb == SKB_XOFF_MAGIC)
289 return NULL;
290 goto bulk;
291 }
292 skb = q->dequeue(q);
293 if (skb) {
294 bulk:
295 if (qdisc_may_bulk(q))
296 try_bulk_dequeue_skb(q, skb, txq, packets);
297 else
298 try_bulk_dequeue_skb_slow(q, skb, packets);
299 }
300 trace:
301 trace_qdisc_dequeue(q, txq, *packets, skb);
302 return skb;
303 }
304
305 /*
306 * Transmit possibly several skbs, and handle the return status as
307 * required. Owning qdisc running bit guarantees that only one CPU
308 * can execute this function.
309 *
310 * Returns to the caller:
311 * false - hardware queue frozen backoff
312 * true - feel free to send more pkts
313 */
sch_direct_xmit(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq,spinlock_t * root_lock,bool validate)314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
315 struct net_device *dev, struct netdev_queue *txq,
316 spinlock_t *root_lock, bool validate)
317 {
318 int ret = NETDEV_TX_BUSY;
319 bool again = false;
320
321 /* And release qdisc */
322 if (root_lock)
323 spin_unlock(root_lock);
324
325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */
326 if (validate)
327 skb = validate_xmit_skb_list(skb, dev, &again);
328
329 #ifdef CONFIG_XFRM_OFFLOAD
330 if (unlikely(again)) {
331 if (root_lock)
332 spin_lock(root_lock);
333
334 dev_requeue_skb(skb, q);
335 return false;
336 }
337 #endif
338
339 if (likely(skb)) {
340 HARD_TX_LOCK(dev, txq, smp_processor_id());
341 if (!netif_xmit_frozen_or_stopped(txq))
342 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
343 else
344 qdisc_maybe_clear_missed(q, txq);
345
346 HARD_TX_UNLOCK(dev, txq);
347 } else {
348 if (root_lock)
349 spin_lock(root_lock);
350 return true;
351 }
352
353 if (root_lock)
354 spin_lock(root_lock);
355
356 if (!dev_xmit_complete(ret)) {
357 /* Driver returned NETDEV_TX_BUSY - requeue skb */
358 if (unlikely(ret != NETDEV_TX_BUSY))
359 net_warn_ratelimited("BUG %s code %d qlen %d\n",
360 dev->name, ret, q->q.qlen);
361
362 dev_requeue_skb(skb, q);
363 return false;
364 }
365
366 return true;
367 }
368
369 /*
370 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
371 *
372 * running seqcount guarantees only one CPU can process
373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
374 * this queue.
375 *
376 * netif_tx_lock serializes accesses to device driver.
377 *
378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive,
379 * if one is grabbed, another must be free.
380 *
381 * Note, that this procedure can be called by a watchdog timer
382 *
383 * Returns to the caller:
384 * 0 - queue is empty or throttled.
385 * >0 - queue is not empty.
386 *
387 */
qdisc_restart(struct Qdisc * q,int * packets)388 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
389 {
390 spinlock_t *root_lock = NULL;
391 struct netdev_queue *txq;
392 struct net_device *dev;
393 struct sk_buff *skb;
394 bool validate;
395
396 /* Dequeue packet */
397 skb = dequeue_skb(q, &validate, packets);
398 if (unlikely(!skb))
399 return false;
400
401 if (!(q->flags & TCQ_F_NOLOCK))
402 root_lock = qdisc_lock(q);
403
404 dev = qdisc_dev(q);
405 txq = skb_get_tx_queue(dev, skb);
406
407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
408 }
409
__qdisc_run(struct Qdisc * q)410 void __qdisc_run(struct Qdisc *q)
411 {
412 int quota = READ_ONCE(dev_tx_weight);
413 int packets;
414
415 while (qdisc_restart(q, &packets)) {
416 quota -= packets;
417 if (quota <= 0) {
418 if (q->flags & TCQ_F_NOLOCK)
419 set_bit(__QDISC_STATE_MISSED, &q->state);
420 else
421 __netif_schedule(q);
422
423 break;
424 }
425 }
426 }
427
dev_trans_start(struct net_device * dev)428 unsigned long dev_trans_start(struct net_device *dev)
429 {
430 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
431 unsigned long val;
432 unsigned int i;
433
434 for (i = 1; i < dev->num_tx_queues; i++) {
435 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
436 if (val && time_after(val, res))
437 res = val;
438 }
439
440 return res;
441 }
442 EXPORT_SYMBOL(dev_trans_start);
443
netif_freeze_queues(struct net_device * dev)444 static void netif_freeze_queues(struct net_device *dev)
445 {
446 unsigned int i;
447 int cpu;
448
449 cpu = smp_processor_id();
450 for (i = 0; i < dev->num_tx_queues; i++) {
451 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
452
453 /* We are the only thread of execution doing a
454 * freeze, but we have to grab the _xmit_lock in
455 * order to synchronize with threads which are in
456 * the ->hard_start_xmit() handler and already
457 * checked the frozen bit.
458 */
459 __netif_tx_lock(txq, cpu);
460 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
461 __netif_tx_unlock(txq);
462 }
463 }
464
netif_tx_lock(struct net_device * dev)465 void netif_tx_lock(struct net_device *dev)
466 {
467 spin_lock(&dev->tx_global_lock);
468 netif_freeze_queues(dev);
469 }
470 EXPORT_SYMBOL(netif_tx_lock);
471
netif_unfreeze_queues(struct net_device * dev)472 static void netif_unfreeze_queues(struct net_device *dev)
473 {
474 unsigned int i;
475
476 for (i = 0; i < dev->num_tx_queues; i++) {
477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
478
479 /* No need to grab the _xmit_lock here. If the
480 * queue is not stopped for another reason, we
481 * force a schedule.
482 */
483 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
484 netif_schedule_queue(txq);
485 }
486 }
487
netif_tx_unlock(struct net_device * dev)488 void netif_tx_unlock(struct net_device *dev)
489 {
490 netif_unfreeze_queues(dev);
491 spin_unlock(&dev->tx_global_lock);
492 }
493 EXPORT_SYMBOL(netif_tx_unlock);
494
dev_watchdog(struct timer_list * t)495 static void dev_watchdog(struct timer_list *t)
496 {
497 struct net_device *dev = from_timer(dev, t, watchdog_timer);
498 bool release = true;
499
500 spin_lock(&dev->tx_global_lock);
501 if (!qdisc_tx_is_noop(dev)) {
502 if (netif_device_present(dev) &&
503 netif_running(dev) &&
504 netif_carrier_ok(dev)) {
505 unsigned int timedout_ms = 0;
506 unsigned int i;
507 unsigned long trans_start;
508
509 for (i = 0; i < dev->num_tx_queues; i++) {
510 struct netdev_queue *txq;
511
512 txq = netdev_get_tx_queue(dev, i);
513 trans_start = READ_ONCE(txq->trans_start);
514 if (netif_xmit_stopped(txq) &&
515 time_after(jiffies, (trans_start +
516 dev->watchdog_timeo))) {
517 timedout_ms = jiffies_to_msecs(jiffies - trans_start);
518 atomic_long_inc(&txq->trans_timeout);
519 break;
520 }
521 }
522
523 if (unlikely(timedout_ms)) {
524 trace_net_dev_xmit_timeout(dev, i);
525 WARN_ONCE(1, "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out %u ms\n",
526 dev->name, netdev_drivername(dev), i, timedout_ms);
527 netif_freeze_queues(dev);
528 dev->netdev_ops->ndo_tx_timeout(dev, i);
529 netif_unfreeze_queues(dev);
530 }
531 if (!mod_timer(&dev->watchdog_timer,
532 round_jiffies(jiffies +
533 dev->watchdog_timeo)))
534 release = false;
535 }
536 }
537 spin_unlock(&dev->tx_global_lock);
538
539 if (release)
540 netdev_put(dev, &dev->watchdog_dev_tracker);
541 }
542
__netdev_watchdog_up(struct net_device * dev)543 void __netdev_watchdog_up(struct net_device *dev)
544 {
545 if (dev->netdev_ops->ndo_tx_timeout) {
546 if (dev->watchdog_timeo <= 0)
547 dev->watchdog_timeo = 5*HZ;
548 if (!mod_timer(&dev->watchdog_timer,
549 round_jiffies(jiffies + dev->watchdog_timeo)))
550 netdev_hold(dev, &dev->watchdog_dev_tracker,
551 GFP_ATOMIC);
552 }
553 }
554 EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
555
dev_watchdog_up(struct net_device * dev)556 static void dev_watchdog_up(struct net_device *dev)
557 {
558 __netdev_watchdog_up(dev);
559 }
560
dev_watchdog_down(struct net_device * dev)561 static void dev_watchdog_down(struct net_device *dev)
562 {
563 netif_tx_lock_bh(dev);
564 if (del_timer(&dev->watchdog_timer))
565 netdev_put(dev, &dev->watchdog_dev_tracker);
566 netif_tx_unlock_bh(dev);
567 }
568
569 /**
570 * netif_carrier_on - set carrier
571 * @dev: network device
572 *
573 * Device has detected acquisition of carrier.
574 */
netif_carrier_on(struct net_device * dev)575 void netif_carrier_on(struct net_device *dev)
576 {
577 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
578 if (dev->reg_state == NETREG_UNINITIALIZED)
579 return;
580 atomic_inc(&dev->carrier_up_count);
581 linkwatch_fire_event(dev);
582 if (netif_running(dev))
583 __netdev_watchdog_up(dev);
584 }
585 }
586 EXPORT_SYMBOL(netif_carrier_on);
587
588 /**
589 * netif_carrier_off - clear carrier
590 * @dev: network device
591 *
592 * Device has detected loss of carrier.
593 */
netif_carrier_off(struct net_device * dev)594 void netif_carrier_off(struct net_device *dev)
595 {
596 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
597 if (dev->reg_state == NETREG_UNINITIALIZED)
598 return;
599 atomic_inc(&dev->carrier_down_count);
600 linkwatch_fire_event(dev);
601 }
602 }
603 EXPORT_SYMBOL(netif_carrier_off);
604
605 /**
606 * netif_carrier_event - report carrier state event
607 * @dev: network device
608 *
609 * Device has detected a carrier event but the carrier state wasn't changed.
610 * Use in drivers when querying carrier state asynchronously, to avoid missing
611 * events (link flaps) if link recovers before it's queried.
612 */
netif_carrier_event(struct net_device * dev)613 void netif_carrier_event(struct net_device *dev)
614 {
615 if (dev->reg_state == NETREG_UNINITIALIZED)
616 return;
617 atomic_inc(&dev->carrier_up_count);
618 atomic_inc(&dev->carrier_down_count);
619 linkwatch_fire_event(dev);
620 }
621 EXPORT_SYMBOL_GPL(netif_carrier_event);
622
623 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
624 under all circumstances. It is difficult to invent anything faster or
625 cheaper.
626 */
627
noop_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)628 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
629 struct sk_buff **to_free)
630 {
631 __qdisc_drop(skb, to_free);
632 return NET_XMIT_CN;
633 }
634
noop_dequeue(struct Qdisc * qdisc)635 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
636 {
637 return NULL;
638 }
639
640 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
641 .id = "noop",
642 .priv_size = 0,
643 .enqueue = noop_enqueue,
644 .dequeue = noop_dequeue,
645 .peek = noop_dequeue,
646 .owner = THIS_MODULE,
647 };
648
649 static struct netdev_queue noop_netdev_queue = {
650 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
651 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
652 };
653
654 struct Qdisc noop_qdisc = {
655 .enqueue = noop_enqueue,
656 .dequeue = noop_dequeue,
657 .flags = TCQ_F_BUILTIN,
658 .ops = &noop_qdisc_ops,
659 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
660 .dev_queue = &noop_netdev_queue,
661 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
662 .gso_skb = {
663 .next = (struct sk_buff *)&noop_qdisc.gso_skb,
664 .prev = (struct sk_buff *)&noop_qdisc.gso_skb,
665 .qlen = 0,
666 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
667 },
668 .skb_bad_txq = {
669 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
670 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
671 .qlen = 0,
672 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
673 },
674 };
675 EXPORT_SYMBOL(noop_qdisc);
676
noqueue_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)677 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
678 struct netlink_ext_ack *extack)
679 {
680 /* register_qdisc() assigns a default of noop_enqueue if unset,
681 * but __dev_queue_xmit() treats noqueue only as such
682 * if this is NULL - so clear it here. */
683 qdisc->enqueue = NULL;
684 return 0;
685 }
686
687 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
688 .id = "noqueue",
689 .priv_size = 0,
690 .init = noqueue_init,
691 .enqueue = noop_enqueue,
692 .dequeue = noop_dequeue,
693 .peek = noop_dequeue,
694 .owner = THIS_MODULE,
695 };
696
697 static const u8 prio2band[TC_PRIO_MAX + 1] = {
698 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
699 };
700
701 /* 3-band FIFO queue: old style, but should be a bit faster than
702 generic prio+fifo combination.
703 */
704
705 #define PFIFO_FAST_BANDS 3
706
707 /*
708 * Private data for a pfifo_fast scheduler containing:
709 * - rings for priority bands
710 */
711 struct pfifo_fast_priv {
712 struct skb_array q[PFIFO_FAST_BANDS];
713 };
714
band2list(struct pfifo_fast_priv * priv,int band)715 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
716 int band)
717 {
718 return &priv->q[band];
719 }
720
pfifo_fast_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)721 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
722 struct sk_buff **to_free)
723 {
724 int band = prio2band[skb->priority & TC_PRIO_MAX];
725 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
726 struct skb_array *q = band2list(priv, band);
727 unsigned int pkt_len = qdisc_pkt_len(skb);
728 int err;
729
730 err = skb_array_produce(q, skb);
731
732 if (unlikely(err)) {
733 if (qdisc_is_percpu_stats(qdisc))
734 return qdisc_drop_cpu(skb, qdisc, to_free);
735 else
736 return qdisc_drop(skb, qdisc, to_free);
737 }
738
739 qdisc_update_stats_at_enqueue(qdisc, pkt_len);
740 return NET_XMIT_SUCCESS;
741 }
742
pfifo_fast_dequeue(struct Qdisc * qdisc)743 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
744 {
745 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
746 struct sk_buff *skb = NULL;
747 bool need_retry = true;
748 int band;
749
750 retry:
751 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
752 struct skb_array *q = band2list(priv, band);
753
754 if (__skb_array_empty(q))
755 continue;
756
757 skb = __skb_array_consume(q);
758 }
759 if (likely(skb)) {
760 qdisc_update_stats_at_dequeue(qdisc, skb);
761 } else if (need_retry &&
762 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
763 /* Delay clearing the STATE_MISSED here to reduce
764 * the overhead of the second spin_trylock() in
765 * qdisc_run_begin() and __netif_schedule() calling
766 * in qdisc_run_end().
767 */
768 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
769 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
770
771 /* Make sure dequeuing happens after clearing
772 * STATE_MISSED.
773 */
774 smp_mb__after_atomic();
775
776 need_retry = false;
777
778 goto retry;
779 }
780
781 return skb;
782 }
783
pfifo_fast_peek(struct Qdisc * qdisc)784 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
785 {
786 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
787 struct sk_buff *skb = NULL;
788 int band;
789
790 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
791 struct skb_array *q = band2list(priv, band);
792
793 skb = __skb_array_peek(q);
794 }
795
796 return skb;
797 }
798
pfifo_fast_reset(struct Qdisc * qdisc)799 static void pfifo_fast_reset(struct Qdisc *qdisc)
800 {
801 int i, band;
802 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
803
804 for (band = 0; band < PFIFO_FAST_BANDS; band++) {
805 struct skb_array *q = band2list(priv, band);
806 struct sk_buff *skb;
807
808 /* NULL ring is possible if destroy path is due to a failed
809 * skb_array_init() in pfifo_fast_init() case.
810 */
811 if (!q->ring.queue)
812 continue;
813
814 while ((skb = __skb_array_consume(q)) != NULL)
815 kfree_skb(skb);
816 }
817
818 if (qdisc_is_percpu_stats(qdisc)) {
819 for_each_possible_cpu(i) {
820 struct gnet_stats_queue *q;
821
822 q = per_cpu_ptr(qdisc->cpu_qstats, i);
823 q->backlog = 0;
824 q->qlen = 0;
825 }
826 }
827 }
828
pfifo_fast_dump(struct Qdisc * qdisc,struct sk_buff * skb)829 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
830 {
831 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
832
833 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
834 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
835 goto nla_put_failure;
836 return skb->len;
837
838 nla_put_failure:
839 return -1;
840 }
841
pfifo_fast_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)842 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
843 struct netlink_ext_ack *extack)
844 {
845 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
846 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
847 int prio;
848
849 /* guard against zero length rings */
850 if (!qlen)
851 return -EINVAL;
852
853 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
854 struct skb_array *q = band2list(priv, prio);
855 int err;
856
857 err = skb_array_init(q, qlen, GFP_KERNEL);
858 if (err)
859 return -ENOMEM;
860 }
861
862 /* Can by-pass the queue discipline */
863 qdisc->flags |= TCQ_F_CAN_BYPASS;
864 return 0;
865 }
866
pfifo_fast_destroy(struct Qdisc * sch)867 static void pfifo_fast_destroy(struct Qdisc *sch)
868 {
869 struct pfifo_fast_priv *priv = qdisc_priv(sch);
870 int prio;
871
872 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
873 struct skb_array *q = band2list(priv, prio);
874
875 /* NULL ring is possible if destroy path is due to a failed
876 * skb_array_init() in pfifo_fast_init() case.
877 */
878 if (!q->ring.queue)
879 continue;
880 /* Destroy ring but no need to kfree_skb because a call to
881 * pfifo_fast_reset() has already done that work.
882 */
883 ptr_ring_cleanup(&q->ring, NULL);
884 }
885 }
886
pfifo_fast_change_tx_queue_len(struct Qdisc * sch,unsigned int new_len)887 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
888 unsigned int new_len)
889 {
890 struct pfifo_fast_priv *priv = qdisc_priv(sch);
891 struct skb_array *bands[PFIFO_FAST_BANDS];
892 int prio;
893
894 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
895 struct skb_array *q = band2list(priv, prio);
896
897 bands[prio] = q;
898 }
899
900 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
901 GFP_KERNEL);
902 }
903
904 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
905 .id = "pfifo_fast",
906 .priv_size = sizeof(struct pfifo_fast_priv),
907 .enqueue = pfifo_fast_enqueue,
908 .dequeue = pfifo_fast_dequeue,
909 .peek = pfifo_fast_peek,
910 .init = pfifo_fast_init,
911 .destroy = pfifo_fast_destroy,
912 .reset = pfifo_fast_reset,
913 .dump = pfifo_fast_dump,
914 .change_tx_queue_len = pfifo_fast_change_tx_queue_len,
915 .owner = THIS_MODULE,
916 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
917 };
918 EXPORT_SYMBOL(pfifo_fast_ops);
919
920 static struct lock_class_key qdisc_tx_busylock;
921
qdisc_alloc(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,struct netlink_ext_ack * extack)922 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
923 const struct Qdisc_ops *ops,
924 struct netlink_ext_ack *extack)
925 {
926 struct Qdisc *sch;
927 unsigned int size = sizeof(*sch) + ops->priv_size;
928 int err = -ENOBUFS;
929 struct net_device *dev;
930
931 if (!dev_queue) {
932 NL_SET_ERR_MSG(extack, "No device queue given");
933 err = -EINVAL;
934 goto errout;
935 }
936
937 dev = dev_queue->dev;
938 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
939
940 if (!sch)
941 goto errout;
942 __skb_queue_head_init(&sch->gso_skb);
943 __skb_queue_head_init(&sch->skb_bad_txq);
944 gnet_stats_basic_sync_init(&sch->bstats);
945 spin_lock_init(&sch->q.lock);
946
947 if (ops->static_flags & TCQ_F_CPUSTATS) {
948 sch->cpu_bstats =
949 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
950 if (!sch->cpu_bstats)
951 goto errout1;
952
953 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
954 if (!sch->cpu_qstats) {
955 free_percpu(sch->cpu_bstats);
956 goto errout1;
957 }
958 }
959
960 spin_lock_init(&sch->busylock);
961 lockdep_set_class(&sch->busylock,
962 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
963
964 /* seqlock has the same scope of busylock, for NOLOCK qdisc */
965 spin_lock_init(&sch->seqlock);
966 lockdep_set_class(&sch->seqlock,
967 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
968
969 sch->ops = ops;
970 sch->flags = ops->static_flags;
971 sch->enqueue = ops->enqueue;
972 sch->dequeue = ops->dequeue;
973 sch->dev_queue = dev_queue;
974 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
975 refcount_set(&sch->refcnt, 1);
976
977 return sch;
978 errout1:
979 kfree(sch);
980 errout:
981 return ERR_PTR(err);
982 }
983
qdisc_create_dflt(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,unsigned int parentid,struct netlink_ext_ack * extack)984 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
985 const struct Qdisc_ops *ops,
986 unsigned int parentid,
987 struct netlink_ext_ack *extack)
988 {
989 struct Qdisc *sch;
990
991 if (!try_module_get(ops->owner)) {
992 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
993 return NULL;
994 }
995
996 sch = qdisc_alloc(dev_queue, ops, extack);
997 if (IS_ERR(sch)) {
998 module_put(ops->owner);
999 return NULL;
1000 }
1001 sch->parent = parentid;
1002
1003 if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1004 trace_qdisc_create(ops, dev_queue->dev, parentid);
1005 return sch;
1006 }
1007
1008 qdisc_put(sch);
1009 return NULL;
1010 }
1011 EXPORT_SYMBOL(qdisc_create_dflt);
1012
1013 /* Under qdisc_lock(qdisc) and BH! */
1014
qdisc_reset(struct Qdisc * qdisc)1015 void qdisc_reset(struct Qdisc *qdisc)
1016 {
1017 const struct Qdisc_ops *ops = qdisc->ops;
1018
1019 trace_qdisc_reset(qdisc);
1020
1021 if (ops->reset)
1022 ops->reset(qdisc);
1023
1024 __skb_queue_purge(&qdisc->gso_skb);
1025 __skb_queue_purge(&qdisc->skb_bad_txq);
1026
1027 qdisc->q.qlen = 0;
1028 qdisc->qstats.backlog = 0;
1029 }
1030 EXPORT_SYMBOL(qdisc_reset);
1031
qdisc_free(struct Qdisc * qdisc)1032 void qdisc_free(struct Qdisc *qdisc)
1033 {
1034 if (qdisc_is_percpu_stats(qdisc)) {
1035 free_percpu(qdisc->cpu_bstats);
1036 free_percpu(qdisc->cpu_qstats);
1037 }
1038
1039 kfree(qdisc);
1040 }
1041
qdisc_free_cb(struct rcu_head * head)1042 static void qdisc_free_cb(struct rcu_head *head)
1043 {
1044 struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1045
1046 qdisc_free(q);
1047 }
1048
__qdisc_destroy(struct Qdisc * qdisc)1049 static void __qdisc_destroy(struct Qdisc *qdisc)
1050 {
1051 const struct Qdisc_ops *ops = qdisc->ops;
1052
1053 #ifdef CONFIG_NET_SCHED
1054 qdisc_hash_del(qdisc);
1055
1056 qdisc_put_stab(rtnl_dereference(qdisc->stab));
1057 #endif
1058 gen_kill_estimator(&qdisc->rate_est);
1059
1060 qdisc_reset(qdisc);
1061
1062 if (ops->destroy)
1063 ops->destroy(qdisc);
1064
1065 module_put(ops->owner);
1066 netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker);
1067
1068 trace_qdisc_destroy(qdisc);
1069
1070 call_rcu(&qdisc->rcu, qdisc_free_cb);
1071 }
1072
qdisc_destroy(struct Qdisc * qdisc)1073 void qdisc_destroy(struct Qdisc *qdisc)
1074 {
1075 if (qdisc->flags & TCQ_F_BUILTIN)
1076 return;
1077
1078 __qdisc_destroy(qdisc);
1079 }
1080
qdisc_put(struct Qdisc * qdisc)1081 void qdisc_put(struct Qdisc *qdisc)
1082 {
1083 if (!qdisc)
1084 return;
1085
1086 if (qdisc->flags & TCQ_F_BUILTIN ||
1087 !refcount_dec_and_test(&qdisc->refcnt))
1088 return;
1089
1090 __qdisc_destroy(qdisc);
1091 }
1092 EXPORT_SYMBOL(qdisc_put);
1093
1094 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1095 * Intended to be used as optimization, this function only takes rtnl lock if
1096 * qdisc reference counter reached zero.
1097 */
1098
qdisc_put_unlocked(struct Qdisc * qdisc)1099 void qdisc_put_unlocked(struct Qdisc *qdisc)
1100 {
1101 if (qdisc->flags & TCQ_F_BUILTIN ||
1102 !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1103 return;
1104
1105 __qdisc_destroy(qdisc);
1106 rtnl_unlock();
1107 }
1108 EXPORT_SYMBOL(qdisc_put_unlocked);
1109
1110 /* Attach toplevel qdisc to device queue. */
dev_graft_qdisc(struct netdev_queue * dev_queue,struct Qdisc * qdisc)1111 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1112 struct Qdisc *qdisc)
1113 {
1114 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1115 spinlock_t *root_lock;
1116
1117 root_lock = qdisc_lock(oqdisc);
1118 spin_lock_bh(root_lock);
1119
1120 /* ... and graft new one */
1121 if (qdisc == NULL)
1122 qdisc = &noop_qdisc;
1123 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1124 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1125
1126 spin_unlock_bh(root_lock);
1127
1128 return oqdisc;
1129 }
1130 EXPORT_SYMBOL(dev_graft_qdisc);
1131
shutdown_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1132 static void shutdown_scheduler_queue(struct net_device *dev,
1133 struct netdev_queue *dev_queue,
1134 void *_qdisc_default)
1135 {
1136 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1137 struct Qdisc *qdisc_default = _qdisc_default;
1138
1139 if (qdisc) {
1140 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1141 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1142
1143 qdisc_put(qdisc);
1144 }
1145 }
1146
attach_one_default_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1147 static void attach_one_default_qdisc(struct net_device *dev,
1148 struct netdev_queue *dev_queue,
1149 void *_unused)
1150 {
1151 struct Qdisc *qdisc;
1152 const struct Qdisc_ops *ops = default_qdisc_ops;
1153
1154 if (dev->priv_flags & IFF_NO_QUEUE)
1155 ops = &noqueue_qdisc_ops;
1156 else if(dev->type == ARPHRD_CAN)
1157 ops = &pfifo_fast_ops;
1158
1159 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1160 if (!qdisc)
1161 return;
1162
1163 if (!netif_is_multiqueue(dev))
1164 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1165 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1166 }
1167
attach_default_qdiscs(struct net_device * dev)1168 static void attach_default_qdiscs(struct net_device *dev)
1169 {
1170 struct netdev_queue *txq;
1171 struct Qdisc *qdisc;
1172
1173 txq = netdev_get_tx_queue(dev, 0);
1174
1175 if (!netif_is_multiqueue(dev) ||
1176 dev->priv_flags & IFF_NO_QUEUE) {
1177 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1178 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1179 rcu_assign_pointer(dev->qdisc, qdisc);
1180 qdisc_refcount_inc(qdisc);
1181 } else {
1182 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1183 if (qdisc) {
1184 rcu_assign_pointer(dev->qdisc, qdisc);
1185 qdisc->ops->attach(qdisc);
1186 }
1187 }
1188 qdisc = rtnl_dereference(dev->qdisc);
1189
1190 /* Detect default qdisc setup/init failed and fallback to "noqueue" */
1191 if (qdisc == &noop_qdisc) {
1192 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1193 default_qdisc_ops->id, noqueue_qdisc_ops.id);
1194 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1195 dev->priv_flags |= IFF_NO_QUEUE;
1196 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1197 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1198 rcu_assign_pointer(dev->qdisc, qdisc);
1199 qdisc_refcount_inc(qdisc);
1200 dev->priv_flags ^= IFF_NO_QUEUE;
1201 }
1202
1203 #ifdef CONFIG_NET_SCHED
1204 if (qdisc != &noop_qdisc)
1205 qdisc_hash_add(qdisc, false);
1206 #endif
1207 }
1208
transition_one_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _need_watchdog)1209 static void transition_one_qdisc(struct net_device *dev,
1210 struct netdev_queue *dev_queue,
1211 void *_need_watchdog)
1212 {
1213 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1214 int *need_watchdog_p = _need_watchdog;
1215
1216 if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1217 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1218
1219 rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1220 if (need_watchdog_p) {
1221 WRITE_ONCE(dev_queue->trans_start, 0);
1222 *need_watchdog_p = 1;
1223 }
1224 }
1225
dev_activate(struct net_device * dev)1226 void dev_activate(struct net_device *dev)
1227 {
1228 int need_watchdog;
1229
1230 /* No queueing discipline is attached to device;
1231 * create default one for devices, which need queueing
1232 * and noqueue_qdisc for virtual interfaces
1233 */
1234
1235 if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1236 attach_default_qdiscs(dev);
1237
1238 if (!netif_carrier_ok(dev))
1239 /* Delay activation until next carrier-on event */
1240 return;
1241
1242 need_watchdog = 0;
1243 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1244 if (dev_ingress_queue(dev))
1245 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1246
1247 if (need_watchdog) {
1248 netif_trans_update(dev);
1249 dev_watchdog_up(dev);
1250 }
1251 }
1252 EXPORT_SYMBOL(dev_activate);
1253
qdisc_deactivate(struct Qdisc * qdisc)1254 static void qdisc_deactivate(struct Qdisc *qdisc)
1255 {
1256 if (qdisc->flags & TCQ_F_BUILTIN)
1257 return;
1258
1259 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1260 }
1261
dev_deactivate_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1262 static void dev_deactivate_queue(struct net_device *dev,
1263 struct netdev_queue *dev_queue,
1264 void *_qdisc_default)
1265 {
1266 struct Qdisc *qdisc_default = _qdisc_default;
1267 struct Qdisc *qdisc;
1268
1269 qdisc = rtnl_dereference(dev_queue->qdisc);
1270 if (qdisc) {
1271 qdisc_deactivate(qdisc);
1272 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1273 }
1274 }
1275
dev_reset_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1276 static void dev_reset_queue(struct net_device *dev,
1277 struct netdev_queue *dev_queue,
1278 void *_unused)
1279 {
1280 struct Qdisc *qdisc;
1281 bool nolock;
1282
1283 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1284 if (!qdisc)
1285 return;
1286
1287 nolock = qdisc->flags & TCQ_F_NOLOCK;
1288
1289 if (nolock)
1290 spin_lock_bh(&qdisc->seqlock);
1291 spin_lock_bh(qdisc_lock(qdisc));
1292
1293 qdisc_reset(qdisc);
1294
1295 spin_unlock_bh(qdisc_lock(qdisc));
1296 if (nolock) {
1297 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1298 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1299 spin_unlock_bh(&qdisc->seqlock);
1300 }
1301 }
1302
some_qdisc_is_busy(struct net_device * dev)1303 static bool some_qdisc_is_busy(struct net_device *dev)
1304 {
1305 unsigned int i;
1306
1307 for (i = 0; i < dev->num_tx_queues; i++) {
1308 struct netdev_queue *dev_queue;
1309 spinlock_t *root_lock;
1310 struct Qdisc *q;
1311 int val;
1312
1313 dev_queue = netdev_get_tx_queue(dev, i);
1314 q = rtnl_dereference(dev_queue->qdisc_sleeping);
1315
1316 root_lock = qdisc_lock(q);
1317 spin_lock_bh(root_lock);
1318
1319 val = (qdisc_is_running(q) ||
1320 test_bit(__QDISC_STATE_SCHED, &q->state));
1321
1322 spin_unlock_bh(root_lock);
1323
1324 if (val)
1325 return true;
1326 }
1327 return false;
1328 }
1329
1330 /**
1331 * dev_deactivate_many - deactivate transmissions on several devices
1332 * @head: list of devices to deactivate
1333 *
1334 * This function returns only when all outstanding transmissions
1335 * have completed, unless all devices are in dismantle phase.
1336 */
dev_deactivate_many(struct list_head * head)1337 void dev_deactivate_many(struct list_head *head)
1338 {
1339 struct net_device *dev;
1340
1341 list_for_each_entry(dev, head, close_list) {
1342 netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1343 &noop_qdisc);
1344 if (dev_ingress_queue(dev))
1345 dev_deactivate_queue(dev, dev_ingress_queue(dev),
1346 &noop_qdisc);
1347
1348 dev_watchdog_down(dev);
1349 }
1350
1351 /* Wait for outstanding qdisc-less dev_queue_xmit calls or
1352 * outstanding qdisc enqueuing calls.
1353 * This is avoided if all devices are in dismantle phase :
1354 * Caller will call synchronize_net() for us
1355 */
1356 synchronize_net();
1357
1358 list_for_each_entry(dev, head, close_list) {
1359 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1360
1361 if (dev_ingress_queue(dev))
1362 dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1363 }
1364
1365 /* Wait for outstanding qdisc_run calls. */
1366 list_for_each_entry(dev, head, close_list) {
1367 while (some_qdisc_is_busy(dev)) {
1368 /* wait_event() would avoid this sleep-loop but would
1369 * require expensive checks in the fast paths of packet
1370 * processing which isn't worth it.
1371 */
1372 schedule_timeout_uninterruptible(1);
1373 }
1374 }
1375 }
1376
dev_deactivate(struct net_device * dev)1377 void dev_deactivate(struct net_device *dev)
1378 {
1379 LIST_HEAD(single);
1380
1381 list_add(&dev->close_list, &single);
1382 dev_deactivate_many(&single);
1383 list_del(&single);
1384 }
1385 EXPORT_SYMBOL(dev_deactivate);
1386
qdisc_change_tx_queue_len(struct net_device * dev,struct netdev_queue * dev_queue)1387 static int qdisc_change_tx_queue_len(struct net_device *dev,
1388 struct netdev_queue *dev_queue)
1389 {
1390 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1391 const struct Qdisc_ops *ops = qdisc->ops;
1392
1393 if (ops->change_tx_queue_len)
1394 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1395 return 0;
1396 }
1397
dev_qdisc_change_real_num_tx(struct net_device * dev,unsigned int new_real_tx)1398 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1399 unsigned int new_real_tx)
1400 {
1401 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1402
1403 if (qdisc->ops->change_real_num_tx)
1404 qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1405 }
1406
mq_change_real_num_tx(struct Qdisc * sch,unsigned int new_real_tx)1407 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1408 {
1409 #ifdef CONFIG_NET_SCHED
1410 struct net_device *dev = qdisc_dev(sch);
1411 struct Qdisc *qdisc;
1412 unsigned int i;
1413
1414 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1415 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1416 /* Only update the default qdiscs we created,
1417 * qdiscs with handles are always hashed.
1418 */
1419 if (qdisc != &noop_qdisc && !qdisc->handle)
1420 qdisc_hash_del(qdisc);
1421 }
1422 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1423 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1424 if (qdisc != &noop_qdisc && !qdisc->handle)
1425 qdisc_hash_add(qdisc, false);
1426 }
1427 #endif
1428 }
1429 EXPORT_SYMBOL(mq_change_real_num_tx);
1430
dev_qdisc_change_tx_queue_len(struct net_device * dev)1431 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1432 {
1433 bool up = dev->flags & IFF_UP;
1434 unsigned int i;
1435 int ret = 0;
1436
1437 if (up)
1438 dev_deactivate(dev);
1439
1440 for (i = 0; i < dev->num_tx_queues; i++) {
1441 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1442
1443 /* TODO: revert changes on a partial failure */
1444 if (ret)
1445 break;
1446 }
1447
1448 if (up)
1449 dev_activate(dev);
1450 return ret;
1451 }
1452
dev_init_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc)1453 static void dev_init_scheduler_queue(struct net_device *dev,
1454 struct netdev_queue *dev_queue,
1455 void *_qdisc)
1456 {
1457 struct Qdisc *qdisc = _qdisc;
1458
1459 rcu_assign_pointer(dev_queue->qdisc, qdisc);
1460 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1461 }
1462
dev_init_scheduler(struct net_device * dev)1463 void dev_init_scheduler(struct net_device *dev)
1464 {
1465 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1466 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1467 if (dev_ingress_queue(dev))
1468 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1469
1470 timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1471 }
1472
dev_shutdown(struct net_device * dev)1473 void dev_shutdown(struct net_device *dev)
1474 {
1475 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1476 if (dev_ingress_queue(dev))
1477 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1478 qdisc_put(rtnl_dereference(dev->qdisc));
1479 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1480
1481 WARN_ON(timer_pending(&dev->watchdog_timer));
1482 }
1483
1484 /**
1485 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1486 * @rate: Rate to compute reciprocal division values of
1487 * @mult: Multiplier for reciprocal division
1488 * @shift: Shift for reciprocal division
1489 *
1490 * The multiplier and shift for reciprocal division by rate are stored
1491 * in mult and shift.
1492 *
1493 * The deal here is to replace a divide by a reciprocal one
1494 * in fast path (a reciprocal divide is a multiply and a shift)
1495 *
1496 * Normal formula would be :
1497 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1498 *
1499 * We compute mult/shift to use instead :
1500 * time_in_ns = (len * mult) >> shift;
1501 *
1502 * We try to get the highest possible mult value for accuracy,
1503 * but have to make sure no overflows will ever happen.
1504 *
1505 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1506 */
psched_ratecfg_precompute__(u64 rate,u32 * mult,u8 * shift)1507 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1508 {
1509 u64 factor = NSEC_PER_SEC;
1510
1511 *mult = 1;
1512 *shift = 0;
1513
1514 if (rate <= 0)
1515 return;
1516
1517 for (;;) {
1518 *mult = div64_u64(factor, rate);
1519 if (*mult & (1U << 31) || factor & (1ULL << 63))
1520 break;
1521 factor <<= 1;
1522 (*shift)++;
1523 }
1524 }
1525
psched_ratecfg_precompute(struct psched_ratecfg * r,const struct tc_ratespec * conf,u64 rate64)1526 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1527 const struct tc_ratespec *conf,
1528 u64 rate64)
1529 {
1530 memset(r, 0, sizeof(*r));
1531 r->overhead = conf->overhead;
1532 r->mpu = conf->mpu;
1533 r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1534 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1535 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1536 }
1537 EXPORT_SYMBOL(psched_ratecfg_precompute);
1538
psched_ppscfg_precompute(struct psched_pktrate * r,u64 pktrate64)1539 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1540 {
1541 r->rate_pkts_ps = pktrate64;
1542 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1543 }
1544 EXPORT_SYMBOL(psched_ppscfg_precompute);
1545
mini_qdisc_pair_swap(struct mini_Qdisc_pair * miniqp,struct tcf_proto * tp_head)1546 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1547 struct tcf_proto *tp_head)
1548 {
1549 /* Protected with chain0->filter_chain_lock.
1550 * Can't access chain directly because tp_head can be NULL.
1551 */
1552 struct mini_Qdisc *miniq_old =
1553 rcu_dereference_protected(*miniqp->p_miniq, 1);
1554 struct mini_Qdisc *miniq;
1555
1556 if (!tp_head) {
1557 RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1558 } else {
1559 miniq = miniq_old != &miniqp->miniq1 ?
1560 &miniqp->miniq1 : &miniqp->miniq2;
1561
1562 /* We need to make sure that readers won't see the miniq
1563 * we are about to modify. So ensure that at least one RCU
1564 * grace period has elapsed since the miniq was made
1565 * inactive.
1566 */
1567 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1568 cond_synchronize_rcu(miniq->rcu_state);
1569 else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1570 synchronize_rcu_expedited();
1571
1572 miniq->filter_list = tp_head;
1573 rcu_assign_pointer(*miniqp->p_miniq, miniq);
1574 }
1575
1576 if (miniq_old)
1577 /* This is counterpart of the rcu sync above. We need to
1578 * block potential new user of miniq_old until all readers
1579 * are not seeing it.
1580 */
1581 miniq_old->rcu_state = start_poll_synchronize_rcu();
1582 }
1583 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1584
mini_qdisc_pair_block_init(struct mini_Qdisc_pair * miniqp,struct tcf_block * block)1585 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1586 struct tcf_block *block)
1587 {
1588 miniqp->miniq1.block = block;
1589 miniqp->miniq2.block = block;
1590 }
1591 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1592
mini_qdisc_pair_init(struct mini_Qdisc_pair * miniqp,struct Qdisc * qdisc,struct mini_Qdisc __rcu ** p_miniq)1593 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1594 struct mini_Qdisc __rcu **p_miniq)
1595 {
1596 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1597 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1598 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1599 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1600 miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1601 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1602 miniqp->p_miniq = p_miniq;
1603 }
1604 EXPORT_SYMBOL(mini_qdisc_pair_init);
1605