1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 
38 #include <asm/emulated_ops.h>
39 #include <asm/pgtable.h>
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/rtas.h>
45 #include <asm/pmc.h>
46 #ifdef CONFIG_PPC32
47 #include <asm/reg.h>
48 #endif
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 
59 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
60 int (*__debugger)(struct pt_regs *regs) __read_mostly;
61 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
62 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
63 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
64 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
65 int (*__debugger_dabr_match)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
67 
68 EXPORT_SYMBOL(__debugger);
69 EXPORT_SYMBOL(__debugger_ipi);
70 EXPORT_SYMBOL(__debugger_bpt);
71 EXPORT_SYMBOL(__debugger_sstep);
72 EXPORT_SYMBOL(__debugger_iabr_match);
73 EXPORT_SYMBOL(__debugger_dabr_match);
74 EXPORT_SYMBOL(__debugger_fault_handler);
75 #endif
76 
77 /*
78  * Trap & Exception support
79  */
80 
81 #ifdef CONFIG_PMAC_BACKLIGHT
pmac_backlight_unblank(void)82 static void pmac_backlight_unblank(void)
83 {
84 	mutex_lock(&pmac_backlight_mutex);
85 	if (pmac_backlight) {
86 		struct backlight_properties *props;
87 
88 		props = &pmac_backlight->props;
89 		props->brightness = props->max_brightness;
90 		props->power = FB_BLANK_UNBLANK;
91 		backlight_update_status(pmac_backlight);
92 	}
93 	mutex_unlock(&pmac_backlight_mutex);
94 }
95 #else
pmac_backlight_unblank(void)96 static inline void pmac_backlight_unblank(void) { }
97 #endif
98 
die(const char * str,struct pt_regs * regs,long err)99 int die(const char *str, struct pt_regs *regs, long err)
100 {
101 	static struct {
102 		raw_spinlock_t lock;
103 		u32 lock_owner;
104 		int lock_owner_depth;
105 	} die = {
106 		.lock =			__RAW_SPIN_LOCK_UNLOCKED(die.lock),
107 		.lock_owner =		-1,
108 		.lock_owner_depth =	0
109 	};
110 	static int die_counter;
111 	unsigned long flags;
112 
113 	if (debugger(regs))
114 		return 1;
115 
116 	oops_enter();
117 
118 	if (die.lock_owner != raw_smp_processor_id()) {
119 		console_verbose();
120 		raw_spin_lock_irqsave(&die.lock, flags);
121 		die.lock_owner = smp_processor_id();
122 		die.lock_owner_depth = 0;
123 		bust_spinlocks(1);
124 		if (machine_is(powermac))
125 			pmac_backlight_unblank();
126 	} else {
127 		local_save_flags(flags);
128 	}
129 
130 	if (++die.lock_owner_depth < 3) {
131 		printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
132 #ifdef CONFIG_PREEMPT
133 		printk("PREEMPT ");
134 #endif
135 #ifdef CONFIG_SMP
136 		printk("SMP NR_CPUS=%d ", NR_CPUS);
137 #endif
138 #ifdef CONFIG_DEBUG_PAGEALLOC
139 		printk("DEBUG_PAGEALLOC ");
140 #endif
141 #ifdef CONFIG_NUMA
142 		printk("NUMA ");
143 #endif
144 		printk("%s\n", ppc_md.name ? ppc_md.name : "");
145 
146 		sysfs_printk_last_file();
147 		if (notify_die(DIE_OOPS, str, regs, err, 255,
148 			       SIGSEGV) == NOTIFY_STOP)
149 			return 1;
150 
151 		print_modules();
152 		show_regs(regs);
153 	} else {
154 		printk("Recursive die() failure, output suppressed\n");
155 	}
156 
157 	bust_spinlocks(0);
158 	die.lock_owner = -1;
159 	add_taint(TAINT_DIE);
160 	raw_spin_unlock_irqrestore(&die.lock, flags);
161 
162 	if (kexec_should_crash(current) ||
163 		kexec_sr_activated(smp_processor_id()))
164 		crash_kexec(regs);
165 	crash_kexec_secondary(regs);
166 
167 	if (in_interrupt())
168 		panic("Fatal exception in interrupt");
169 
170 	if (panic_on_oops)
171 		panic("Fatal exception");
172 
173 	oops_exit();
174 	do_exit(err);
175 
176 	return 0;
177 }
178 
user_single_step_siginfo(struct task_struct * tsk,struct pt_regs * regs,siginfo_t * info)179 void user_single_step_siginfo(struct task_struct *tsk,
180 				struct pt_regs *regs, siginfo_t *info)
181 {
182 	memset(info, 0, sizeof(*info));
183 	info->si_signo = SIGTRAP;
184 	info->si_code = TRAP_TRACE;
185 	info->si_addr = (void __user *)regs->nip;
186 }
187 
_exception(int signr,struct pt_regs * regs,int code,unsigned long addr)188 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
189 {
190 	siginfo_t info;
191 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
192 			"at %08lx nip %08lx lr %08lx code %x\n";
193 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
194 			"at %016lx nip %016lx lr %016lx code %x\n";
195 
196 	if (!user_mode(regs)) {
197 		if (die("Exception in kernel mode", regs, signr))
198 			return;
199 	} else if (show_unhandled_signals &&
200 		    unhandled_signal(current, signr) &&
201 		    printk_ratelimit()) {
202 			printk(regs->msr & MSR_SF ? fmt64 : fmt32,
203 				current->comm, current->pid, signr,
204 				addr, regs->nip, regs->link, code);
205 		}
206 
207 	memset(&info, 0, sizeof(info));
208 	info.si_signo = signr;
209 	info.si_code = code;
210 	info.si_addr = (void __user *) addr;
211 	force_sig_info(signr, &info, current);
212 }
213 
214 #ifdef CONFIG_PPC64
system_reset_exception(struct pt_regs * regs)215 void system_reset_exception(struct pt_regs *regs)
216 {
217 	/* See if any machine dependent calls */
218 	if (ppc_md.system_reset_exception) {
219 		if (ppc_md.system_reset_exception(regs))
220 			return;
221 	}
222 
223 #ifdef CONFIG_KEXEC
224 	cpu_set(smp_processor_id(), cpus_in_sr);
225 #endif
226 
227 	die("System Reset", regs, SIGABRT);
228 
229 	/*
230 	 * Some CPUs when released from the debugger will execute this path.
231 	 * These CPUs entered the debugger via a soft-reset. If the CPU was
232 	 * hung before entering the debugger it will return to the hung
233 	 * state when exiting this function.  This causes a problem in
234 	 * kdump since the hung CPU(s) will not respond to the IPI sent
235 	 * from kdump. To prevent the problem we call crash_kexec_secondary()
236 	 * here. If a kdump had not been initiated or we exit the debugger
237 	 * with the "exit and recover" command (x) crash_kexec_secondary()
238 	 * will return after 5ms and the CPU returns to its previous state.
239 	 */
240 	crash_kexec_secondary(regs);
241 
242 	/* Must die if the interrupt is not recoverable */
243 	if (!(regs->msr & MSR_RI))
244 		panic("Unrecoverable System Reset");
245 
246 	/* What should we do here? We could issue a shutdown or hard reset. */
247 }
248 #endif
249 
250 /*
251  * I/O accesses can cause machine checks on powermacs.
252  * Check if the NIP corresponds to the address of a sync
253  * instruction for which there is an entry in the exception
254  * table.
255  * Note that the 601 only takes a machine check on TEA
256  * (transfer error ack) signal assertion, and does not
257  * set any of the top 16 bits of SRR1.
258  *  -- paulus.
259  */
check_io_access(struct pt_regs * regs)260 static inline int check_io_access(struct pt_regs *regs)
261 {
262 #ifdef CONFIG_PPC32
263 	unsigned long msr = regs->msr;
264 	const struct exception_table_entry *entry;
265 	unsigned int *nip = (unsigned int *)regs->nip;
266 
267 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
268 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
269 		/*
270 		 * Check that it's a sync instruction, or somewhere
271 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
272 		 * As the address is in the exception table
273 		 * we should be able to read the instr there.
274 		 * For the debug message, we look at the preceding
275 		 * load or store.
276 		 */
277 		if (*nip == 0x60000000)		/* nop */
278 			nip -= 2;
279 		else if (*nip == 0x4c00012c)	/* isync */
280 			--nip;
281 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
282 			/* sync or twi */
283 			unsigned int rb;
284 
285 			--nip;
286 			rb = (*nip >> 11) & 0x1f;
287 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
288 			       (*nip & 0x100)? "OUT to": "IN from",
289 			       regs->gpr[rb] - _IO_BASE, nip);
290 			regs->msr |= MSR_RI;
291 			regs->nip = entry->fixup;
292 			return 1;
293 		}
294 	}
295 #endif /* CONFIG_PPC32 */
296 	return 0;
297 }
298 
299 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
300 /* On 4xx, the reason for the machine check or program exception
301    is in the ESR. */
302 #define get_reason(regs)	((regs)->dsisr)
303 #ifndef CONFIG_FSL_BOOKE
304 #define get_mc_reason(regs)	((regs)->dsisr)
305 #else
306 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
307 #endif
308 #define REASON_FP		ESR_FP
309 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
310 #define REASON_PRIVILEGED	ESR_PPR
311 #define REASON_TRAP		ESR_PTR
312 
313 /* single-step stuff */
314 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
315 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
316 
317 #else
318 /* On non-4xx, the reason for the machine check or program
319    exception is in the MSR. */
320 #define get_reason(regs)	((regs)->msr)
321 #define get_mc_reason(regs)	((regs)->msr)
322 #define REASON_FP		0x100000
323 #define REASON_ILLEGAL		0x80000
324 #define REASON_PRIVILEGED	0x40000
325 #define REASON_TRAP		0x20000
326 
327 #define single_stepping(regs)	((regs)->msr & MSR_SE)
328 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
329 #endif
330 
331 #if defined(CONFIG_4xx)
machine_check_4xx(struct pt_regs * regs)332 int machine_check_4xx(struct pt_regs *regs)
333 {
334 	unsigned long reason = get_mc_reason(regs);
335 
336 	if (reason & ESR_IMCP) {
337 		printk("Instruction");
338 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
339 	} else
340 		printk("Data");
341 	printk(" machine check in kernel mode.\n");
342 
343 	return 0;
344 }
345 
machine_check_440A(struct pt_regs * regs)346 int machine_check_440A(struct pt_regs *regs)
347 {
348 	unsigned long reason = get_mc_reason(regs);
349 
350 	printk("Machine check in kernel mode.\n");
351 	if (reason & ESR_IMCP){
352 		printk("Instruction Synchronous Machine Check exception\n");
353 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
354 	}
355 	else {
356 		u32 mcsr = mfspr(SPRN_MCSR);
357 		if (mcsr & MCSR_IB)
358 			printk("Instruction Read PLB Error\n");
359 		if (mcsr & MCSR_DRB)
360 			printk("Data Read PLB Error\n");
361 		if (mcsr & MCSR_DWB)
362 			printk("Data Write PLB Error\n");
363 		if (mcsr & MCSR_TLBP)
364 			printk("TLB Parity Error\n");
365 		if (mcsr & MCSR_ICP){
366 			flush_instruction_cache();
367 			printk("I-Cache Parity Error\n");
368 		}
369 		if (mcsr & MCSR_DCSP)
370 			printk("D-Cache Search Parity Error\n");
371 		if (mcsr & MCSR_DCFP)
372 			printk("D-Cache Flush Parity Error\n");
373 		if (mcsr & MCSR_IMPE)
374 			printk("Machine Check exception is imprecise\n");
375 
376 		/* Clear MCSR */
377 		mtspr(SPRN_MCSR, mcsr);
378 	}
379 	return 0;
380 }
381 
machine_check_47x(struct pt_regs * regs)382 int machine_check_47x(struct pt_regs *regs)
383 {
384 	unsigned long reason = get_mc_reason(regs);
385 	u32 mcsr;
386 
387 	printk(KERN_ERR "Machine check in kernel mode.\n");
388 	if (reason & ESR_IMCP) {
389 		printk(KERN_ERR
390 		       "Instruction Synchronous Machine Check exception\n");
391 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
392 		return 0;
393 	}
394 	mcsr = mfspr(SPRN_MCSR);
395 	if (mcsr & MCSR_IB)
396 		printk(KERN_ERR "Instruction Read PLB Error\n");
397 	if (mcsr & MCSR_DRB)
398 		printk(KERN_ERR "Data Read PLB Error\n");
399 	if (mcsr & MCSR_DWB)
400 		printk(KERN_ERR "Data Write PLB Error\n");
401 	if (mcsr & MCSR_TLBP)
402 		printk(KERN_ERR "TLB Parity Error\n");
403 	if (mcsr & MCSR_ICP) {
404 		flush_instruction_cache();
405 		printk(KERN_ERR "I-Cache Parity Error\n");
406 	}
407 	if (mcsr & MCSR_DCSP)
408 		printk(KERN_ERR "D-Cache Search Parity Error\n");
409 	if (mcsr & PPC47x_MCSR_GPR)
410 		printk(KERN_ERR "GPR Parity Error\n");
411 	if (mcsr & PPC47x_MCSR_FPR)
412 		printk(KERN_ERR "FPR Parity Error\n");
413 	if (mcsr & PPC47x_MCSR_IPR)
414 		printk(KERN_ERR "Machine Check exception is imprecise\n");
415 
416 	/* Clear MCSR */
417 	mtspr(SPRN_MCSR, mcsr);
418 
419 	return 0;
420 }
421 #elif defined(CONFIG_E500)
machine_check_e500mc(struct pt_regs * regs)422 int machine_check_e500mc(struct pt_regs *regs)
423 {
424 	unsigned long mcsr = mfspr(SPRN_MCSR);
425 	unsigned long reason = mcsr;
426 	int recoverable = 1;
427 
428 	printk("Machine check in kernel mode.\n");
429 	printk("Caused by (from MCSR=%lx): ", reason);
430 
431 	if (reason & MCSR_MCP)
432 		printk("Machine Check Signal\n");
433 
434 	if (reason & MCSR_ICPERR) {
435 		printk("Instruction Cache Parity Error\n");
436 
437 		/*
438 		 * This is recoverable by invalidating the i-cache.
439 		 */
440 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
441 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
442 			;
443 
444 		/*
445 		 * This will generally be accompanied by an instruction
446 		 * fetch error report -- only treat MCSR_IF as fatal
447 		 * if it wasn't due to an L1 parity error.
448 		 */
449 		reason &= ~MCSR_IF;
450 	}
451 
452 	if (reason & MCSR_DCPERR_MC) {
453 		printk("Data Cache Parity Error\n");
454 		recoverable = 0;
455 	}
456 
457 	if (reason & MCSR_L2MMU_MHIT) {
458 		printk("Hit on multiple TLB entries\n");
459 		recoverable = 0;
460 	}
461 
462 	if (reason & MCSR_NMI)
463 		printk("Non-maskable interrupt\n");
464 
465 	if (reason & MCSR_IF) {
466 		printk("Instruction Fetch Error Report\n");
467 		recoverable = 0;
468 	}
469 
470 	if (reason & MCSR_LD) {
471 		printk("Load Error Report\n");
472 		recoverable = 0;
473 	}
474 
475 	if (reason & MCSR_ST) {
476 		printk("Store Error Report\n");
477 		recoverable = 0;
478 	}
479 
480 	if (reason & MCSR_LDG) {
481 		printk("Guarded Load Error Report\n");
482 		recoverable = 0;
483 	}
484 
485 	if (reason & MCSR_TLBSYNC)
486 		printk("Simultaneous tlbsync operations\n");
487 
488 	if (reason & MCSR_BSL2_ERR) {
489 		printk("Level 2 Cache Error\n");
490 		recoverable = 0;
491 	}
492 
493 	if (reason & MCSR_MAV) {
494 		u64 addr;
495 
496 		addr = mfspr(SPRN_MCAR);
497 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
498 
499 		printk("Machine Check %s Address: %#llx\n",
500 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
501 	}
502 
503 	mtspr(SPRN_MCSR, mcsr);
504 	return mfspr(SPRN_MCSR) == 0 && recoverable;
505 }
506 
machine_check_e500(struct pt_regs * regs)507 int machine_check_e500(struct pt_regs *regs)
508 {
509 	unsigned long reason = get_mc_reason(regs);
510 
511 	printk("Machine check in kernel mode.\n");
512 	printk("Caused by (from MCSR=%lx): ", reason);
513 
514 	if (reason & MCSR_MCP)
515 		printk("Machine Check Signal\n");
516 	if (reason & MCSR_ICPERR)
517 		printk("Instruction Cache Parity Error\n");
518 	if (reason & MCSR_DCP_PERR)
519 		printk("Data Cache Push Parity Error\n");
520 	if (reason & MCSR_DCPERR)
521 		printk("Data Cache Parity Error\n");
522 	if (reason & MCSR_BUS_IAERR)
523 		printk("Bus - Instruction Address Error\n");
524 	if (reason & MCSR_BUS_RAERR)
525 		printk("Bus - Read Address Error\n");
526 	if (reason & MCSR_BUS_WAERR)
527 		printk("Bus - Write Address Error\n");
528 	if (reason & MCSR_BUS_IBERR)
529 		printk("Bus - Instruction Data Error\n");
530 	if (reason & MCSR_BUS_RBERR)
531 		printk("Bus - Read Data Bus Error\n");
532 	if (reason & MCSR_BUS_WBERR)
533 		printk("Bus - Read Data Bus Error\n");
534 	if (reason & MCSR_BUS_IPERR)
535 		printk("Bus - Instruction Parity Error\n");
536 	if (reason & MCSR_BUS_RPERR)
537 		printk("Bus - Read Parity Error\n");
538 
539 	return 0;
540 }
541 
machine_check_generic(struct pt_regs * regs)542 int machine_check_generic(struct pt_regs *regs)
543 {
544 	return 0;
545 }
546 #elif defined(CONFIG_E200)
machine_check_e200(struct pt_regs * regs)547 int machine_check_e200(struct pt_regs *regs)
548 {
549 	unsigned long reason = get_mc_reason(regs);
550 
551 	printk("Machine check in kernel mode.\n");
552 	printk("Caused by (from MCSR=%lx): ", reason);
553 
554 	if (reason & MCSR_MCP)
555 		printk("Machine Check Signal\n");
556 	if (reason & MCSR_CP_PERR)
557 		printk("Cache Push Parity Error\n");
558 	if (reason & MCSR_CPERR)
559 		printk("Cache Parity Error\n");
560 	if (reason & MCSR_EXCP_ERR)
561 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
562 	if (reason & MCSR_BUS_IRERR)
563 		printk("Bus - Read Bus Error on instruction fetch\n");
564 	if (reason & MCSR_BUS_DRERR)
565 		printk("Bus - Read Bus Error on data load\n");
566 	if (reason & MCSR_BUS_WRERR)
567 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
568 
569 	return 0;
570 }
571 #else
machine_check_generic(struct pt_regs * regs)572 int machine_check_generic(struct pt_regs *regs)
573 {
574 	unsigned long reason = get_mc_reason(regs);
575 
576 	printk("Machine check in kernel mode.\n");
577 	printk("Caused by (from SRR1=%lx): ", reason);
578 	switch (reason & 0x601F0000) {
579 	case 0x80000:
580 		printk("Machine check signal\n");
581 		break;
582 	case 0:		/* for 601 */
583 	case 0x40000:
584 	case 0x140000:	/* 7450 MSS error and TEA */
585 		printk("Transfer error ack signal\n");
586 		break;
587 	case 0x20000:
588 		printk("Data parity error signal\n");
589 		break;
590 	case 0x10000:
591 		printk("Address parity error signal\n");
592 		break;
593 	case 0x20000000:
594 		printk("L1 Data Cache error\n");
595 		break;
596 	case 0x40000000:
597 		printk("L1 Instruction Cache error\n");
598 		break;
599 	case 0x00100000:
600 		printk("L2 data cache parity error\n");
601 		break;
602 	default:
603 		printk("Unknown values in msr\n");
604 	}
605 	return 0;
606 }
607 #endif /* everything else */
608 
machine_check_exception(struct pt_regs * regs)609 void machine_check_exception(struct pt_regs *regs)
610 {
611 	int recover = 0;
612 
613 	__get_cpu_var(irq_stat).mce_exceptions++;
614 
615 	/* See if any machine dependent calls. In theory, we would want
616 	 * to call the CPU first, and call the ppc_md. one if the CPU
617 	 * one returns a positive number. However there is existing code
618 	 * that assumes the board gets a first chance, so let's keep it
619 	 * that way for now and fix things later. --BenH.
620 	 */
621 	if (ppc_md.machine_check_exception)
622 		recover = ppc_md.machine_check_exception(regs);
623 	else if (cur_cpu_spec->machine_check)
624 		recover = cur_cpu_spec->machine_check(regs);
625 
626 	if (recover > 0)
627 		return;
628 
629 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
630 	/* the qspan pci read routines can cause machine checks -- Cort
631 	 *
632 	 * yuck !!! that totally needs to go away ! There are better ways
633 	 * to deal with that than having a wart in the mcheck handler.
634 	 * -- BenH
635 	 */
636 	bad_page_fault(regs, regs->dar, SIGBUS);
637 	return;
638 #endif
639 
640 	if (debugger_fault_handler(regs))
641 		return;
642 
643 	if (check_io_access(regs))
644 		return;
645 
646 	die("Machine check", regs, SIGBUS);
647 
648 	/* Must die if the interrupt is not recoverable */
649 	if (!(regs->msr & MSR_RI))
650 		panic("Unrecoverable Machine check");
651 }
652 
SMIException(struct pt_regs * regs)653 void SMIException(struct pt_regs *regs)
654 {
655 	die("System Management Interrupt", regs, SIGABRT);
656 }
657 
unknown_exception(struct pt_regs * regs)658 void unknown_exception(struct pt_regs *regs)
659 {
660 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
661 	       regs->nip, regs->msr, regs->trap);
662 
663 	_exception(SIGTRAP, regs, 0, 0);
664 }
665 
instruction_breakpoint_exception(struct pt_regs * regs)666 void instruction_breakpoint_exception(struct pt_regs *regs)
667 {
668 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
669 					5, SIGTRAP) == NOTIFY_STOP)
670 		return;
671 	if (debugger_iabr_match(regs))
672 		return;
673 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
674 }
675 
RunModeException(struct pt_regs * regs)676 void RunModeException(struct pt_regs *regs)
677 {
678 	_exception(SIGTRAP, regs, 0, 0);
679 }
680 
single_step_exception(struct pt_regs * regs)681 void __kprobes single_step_exception(struct pt_regs *regs)
682 {
683 	clear_single_step(regs);
684 
685 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
686 					5, SIGTRAP) == NOTIFY_STOP)
687 		return;
688 	if (debugger_sstep(regs))
689 		return;
690 
691 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
692 }
693 
694 /*
695  * After we have successfully emulated an instruction, we have to
696  * check if the instruction was being single-stepped, and if so,
697  * pretend we got a single-step exception.  This was pointed out
698  * by Kumar Gala.  -- paulus
699  */
emulate_single_step(struct pt_regs * regs)700 static void emulate_single_step(struct pt_regs *regs)
701 {
702 	if (single_stepping(regs))
703 		single_step_exception(regs);
704 }
705 
__parse_fpscr(unsigned long fpscr)706 static inline int __parse_fpscr(unsigned long fpscr)
707 {
708 	int ret = 0;
709 
710 	/* Invalid operation */
711 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
712 		ret = FPE_FLTINV;
713 
714 	/* Overflow */
715 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
716 		ret = FPE_FLTOVF;
717 
718 	/* Underflow */
719 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
720 		ret = FPE_FLTUND;
721 
722 	/* Divide by zero */
723 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
724 		ret = FPE_FLTDIV;
725 
726 	/* Inexact result */
727 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
728 		ret = FPE_FLTRES;
729 
730 	return ret;
731 }
732 
parse_fpe(struct pt_regs * regs)733 static void parse_fpe(struct pt_regs *regs)
734 {
735 	int code = 0;
736 
737 	flush_fp_to_thread(current);
738 
739 	code = __parse_fpscr(current->thread.fpscr.val);
740 
741 	_exception(SIGFPE, regs, code, regs->nip);
742 }
743 
744 /*
745  * Illegal instruction emulation support.  Originally written to
746  * provide the PVR to user applications using the mfspr rd, PVR.
747  * Return non-zero if we can't emulate, or -EFAULT if the associated
748  * memory access caused an access fault.  Return zero on success.
749  *
750  * There are a couple of ways to do this, either "decode" the instruction
751  * or directly match lots of bits.  In this case, matching lots of
752  * bits is faster and easier.
753  *
754  */
emulate_string_inst(struct pt_regs * regs,u32 instword)755 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
756 {
757 	u8 rT = (instword >> 21) & 0x1f;
758 	u8 rA = (instword >> 16) & 0x1f;
759 	u8 NB_RB = (instword >> 11) & 0x1f;
760 	u32 num_bytes;
761 	unsigned long EA;
762 	int pos = 0;
763 
764 	/* Early out if we are an invalid form of lswx */
765 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
766 		if ((rT == rA) || (rT == NB_RB))
767 			return -EINVAL;
768 
769 	EA = (rA == 0) ? 0 : regs->gpr[rA];
770 
771 	switch (instword & PPC_INST_STRING_MASK) {
772 		case PPC_INST_LSWX:
773 		case PPC_INST_STSWX:
774 			EA += NB_RB;
775 			num_bytes = regs->xer & 0x7f;
776 			break;
777 		case PPC_INST_LSWI:
778 		case PPC_INST_STSWI:
779 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
780 			break;
781 		default:
782 			return -EINVAL;
783 	}
784 
785 	while (num_bytes != 0)
786 	{
787 		u8 val;
788 		u32 shift = 8 * (3 - (pos & 0x3));
789 
790 		switch ((instword & PPC_INST_STRING_MASK)) {
791 			case PPC_INST_LSWX:
792 			case PPC_INST_LSWI:
793 				if (get_user(val, (u8 __user *)EA))
794 					return -EFAULT;
795 				/* first time updating this reg,
796 				 * zero it out */
797 				if (pos == 0)
798 					regs->gpr[rT] = 0;
799 				regs->gpr[rT] |= val << shift;
800 				break;
801 			case PPC_INST_STSWI:
802 			case PPC_INST_STSWX:
803 				val = regs->gpr[rT] >> shift;
804 				if (put_user(val, (u8 __user *)EA))
805 					return -EFAULT;
806 				break;
807 		}
808 		/* move EA to next address */
809 		EA += 1;
810 		num_bytes--;
811 
812 		/* manage our position within the register */
813 		if (++pos == 4) {
814 			pos = 0;
815 			if (++rT == 32)
816 				rT = 0;
817 		}
818 	}
819 
820 	return 0;
821 }
822 
emulate_popcntb_inst(struct pt_regs * regs,u32 instword)823 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
824 {
825 	u32 ra,rs;
826 	unsigned long tmp;
827 
828 	ra = (instword >> 16) & 0x1f;
829 	rs = (instword >> 21) & 0x1f;
830 
831 	tmp = regs->gpr[rs];
832 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
833 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
834 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
835 	regs->gpr[ra] = tmp;
836 
837 	return 0;
838 }
839 
emulate_isel(struct pt_regs * regs,u32 instword)840 static int emulate_isel(struct pt_regs *regs, u32 instword)
841 {
842 	u8 rT = (instword >> 21) & 0x1f;
843 	u8 rA = (instword >> 16) & 0x1f;
844 	u8 rB = (instword >> 11) & 0x1f;
845 	u8 BC = (instword >> 6) & 0x1f;
846 	u8 bit;
847 	unsigned long tmp;
848 
849 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
850 	bit = (regs->ccr >> (31 - BC)) & 0x1;
851 
852 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
853 
854 	return 0;
855 }
856 
emulate_instruction(struct pt_regs * regs)857 static int emulate_instruction(struct pt_regs *regs)
858 {
859 	u32 instword;
860 	u32 rd;
861 
862 	if (!user_mode(regs) || (regs->msr & MSR_LE))
863 		return -EINVAL;
864 	CHECK_FULL_REGS(regs);
865 
866 	if (get_user(instword, (u32 __user *)(regs->nip)))
867 		return -EFAULT;
868 
869 	/* Emulate the mfspr rD, PVR. */
870 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
871 		PPC_WARN_EMULATED(mfpvr, regs);
872 		rd = (instword >> 21) & 0x1f;
873 		regs->gpr[rd] = mfspr(SPRN_PVR);
874 		return 0;
875 	}
876 
877 	/* Emulating the dcba insn is just a no-op.  */
878 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
879 		PPC_WARN_EMULATED(dcba, regs);
880 		return 0;
881 	}
882 
883 	/* Emulate the mcrxr insn.  */
884 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
885 		int shift = (instword >> 21) & 0x1c;
886 		unsigned long msk = 0xf0000000UL >> shift;
887 
888 		PPC_WARN_EMULATED(mcrxr, regs);
889 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
890 		regs->xer &= ~0xf0000000UL;
891 		return 0;
892 	}
893 
894 	/* Emulate load/store string insn. */
895 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
896 		PPC_WARN_EMULATED(string, regs);
897 		return emulate_string_inst(regs, instword);
898 	}
899 
900 	/* Emulate the popcntb (Population Count Bytes) instruction. */
901 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
902 		PPC_WARN_EMULATED(popcntb, regs);
903 		return emulate_popcntb_inst(regs, instword);
904 	}
905 
906 	/* Emulate isel (Integer Select) instruction */
907 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
908 		PPC_WARN_EMULATED(isel, regs);
909 		return emulate_isel(regs, instword);
910 	}
911 
912 	return -EINVAL;
913 }
914 
is_valid_bugaddr(unsigned long addr)915 int is_valid_bugaddr(unsigned long addr)
916 {
917 	return is_kernel_addr(addr);
918 }
919 
program_check_exception(struct pt_regs * regs)920 void __kprobes program_check_exception(struct pt_regs *regs)
921 {
922 	unsigned int reason = get_reason(regs);
923 	extern int do_mathemu(struct pt_regs *regs);
924 
925 	/* We can now get here via a FP Unavailable exception if the core
926 	 * has no FPU, in that case the reason flags will be 0 */
927 
928 	if (reason & REASON_FP) {
929 		/* IEEE FP exception */
930 		parse_fpe(regs);
931 		return;
932 	}
933 	if (reason & REASON_TRAP) {
934 		/* Debugger is first in line to stop recursive faults in
935 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
936 		if (debugger_bpt(regs))
937 			return;
938 
939 		/* trap exception */
940 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
941 				== NOTIFY_STOP)
942 			return;
943 
944 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
945 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
946 			regs->nip += 4;
947 			return;
948 		}
949 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
950 		return;
951 	}
952 
953 	local_irq_enable();
954 
955 #ifdef CONFIG_MATH_EMULATION
956 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
957 	 * but there seems to be a hardware bug on the 405GP (RevD)
958 	 * that means ESR is sometimes set incorrectly - either to
959 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
960 	 * hardware people - not sure if it can happen on any illegal
961 	 * instruction or only on FP instructions, whether there is a
962 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
963 	switch (do_mathemu(regs)) {
964 	case 0:
965 		emulate_single_step(regs);
966 		return;
967 	case 1: {
968 			int code = 0;
969 			code = __parse_fpscr(current->thread.fpscr.val);
970 			_exception(SIGFPE, regs, code, regs->nip);
971 			return;
972 		}
973 	case -EFAULT:
974 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
975 		return;
976 	}
977 	/* fall through on any other errors */
978 #endif /* CONFIG_MATH_EMULATION */
979 
980 	/* Try to emulate it if we should. */
981 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
982 		switch (emulate_instruction(regs)) {
983 		case 0:
984 			regs->nip += 4;
985 			emulate_single_step(regs);
986 			return;
987 		case -EFAULT:
988 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
989 			return;
990 		}
991 	}
992 
993 	if (reason & REASON_PRIVILEGED)
994 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
995 	else
996 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
997 }
998 
alignment_exception(struct pt_regs * regs)999 void alignment_exception(struct pt_regs *regs)
1000 {
1001 	int sig, code, fixed = 0;
1002 
1003 	/* we don't implement logging of alignment exceptions */
1004 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1005 		fixed = fix_alignment(regs);
1006 
1007 	if (fixed == 1) {
1008 		regs->nip += 4;	/* skip over emulated instruction */
1009 		emulate_single_step(regs);
1010 		return;
1011 	}
1012 
1013 	/* Operand address was bad */
1014 	if (fixed == -EFAULT) {
1015 		sig = SIGSEGV;
1016 		code = SEGV_ACCERR;
1017 	} else {
1018 		sig = SIGBUS;
1019 		code = BUS_ADRALN;
1020 	}
1021 	if (user_mode(regs))
1022 		_exception(sig, regs, code, regs->dar);
1023 	else
1024 		bad_page_fault(regs, regs->dar, sig);
1025 }
1026 
StackOverflow(struct pt_regs * regs)1027 void StackOverflow(struct pt_regs *regs)
1028 {
1029 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1030 	       current, regs->gpr[1]);
1031 	debugger(regs);
1032 	show_regs(regs);
1033 	panic("kernel stack overflow");
1034 }
1035 
nonrecoverable_exception(struct pt_regs * regs)1036 void nonrecoverable_exception(struct pt_regs *regs)
1037 {
1038 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1039 	       regs->nip, regs->msr);
1040 	debugger(regs);
1041 	die("nonrecoverable exception", regs, SIGKILL);
1042 }
1043 
trace_syscall(struct pt_regs * regs)1044 void trace_syscall(struct pt_regs *regs)
1045 {
1046 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1047 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1048 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1049 }
1050 
kernel_fp_unavailable_exception(struct pt_regs * regs)1051 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1052 {
1053 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1054 			  "%lx at %lx\n", regs->trap, regs->nip);
1055 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1056 }
1057 
altivec_unavailable_exception(struct pt_regs * regs)1058 void altivec_unavailable_exception(struct pt_regs *regs)
1059 {
1060 	if (user_mode(regs)) {
1061 		/* A user program has executed an altivec instruction,
1062 		   but this kernel doesn't support altivec. */
1063 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1064 		return;
1065 	}
1066 
1067 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1068 			"%lx at %lx\n", regs->trap, regs->nip);
1069 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1070 }
1071 
vsx_unavailable_exception(struct pt_regs * regs)1072 void vsx_unavailable_exception(struct pt_regs *regs)
1073 {
1074 	if (user_mode(regs)) {
1075 		/* A user program has executed an vsx instruction,
1076 		   but this kernel doesn't support vsx. */
1077 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1078 		return;
1079 	}
1080 
1081 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1082 			"%lx at %lx\n", regs->trap, regs->nip);
1083 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1084 }
1085 
performance_monitor_exception(struct pt_regs * regs)1086 void performance_monitor_exception(struct pt_regs *regs)
1087 {
1088 	__get_cpu_var(irq_stat).pmu_irqs++;
1089 
1090 	perf_irq(regs);
1091 }
1092 
1093 #ifdef CONFIG_8xx
SoftwareEmulation(struct pt_regs * regs)1094 void SoftwareEmulation(struct pt_regs *regs)
1095 {
1096 	extern int do_mathemu(struct pt_regs *);
1097 	extern int Soft_emulate_8xx(struct pt_regs *);
1098 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1099 	int errcode;
1100 #endif
1101 
1102 	CHECK_FULL_REGS(regs);
1103 
1104 	if (!user_mode(regs)) {
1105 		debugger(regs);
1106 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1107 	}
1108 
1109 #ifdef CONFIG_MATH_EMULATION
1110 	errcode = do_mathemu(regs);
1111 	if (errcode >= 0)
1112 		PPC_WARN_EMULATED(math, regs);
1113 
1114 	switch (errcode) {
1115 	case 0:
1116 		emulate_single_step(regs);
1117 		return;
1118 	case 1: {
1119 			int code = 0;
1120 			code = __parse_fpscr(current->thread.fpscr.val);
1121 			_exception(SIGFPE, regs, code, regs->nip);
1122 			return;
1123 		}
1124 	case -EFAULT:
1125 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1126 		return;
1127 	default:
1128 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1129 		return;
1130 	}
1131 
1132 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1133 	errcode = Soft_emulate_8xx(regs);
1134 	if (errcode >= 0)
1135 		PPC_WARN_EMULATED(8xx, regs);
1136 
1137 	switch (errcode) {
1138 	case 0:
1139 		emulate_single_step(regs);
1140 		return;
1141 	case 1:
1142 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1143 		return;
1144 	case -EFAULT:
1145 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1146 		return;
1147 	}
1148 #else
1149 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1150 #endif
1151 }
1152 #endif /* CONFIG_8xx */
1153 
1154 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
handle_debug(struct pt_regs * regs,unsigned long debug_status)1155 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1156 {
1157 	int changed = 0;
1158 	/*
1159 	 * Determine the cause of the debug event, clear the
1160 	 * event flags and send a trap to the handler. Torez
1161 	 */
1162 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1163 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1164 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1165 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1166 #endif
1167 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1168 			     5);
1169 		changed |= 0x01;
1170 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1171 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1172 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1173 			     6);
1174 		changed |= 0x01;
1175 	}  else if (debug_status & DBSR_IAC1) {
1176 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1177 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1178 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1179 			     1);
1180 		changed |= 0x01;
1181 	}  else if (debug_status & DBSR_IAC2) {
1182 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1183 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1184 			     2);
1185 		changed |= 0x01;
1186 	}  else if (debug_status & DBSR_IAC3) {
1187 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1188 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1189 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1190 			     3);
1191 		changed |= 0x01;
1192 	}  else if (debug_status & DBSR_IAC4) {
1193 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1194 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1195 			     4);
1196 		changed |= 0x01;
1197 	}
1198 	/*
1199 	 * At the point this routine was called, the MSR(DE) was turned off.
1200 	 * Check all other debug flags and see if that bit needs to be turned
1201 	 * back on or not.
1202 	 */
1203 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1204 		regs->msr |= MSR_DE;
1205 	else
1206 		/* Make sure the IDM flag is off */
1207 		current->thread.dbcr0 &= ~DBCR0_IDM;
1208 
1209 	if (changed & 0x01)
1210 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1211 }
1212 
DebugException(struct pt_regs * regs,unsigned long debug_status)1213 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1214 {
1215 	current->thread.dbsr = debug_status;
1216 
1217 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1218 	 * on server, it stops on the target of the branch. In order to simulate
1219 	 * the server behaviour, we thus restart right away with a single step
1220 	 * instead of stopping here when hitting a BT
1221 	 */
1222 	if (debug_status & DBSR_BT) {
1223 		regs->msr &= ~MSR_DE;
1224 
1225 		/* Disable BT */
1226 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1227 		/* Clear the BT event */
1228 		mtspr(SPRN_DBSR, DBSR_BT);
1229 
1230 		/* Do the single step trick only when coming from userspace */
1231 		if (user_mode(regs)) {
1232 			current->thread.dbcr0 &= ~DBCR0_BT;
1233 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1234 			regs->msr |= MSR_DE;
1235 			return;
1236 		}
1237 
1238 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1239 			       5, SIGTRAP) == NOTIFY_STOP) {
1240 			return;
1241 		}
1242 		if (debugger_sstep(regs))
1243 			return;
1244 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1245 		regs->msr &= ~MSR_DE;
1246 
1247 		/* Disable instruction completion */
1248 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1249 		/* Clear the instruction completion event */
1250 		mtspr(SPRN_DBSR, DBSR_IC);
1251 
1252 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1253 			       5, SIGTRAP) == NOTIFY_STOP) {
1254 			return;
1255 		}
1256 
1257 		if (debugger_sstep(regs))
1258 			return;
1259 
1260 		if (user_mode(regs)) {
1261 			current->thread.dbcr0 &= ~DBCR0_IC;
1262 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1263 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1264 					       current->thread.dbcr1))
1265 				regs->msr |= MSR_DE;
1266 			else
1267 				/* Make sure the IDM bit is off */
1268 				current->thread.dbcr0 &= ~DBCR0_IDM;
1269 #endif
1270 		}
1271 
1272 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1273 	} else
1274 		handle_debug(regs, debug_status);
1275 }
1276 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1277 
1278 #if !defined(CONFIG_TAU_INT)
TAUException(struct pt_regs * regs)1279 void TAUException(struct pt_regs *regs)
1280 {
1281 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1282 	       regs->nip, regs->msr, regs->trap, print_tainted());
1283 }
1284 #endif /* CONFIG_INT_TAU */
1285 
1286 #ifdef CONFIG_ALTIVEC
altivec_assist_exception(struct pt_regs * regs)1287 void altivec_assist_exception(struct pt_regs *regs)
1288 {
1289 	int err;
1290 
1291 	if (!user_mode(regs)) {
1292 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1293 		       " at %lx\n", regs->nip);
1294 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1295 	}
1296 
1297 	flush_altivec_to_thread(current);
1298 
1299 	PPC_WARN_EMULATED(altivec, regs);
1300 	err = emulate_altivec(regs);
1301 	if (err == 0) {
1302 		regs->nip += 4;		/* skip emulated instruction */
1303 		emulate_single_step(regs);
1304 		return;
1305 	}
1306 
1307 	if (err == -EFAULT) {
1308 		/* got an error reading the instruction */
1309 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1310 	} else {
1311 		/* didn't recognize the instruction */
1312 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1313 		if (printk_ratelimit())
1314 			printk(KERN_ERR "Unrecognized altivec instruction "
1315 			       "in %s at %lx\n", current->comm, regs->nip);
1316 		current->thread.vscr.u[3] |= 0x10000;
1317 	}
1318 }
1319 #endif /* CONFIG_ALTIVEC */
1320 
1321 #ifdef CONFIG_VSX
vsx_assist_exception(struct pt_regs * regs)1322 void vsx_assist_exception(struct pt_regs *regs)
1323 {
1324 	if (!user_mode(regs)) {
1325 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1326 		       " at %lx\n", regs->nip);
1327 		die("Kernel VSX assist exception", regs, SIGILL);
1328 	}
1329 
1330 	flush_vsx_to_thread(current);
1331 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1332 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1333 }
1334 #endif /* CONFIG_VSX */
1335 
1336 #ifdef CONFIG_FSL_BOOKE
CacheLockingException(struct pt_regs * regs,unsigned long address,unsigned long error_code)1337 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1338 			   unsigned long error_code)
1339 {
1340 	/* We treat cache locking instructions from the user
1341 	 * as priv ops, in the future we could try to do
1342 	 * something smarter
1343 	 */
1344 	if (error_code & (ESR_DLK|ESR_ILK))
1345 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1346 	return;
1347 }
1348 #endif /* CONFIG_FSL_BOOKE */
1349 
1350 #ifdef CONFIG_SPE
SPEFloatingPointException(struct pt_regs * regs)1351 void SPEFloatingPointException(struct pt_regs *regs)
1352 {
1353 	extern int do_spe_mathemu(struct pt_regs *regs);
1354 	unsigned long spefscr;
1355 	int fpexc_mode;
1356 	int code = 0;
1357 	int err;
1358 
1359 	preempt_disable();
1360 	if (regs->msr & MSR_SPE)
1361 		giveup_spe(current);
1362 	preempt_enable();
1363 
1364 	spefscr = current->thread.spefscr;
1365 	fpexc_mode = current->thread.fpexc_mode;
1366 
1367 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1368 		code = FPE_FLTOVF;
1369 	}
1370 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1371 		code = FPE_FLTUND;
1372 	}
1373 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1374 		code = FPE_FLTDIV;
1375 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1376 		code = FPE_FLTINV;
1377 	}
1378 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1379 		code = FPE_FLTRES;
1380 
1381 	err = do_spe_mathemu(regs);
1382 	if (err == 0) {
1383 		regs->nip += 4;		/* skip emulated instruction */
1384 		emulate_single_step(regs);
1385 		return;
1386 	}
1387 
1388 	if (err == -EFAULT) {
1389 		/* got an error reading the instruction */
1390 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1391 	} else if (err == -EINVAL) {
1392 		/* didn't recognize the instruction */
1393 		printk(KERN_ERR "unrecognized spe instruction "
1394 		       "in %s at %lx\n", current->comm, regs->nip);
1395 	} else {
1396 		_exception(SIGFPE, regs, code, regs->nip);
1397 	}
1398 
1399 	return;
1400 }
1401 
SPEFloatingPointRoundException(struct pt_regs * regs)1402 void SPEFloatingPointRoundException(struct pt_regs *regs)
1403 {
1404 	extern int speround_handler(struct pt_regs *regs);
1405 	int err;
1406 
1407 	preempt_disable();
1408 	if (regs->msr & MSR_SPE)
1409 		giveup_spe(current);
1410 	preempt_enable();
1411 
1412 	regs->nip -= 4;
1413 	err = speround_handler(regs);
1414 	if (err == 0) {
1415 		regs->nip += 4;		/* skip emulated instruction */
1416 		emulate_single_step(regs);
1417 		return;
1418 	}
1419 
1420 	if (err == -EFAULT) {
1421 		/* got an error reading the instruction */
1422 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1423 	} else if (err == -EINVAL) {
1424 		/* didn't recognize the instruction */
1425 		printk(KERN_ERR "unrecognized spe instruction "
1426 		       "in %s at %lx\n", current->comm, regs->nip);
1427 	} else {
1428 		_exception(SIGFPE, regs, 0, regs->nip);
1429 		return;
1430 	}
1431 }
1432 #endif
1433 
1434 /*
1435  * We enter here if we get an unrecoverable exception, that is, one
1436  * that happened at a point where the RI (recoverable interrupt) bit
1437  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1438  * we therefore lost state by taking this exception.
1439  */
unrecoverable_exception(struct pt_regs * regs)1440 void unrecoverable_exception(struct pt_regs *regs)
1441 {
1442 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1443 	       regs->trap, regs->nip);
1444 	die("Unrecoverable exception", regs, SIGABRT);
1445 }
1446 
1447 #ifdef CONFIG_BOOKE_WDT
1448 /*
1449  * Default handler for a Watchdog exception,
1450  * spins until a reboot occurs
1451  */
WatchdogHandler(struct pt_regs * regs)1452 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1453 {
1454 	/* Generic WatchdogHandler, implement your own */
1455 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1456 	return;
1457 }
1458 
WatchdogException(struct pt_regs * regs)1459 void WatchdogException(struct pt_regs *regs)
1460 {
1461 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1462 	WatchdogHandler(regs);
1463 }
1464 #endif
1465 
1466 /*
1467  * We enter here if we discover during exception entry that we are
1468  * running in supervisor mode with a userspace value in the stack pointer.
1469  */
kernel_bad_stack(struct pt_regs * regs)1470 void kernel_bad_stack(struct pt_regs *regs)
1471 {
1472 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1473 	       regs->gpr[1], regs->nip);
1474 	die("Bad kernel stack pointer", regs, SIGABRT);
1475 }
1476 
trap_init(void)1477 void __init trap_init(void)
1478 {
1479 }
1480 
1481 
1482 #ifdef CONFIG_PPC_EMULATED_STATS
1483 
1484 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1485 
1486 struct ppc_emulated ppc_emulated = {
1487 #ifdef CONFIG_ALTIVEC
1488 	WARN_EMULATED_SETUP(altivec),
1489 #endif
1490 	WARN_EMULATED_SETUP(dcba),
1491 	WARN_EMULATED_SETUP(dcbz),
1492 	WARN_EMULATED_SETUP(fp_pair),
1493 	WARN_EMULATED_SETUP(isel),
1494 	WARN_EMULATED_SETUP(mcrxr),
1495 	WARN_EMULATED_SETUP(mfpvr),
1496 	WARN_EMULATED_SETUP(multiple),
1497 	WARN_EMULATED_SETUP(popcntb),
1498 	WARN_EMULATED_SETUP(spe),
1499 	WARN_EMULATED_SETUP(string),
1500 	WARN_EMULATED_SETUP(unaligned),
1501 #ifdef CONFIG_MATH_EMULATION
1502 	WARN_EMULATED_SETUP(math),
1503 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1504 	WARN_EMULATED_SETUP(8xx),
1505 #endif
1506 #ifdef CONFIG_VSX
1507 	WARN_EMULATED_SETUP(vsx),
1508 #endif
1509 };
1510 
1511 u32 ppc_warn_emulated;
1512 
ppc_warn_emulated_print(const char * type)1513 void ppc_warn_emulated_print(const char *type)
1514 {
1515 	if (printk_ratelimit())
1516 		pr_warning("%s used emulated %s instruction\n", current->comm,
1517 			   type);
1518 }
1519 
ppc_warn_emulated_init(void)1520 static int __init ppc_warn_emulated_init(void)
1521 {
1522 	struct dentry *dir, *d;
1523 	unsigned int i;
1524 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1525 
1526 	if (!powerpc_debugfs_root)
1527 		return -ENODEV;
1528 
1529 	dir = debugfs_create_dir("emulated_instructions",
1530 				 powerpc_debugfs_root);
1531 	if (!dir)
1532 		return -ENOMEM;
1533 
1534 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1535 			       &ppc_warn_emulated);
1536 	if (!d)
1537 		goto fail;
1538 
1539 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1540 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1541 				       (u32 *)&entries[i].val.counter);
1542 		if (!d)
1543 			goto fail;
1544 	}
1545 
1546 	return 0;
1547 
1548 fail:
1549 	debugfs_remove_recursive(dir);
1550 	return -ENOMEM;
1551 }
1552 
1553 device_initcall(ppc_warn_emulated_init);
1554 
1555 #endif /* CONFIG_PPC_EMULATED_STATS */
1556