1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "ifile.h"
60 #include "dat.h"
61 #include "segment.h"
62 #include "segbuf.h"
63
64 MODULE_AUTHOR("NTT Corp.");
65 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
66 "(NILFS)");
67 MODULE_LICENSE("GPL");
68
69 static struct kmem_cache *nilfs_inode_cachep;
70 struct kmem_cache *nilfs_transaction_cachep;
71 struct kmem_cache *nilfs_segbuf_cachep;
72 struct kmem_cache *nilfs_btree_path_cache;
73
74 static int nilfs_setup_super(struct super_block *sb, int is_mount);
75 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
76
nilfs_set_error(struct super_block * sb)77 static void nilfs_set_error(struct super_block *sb)
78 {
79 struct the_nilfs *nilfs = sb->s_fs_info;
80 struct nilfs_super_block **sbp;
81
82 down_write(&nilfs->ns_sem);
83 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
84 nilfs->ns_mount_state |= NILFS_ERROR_FS;
85 sbp = nilfs_prepare_super(sb, 0);
86 if (likely(sbp)) {
87 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
88 if (sbp[1])
89 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
91 }
92 }
93 up_write(&nilfs->ns_sem);
94 }
95
96 /**
97 * nilfs_error() - report failure condition on a filesystem
98 *
99 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
100 * reporting an error message. It should be called when NILFS detects
101 * incoherences or defects of meta data on disk. As for sustainable
102 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
103 * function should be used instead.
104 *
105 * The segment constructor must not call this function because it can
106 * kill itself.
107 */
nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)108 void nilfs_error(struct super_block *sb, const char *function,
109 const char *fmt, ...)
110 {
111 struct the_nilfs *nilfs = sb->s_fs_info;
112 struct va_format vaf;
113 va_list args;
114
115 va_start(args, fmt);
116
117 vaf.fmt = fmt;
118 vaf.va = &args;
119
120 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
121 sb->s_id, function, &vaf);
122
123 va_end(args);
124
125 if (!(sb->s_flags & MS_RDONLY)) {
126 nilfs_set_error(sb);
127
128 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
129 printk(KERN_CRIT "Remounting filesystem read-only\n");
130 sb->s_flags |= MS_RDONLY;
131 }
132 }
133
134 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
135 panic("NILFS (device %s): panic forced after error\n",
136 sb->s_id);
137 }
138
nilfs_warning(struct super_block * sb,const char * function,const char * fmt,...)139 void nilfs_warning(struct super_block *sb, const char *function,
140 const char *fmt, ...)
141 {
142 struct va_format vaf;
143 va_list args;
144
145 va_start(args, fmt);
146
147 vaf.fmt = fmt;
148 vaf.va = &args;
149
150 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
151 sb->s_id, function, &vaf);
152
153 va_end(args);
154 }
155
156
nilfs_alloc_inode(struct super_block * sb)157 struct inode *nilfs_alloc_inode(struct super_block *sb)
158 {
159 struct nilfs_inode_info *ii;
160
161 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
162 if (!ii)
163 return NULL;
164 ii->i_bh = NULL;
165 ii->i_state = 0;
166 ii->i_cno = 0;
167 ii->vfs_inode.i_version = 1;
168 nilfs_btnode_cache_init(&ii->i_btnode_cache, sb->s_bdi);
169 return &ii->vfs_inode;
170 }
171
nilfs_i_callback(struct rcu_head * head)172 static void nilfs_i_callback(struct rcu_head *head)
173 {
174 struct inode *inode = container_of(head, struct inode, i_rcu);
175 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
176
177 INIT_LIST_HEAD(&inode->i_dentry);
178
179 if (mdi) {
180 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
181 kfree(mdi);
182 }
183 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
184 }
185
nilfs_destroy_inode(struct inode * inode)186 void nilfs_destroy_inode(struct inode *inode)
187 {
188 call_rcu(&inode->i_rcu, nilfs_i_callback);
189 }
190
nilfs_sync_super(struct super_block * sb,int flag)191 static int nilfs_sync_super(struct super_block *sb, int flag)
192 {
193 struct the_nilfs *nilfs = sb->s_fs_info;
194 int err;
195
196 retry:
197 set_buffer_dirty(nilfs->ns_sbh[0]);
198 if (nilfs_test_opt(nilfs, BARRIER)) {
199 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
200 WRITE_SYNC | WRITE_FLUSH_FUA);
201 } else {
202 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
203 }
204
205 if (unlikely(err)) {
206 printk(KERN_ERR
207 "NILFS: unable to write superblock (err=%d)\n", err);
208 if (err == -EIO && nilfs->ns_sbh[1]) {
209 /*
210 * sbp[0] points to newer log than sbp[1],
211 * so copy sbp[0] to sbp[1] to take over sbp[0].
212 */
213 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
214 nilfs->ns_sbsize);
215 nilfs_fall_back_super_block(nilfs);
216 goto retry;
217 }
218 } else {
219 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
220
221 nilfs->ns_sbwcount++;
222
223 /*
224 * The latest segment becomes trailable from the position
225 * written in superblock.
226 */
227 clear_nilfs_discontinued(nilfs);
228
229 /* update GC protection for recent segments */
230 if (nilfs->ns_sbh[1]) {
231 if (flag == NILFS_SB_COMMIT_ALL) {
232 set_buffer_dirty(nilfs->ns_sbh[1]);
233 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
234 goto out;
235 }
236 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
237 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
238 sbp = nilfs->ns_sbp[1];
239 }
240
241 spin_lock(&nilfs->ns_last_segment_lock);
242 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
243 spin_unlock(&nilfs->ns_last_segment_lock);
244 }
245 out:
246 return err;
247 }
248
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)249 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
250 struct the_nilfs *nilfs)
251 {
252 sector_t nfreeblocks;
253
254 /* nilfs->ns_sem must be locked by the caller. */
255 nilfs_count_free_blocks(nilfs, &nfreeblocks);
256 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
257
258 spin_lock(&nilfs->ns_last_segment_lock);
259 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
260 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
261 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
262 spin_unlock(&nilfs->ns_last_segment_lock);
263 }
264
nilfs_prepare_super(struct super_block * sb,int flip)265 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
266 int flip)
267 {
268 struct the_nilfs *nilfs = sb->s_fs_info;
269 struct nilfs_super_block **sbp = nilfs->ns_sbp;
270
271 /* nilfs->ns_sem must be locked by the caller. */
272 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
273 if (sbp[1] &&
274 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
275 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
276 } else {
277 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
278 sb->s_id);
279 return NULL;
280 }
281 } else if (sbp[1] &&
282 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
283 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
284 }
285
286 if (flip && sbp[1])
287 nilfs_swap_super_block(nilfs);
288
289 return sbp;
290 }
291
nilfs_commit_super(struct super_block * sb,int flag)292 int nilfs_commit_super(struct super_block *sb, int flag)
293 {
294 struct the_nilfs *nilfs = sb->s_fs_info;
295 struct nilfs_super_block **sbp = nilfs->ns_sbp;
296 time_t t;
297
298 /* nilfs->ns_sem must be locked by the caller. */
299 t = get_seconds();
300 nilfs->ns_sbwtime = t;
301 sbp[0]->s_wtime = cpu_to_le64(t);
302 sbp[0]->s_sum = 0;
303 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
304 (unsigned char *)sbp[0],
305 nilfs->ns_sbsize));
306 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
307 sbp[1]->s_wtime = sbp[0]->s_wtime;
308 sbp[1]->s_sum = 0;
309 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
310 (unsigned char *)sbp[1],
311 nilfs->ns_sbsize));
312 }
313 clear_nilfs_sb_dirty(nilfs);
314 return nilfs_sync_super(sb, flag);
315 }
316
317 /**
318 * nilfs_cleanup_super() - write filesystem state for cleanup
319 * @sb: super block instance to be unmounted or degraded to read-only
320 *
321 * This function restores state flags in the on-disk super block.
322 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
323 * filesystem was not clean previously.
324 */
nilfs_cleanup_super(struct super_block * sb)325 int nilfs_cleanup_super(struct super_block *sb)
326 {
327 struct the_nilfs *nilfs = sb->s_fs_info;
328 struct nilfs_super_block **sbp;
329 int flag = NILFS_SB_COMMIT;
330 int ret = -EIO;
331
332 sbp = nilfs_prepare_super(sb, 0);
333 if (sbp) {
334 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
335 nilfs_set_log_cursor(sbp[0], nilfs);
336 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
337 /*
338 * make the "clean" flag also to the opposite
339 * super block if both super blocks point to
340 * the same checkpoint.
341 */
342 sbp[1]->s_state = sbp[0]->s_state;
343 flag = NILFS_SB_COMMIT_ALL;
344 }
345 ret = nilfs_commit_super(sb, flag);
346 }
347 return ret;
348 }
349
nilfs_put_super(struct super_block * sb)350 static void nilfs_put_super(struct super_block *sb)
351 {
352 struct the_nilfs *nilfs = sb->s_fs_info;
353
354 nilfs_detach_log_writer(sb);
355
356 if (!(sb->s_flags & MS_RDONLY)) {
357 down_write(&nilfs->ns_sem);
358 nilfs_cleanup_super(sb);
359 up_write(&nilfs->ns_sem);
360 }
361
362 iput(nilfs->ns_sufile);
363 iput(nilfs->ns_cpfile);
364 iput(nilfs->ns_dat);
365
366 destroy_nilfs(nilfs);
367 sb->s_fs_info = NULL;
368 }
369
nilfs_sync_fs(struct super_block * sb,int wait)370 static int nilfs_sync_fs(struct super_block *sb, int wait)
371 {
372 struct the_nilfs *nilfs = sb->s_fs_info;
373 struct nilfs_super_block **sbp;
374 int err = 0;
375
376 /* This function is called when super block should be written back */
377 if (wait)
378 err = nilfs_construct_segment(sb);
379
380 down_write(&nilfs->ns_sem);
381 if (nilfs_sb_dirty(nilfs)) {
382 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
383 if (likely(sbp)) {
384 nilfs_set_log_cursor(sbp[0], nilfs);
385 nilfs_commit_super(sb, NILFS_SB_COMMIT);
386 }
387 }
388 up_write(&nilfs->ns_sem);
389
390 return err;
391 }
392
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)393 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
394 struct nilfs_root **rootp)
395 {
396 struct the_nilfs *nilfs = sb->s_fs_info;
397 struct nilfs_root *root;
398 struct nilfs_checkpoint *raw_cp;
399 struct buffer_head *bh_cp;
400 int err = -ENOMEM;
401
402 root = nilfs_find_or_create_root(
403 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
404 if (!root)
405 return err;
406
407 if (root->ifile)
408 goto reuse; /* already attached checkpoint */
409
410 down_read(&nilfs->ns_segctor_sem);
411 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
412 &bh_cp);
413 up_read(&nilfs->ns_segctor_sem);
414 if (unlikely(err)) {
415 if (err == -ENOENT || err == -EINVAL) {
416 printk(KERN_ERR
417 "NILFS: Invalid checkpoint "
418 "(checkpoint number=%llu)\n",
419 (unsigned long long)cno);
420 err = -EINVAL;
421 }
422 goto failed;
423 }
424
425 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
426 &raw_cp->cp_ifile_inode, &root->ifile);
427 if (err)
428 goto failed_bh;
429
430 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
431 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
432
433 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
434
435 reuse:
436 *rootp = root;
437 return 0;
438
439 failed_bh:
440 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
441 failed:
442 nilfs_put_root(root);
443
444 return err;
445 }
446
nilfs_freeze(struct super_block * sb)447 static int nilfs_freeze(struct super_block *sb)
448 {
449 struct the_nilfs *nilfs = sb->s_fs_info;
450 int err;
451
452 if (sb->s_flags & MS_RDONLY)
453 return 0;
454
455 /* Mark super block clean */
456 down_write(&nilfs->ns_sem);
457 err = nilfs_cleanup_super(sb);
458 up_write(&nilfs->ns_sem);
459 return err;
460 }
461
nilfs_unfreeze(struct super_block * sb)462 static int nilfs_unfreeze(struct super_block *sb)
463 {
464 struct the_nilfs *nilfs = sb->s_fs_info;
465
466 if (sb->s_flags & MS_RDONLY)
467 return 0;
468
469 down_write(&nilfs->ns_sem);
470 nilfs_setup_super(sb, false);
471 up_write(&nilfs->ns_sem);
472 return 0;
473 }
474
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)475 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
476 {
477 struct super_block *sb = dentry->d_sb;
478 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
479 struct the_nilfs *nilfs = root->nilfs;
480 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
481 unsigned long long blocks;
482 unsigned long overhead;
483 unsigned long nrsvblocks;
484 sector_t nfreeblocks;
485 int err;
486
487 /*
488 * Compute all of the segment blocks
489 *
490 * The blocks before first segment and after last segment
491 * are excluded.
492 */
493 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
494 - nilfs->ns_first_data_block;
495 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
496
497 /*
498 * Compute the overhead
499 *
500 * When distributing meta data blocks outside segment structure,
501 * We must count them as the overhead.
502 */
503 overhead = 0;
504
505 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
506 if (unlikely(err))
507 return err;
508
509 buf->f_type = NILFS_SUPER_MAGIC;
510 buf->f_bsize = sb->s_blocksize;
511 buf->f_blocks = blocks - overhead;
512 buf->f_bfree = nfreeblocks;
513 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
514 (buf->f_bfree - nrsvblocks) : 0;
515 buf->f_files = atomic_read(&root->inodes_count);
516 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
517 buf->f_namelen = NILFS_NAME_LEN;
518 buf->f_fsid.val[0] = (u32)id;
519 buf->f_fsid.val[1] = (u32)(id >> 32);
520
521 return 0;
522 }
523
nilfs_show_options(struct seq_file * seq,struct vfsmount * vfs)524 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
525 {
526 struct super_block *sb = vfs->mnt_sb;
527 struct the_nilfs *nilfs = sb->s_fs_info;
528 struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root;
529
530 if (!nilfs_test_opt(nilfs, BARRIER))
531 seq_puts(seq, ",nobarrier");
532 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
533 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
534 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
535 seq_puts(seq, ",errors=panic");
536 if (nilfs_test_opt(nilfs, ERRORS_CONT))
537 seq_puts(seq, ",errors=continue");
538 if (nilfs_test_opt(nilfs, STRICT_ORDER))
539 seq_puts(seq, ",order=strict");
540 if (nilfs_test_opt(nilfs, NORECOVERY))
541 seq_puts(seq, ",norecovery");
542 if (nilfs_test_opt(nilfs, DISCARD))
543 seq_puts(seq, ",discard");
544
545 return 0;
546 }
547
548 static const struct super_operations nilfs_sops = {
549 .alloc_inode = nilfs_alloc_inode,
550 .destroy_inode = nilfs_destroy_inode,
551 .dirty_inode = nilfs_dirty_inode,
552 /* .write_inode = nilfs_write_inode, */
553 /* .put_inode = nilfs_put_inode, */
554 /* .drop_inode = nilfs_drop_inode, */
555 .evict_inode = nilfs_evict_inode,
556 .put_super = nilfs_put_super,
557 /* .write_super = nilfs_write_super, */
558 .sync_fs = nilfs_sync_fs,
559 .freeze_fs = nilfs_freeze,
560 .unfreeze_fs = nilfs_unfreeze,
561 /* .write_super_lockfs */
562 /* .unlockfs */
563 .statfs = nilfs_statfs,
564 .remount_fs = nilfs_remount,
565 /* .umount_begin */
566 .show_options = nilfs_show_options
567 };
568
569 enum {
570 Opt_err_cont, Opt_err_panic, Opt_err_ro,
571 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
572 Opt_discard, Opt_nodiscard, Opt_err,
573 };
574
575 static match_table_t tokens = {
576 {Opt_err_cont, "errors=continue"},
577 {Opt_err_panic, "errors=panic"},
578 {Opt_err_ro, "errors=remount-ro"},
579 {Opt_barrier, "barrier"},
580 {Opt_nobarrier, "nobarrier"},
581 {Opt_snapshot, "cp=%u"},
582 {Opt_order, "order=%s"},
583 {Opt_norecovery, "norecovery"},
584 {Opt_discard, "discard"},
585 {Opt_nodiscard, "nodiscard"},
586 {Opt_err, NULL}
587 };
588
parse_options(char * options,struct super_block * sb,int is_remount)589 static int parse_options(char *options, struct super_block *sb, int is_remount)
590 {
591 struct the_nilfs *nilfs = sb->s_fs_info;
592 char *p;
593 substring_t args[MAX_OPT_ARGS];
594
595 if (!options)
596 return 1;
597
598 while ((p = strsep(&options, ",")) != NULL) {
599 int token;
600 if (!*p)
601 continue;
602
603 token = match_token(p, tokens, args);
604 switch (token) {
605 case Opt_barrier:
606 nilfs_set_opt(nilfs, BARRIER);
607 break;
608 case Opt_nobarrier:
609 nilfs_clear_opt(nilfs, BARRIER);
610 break;
611 case Opt_order:
612 if (strcmp(args[0].from, "relaxed") == 0)
613 /* Ordered data semantics */
614 nilfs_clear_opt(nilfs, STRICT_ORDER);
615 else if (strcmp(args[0].from, "strict") == 0)
616 /* Strict in-order semantics */
617 nilfs_set_opt(nilfs, STRICT_ORDER);
618 else
619 return 0;
620 break;
621 case Opt_err_panic:
622 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
623 break;
624 case Opt_err_ro:
625 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
626 break;
627 case Opt_err_cont:
628 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
629 break;
630 case Opt_snapshot:
631 if (is_remount) {
632 printk(KERN_ERR
633 "NILFS: \"%s\" option is invalid "
634 "for remount.\n", p);
635 return 0;
636 }
637 break;
638 case Opt_norecovery:
639 nilfs_set_opt(nilfs, NORECOVERY);
640 break;
641 case Opt_discard:
642 nilfs_set_opt(nilfs, DISCARD);
643 break;
644 case Opt_nodiscard:
645 nilfs_clear_opt(nilfs, DISCARD);
646 break;
647 default:
648 printk(KERN_ERR
649 "NILFS: Unrecognized mount option \"%s\"\n", p);
650 return 0;
651 }
652 }
653 return 1;
654 }
655
656 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)657 nilfs_set_default_options(struct super_block *sb,
658 struct nilfs_super_block *sbp)
659 {
660 struct the_nilfs *nilfs = sb->s_fs_info;
661
662 nilfs->ns_mount_opt =
663 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
664 }
665
nilfs_setup_super(struct super_block * sb,int is_mount)666 static int nilfs_setup_super(struct super_block *sb, int is_mount)
667 {
668 struct the_nilfs *nilfs = sb->s_fs_info;
669 struct nilfs_super_block **sbp;
670 int max_mnt_count;
671 int mnt_count;
672
673 /* nilfs->ns_sem must be locked by the caller. */
674 sbp = nilfs_prepare_super(sb, 0);
675 if (!sbp)
676 return -EIO;
677
678 if (!is_mount)
679 goto skip_mount_setup;
680
681 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
682 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
683
684 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
685 printk(KERN_WARNING
686 "NILFS warning: mounting fs with errors\n");
687 #if 0
688 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
689 printk(KERN_WARNING
690 "NILFS warning: maximal mount count reached\n");
691 #endif
692 }
693 if (!max_mnt_count)
694 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
695
696 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
697 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
698
699 skip_mount_setup:
700 sbp[0]->s_state =
701 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
702 /* synchronize sbp[1] with sbp[0] */
703 if (sbp[1])
704 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
705 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
706 }
707
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)708 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
709 u64 pos, int blocksize,
710 struct buffer_head **pbh)
711 {
712 unsigned long long sb_index = pos;
713 unsigned long offset;
714
715 offset = do_div(sb_index, blocksize);
716 *pbh = sb_bread(sb, sb_index);
717 if (!*pbh)
718 return NULL;
719 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
720 }
721
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)722 int nilfs_store_magic_and_option(struct super_block *sb,
723 struct nilfs_super_block *sbp,
724 char *data)
725 {
726 struct the_nilfs *nilfs = sb->s_fs_info;
727
728 sb->s_magic = le16_to_cpu(sbp->s_magic);
729
730 /* FS independent flags */
731 #ifdef NILFS_ATIME_DISABLE
732 sb->s_flags |= MS_NOATIME;
733 #endif
734
735 nilfs_set_default_options(sb, sbp);
736
737 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
738 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
739 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
740 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
741
742 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
743 }
744
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)745 int nilfs_check_feature_compatibility(struct super_block *sb,
746 struct nilfs_super_block *sbp)
747 {
748 __u64 features;
749
750 features = le64_to_cpu(sbp->s_feature_incompat) &
751 ~NILFS_FEATURE_INCOMPAT_SUPP;
752 if (features) {
753 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
754 "optional features (%llx)\n",
755 (unsigned long long)features);
756 return -EINVAL;
757 }
758 features = le64_to_cpu(sbp->s_feature_compat_ro) &
759 ~NILFS_FEATURE_COMPAT_RO_SUPP;
760 if (!(sb->s_flags & MS_RDONLY) && features) {
761 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
762 "unsupported optional features (%llx)\n",
763 (unsigned long long)features);
764 return -EINVAL;
765 }
766 return 0;
767 }
768
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)769 static int nilfs_get_root_dentry(struct super_block *sb,
770 struct nilfs_root *root,
771 struct dentry **root_dentry)
772 {
773 struct inode *inode;
774 struct dentry *dentry;
775 int ret = 0;
776
777 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
778 if (IS_ERR(inode)) {
779 printk(KERN_ERR "NILFS: get root inode failed\n");
780 ret = PTR_ERR(inode);
781 goto out;
782 }
783 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
784 iput(inode);
785 printk(KERN_ERR "NILFS: corrupt root inode.\n");
786 ret = -EINVAL;
787 goto out;
788 }
789
790 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
791 dentry = d_find_alias(inode);
792 if (!dentry) {
793 dentry = d_alloc_root(inode);
794 if (!dentry) {
795 iput(inode);
796 ret = -ENOMEM;
797 goto failed_dentry;
798 }
799 } else {
800 iput(inode);
801 }
802 } else {
803 dentry = d_obtain_alias(inode);
804 if (IS_ERR(dentry)) {
805 ret = PTR_ERR(dentry);
806 goto failed_dentry;
807 }
808 }
809 *root_dentry = dentry;
810 out:
811 return ret;
812
813 failed_dentry:
814 printk(KERN_ERR "NILFS: get root dentry failed\n");
815 goto out;
816 }
817
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)818 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
819 struct dentry **root_dentry)
820 {
821 struct the_nilfs *nilfs = s->s_fs_info;
822 struct nilfs_root *root;
823 int ret;
824
825 down_read(&nilfs->ns_segctor_sem);
826 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
827 up_read(&nilfs->ns_segctor_sem);
828 if (ret < 0) {
829 ret = (ret == -ENOENT) ? -EINVAL : ret;
830 goto out;
831 } else if (!ret) {
832 printk(KERN_ERR "NILFS: The specified checkpoint is "
833 "not a snapshot (checkpoint number=%llu).\n",
834 (unsigned long long)cno);
835 ret = -EINVAL;
836 goto out;
837 }
838
839 ret = nilfs_attach_checkpoint(s, cno, false, &root);
840 if (ret) {
841 printk(KERN_ERR "NILFS: error loading snapshot "
842 "(checkpoint number=%llu).\n",
843 (unsigned long long)cno);
844 goto out;
845 }
846 ret = nilfs_get_root_dentry(s, root, root_dentry);
847 nilfs_put_root(root);
848 out:
849 return ret;
850 }
851
nilfs_tree_was_touched(struct dentry * root_dentry)852 static int nilfs_tree_was_touched(struct dentry *root_dentry)
853 {
854 return root_dentry->d_count > 1;
855 }
856
857 /**
858 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
859 * @root_dentry: root dentry of the tree to be shrunk
860 *
861 * This function returns true if the tree was in-use.
862 */
nilfs_try_to_shrink_tree(struct dentry * root_dentry)863 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
864 {
865 if (have_submounts(root_dentry))
866 return true;
867 shrink_dcache_parent(root_dentry);
868 return nilfs_tree_was_touched(root_dentry);
869 }
870
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)871 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
872 {
873 struct the_nilfs *nilfs = sb->s_fs_info;
874 struct nilfs_root *root;
875 struct inode *inode;
876 struct dentry *dentry;
877 int ret;
878
879 if (cno < 0 || cno > nilfs->ns_cno)
880 return false;
881
882 if (cno >= nilfs_last_cno(nilfs))
883 return true; /* protect recent checkpoints */
884
885 ret = false;
886 root = nilfs_lookup_root(nilfs, cno);
887 if (root) {
888 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
889 if (inode) {
890 dentry = d_find_alias(inode);
891 if (dentry) {
892 if (nilfs_tree_was_touched(dentry))
893 ret = nilfs_try_to_shrink_tree(dentry);
894 dput(dentry);
895 }
896 iput(inode);
897 }
898 nilfs_put_root(root);
899 }
900 return ret;
901 }
902
903 /**
904 * nilfs_fill_super() - initialize a super block instance
905 * @sb: super_block
906 * @data: mount options
907 * @silent: silent mode flag
908 *
909 * This function is called exclusively by nilfs->ns_mount_mutex.
910 * So, the recovery process is protected from other simultaneous mounts.
911 */
912 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)913 nilfs_fill_super(struct super_block *sb, void *data, int silent)
914 {
915 struct the_nilfs *nilfs;
916 struct nilfs_root *fsroot;
917 struct backing_dev_info *bdi;
918 __u64 cno;
919 int err;
920
921 nilfs = alloc_nilfs(sb->s_bdev);
922 if (!nilfs)
923 return -ENOMEM;
924
925 sb->s_fs_info = nilfs;
926
927 err = init_nilfs(nilfs, sb, (char *)data);
928 if (err)
929 goto failed_nilfs;
930
931 sb->s_op = &nilfs_sops;
932 sb->s_export_op = &nilfs_export_ops;
933 sb->s_root = NULL;
934 sb->s_time_gran = 1;
935
936 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
937 sb->s_bdi = bdi ? : &default_backing_dev_info;
938
939 err = load_nilfs(nilfs, sb);
940 if (err)
941 goto failed_nilfs;
942
943 cno = nilfs_last_cno(nilfs);
944 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
945 if (err) {
946 printk(KERN_ERR "NILFS: error loading last checkpoint "
947 "(checkpoint number=%llu).\n", (unsigned long long)cno);
948 goto failed_unload;
949 }
950
951 if (!(sb->s_flags & MS_RDONLY)) {
952 err = nilfs_attach_log_writer(sb, fsroot);
953 if (err)
954 goto failed_checkpoint;
955 }
956
957 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
958 if (err)
959 goto failed_segctor;
960
961 nilfs_put_root(fsroot);
962
963 if (!(sb->s_flags & MS_RDONLY)) {
964 down_write(&nilfs->ns_sem);
965 nilfs_setup_super(sb, true);
966 up_write(&nilfs->ns_sem);
967 }
968
969 return 0;
970
971 failed_segctor:
972 nilfs_detach_log_writer(sb);
973
974 failed_checkpoint:
975 nilfs_put_root(fsroot);
976
977 failed_unload:
978 iput(nilfs->ns_sufile);
979 iput(nilfs->ns_cpfile);
980 iput(nilfs->ns_dat);
981
982 failed_nilfs:
983 destroy_nilfs(nilfs);
984 return err;
985 }
986
nilfs_remount(struct super_block * sb,int * flags,char * data)987 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
988 {
989 struct the_nilfs *nilfs = sb->s_fs_info;
990 unsigned long old_sb_flags;
991 unsigned long old_mount_opt;
992 int err;
993
994 old_sb_flags = sb->s_flags;
995 old_mount_opt = nilfs->ns_mount_opt;
996
997 if (!parse_options(data, sb, 1)) {
998 err = -EINVAL;
999 goto restore_opts;
1000 }
1001 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1002
1003 err = -EINVAL;
1004
1005 if (!nilfs_valid_fs(nilfs)) {
1006 printk(KERN_WARNING "NILFS (device %s): couldn't "
1007 "remount because the filesystem is in an "
1008 "incomplete recovery state.\n", sb->s_id);
1009 goto restore_opts;
1010 }
1011
1012 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1013 goto out;
1014 if (*flags & MS_RDONLY) {
1015 /* Shutting down log writer */
1016 nilfs_detach_log_writer(sb);
1017 sb->s_flags |= MS_RDONLY;
1018
1019 /*
1020 * Remounting a valid RW partition RDONLY, so set
1021 * the RDONLY flag and then mark the partition as valid again.
1022 */
1023 down_write(&nilfs->ns_sem);
1024 nilfs_cleanup_super(sb);
1025 up_write(&nilfs->ns_sem);
1026 } else {
1027 __u64 features;
1028 struct nilfs_root *root;
1029
1030 /*
1031 * Mounting a RDONLY partition read-write, so reread and
1032 * store the current valid flag. (It may have been changed
1033 * by fsck since we originally mounted the partition.)
1034 */
1035 down_read(&nilfs->ns_sem);
1036 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1037 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1038 up_read(&nilfs->ns_sem);
1039 if (features) {
1040 printk(KERN_WARNING "NILFS (device %s): couldn't "
1041 "remount RDWR because of unsupported optional "
1042 "features (%llx)\n",
1043 sb->s_id, (unsigned long long)features);
1044 err = -EROFS;
1045 goto restore_opts;
1046 }
1047
1048 sb->s_flags &= ~MS_RDONLY;
1049
1050 root = NILFS_I(sb->s_root->d_inode)->i_root;
1051 err = nilfs_attach_log_writer(sb, root);
1052 if (err)
1053 goto restore_opts;
1054
1055 down_write(&nilfs->ns_sem);
1056 nilfs_setup_super(sb, true);
1057 up_write(&nilfs->ns_sem);
1058 }
1059 out:
1060 return 0;
1061
1062 restore_opts:
1063 sb->s_flags = old_sb_flags;
1064 nilfs->ns_mount_opt = old_mount_opt;
1065 return err;
1066 }
1067
1068 struct nilfs_super_data {
1069 struct block_device *bdev;
1070 __u64 cno;
1071 int flags;
1072 };
1073
1074 /**
1075 * nilfs_identify - pre-read mount options needed to identify mount instance
1076 * @data: mount options
1077 * @sd: nilfs_super_data
1078 */
nilfs_identify(char * data,struct nilfs_super_data * sd)1079 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1080 {
1081 char *p, *options = data;
1082 substring_t args[MAX_OPT_ARGS];
1083 int token;
1084 int ret = 0;
1085
1086 do {
1087 p = strsep(&options, ",");
1088 if (p != NULL && *p) {
1089 token = match_token(p, tokens, args);
1090 if (token == Opt_snapshot) {
1091 if (!(sd->flags & MS_RDONLY)) {
1092 ret++;
1093 } else {
1094 sd->cno = simple_strtoull(args[0].from,
1095 NULL, 0);
1096 /*
1097 * No need to see the end pointer;
1098 * match_token() has done syntax
1099 * checking.
1100 */
1101 if (sd->cno == 0)
1102 ret++;
1103 }
1104 }
1105 if (ret)
1106 printk(KERN_ERR
1107 "NILFS: invalid mount option: %s\n", p);
1108 }
1109 if (!options)
1110 break;
1111 BUG_ON(options == data);
1112 *(options - 1) = ',';
1113 } while (!ret);
1114 return ret;
1115 }
1116
nilfs_set_bdev_super(struct super_block * s,void * data)1117 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1118 {
1119 s->s_bdev = data;
1120 s->s_dev = s->s_bdev->bd_dev;
1121 return 0;
1122 }
1123
nilfs_test_bdev_super(struct super_block * s,void * data)1124 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1125 {
1126 return (void *)s->s_bdev == data;
1127 }
1128
1129 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1130 nilfs_mount(struct file_system_type *fs_type, int flags,
1131 const char *dev_name, void *data)
1132 {
1133 struct nilfs_super_data sd;
1134 struct super_block *s;
1135 fmode_t mode = FMODE_READ | FMODE_EXCL;
1136 struct dentry *root_dentry;
1137 int err, s_new = false;
1138
1139 if (!(flags & MS_RDONLY))
1140 mode |= FMODE_WRITE;
1141
1142 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1143 if (IS_ERR(sd.bdev))
1144 return ERR_CAST(sd.bdev);
1145
1146 sd.cno = 0;
1147 sd.flags = flags;
1148 if (nilfs_identify((char *)data, &sd)) {
1149 err = -EINVAL;
1150 goto failed;
1151 }
1152
1153 /*
1154 * once the super is inserted into the list by sget, s_umount
1155 * will protect the lockfs code from trying to start a snapshot
1156 * while we are mounting
1157 */
1158 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1159 if (sd.bdev->bd_fsfreeze_count > 0) {
1160 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1161 err = -EBUSY;
1162 goto failed;
1163 }
1164 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
1165 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1166 if (IS_ERR(s)) {
1167 err = PTR_ERR(s);
1168 goto failed;
1169 }
1170
1171 if (!s->s_root) {
1172 char b[BDEVNAME_SIZE];
1173
1174 s_new = true;
1175
1176 /* New superblock instance created */
1177 s->s_flags = flags;
1178 s->s_mode = mode;
1179 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1180 sb_set_blocksize(s, block_size(sd.bdev));
1181
1182 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1183 if (err)
1184 goto failed_super;
1185
1186 s->s_flags |= MS_ACTIVE;
1187 } else if (!sd.cno) {
1188 int busy = false;
1189
1190 if (nilfs_tree_was_touched(s->s_root)) {
1191 busy = nilfs_try_to_shrink_tree(s->s_root);
1192 if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1193 printk(KERN_ERR "NILFS: the device already "
1194 "has a %s mount.\n",
1195 (s->s_flags & MS_RDONLY) ?
1196 "read-only" : "read/write");
1197 err = -EBUSY;
1198 goto failed_super;
1199 }
1200 }
1201 if (!busy) {
1202 /*
1203 * Try remount to setup mount states if the current
1204 * tree is not mounted and only snapshots use this sb.
1205 */
1206 err = nilfs_remount(s, &flags, data);
1207 if (err)
1208 goto failed_super;
1209 }
1210 }
1211
1212 if (sd.cno) {
1213 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1214 if (err)
1215 goto failed_super;
1216 } else {
1217 root_dentry = dget(s->s_root);
1218 }
1219
1220 if (!s_new)
1221 blkdev_put(sd.bdev, mode);
1222
1223 return root_dentry;
1224
1225 failed_super:
1226 deactivate_locked_super(s);
1227
1228 failed:
1229 if (!s_new)
1230 blkdev_put(sd.bdev, mode);
1231 return ERR_PTR(err);
1232 }
1233
1234 struct file_system_type nilfs_fs_type = {
1235 .owner = THIS_MODULE,
1236 .name = "nilfs2",
1237 .mount = nilfs_mount,
1238 .kill_sb = kill_block_super,
1239 .fs_flags = FS_REQUIRES_DEV,
1240 };
1241
nilfs_inode_init_once(void * obj)1242 static void nilfs_inode_init_once(void *obj)
1243 {
1244 struct nilfs_inode_info *ii = obj;
1245
1246 INIT_LIST_HEAD(&ii->i_dirty);
1247 #ifdef CONFIG_NILFS_XATTR
1248 init_rwsem(&ii->xattr_sem);
1249 #endif
1250 address_space_init_once(&ii->i_btnode_cache);
1251 ii->i_bmap = &ii->i_bmap_data;
1252 inode_init_once(&ii->vfs_inode);
1253 }
1254
nilfs_segbuf_init_once(void * obj)1255 static void nilfs_segbuf_init_once(void *obj)
1256 {
1257 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1258 }
1259
nilfs_destroy_cachep(void)1260 static void nilfs_destroy_cachep(void)
1261 {
1262 if (nilfs_inode_cachep)
1263 kmem_cache_destroy(nilfs_inode_cachep);
1264 if (nilfs_transaction_cachep)
1265 kmem_cache_destroy(nilfs_transaction_cachep);
1266 if (nilfs_segbuf_cachep)
1267 kmem_cache_destroy(nilfs_segbuf_cachep);
1268 if (nilfs_btree_path_cache)
1269 kmem_cache_destroy(nilfs_btree_path_cache);
1270 }
1271
nilfs_init_cachep(void)1272 static int __init nilfs_init_cachep(void)
1273 {
1274 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1275 sizeof(struct nilfs_inode_info), 0,
1276 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1277 if (!nilfs_inode_cachep)
1278 goto fail;
1279
1280 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1281 sizeof(struct nilfs_transaction_info), 0,
1282 SLAB_RECLAIM_ACCOUNT, NULL);
1283 if (!nilfs_transaction_cachep)
1284 goto fail;
1285
1286 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1287 sizeof(struct nilfs_segment_buffer), 0,
1288 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1289 if (!nilfs_segbuf_cachep)
1290 goto fail;
1291
1292 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1293 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1294 0, 0, NULL);
1295 if (!nilfs_btree_path_cache)
1296 goto fail;
1297
1298 return 0;
1299
1300 fail:
1301 nilfs_destroy_cachep();
1302 return -ENOMEM;
1303 }
1304
init_nilfs_fs(void)1305 static int __init init_nilfs_fs(void)
1306 {
1307 int err;
1308
1309 err = nilfs_init_cachep();
1310 if (err)
1311 goto fail;
1312
1313 err = register_filesystem(&nilfs_fs_type);
1314 if (err)
1315 goto free_cachep;
1316
1317 printk(KERN_INFO "NILFS version 2 loaded\n");
1318 return 0;
1319
1320 free_cachep:
1321 nilfs_destroy_cachep();
1322 fail:
1323 return err;
1324 }
1325
exit_nilfs_fs(void)1326 static void __exit exit_nilfs_fs(void)
1327 {
1328 nilfs_destroy_cachep();
1329 unregister_filesystem(&nilfs_fs_type);
1330 }
1331
1332 module_init(init_nilfs_fs)
1333 module_exit(exit_nilfs_fs)
1334